
Tiny Tapeout 04 Datasheet
Project Repository

https://github.com/TinyTapeout/tinytapeout-04

December 14, 2023

Contents

1

https://github.com/TinyTapeout/tinytapeout-04

Render of whole chip 6

Projects 7
Chip ROM [0] . 7
TinyTapeout 04 Factory Test [1] . 9
VGA clock [2] . 11
7 segment seconds [3] . 12
Number Factorizer [4] . 14
Odd even sorter [5] . 17
The Bulls and Cows game [6] . 18
VGA Output for Arduino [16] . 20
Digital Cipher & Interlock System [17] . 22
Simon Says game [18] . 24
YKM 7-seg driver [19] . 27
Configurable PID Block [20] . 28
PWM audio [21] . 29
4-bit ALU [22] . 30
RGB Mixer [23] . 32
raybox-zero [33] . 33
ChipTune [37] . 36
OpenSource PWM Peripheral [48] . 41
Experiment Number Six: Laplace LUT [50] 43
Karplus-Strong String Synthesis [52] . 45
USB Device [54] . 47
Audio-PWM-Synth [64] . 50
German Traffic Light [71] . 51
Dandy VGA [96] . 52
Tiny Breakout [98] . 55
VC 16-bit CPU [99] . 59
Risc-V Nano V [100] . 60
USB CDC (Serial) [101] . 62
Tiny processor [102] . 63
fft-4-tt [103] . 65
LED Panel Driver [112] . 67
OSU Counter [113] . 69
Even digits [114] . 70
Traffic light [115] . 71
Tutorial4 [116] . 72
Grain-Flex-FPGA [117] . 73
BFCPU [118] . 74
AI Decelerator [119] . 76
Tiny (3-bit) LFSR [160] . 82

2

Pulsed Plasma Thruster (PPT) Controller [161] 83
SAP-1 CPU [162] . 85
Multi-channel pulse counter with serial output, v01a [163] 87
Delay Line [164] . 89
Simple Piano [165] . 92
Ripple-Carry Adder [166] . 94
Led Multiplexer Display [167] . 95
LED Matrix Driver [176] . 96
8-bit FIFO with depth 16. [177] . 98
Pong [178] . 100
8 panel display”” [179] . 104
Traffic Light [180] . 105
Model Railway turntable polarity controller [181] 106
Customizable UART string tx [182] . 110
7-Seg ‘Tiny Tapeout’ Display [183] . 112
UART character tx [192] . 114
Padlock [193] . 116
8bits Counter by AI [194] . 117
FM Transmitter [195] . 118
Test 4x4 memory [196] . 120
ROTFPGA v2 [197] . 122
Arithmetic logic unit of four operations between two 8-bit numbers [198] . . 126
FIR Filter [199] . 128
Tamagotchi [208] . 130
LFMPDM (Lightning Fast Matrix Programmable Design Module) [209] . . . 132
7 SEGMENTS CLOCK [210] . 133
Multi Pattern LED Sequencer [211] . 134
Generador de PWM [212] . 138
Multi stage path for delay measurements. [213] 140
ASCII Text Printer Circuit [214] . 141
Clock synchronizer [215] . 143
Simple PWM Generator [224] . 146
CLK Frequency Divider [225] . 148
UIS Traffic Light [226] . 149
4 bit adder [227] . 150
8-bit ALU [228] . 151
Collatz Conjecture [229] . 152
8 bit 4 data sorting network [230] . 153
BCD to 7 segments [231] . 154
4 bit full adder [240] . 155
Circuito Religioso [241] . 156
Demultiplexor NAND [242] . 157

3

Sumador/Sustractor de 3 bit con acarreo y prestamo [243] 159
Hardware Lock [244] . 161
Custom falling and rising edge detection [245] 162
4-bit-alu [246] . 163
Angardo’s pong [247] . 165
(11,7) hamming code encoder and decoder with UART [256] 166
Multi-channel pulse counter with serial output, v01b [257] 168
State machine of an impulse counter [258] 170
Logic Circuit 1 [259] . 172
Variable Duty-Cycle TRNG [260] . 173
Pseudo Random Number Generator [261] 175
SAR ADC Backend [262] . 177
FCFM 7-segment display [263] . 179
another ring oscillator based temperature sensor [272] 180
RO-based temperature sensor with hysteresis [273] 182
Microrobotics FSM [274] . 184
MINI ALU [275] . 185
PWM Quisquilloso [276] . 186
CPU 8 bit [277] . 187
A Risc-V Instruction memory i2c programmer [278] 188
IFSC 6-bit Locker [279] . 190
Randomizer and status checker [288] . 192
Simulador de cruzamento de semáforo [289] 195
Full_adder_carry_juang_garzons [290] 197
4-trit balanced ternary program counter and convertor [291] 198
uDATAPATH_Collatz [292] . 200
Adder [293] . 202
Binary to 7 segment [294] . 203
Neuron [295] . 204
Later [304] . 205
serializer [305] . 206
4-bits 1-channel PWM and ALU 4 bits [306] 207
up-down counter with parallel load and BCD output [307] 208
Later [308] . 210
Contador con carga [309] . 211
onehot_decoder [310] . 212
CDMA Transmitter/Receiver [311] . 213
clock divider [320] . 215
reciprocal [321] . 216
Later [322] . 217
Time Multiplexed Nand-gate [323] . 218
Octal classifier [324] . 219

4

MULDIV unit (4-bit signed/unsigned) [325] 220
RS Write Decodifier [326] . 222
Password FSM [327] . 223
Priority e [336] . 224
frecuencimeter [337] . 225
lfsr random number generator [338] . 226
i2c_6 bits [339] . 228
Fastest Finger [340] . 229
Fastest Finger (Clocked) [341] . 230
Oscillators II [342] . 231
Simple ALU [343] . 232
TinyTapeout 04 Loopback Test Module [352] 234
Adjustable Frequency LED Chaser [353] 235
Simple QSPI DAC [354] . 237
AQALU [355] . 239
Simple TMR [356] . 241
Poor Person’s Boundary Scan [357] . 242
Probador de lógica básico [358] . 244
LIF Neuron, Telluride 2023 [359] . 245
rusty_adder [368] . 247

Pinout 248

The Tiny Tapeout Multiplexer 249
Overview . 249
Operation . 249
Pinout . 252

Chip Errata 255
Undefined pin states . 255

Sponsored by 256

Team 256

5

Render of whole chip

Full GDS

6

Projects

Chip ROM [0]

• Author: Uri Shaked
• Description: ROM with information about the chip
• GitHub repository
• HDL project
• Mux address: 0
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

ROM memory that contains information about the Tiny Tapeout chip. The ROM is
8-bit wide and 128 bytes long.

The ROM layout The ROM layout is as follows:

Address Length Encoding Description
0 8 7-segment Shuttle name (e.g. “tt04”), null-padded
32 96 ASCII Chip descriptor (see below)

The chip descriptor The chip descriptor is a simple null-terminated string that
describes the chip. Each line is a key-value pair, separated by an equals sign. It
contains the following keys:

Key Description Example value
shuttle The identifier of the shuttle tt04
repo The name of the repository TinyTapeout/tinytapeout-04

Future Tiny Tapeout shuttles may add more keys to the chip descriptor.
Here is a complete example of a chip descriptor:

shuttle=tt04
repo=TinyTapeout/tinytapeout-04

7

https://github.com/TinyTapeout/tt-chip-rom

How to test

Read the ROM contents by setting the address pins and reading the data pins. The
first eight bytes of the ROM are 7-segment encoded and contain the shuttle name.
You can read them by toggling the first four DIP switches and observing the on-board
7-segment display.

Pinout

Input Output Bidirectional
0 addr[0] data[0] none
1 addr[1] data[1] none
2 addr[2] data[2] none
3 addr[3] data[3] none
4 addr[4] data[4] none
5 addr[5] data[5] none
6 addr[6] data[6] none
7 addr[7] data[7] none

8

TinyTapeout 04 Factory Test [1]

• Author: Sylvain Munaut
• Description: Factory test module
• GitHub repository
• HDL project
• Mux address: 1
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

If input 0 is high, then a counter is output on the outputs and the bidirectional outputs.
Otherwise the inputs are mirrored to the outputs.

How to test

Set input 0 high. Check the outputs are toggling.

Pinout

Input Output Bidirectional
0 sel / data_i[0] data_o[0] (when

sel=0) /
counter_o[0] (when
sel=1)

counter_o[0]

1 data_i[1] data_o[1] (when
sel=0) /
counter_o[1] (when
sel=1)

counter_o[1]

2 data_i[2] data_o[2] (when
sel=0) /
counter_o[2] (when
sel=1)

counter_o[2]

3 data_i[3] data_o[3] (when
sel=0) /
counter_o[3] (when
sel=1)

counter_o[3]

9

https://github.com/TinyTapeout/tt04-factory-test

Input Output Bidirectional
4 data_i[4] data_o[4] (when

sel=0) /
counter_o[4] (when
sel=1)

counter_o[4]

5 data_i[5] data_o[5] (when
sel=0) /
counter_o[5] (when
sel=1)

counter_o[5]

6 data_i[6] data_o[6] (when
sel=0) /
counter_o[6] (when
sel=1)

counter_o[6]

7 data_i[7] data_o[7] (when
sel=0) /
counter_o[7] (when
sel=1)

counter_o[7]

10

VGA clock [2]

• Author: Matt Venn
• Description: Shows the time on a VGA screen
• GitHub repository
• HDL project
• Mux address: 2
• Extra docs
• Clock: 31500000 Hz
• External hardware: R2R dac for the VGA signals

How it works

Races the beam! Font is pre generated and loaded into registers. 6 bit colour keeps
register count low.

How to test

Hook up a VGA monitor to the outputs and provide a clock at 31.5 MHz. Connect
the 6 bit colour output up with resistors to make a R2R DAC. See the circuit here:
https://github.com/mattvenn/6bit-pmod-vga

Pinout

Input Output Bidirectional
0 clock hsync none
1 reset vsync none
2 adjust hours r0 none
3 adjust minutes r1 none
4 adjust seconds g0 none
5 none g1 none
6 none b0 none
7 none b1 none

11

https://github.com/mattvenn/tt04-vga-clock

7 segment seconds [3]

• Author: Matt Venn
• Description: Count up to 10, one second at a time.
• GitHub repository
• HDL project
• Mux address: 3
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Uses a set of registers to divide the clock, and then some combinational logic to convert
from binary to decimal for the display.
Puts the bottom 8 bits of the counter on the bidirectional outputs.
With all the inputs set to 0, the internal 24 bit compare is set to 10,000,000. This
means the counter will increment by one each second.
If any inputs are non zero, then the input will be used as an bits 11 to 18 of the 24 bit
compare register. Example: setting the inputs to 00010000 will program 16384 into
the compare register. With a 10MHz clock the counter will increment ~610 times per
second.

How to test

After reset, the counter should increase by one every second with a 10MHz input clock.
Experiment by changing the inputs to change the counting speed.

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5

12

https://github.com/TinyTapeout/tt04-verilog-demo

Input Output Bidirectional
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

13

Number Factorizer [4]

• Author: Marno van der Maas
• Description: Takes the input and computes its factors
• GitHub repository
• HDL project
• Mux address: 4
• Extra docs
• Clock: 10000000 Hz
• External hardware: seven-segment display

How it works

This design uses a set of registers to compute the modulo of all factors up to 19 in
one or two steps. The modulus of non-trivial numbers is calculated using the following
trick:

n % k = (
(2^0 % k) * n[0] +
(2^1 % k) * n[1] +
... +
(2^6 % k) * n[6] +
(2^7 % k) * n[7]

) % k
= big_sum % k

The values of 2^x % k can be computed ahead of time and are hardcoded in the design.
Also we don’t actually care about the modulus but rather about when the modulus is
equal to zero, because that means that k is a factor. Since the final result of big_sum
is guaranteed to be less than or equal to (k - 1) * 8, we can exhaustively list all
the values for which the modulus is zero by:

(n % k == 0) = (
big_sum == (k * 0) ||
big_sum == (k * 1) ||
big_sum == (k * 2) ||
... ||
big_sum == (k * m)

)

14

https://github.com/marnovandermaas/tiny-factorizer

Where m is the largest integer for which k * m <= (k - 1) * 8.
Factors between 0x1 (decimal 1) and 0xF (decimal 15) are shown in a loop on the
seven segment display with a one second delay between each factor. This design uses
some combinatorial logic to convert from binary to hexadecimal for the seven segment
display. The second delay is achieved by a clock divider logic.
The output pins show the prime factors of the input number. If the input is zero, the
output is set to the bottom 8 bits of the counter for debugging purposes.

How to test

After reset and input set to 0, the counter on the seven segment display should increase
by one every second with a 10 MHz input clock from 0x1 to 0xF. The outputs are
the lower bits of the internal counter that increases every cycle. The dot on the seven
segment display should be off.
For inputs other than 0, the seven segment display shows the factors one by one, cycling
back at the end. The factor 1 is displayed for all inputs and only factors up to 15 are
shown. For example for 6, the factors 1, 2, 3 and 6 will be shown on the display. For
7, the factors 1 and 7 will be shown on the display. For 23, only the factor 1 will
be show on the display. It will also use the output pins to indicate the prime factors,
where the least significant bit represents 2 and the most significant bit represents 19.
For example for 6, only 2 and 3 are set to 1. For 7, only 7 is set to 1. For 23, all
the outputs are zero. The dot on the seven segment display is only on when the input
number is prime.
Hexadecimals are displayed using the decimal configurations (without modifications).
And then the hexadecimal values specified here.
Please reset the design before giving your input. Also, you can have a look at the
testbench for more thorough testing.

Pinout

Input Output Bidirectional
0 Fist bit of number to factor Segment a (hex) Is 2 a factor?
1 Second bit of number to factor Segment b (hex) Is 3 a factor?
2 Third bit of number to factor Segment c (hex) Is 5 a factor?
3 Fourth bit of number to factor Segment d (hex) Is 7 a factor?
4 Fifth bit of number to factor Segment e (hex) Is 11 a factor?
5 Sixth bit of number to factor Segment f (hex) Is 13 a factor?

15

https://en.wikipedia.org/wiki/Seven-segment_display#Decimal
https://en.wikipedia.org/wiki/Seven-segment_display#Hexadecimal
https://github.com/marnovandermaas/tiny-factorizer/blob/main/src/test.py

Input Output Bidirectional
6 Seventh bit of number to factor Segment g (hex) Is 17 a factor?
7 Eigth bit of number to factor Segment dot (is prime) Is 19 a factor?

16

Odd even sorter [5]

• Author: Vasileios Titopoulos
• Description: An odd even sorter of four 2-bit values
• GitHub repository
• HDL project
• Mux address: 5
• Extra docs
• Clock: 25 000 000 Hz
• External hardware:

How it works

The sorter takes the inputs from ui_in[7:0] signals and rearranges them properly to
uo_out[7:0] signals after they pass from the four internal pipeline registers.

How to test

Connect a clock for the internal registers and use the inputs ui_in[7:0] to assign the
values to the design. The sorted values are provided through uo_out[7:0] signals

Pinout

Input Output Bidirectional
0 I0/In1[0] O0/Out1[0]/segment a none
1 I1/In1[1] O1/Out1[1]/segment b none
2 I2/In2[0] O2/Out2[0]/segment c none
3 I3/In2[1] O3/Out2[1]/segment d none
4 I4/In3[0] O4/Out3[0]/segment e none
5 I5/In3[1] O5/Out3[1]/segment f none
6 I6/In4[0] O6/Out4[0]/segment g none
7 I7/In4[1] O7/Out4[1]/dot none

17

https://github.com/Vasitito/Odd_even_sorter
https://github.com/Vasitito/Odd_even_sorter/blob/main/README.md

The Bulls and Cows game [6]

• Author: Giorgos Dimitrakopoulos
• Description: An implementation of the Bulls and Cows game
• GitHub repository
• HDL project
• Mux address: 6
• Extra docs
• Clock: 25 000 000 Hz
• External hardware:

How it works

The bulls and cows is a game where the users try to discover the exact pattern of secret
numbers

How to test

Firstly, a secret pattern of four 3-bit numbers, which are different with each other,
should be set. This is done through the save signal. After the secret number is set,
another user tries to find the correct pattern of numbers. In order for the correct
pattern to be found, the signals of cows and bulls are pinpointing as to whether the
user input had any match with the secret pattern. The cows indication shows as to
whether the input matches with any secret number but it is not in the right position.
On the other hand, the bulls indication shows as to whether the input matches and
is placed correctly. The purpose of the game is for the user to achieve four bulls
indications. For the signals of bulls and cows the indications are showed through the
seven segment display. In the seven segment display the bulls indication is placed in the
top region (0-1-5-6) and the cows indication is placed in the bottom region (2-3-4-7)
of the seven segment display.

18

https://github.com/gdimitrak/Bulls-and-Cows
https://github.com/gdimitrak/Bulls-and-Cows/blob/main/README.md

Pinout

Input Output Bidirectional
0 I0/Number1[0] O0/bulls[1]/segment a I7/Number3[0]
1 I1/Number1[1] O1/bulls[2]/segment b I8/Number3[1]
2 I2/Number1[2] O2/cows[0]/segment c I9/Number3[2]
3 I3/Number2[0] O3/cows[1]/segment d I10/Number4[0]
4 I4/Number2[1] O4/cows[2]/segment e I11/Number4[1]
5 I5/Number2[2] O5/bulls[0]/segment f I12/Number4[2]
6 I6/Save the secret number O6/bulls[3]/segment g none
7 none O7/cows[3]/dot none

19

VGA Output for Arduino [16]

• Author: Devin Atkin
• Description: The final goal of this project is to create an arduino VGA driver.

Currently it’s nothing
• GitHub repository
• HDL project
• Mux address: 16
• Extra docs
• Clock: 25175000 Hz
• External hardware: You’re going to need to hook up a VGA output to the chip

alongside the clock, to control it you’ll need some form of microcontroller

How it works

The name is overly ambitious but that’s why I’ll submit it to future submisisons as I
add more features. :)

20

https://github.com/devinatkin/tt04-arduino-gpu-vga

This project uses the CLK input to generate a VGA output, this will default to a
Random noise output, the output can be set to a background colour using the SPI
interface. 32’b1000_0000_1111_1100_0000_0000_0000_0000 32-bit configuration
word configuration[31:30] = 2’b11 - Set output mode 00 = Random Noise, 01 = Solid
Configuration Set Colour, 10 = Coloured Text (Color set by config), 11 = Bouncing
Ball configuration[29:24] = 6’b111111 - Background Colour for Solid Colour and Colour
Text configuration[23] = (Forced to 0 given utilization issues character memory array
data input) configuration[22] = (Forced to 0 given it increases utilization too high,
this may be implemented if I choose to join TT05 in the future)character memory
array write configuration[21] = Write for the character memory. (Has issues due to
utilization, may be implemented if I join TT05 in the future) configuration[20:15] =
Character memory being written to row memory address

How to test

The design has been simulated and tested with the eric eastwood simulator using the
output generated by tb.v. The output will be tested using a Basys 3 board prior to the
final sumbission time permitting. The design is currently set up to output a 640x480
60Hz VGA signal. The output is currently set to a random test pattern. The design will
have a way to adjust background colour, and draw onto the display using a few basic
SPI commands. (Not yet implemented) I’m testing my output using a VGA simulator
tool online https://madlittlemods.github.io/vga-simulator/ and will be testing on a
Basys 3 board prior to submission.

Pinout

Input Output Bidirectional
0 SPI MOSI VGA HSync SPI MISO
1 SPI CLK VGA VSync none
2 SPI CS VGA Red 0 none
3 none VGA Red 1 none
4 btn_up VGA Green 0 none
5 btn_down VGA Green 1 none
6 none VGA Blue 0 none
7 none VGA Blue 1 none

21

Digital Cipher & Interlock System [17]

• Author: Eric German MKME Lab
• Description: Digital Cipher with 256 combinations & one solution which sets

output to high
• GitHub repository
• Wokwi project
• Mux address: 17
• Extra docs
• Clock: 0 Hz
• External hardware: NA

How it works

Can be used as a simple puzzle demo or as a safety chain/interlock on equipment.
Being hardware interlocks without microcontroller logic it mimics a standalone safety
relay function which is used to verify all subsystems are online before allowing machinery
to run. The high or low input can be tied to the sensors and switches in the safety
chain. Only when all are in the desired state will the output be OKAY/HIGH. NO and
NC switches/sensors can be tied to the appropriate pins. Feedback signals are provided
from gate outputs by FB1 through FB7

How to test

Provide below inputs on the required pins to activate output

22

https://github.com/MKme/tt04-submission-template
https://wokwi.com/projects/371604537887211521
https://github.com/MKme/tt04-submission-template/tree/main

Pinout

Input Output Bidirectional
0 HIGH HIGH All Chain Unlocked none
1 LOW FB1 Feedback signal none
2 HIGH FB2 Feedback signal none
3 HIGH FB3 Feedback signal none
4 LOW FB4 Feedback signal none
5 HIGH FB5 Feedback signal none
6 LOW FB6 Feedback signal none
7 HIGH FB7 Feedback signal none

23

Simon Says game [18]

• Author: Uri Shaked
• Description: A simple memory game
• GitHub repository
• HDL project
• Mux address: 18
• Extra docs
• Clock: 50000 Hz
• External hardware: Four push buttons (with pull-down resistors), four LEDs, and

optionally a speaker/buzzer and two digit 7-segment display

How it works

Simon says is a simple electronic memory game: the user has to repeat a growing
sequence of colors. The sequence is displayed by lighting up the LEDs. Each color also
has a corresponding tone.

24

https://github.com/urish/tt04-simon-game
https://wokwi.com/projects/371755521090136065

In each turn, the game will play the sequence, and then wait for the user to repeat the
sequence by pressing the buttons according to the color sequence. If the user repeated
the sequence correctly, the game will play a “leveling-up” sound, add a new color at
the end of the sequence, and move to the next turn.
The game continues until the user has made a mistake. Then a game over sound is
played, and the game restarts.
Check out the online simulation at https://wokwi.com/projects/371755521090136065
(including wiring diagram).

How to test

You need four buttons, four LEDs, resistors, and optionally a speaker/buzzer and a
two digit 7-segment display for the score.
Ideally, you want to use 4 different colors for the buttons/LEDs (red, green, blue,
yellow).

1. Connect the buttons to pins btn1, btn2, btn3, and btn4, and also connect
each button to a pull down resistor.

2. Connect the LEDs to pins led1, led2, led3, and led4, matching the colors
of the buttons (so led1 and btn1 have the same color, etc.)

3. Connect the speaker to the speaker pin.
4. Connect the seven segment display as follows: seg_a through sev_g to individ-

ual segments, dig1 to the common pin of the tens digit, dig2 to the common
pin of the ones digit. Set seginv according to the type of 7 segment display
you have: high for common anode, low for common cathode.

5. Reset the game, and then press any button to start it. Enjoy!

Note: the game requires 50KHz clock input.

Pinout

Input Output Bidirectional
0 btn1 led1 seg_a
1 btn2 led2 seg_b
2 btn3 led3 seg_c
3 btn4 led4 seg_d
4 seginv speaker seg_e
5 none dig1 seg_f
6 none dig2 seg_g

25

Input Output Bidirectional
7 none none none

26

YKM 7-seg driver [19]

• Author: Yeo Kheng Meng
• Description: Shows the string ykM_1St_CHIP character by character
• GitHub repository
• Wokwi project
• Mux address: 19
• Extra docs
• Clock: 0.5 Hz
• External hardware: 7-segment LCD

How it works

The string is shown by individual characters to the 7-segment LCD. By default with all
pins except Clock being Low, the chip will cycle through all the characters depending
on clock speed. To display individual characters manually, set HIGH to counter pin
and BCD. Then select the bits 0-3 manually.

How to test

See how_it_works.

Pinout

Input Output Bidirectional
0 clock 7-segment a none
1 none 7-segment b none
2 none 7-segment c none
3 none 7-segment d none
4 Disable counter. This is active-high. 7-segment e none
5 Driven by BCD or counter. High for BCD, Low for counter. 7-segment f none
6 BCD bit 3 7-segment g none
7 BCD bit 2 none none

27

https://github.com/yeokm1/tt4-ykm-7-seg
https://wokwi.com/projects/372184284115580929
https://github.com/yeokm1/tt4-ykm-7-seg/blob/main/README.md

Configurable PID Block [20]

• Author: Maxim Vasic
• Description: It was meant to be a final project, but that was undercut.
• GitHub repository
• HDL project
• Mux address: 20
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

It’s a PID block to be configured with I2C. GPIOs 7 through 2 are for error/control,
and GPIOs 1 and 0 are SDA and SCL.

How to test

Configure with the I2C frame, see the I2C files for the “addresses”. See the I2C test
file for an example.

Pinout

Input Output Bidirectional
0 none segment a Error/Control
1 none segment b Error/Control
2 none segment c Error/Control
3 none segment d Error/Control
4 none segment e Error/Control
5 none segment f Error/Control
6 none segment g SDA
7 none dot SCL

28

https://github.com/currymottled/tt04-pidcontroller-currymottled

PWM audio [21]

• Author: Yeo Kheng Meng
• Description: Takes in 8-bit audio over a parallel (port) interface then generates

an analog audio signal like a Covox Speech Thing.
• GitHub repository
• HDL project
• Mux address: 21
• Extra docs
• Clock: 10000000 Hz
• External hardware: A 0.1uF capacitor to ground is recommended on the 2 audio

output pins

How it works

This is meant as a parallel port sound card like a Covox Speech Thing. Instead of R-2R
resistors, the chip will generate the analog audio output using PWM and First-order
sigma-delta modulator.

How to test

No particular test required.

Pinout

Input Output Bidirectional
0 Bit 0 of Parallel port

(LSB)
Standard PWM
audio output

Direct from input 0

1 Bit 1 of Parallel port Sigma-delta
modulator output

Direct from input 1

2 Bit 2 of Parallel port From ena pin Direct from input 2
3 Bit 3 of Parallel port From clk pin Direct from input 3
4 Bit 4 of Parallel port From rst_n pin Direct from input 4
5 Bit 5 of Parallel port Static 1 Direct from input 5
6 Bit 6 of Parallel port Static 0 Direct from input 6
7 Bit 7 of Parallel port

(MSB)
Static 1 Direct from input 7

29

https://github.com/yeokm1/tt4-pwm-audio
https://github.com/yeokm1/tt4-pwm-audio/blob/main/README.md

4-bit ALU [22]

• Author: David Bertuch
• Description:
• GitHub repository
• HDL project
• Mux address: 22
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Uses a set of registers to divide the clock, and then some combinational logic to convert
from binary to decimal for the display.
Puts the bottom 8 bits of the counter on the bidirectional outputs.
With all the inputs set to 0, the internal 24 bit compare is set to 10,000,000. This
means the counter will increment by one each second.
If any inputs are non zero, then the input will be used as an bits 11 to 18 of the 24 bit
compare register. Example: setting the inputs to 00010000 will program 16384 into
the compare register. With a 10MHz clock the counter will increment ~610 times per
second.

How to test

After reset, the counter should increase by one every second with a 10MHz input clock.
Experiment by changing the inputs to change the counting speed.

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5

30

https://github.com/DavidDavidDavidDavidDavidDavidDavid/tt04-verilog

Input Output Bidirectional
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

31

RGB Mixer [23]

• Author: Matt Venn
• Description: Use 3 rotary encoder to control 3 PWM generators
• GitHub repository
• HDL project
• Mux address: 23
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

3 PWM generators are fed by 3 debounced encoder peripherals.

How to test

Connect 3 digital rotary encoders to the first 6 inputs. Changing the encoders will
change the PWM outputs on the first 3 outputs.

Pinout

Input Output Bidirectional
0 encoder 0 pin a pwm 0 n/a
1 encoder 0 pin b pwm 1 n/a
2 encoder 1 pin a pwm 2 n/a
3 encoder 1 pin b n/a n/a
4 encoder 2 pin a n/a n/a
5 encoder 2 pin b n/a n/a
6 n/a n/a n/a
7 n/a n/a n/a

32

https://github.com/mattvenn/tt04-rgb-mixer

raybox-zero [33]

• Author: algofoogle (Anton Maurovic)
• Description: Simple VGA ray caster game demo
• GitHub repository
• HDL project
• Mux address: 33
• Extra docs
• Clock: 25000000 Hz
• External hardware: VGA connector with RGB222 DAC

How it works

NOTE: Expect updates after the TT04 datasheet is made. Check tt04-raybox-zero’s
README (https://github.com/algofoogle/tt04-raybox-zero) for latest info.
This framebuffer-less VGA display generator is ‘racing the beam’ to yield a simple
realtime “3D”-like render of a game map using ray casting. It’s inspired by Wolf3D
and based on Lode’s Raycasting tutorial (https://lodev.org/cgtutor/raycasting.html).
Think of it as a primitive ‘GPU’ using a grid map of wall blocks, with basic texture
mapping and flat-coloured floor/ceiling. No doors or sprites – but maybe in TT05? In
TT04’s 130nm process we use 4x2 tiles (~0.16mm²) at ~48% density.

33

https://github.com/algofoogle/tt04-raybox-zero
https://github.com/algofoogle/tt04-raybox-zero/blob/main/README.md

Without a framebuffer, rendering/animation occurs at full speed. Registers store the
‘POV’ (Point of View) to render. It’s expected that a host controller implements
game/motion logic and calculates the POV, then sending it to the chip via SPI
(ss_n/sclk/mosi). An MCU or low-spec CPU should do. I’ve been bit-banging
SPI with a Raspberry Pi Pico.
At reset the POV registers are set to an angled view of the inbuilt 16x16 grid map.
NOTE: “FPS games” like Wolf3D use a landscape display, i.e. normal desktop monitor
orientation. I designed this as a portrait display (rotated 90° clockwise) for silicon area
optimisations that come with rendering by scanline instead of by column. If you don’t
want a sideways monitor, design a game/demo using this different perspective. For
example, image Mario’s 1st-person view of his 2D platform world…
Features

• 640x480 VGA display at ~60Hz from 25MHz clock (25.175MHz ideal)
• Registered and unregistered digital VGA outputs: RGB222 and H/VSYNC
• Portrait “FPS” orientation
• Hard-coded 16x16 map with 3 textures: light- and dark-side variations
• SPI interface to set POV with debug option to see POV register bits
• ‘SPI2’ interface to set ceiling colour, floor colour, or floor ‘leak’
• Reset loads an interesting POV. Optional ‘demo mode’ inputs can vary it.
• HBLANK and VBLANK outputs as optional interrupt requests

A warning about turning your screen on its side
As stated, this is designed to drive a display with a portrait orientation when used as a
“first person shooter” but BEWARE: The backlights failed on two old flat panel VGA
displays (from circa 2003) not long after I turned them on their sides. Coincidence?
Age? A CCFL failure mode? Not sure. I’m using a monitor from 2008 now.

How to test

Attach a VGA connector’s HSYNC and VSYNC to the chip’s respective outs with (say)
inline 100R resistors for protection. Connect at least red[1], green[1], blue[1]
with inline 270R resistors, or better yet use an R2R DAC on each colour output pair.
Make sure VGA GND is connected, of course.
Pull up reg to select ‘registered outputs’. Without this, you will get the unregistered
versions, which might be murky or have some timing issues – I included this option for
testing purposes. In the actual ASIC version of this, I expect the registered outputs
will be much cleaner, but we’ll see.

34

Supply a 25MHz clock (or ideally 25.175MHz), and assert the reset signal, and you
should get a clockwise-90°-rotated display of textured walls with dark grey ceiling
(right-hand side) and light grey floor (left-hand side).
Pull up the debug input and you should see little squares show up in the corner of the
screen that represent the current state of the POV registers.
Pull up either/both of inc_px/py and the view should drift along slowly. This is
‘demo mode’. Don’t be alarmed when it goes through walls, or for periods when you
see half the screen is just grey and the other half is flickering different colours – this
just means you’re moving through a wall block.
Changing POV: https://github.com/algofoogle/tt04-raybox-zero#write-pov-via-spi

Pinout

Input Output Bidirectional
0 SPI in: sclk hsync_n Out: o_hblank
1 SPI in: mosi vsync_n Out: o_vblank
2 SPI in: ss_n red[0] SPI2 in: reg_sclk
3 debug red[1] SPI2 in: reg_mosi
4 inc_px green[0] SPI2 in: reg_ss_n
5 inc_py green[1] none
6 reg blue[0] none
7 none blue[1] none

35

ChipTune [37]

• Author: Wallace Everest
• Description: Vintage 8-bit sound generator
• GitHub repository
• HDL project
• Mux address: 37
• Extra docs
• Clock: 1789773 Hz
• External hardware: Computer COM port

How it works

ChipTune implements an 8-bit Programmable Sound Generator (PSG). Input is from
a serial UART interface. Output is PWM audio.

Overview This project replicates the Audio Processing Unit (APU) of vintage video
games.

36

https://github.com/WallieEverest/tt04
https://github.com/WallieEverest/tt04/blob/main/README.md

Statistics
• Tiles: 2x2
• DFF: 417
• Total Cells: 2549
• Utilization: 32%

TinyTapeout 4 Configuration
TT04 devices from the eFabless Multi-Project Wafer (MPW) shuttle are delivered in
QFN-64 packages, mounted on a daughterboard for breakout.
Based on data from:

• https://github.com/efabless/caravel_board/blob/main/hardware/breakout/caravel-
M.2-card-QFN/caravel-M.2-card-QFN.pdf

• https://github.com/TinyTapeout/tt-multiplexer/blob/main/docs/INFO.md
• https://open-source-silicon.slack.com/archives/C016N88BX44/p1688915892223379

MPRJ_IO Pin Assignments

Signal Name Dir QFN PCB
mprj_io[0] jtag in 31
mprj_io[1] sdo out 32
mprj_io[2] sdi in 33
mprj_io[3] csb in 34
mprj_io[4] sck in 35
mprj_io[5] user_clk out 36
mprj_io[6] clk in 37
mprj_io[7] rst_n in 41
mprj_io[8] ui_in[0] in 42
mprj_io[9] ui_in[1] in 43
mprj_io[10] ui_in[2] in 44
mprj_io[11] ui_in[3] in 45
mprj_io[12] ui_in[4] in 46
mprj_io[13] ui_in[5] in 48
mprj_io[14] ui_in[6] in 50
mprj_io[15] ui_in[7] in 51
mprj_io[16] uo_out[0] out 53
mprj_io[17] uo_out[1] out 54
mprj_io[18] uo_out[2] out 55
mprj_io[19] uo_out[3] out 57
mprj_io[20] uo_out[4] out 58
mprj_io[21] uo_out[5] out 59

37

Signal Name Dir QFN PCB
mprj_io[22] uo_out[6] out 60
mprj_io[23] uo_out[7] out 61
mprj_io[24] uio[0] bid 62
mprj_io[25] uio[1] bid 2
mprj_io[26] uio[2] bid 3
mprj_io[27] uio[3] bid 4
mprj_io[28] uio[4] bid 5
mprj_io[29] uio[5] bid 6
mprj_io[30] uio[6] bid 7
mprj_io[31] uio[7] bid 8
mprj_io[32] sel_ena in 11
mprj_io[33] spare 12
mprj_io[34] sel_inc in 13
mprj_io[35] spare 14
mprj_io[36] sel_rst_n in 15
mprj_io[37] spare 16

APU Operation
The audio portion of the project consists of two rectangular pulse generators, a triangle
wave generator, and a noise generator. Each module is controlled by four 8-bit regis-
ters. Configurable parameters are the frequency, duty cycle, sweep, decay, and note
duration.
An explanation of register functions can be found on the NESDEV website. Only the
lower 4-bits of the address are decoded.

• https://www.nesdev.org/wiki/APU

UART Operation

• A register address and data are recovered from two consecutive serial bytes.
• A byte with the msb=0 is considered the first byte with 7-bits of data.
• A byte with msb=1 is considered the second byte with the remaining 1-bit of

data and a 6-bit address.
• A ready flag is generated after receiving the second byte.

Byte 1 Byte 2
Start D0 D1 D2 D3 D4 D5 D6 0 Stop Start D7 A0 A1 A2 A3 A4 A5 1 Stop

38

Pin Assignments

Signal Name Signal Name
clk 12 MHz ena spare
rst_n spare uio_oe[7:0] spare
ui_in[0] spare uo_out[0] blink
ui_in[1] spare uo_out[1] link
ui_in[2] rx uo_out[2] tx
ui_in[3] spare uo_out[3] pwm
ui_in[4] spare uo_out[4] square1
ui_in[5] spare uo_out[5] square2
ui_in[6] spare uo_out[6] triangle
ui_in[7] spare uo_out[7] noise
uio_in[7:0] spare uio_out[7:0] spare

• CLK is a 1.789733 MHz clock
• BLINK is an LED status indicator with a 1 Hz rate
• LINK is an LED activity indicator of the RX signal
• PWM is the pulse-width modulated audio output
• RX is a UART input (9600,8,N,1)
• TX generates a frame synchonization character (0x80)

How to test

The ChipTune project can be interfaced to a computer COM port (9600,n,8,1). An
analog PWM filter and audio driver are needed for the test rig.
The following serial strings will activate example functions:

Square 1
08 82 30 80 00 84 00 86 #Clear
27 83 02 81 7E 85 08 86 #PlaySmallJump
27 83 02 81 7C 84 09 86 #PlayBigJump
13 83 1E 81 3A 84 0A 86 #PlayBump
19 83 1E 81 0A 84 08 86 #PlayFireballThrow
4B 83 1F 81 6F 85 08 86 #PlaySmackEnemy
1C 83 1E 81 7E 85 08 86 #PlaySwimStomp
08 82 3F 81 17 84 01 86 #400Hz
Square 2
30 88 08 8A 00 8C 00 8E #Clear
18 89 7F 8A 71 8C 08 8E #PlayTimerTick

39

0D 89 7F 8A 71 8C 08 8E #PlayCoinGrab
1F 89 14 8B 79 8D 0A 8E #PlayBlast
7F 88 5D 8A 71 8C 08 8E #PlayPowerUpGrab
3F 89 08 8A 17 8C 01 8E #400Hz
Triangle
00 91 00 92 00 94 00 96 #Clear
00 92 0B 95 00 96 40 91 #400Hz
Noise
30 98 00 9A 00 9C 00 9E #Clear
00 9A 00 9E 05 9D 3F 98 #300Hz

Pinout

Input Output Bidirectional
0 None Blink None
1 None Link None
2 RX TX None
3 None PWM None
4 None Square1 None
5 None Square2 None
6 None Triangle None
7 None Noise None

40

OpenSource PWM Peripheral [48]

• Author: Medinceanu Paul-Catalin
• Description: The purpose of this project is to develop an Opensource PWM

Peripheral with advanced functions and configurations. These capabilities are
needed mostly in Power Electronics, where fine tuning of the control signals is
crucial. The two standout functions that I have implemented are the deadband
and the synchronization between counters.

• GitHub repository
• HDL project
• Mux address: 48
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

The peripheral contains 3 counters, each of them with 2 comparators and 2 deadband
generators. The counter is set to go to a value, the comparator is wired to the registers
of the counter and decides when to set or clear the squarewave signal. By setting the
counter to switch at different values, any duty cycle can be achieved. The project can
be configured to generate specific PWM signals by writing the desired configuration at
the right address in the register file. The register map can be found in the ‘doc’ folder
of the repo.

How to test

To test the project, it should be tied through the input and bidirectional pins to a
microcontroller. A C code(for a specific microcontroller) will be available on the repo
to configure the peripheral through the serial terminal. After the setup is done, the
PWM signals will be visible at the output pins. An alternative way to configure the
peripheral is through the onboard switches. The write enable is held high, the address
is set next on the input pins and finally the data is set at the bidirectional pins. The
process is repeated for each register of the PWM module in use.

Pinout

Input Output Bidirectional
0 i_address[5] unused io_data[7]

41

https://github.com/EldritchIHC/tt04-pwm-peripheral

Input Output Bidirectional
1 i_address[4] unused io_data[6]
2 i_address[3] o_pwm1A io_data[5]
3 i_address[2] o_pwm1B io_data[4]
4 i_address[1] o_pwm2A io_data[3]
5 i_address[0] o_pwm2B io_data[2]
6 unused o_pwm3A io_data[1]
7 i_write_en o_pwm3B io_data[0]

42

Experiment Number Six: Laplace LUT [50]

• Author: Paul Hansel
• Description: ASCII ROM encoding the LaTeX characters needed to typeset the

Laplace transforms of a few specialized functions.
• GitHub repository
• HDL project
• Mux address: 50
• Extra docs
• Clock: 1 Hz
• External hardware:

How it works

This project provides an ASCII encoding of the LaTeX code to typeset a few dozen
Laplace transforms of common functions. When the user sets the lower ui_in pins to
a number, asserts reset and then asserts ui_in 6 high, the project will begin clocking
out the transform char-by-char, with uio_out showing F(s) = L{f(t)} and uo_out

43

https://github.com/phansel/tt04-experiment-number-six

showing f(t) itself. If either one is shorter than the other for a particular transform,
empty space characters are appended. It uses two different address spaces to do
this: mem_addr, which maps each pair of concatenated ASCII characters (function,
transformed function) from all transforms back-to-back as 16-bit values to a linear 10-
bit address space, and pointer_addr, which maps the concatenated start address and
length of each row (within mem_addr space) as 20-bit values to that row’s line number
in an 8-bit address space (with only 6 bits used). The read-only Verilog containing the
actual ASCII data is generated by a python script that reads the LaTeX source directly.
Verification is achieved in the same way.

How to test

Program a number onto ui_in[5:0] between 0 and 43. Toggle reset_n (high/low/high),
then toggle ui_in[6] high to start printing. Watch uo_out and uio_out for the resulting
ASCII characters. The input address bus accepts a number (0-45) corresponding to
an arbitrary Laplace tranform encoding; it must be set before asserting start. The
active-high character output enable signal must be high to start or continue character
output. The clock divider disable input must be high to run at full speed or low to run
at 1 character per 5x10^7 clocks.

Pinout

Input Output Bidirectional
0 Address bit 0 RHS_BIT_0 LHS_BIT_0
1 Address bit 1 RHS_BIT_1 LHS_BIT_1
2 Address bit 2 RHS_BIT_2 LHS_BIT_2
3 Address bit 3 RHS_BIT_3 LHS_BIT_3
4 Address bit 4 RHS_BIT_4 LHS_BIT_4
5 Address bit 5 RHS_BIT_5 LHS_BIT_5
6 Character output enable RHS_BIT_6 LHS_BIT_6
7 Clock divider disable RHS_BIT_7 LHS_BIT_7

44

Karplus-Strong String Synthesis [52]

• Author: Chinmay Patil
• Description: Plucked string sound synthesizer
• GitHub repository
• HDL project
• Mux address: 52
• Extra docs
• Clock: 256000 Hz
• External hardware:

How it works

This is simplified implementation of Karplus-Strong (KS) string synthesis based on
papers, Digital Synthesis of Plucked-String and Drum Timbres and Extensions of the
Karplus-Strong Plucked-String Algorithm.
A register map controls and configures the KS synthesis module. This register map is
accessed through a SPI interface. Synthesized sound samples can be accessed through
the I2S transmitter interface.
SPI Frame
SPI Mode: CPOL = 0, CPHA = 1
The 16-bit SPI frame is defined as,

\𝑡𝑒𝑥𝑡𝑅𝑒𝑎𝑑/\𝑜𝑣𝑒𝑟𝑙𝑖𝑛𝑒\𝑡𝑒𝑥𝑡𝑊𝑟𝑖𝑡𝑒\𝑡𝑒𝑥𝑡𝐴𝑑𝑑𝑟𝑒𝑠𝑠[6 ∶ 0] \𝑡𝑒𝑥𝑡𝐷𝑎𝑡𝑎[7 ∶ 0]

Register Map
The Register Map has 16 Registers of 8-bits each. It is divided into configuration and
status registers,
Complete register map is described in the repository at https://github.com/pyamnih
c/tt04-um-ks-pyamnihc.
I2S Transmitter
The 8-bit signed sound samples can be read out at f_sck = 256 kHz through this
interface.

45

https://github.com/pyamnihc/tt04-um-ks-pyamnihc
https://doi.org/10.2307/3680062
https://doi.org/10.2307/3680063
https://doi.org/10.2307/3680063
https://github.com/pyamnihc/tt04-um-ks-pyamnihc
https://github.com/pyamnihc/tt04-um-ks-pyamnihc

How to test

Connect a clock with frequency f_clk = 256 kHz and apply a reset cycle to initialize
the design, this sets the audio sample rate at fs = 16 kHz. Use the spi register map or
the ui_in to futher configure the design. The synthesized samples are sent continuously
on the I2S transmitter interface.

Pinout

Input Output Bidirectional
0 ~rst_n_prbs_15, ~rst_n_prbs_7 segment a sck_i
1 load_prbs_15, load_prbs_7 segment b sdi_i
2 freeze_prbs_15 segment c sdo_o
3 freeze_prbs_7 segment d cs_ni
4 i2s_noise_sel segment e i2s_sck_o
5 ~rst_n_ks_string segment f i2s_ws_o
6 pluck segment g i2s_sd_o
7 NOT CONNECTED dot prbs_15

46

USB Device [54]

• Author: Darryl Miles
• Description: USB FullSpeed/LowSpeed device (proof-of-concept)
• GitHub repository
• HDL project
• Mux address: 54
• Extra docs
• Clock: 48000000 Hz
• External hardware: USB Connector, 2 x 68 ohm resistors, 1k5 ohm resistor

How it works

This text will be updated nearer the scheduled TT04 redistribution time (early 2024)
along with the project github README.md and gh-pages documentation. Please
regenerate your documentation.
This is a hardware implementation of a USB device end hardware interface, should be
compliant with USB1.1 FS/LS (not HS).
It is designed to be driven and commanded by a CPU over a native bus (such as
WishBone). Due to the limited IO ports with TinyTapeout there is a TT2WBWishBone
driver that provides the ability to perform WishBone 32bit data-path transactions inside
the module over the narrower TT IO ports. The hardware design is capable of being
any kind of USB device, this includes (and it not limited to) CDC, HID, audio, storage
as the CPU sets the identity of the device in software to the host.
While I intend to drive the TT IC with an FPGA development board myself, it should
be possible for the RP2040 providing a 48MHz clock to this project to achieve some
kind of hello world over USB. The controller clock uses the global CLK pin (this is
expected to be 48MHz but may well work at a range of other clock rates), the PHY
interface uses BIDI port 3 (this must be 48MHz to provide timing in both full-speed
and low-speed modes).
You can fire WishBone commands at the TT2WB interface, this maps to most of the
ports IN/OUT/BIDI. This is currently abstracted away (via API) for testbench purposes
and it is intended this also be the case for the FPGA/RP2040 programming interfaces.
At this time the best documentation around this is to look at the TT2WB.py and
tt04_to_wishbone.v in the project.
The configuration options were reduced to squeeze something to demonstrate a working
endpoint into a 2x2 tile space, this is possible because SpinalHDL is good a generating
hardware designs based on complex parametrization that allow features to be turned

47

https://github.com/dlmiles/tt04-poc-usbdev
https://dlmiles.github.io/tt04-poc-usbdev/

on-off easily. The limited 2x2 tile space (ideally it wanted 2x4) has resulted in some
limitations:

• the total number of endpoints is reduced from the full 16 down to 4 (numbered
0 to 3)

• the total buffer space available is reduced to just 52 bytes (this may be only
enough space for a single active endpoint to operate, a standard serial CDC
ideally need 3 endpoints working). The buffer space is provided by DFF registers
and has a particular layout for control information and headers, this results in
a total of 52 bytes only allowing a single endpoint to operate with a MaxPack-
etLen=8. If a 2x3 tile were possible 96-108 bytes of buffer would be possible
which would allow 3 endpoints to operaten all at MPL=8 or a single endpoint
at upto MPL=64 or some combination in between.

It is necessary to create a suitable USB cable to connect to the BIDI port0 and port1,
this is expected to be the same cable and pinout scheme as the tt04-usbcbc project
that is also present in TT04. This recommends a 68ohm series resistor for each of
the Data+ and Data- lines, along with a pull-up resistor 1k5. The single pull-up
resistor needs to be positioned appropriately for full-speed (on Data+) and low-speed
(on Data-) modes.

How to test

This text will be updated nearer the scheduled TT04 redistribution time (early 2024)
along with the project github README.md and gh-pages documentation. Please
regenerate your documentation.
The original bus interface documentation can be found at https://spinalhdl.github.io/SpinalDoc-
RTD/master/SpinalHDL/Libraries/Com/usb_device.html
The original source can be found at https://github.com/SpinalHDL/SpinalHDL/tree/dev/lib/src/main/scala/spinal/lib/com/usb/udc
This hardware was originally designed for FPGA so some modifications were made in
the areas of:

• Improving USB specification (a couple of potential bugs/out-of-spec items)
• Use of combinational logic versions of CRC5/CRC16 function blocks.
• Fixing features that seemed 95 percent written and present in the code but

obviously not working or tested (support dual full-speed and low-speed in same
hardware stack)

• Running on ASIC (clocks/resets)
• Optimizing for ASIC (UsbTimer counter widths, DFF buffer reduction squeeze,

endpoint reduction squeeze)
• Encapsulating WishBone bus inside a TinyTapeout User project.

48

• More items I’ve already forgotten on the way (but can document from code walk
later)

The cocotb tests cover a significant number of the features and provide VCD output
demonstrating almost everything possible with this hardware.
The Verilator/coverage showed the 2 main areas I do not exercise host suspend/resume
and device resumeIt support. Plus a number of error scenarios and a few non-critial
minor features of the hardware.
I hope by early 2024 to have available some FPGA and some RP2040 application code
to assist demonstration.

Pinout

Input Output Bidirectional
0 tt2wb input bit0 tt2wb output bit0 USB D+ (bidi)
1 tt2wb input bit1 tt2wb output bit1 USB D- (bidi)
2 tt2wb input bit2 tt2wb output bit2 Interrupt (output only)
3 tt2wb input bit3 tt2wb output bit3 Phy Clock 48MHz (input only)
4 tt2wb input bit4 tt2wb output bit4 tt2wb control ACK (output only)
5 tt2wb input bit5 tt2wb output bit5 tt2wb control CMD bit0 (input only)
6 tt2wb input bit6 tt2wb output bit6 tt2wb control CMD bit1 (input only)
7 tt2wb input bit7 tt2wb output bit7 tt2wb control CMD bit2 (input only)

49

Audio-PWM-Synth [64]

• Author: Thorsten Knoll
• Description: Generate Audio with a PWM output.
• GitHub repository
• HDL project
• Mux address: 64
• Extra docs
• Clock: 12MHz Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none pwm_audio_low none
1 none pwm_audio_high none
2 none none none
3 none none none
4 none none none
5 none none none
6 none none none
7 none none none

50

https://github.com/ThorKn/tt04-audio-pwm-synth

German Traffic Light [71]

• Author: Paul Knoll
• Description: Simulation of a german traffic light
• GitHub repository
• Wokwi project
• Mux address: 71
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none red LED none
1 none yellow LED none
2 none green LED none
3 none none none
4 none none none
5 none none none
6 none none none
7 none none none

51

https://github.com/BigPull/tt04PaulKnoll
https://wokwi.com/projects/374029622762967041

Dandy VGA [96]

• Author: Blaise Saunders

52

• Description: Serial vector graphics adapter
• GitHub repository
• HDL project
• Mux address: 96
• Extra docs
• Clock: 10000000 Hz
• External hardware: 2 DACs, vector graphics display, fastish UART input

How it works

This module is a serial vector graphics adapter [or VGA for short ;^)] it has a small
set of state machine based primitive instructions that can be programmed over serial
and animated etc. It does a nice job of drawing squares and I’m hoping 3D graphics
can be achieved with use of the line primitive. There are 16 instruction registers that
can be programmed and updated live over serial.

How to test

The device outputs 8 bits on the bidirectional IO and 8 bits on the output pins, one
is for X and the other is for Y display on a vector graphics display, most oscilloscopes
with XY mode should work well. Can convert to analog with a simple R2R resistor
ladder or whatever method you like best :). You can find some test code that can be
flashed a Teensy or similar and hook it up to pin 1 on the input to send some primitives
to be drawn: https://github.com/DavidoRotho/tt04-davidroth-dandy-vga

Pinout

Input Output Bidirectional
0 UART RX input,

921600 baud input.
Tested with Teensy
4.1

binary X axis output
[7:0]

binary Y axis output [7:0]

1 Safe/Unsafe mode
toggle, unsafe high.
Whether or not to
wait while

n/a n/a

53

https://github.com/DavidoRotho/tt04-davidroth-dandy-vga
https://github.com/DavidoRotho/tt04-davidroth-dandy-vga

Input Output Bidirectional
2 binary graphics clock

divider for
compensating for
slow DAC drive
speed [2:7]

n/a n/a

3 n/a n/a n/a
4 n/a n/a n/a
5 n/a n/a n/a
6 n/a n/a n/a
7 n/a n/a n/a

54

Tiny Breakout [98]

• Author: Robbert-Jan de Jager
• Description: This is a small breakout game implemented in HDL. It uses a VGA

connector to output the video signal. The game is controlled by 3 buttons. The
left button moves the paddle to the left, the right button moves the paddle to
the right and the action button starts the game. The game is over when all
blocks are destroyed or when the ball hits the bottom of the screen.

• GitHub repository
• HDL project
• Mux address: 98
• Extra docs
• Clock: 25175000 Hz
• External hardware: 3x 2bit DAC for the red, green and blue video signals. VGA

connector. 3 buttons.

How it works

Basic operation The core of the design is the vga_timing module. This module
generates all the required timing signals. Some of these signals like hsync and vsync are
used to generate the video signal, while others like the horizontal and vertical position

55

https://github.com/robojan/tt04-breakout-submission
https://github.com/robojan/tt04-breakout-submission/blob/main/README.md

are used to generate the graphics. The horizontal and vertical sync signals are also
used for the game logic.
Before outputting the video signal the video mux selects the correct input color to
display. It does so based on the highest priority component that wants to output a
color.
We have multiple painter modules. These generate from the current game state and
the current horizontal and vertical position the correct color to display. Ideally the
painters would not contribute to the game logic, but for optimization reasons they
do.
While drawing a frame the game logic keeps track of collisions. It does so by checking
if multiple painters want to draw at the same position. If so it will latch a collision,
which will be processed after drawing the frame.
At the end of each frame the game logic will calculate the next ball position, taking
collisions into account. The collision with the paddle is special. To have an entertaining
game that does not play the same every time the ball will bounce off the paddle at a
different angle depending on where it hits. This is done by splitting the paddle into
multiple segments and checking for collisions with these segments. The game logic
will look at the segment when a paddle collision was registered. An exception to the
end of frame gamestate update is the breaking of blocks. It would require too much
memory to keep the updated state for the next frame. Instead we will update the row
of blocks that was just finished drawing.
We can display a grid of 13x16 blocks. This requires 208 bits of memory. This is a lot
of memory for such a small design and takes up a lot of space. To reduce the number
of connections the state has been put into a shift register that outputs one row at a
time. This shift register is rotated 13 bits when we reach the end of drawing a row of
blocks. Also we can write to the shift register the new block state if a block has been
broken. This is done one clock cycle before shifting to the next row. 1 clock cycle
after shifting to the next row we load the current row into a buffer which will be used
to update the state.

How to test

This is a small breakout game implemented in HDL. It uses a VGA connector to output
the video signal. The game is controlled by 3 buttons. The left button moves the paddle
to the left, the right button moves the paddle to the right and the action button starts
the game. The game is over when all blocks are destroyed or when the ball hits the
bottom of the screen.

56

Required hardware This project requires a VGA monitor and a VGA DAC. An easy
way to create the VGA DAC is to use 3 2-bit R2R DACs. The 2-bit R2R DACs can be
created using 2 resistors per bit. The resistors should be 200Ohm and 390Ohm. For
the 3.3V power supply.
What has not been verified is the current sourcing capability of the ASIC,
If it can not at least source 10mA through each pin and 30mA through
the power supply pins you should add a buffer before the DAC.
The VGA DAC should be connected as follows:

___ ___
Bit 0 ----|___|--+--|___|-- GND

390 | 390
.-.
| |

200 | |
'-'

____ |
Bit 1 ---|____|--+---- Out

390

Every color should have an identical copy of this DAC. The red DAC should be con-
nected to the red VGA pin, the green DAC to the green VGA pin and the blue DAC
to the blue VGA pin. The outputs of the DACs should be connected to the VGA con-
nector. The HSync and VSync pins should also be connected to the VGA connector.
The following connections need to be made to the VGA connector:

• Red DAC output to VGA connector pin 1
• Green DAC output to VGA connector pin 2
• Blue DAC output to VGA connector pin 3
• HSync to VGA connector pin 13
• VSync to VGA connector pin 14
• GND to VGA connector pin 5, 6, 7, 8

SPI interface For changing the game state externally you can use the SPI interface.
The SPI interface returns the current game state when reading and accepts a few
commands when writing. The SPI interface uses 16 bit words.
The returned state is as follows:

• bit 0-12: The block state of the current row. Use HBlank and VBlank to
determine which row is currently being drawn.

57

• bit 13: right button state
• bit 14: left button state
• bit 15: action button state
• bit 16: collision state. This bit is set when a collision has been detected.
• bit 17: ball out of bounds. This bit is set when the ball is off screen.
• bit 18: game state: 0 = game idle, 1 = game running
• bit 19-20: remaining lives

When writing the first word is the command word, the following words are the data
words for the command. Command words:

• 0x0000: Do nothing. Usefull when you want to read the state.
• 0x0001: Write a row state. This will shift the state to the next row. Be sure to

only use this during the VBlank and call this with 15 words to completely draw
the screen.

• 0x0002: Send control word. The next word is the control word. The control
word is as follows:

– bit[0]: Send the stop game command.

Board configuration The ASIC requires an input clock of 25.175MHz. The 7-
Segment display is not used.

Pinout

Input Output Bidirectional
0 MOSI HSync MISO
1 SCK VSync HBlank
2 slave select Red output bit 0 VBlank
3 none Red output bit 1 sound output. Connect to a speaker with amplifier.
4 none Green output bit 0 none
5 Button left Green output bit 1 none
6 Button right Blue output bit 0 none
7 Button action Blue output bit 1 none

58

VC 16-bit CPU [99]

• Author: Paul Campbell
• Description: VC 16-bit CPU - RISV-C cpu
• GitHub repository
• HDL project
• Mux address: 99
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

See the README.MD for more info

How to test

Included is an assembler and a memory image for executing

Pinout

Input Output Bidirectional
0 ReadData0 AddressData0 AddressLSB
1 ReadData1 AddressData1 WriteStrobe
2 ReadData2 AddressData2 AddressLatchHi
3 ReadData3 AddressData3 AddressLatchLo
4 ReadData4 AddressData4 unused4
5 ReadData5 AddressData5 unused5
6 ReadData6 AddressData6 unused6
7 ReadData7 AddressData7 InterruptIn

59

https://github.com/MoonbaseOtago/tt04-vc

Risc-V Nano V [100]

• Author: Michael Bell
• Description: RV32E bit serial processor
• GitHub repository
• HDL project
• Mux address: 100
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

A minimal RV32E processor using an SPI RAM for instructions and data.
The SPI RAM and a UART are connected to the bidi IOs. The SPI RAM is clocked
at the same speed as the input clock.
The CPU has no instruction or data cache and effectively runs at clock speed / 32.
More details can be found in the nanoV repo.
Restrictions/unimplemented parts of RV32E:

• register x3/gp is hardcoded to 0x00001000 (this allows data in the low 6KB of
RAM to be accessed cheaply).

• register x4/tp is hardcoded to 0x10000000 (this allows the GPIO and UART to
be accessed cheaply)

• The ebreak instruction (and interrupts in general) are not implemented.

The gp and tp registers are not written to by normal programs compiled by gcc, so the
regular build of gcc can be used to build programs.
The inputs and outputs are for general purpose use from the CPU, the outputs can be
written at address 0x10000000, and inputs read at 0x10000004.
The UART runs at clock speed / 128 (e.g. 93750 baud with a 12MHz clock). Bytes
can be written or read at address 0x10000010. The UART provides 2 bits of status at
address 0x10000014:

• Bit 1: Received data waiting
• Bit 0: Data transmit in progress

There are no transmit or receive FIFOs, before a program sends a byte it should check
bit 0 is low before writing. The peripheral library in nanoV-sdk does this.

60

https://github.com/MichaelBell/tt04-nanoV
https://github.com/MichaelBell/nanoV
https://github.com/MichaelBell/nanoV-sdk

How to test

Attach an SPI RAM or use the RP2040 emulated SPI RAM and build prorgams using
the nanoV-sdk, found in the nanoV-sdk repo.
The SPI RAM outputs are disabled when Reset is asserted, allowing the RAM to be
reprogrammed easily.

Pinout

Input Output Bidirectional
0 General purpose input 0 segment a / GP output 0 SPI RAM MOSI
1 General purpose input 1 segment b / GP output 1 SPI RAM CSn
2 General purpose input 2 segment c / GP output 2 SPI RAM SCK
3 General purpose input 3 segment d / GP output 3 SPI RAM MISO
4 General purpose input 4 segment e / GP output 4 UART RX
5 General purpose input 5 segment f / GP output 5 UART TX
6 General purpose input 6 segment g / GP output 6 UART RTS
7 General purpose input 7 dot / GP output 7 SPI RAM ~Hold

61

https://github.com/MichaelBell/spi-ram-emu
https://github.com/MichaelBell/nanoV-sdk

USB CDC (Serial) [101]

• Author: Uri Shaked
• Description: USB to Serial bridge
• GitHub repository
• HDL project
• Mux address: 101
• Extra docs
• Clock: 48000000 Hz
• External hardware:

How it works

All the magic happens in https://github.com/davidthings/tinyfpga_bx_usbserial.

How to test

Set the clock frequency to 48 MHz. Connect usb_p and usb_n pins to D+ / D- USB
pins through 68 ohm resistors. Pull up D+ with 1.5k resistor.
The device should appear as a serial port on your computer. Data received from USB
host will appear on the output pins (rx) when rx_ready goes high. You can send data
to the USB device by waiting for tx_ready to go high, setting the input pins (tx) to
the byte you’d like to transmit, and setting tx_valid high.

Pinout

Input Output Bidirectional
0 tx[0] rx[0] usb_p
1 tx[1] rx[1] usb_n
2 tx[2] rx[2] tx_valid
3 tx[3] rx[3] tx_ready
4 tx[4] rx[4] rx_valid
5 tx[5] rx[5] rx_ready
6 tx[6] rx[6] dp_pu_o
7 tx[7] rx[7] configured

62

https://github.com/TinyTapeout/tt04-usbcdc

Tiny processor [102]

• Author: Kosmas Alexandridis
• Description: An 8-bit processor
• GitHub repository
• HDL project
• Mux address: 102
• Extra docs
• Clock: 25 000 000 Hz
• External hardware: FPGA, a device that supports SPI (optional)

How it works

The design is an 8-bit processor that supports communication with a single external
device through the Serial Periferal Interface or SPI protocol, and has the capability to
animate the seven segment display. To use the processor an additional external driver is
needed. In this project we use an Digilent Nexys A7 FPGA. The FPGA is programmed
w/ the driver.sv module. The driver’s internal storages (imem, dmem) are initialized
w/ .mem files. The driver then sends this data to the processor and signals it to begin
execution. Once execution is finished the user can view the contents of the GPRs or
watch an animation on the 7-segment display.

63

https://github.com/kosmalex/tiny_processor
./README.md

How to test

1. Write and assemble a simple program using the provided assembler (more on that
in the README.md) to generate a .mem file. This file will be used to initialize
the instructions’ memory of the processor. Make a similar .mem initialization
file for registers.

2. Open Xilinx’ Vivado and create a project containing all the necessary file
(e.g. driver.sv, tp.xdc).

3. Replace the desired file paths in the readmemh macros in the driver.sv module
for instructions and data.

4. Connect the processor to the FPGA.
5. Program the FPGA using Vivado.

• Turn on the switch connected to the drive signal of the driver module. This will
signal the driver to begin intializing the processor and signal it to start execution.

• Use the first switch to turn the 7-seg display [on] and [off].
• Use the second switch to select which 4-bit values (msbs [on] or lsbs [off]) of a

Byte, you wish to see on the 7-seg display.
• The switches[5:2] represent the 4-bit address used to index the 14 registers

available for display.
• The sixth switch changes the source between instruction [on] and data [off]

memory.
• The last switch enables the animation of the 7-seg display. If it is turned on, the

display’s source is the animation register (x9). Otherwise it displays the data
stored in one of the processor’s memories.

Note: Unless the processor has stopped executing (is in its IDLE state), the contents
of its memories will not be clearly visible on the display.

Pinout

Input Output Bidirectional
0 Display on/off segment a Driver_ctrl[0] (I)
1 Most Significant Bits segment b Driver_ctrl[1] (I)
2 RS_addr[0] segment c Done executing (O)
3 RS_addr[1] segment d Serial clock (O)
4 RS_addr[2] segment e MISO (I)
5 RS_addr[3] segment f MOSI (O)
6 View select segment g Chip select (O)
7 Animation on/off dot Sync (O)

64

fft-4-tt [103]

• Author: Foivos Chaloftis
• Description: A simple FFT Calculator downscaled for deployment with the Tiny

Tapeout 04 Physical PCB
• GitHub repository
• HDL project
• Mux address: 103
• Extra docs
• Clock: 1000 Hz
• External hardware: 2x buttons, Way to input 8-bit data, Way to display/read

8-bit data

How it works

This is a simplified Fast Fourier Transform implementation (based on the radix-2
Cooley–Tukey algorithm) that can be scaled-up to larger precision and more points.
Designed for low complexity circuits requiring large DFT calculations, sacrificing speed.
This specific implementation offers 4-point, 8-point, and 16-point versions of the
Fourier Transform, while having the precision set to 4 bits.
For the first part, it integrates reverse bit ordering, placing data to their corresponding
memory address as they are being input from the user. Afterwards, data, along with the
weights, are fed through a single butterfly module (2-point DFT), responsible for all the
calculations, controlled by the control unit which delegates the data reading/writing
throughout each clock cycle. Once finished, the data output process begins. The
FFT is calculated using signed fixed-point arithmetic. The decimal range is between
-1 and 0.875. Any results bigger/smaller than the previous, will be capped at the
maximum/minimum value possible.

How to test

Connect the proper I/O for inserting data/controlling the circuit, and display-
ing/reading output. Follow the steps as shown below:

• Step 1: Reset the IC by momentarily enabling the rst signal.
• Step 2: Cycle through the 3 modes (0: 4-point, 1: 8-point, 2: 16-point FFT)

shown on the 7-segment display using the mode_change pin, and select the
mode you wish to use by using the enter pin.

65

https://github.com/f-hal/fft-4-tt

• Step 3: Insert data in the specified format (Q1.3 real and Q1.3 imaginary), and
use enter pin to input each point. After inserting all data, the FFT computation
will begin.

• Step 4: Use the enter pin again to read the data from the output pins.
• Step 5: Once all data points are read, the display will show an F, indicating

that the data reading is finished.
• Step 6: Use enter pin to repeat process form Step 2.

Pinout

Input Output Bidirectional
0 imaginary_in[0] segment a/imaginary_out[0] mode_change
1 imaginary_in[1] segment b/imaginary_out[1] enter
2 imaginary_in[2] segment c/imaginary_out[2] none
3 imaginary_in[3] segment d/imaginary_out[3] none
4 real_in[0] segment e/real_out[0] none
5 real_in[1] segment f/real_out[1] none
6 real_in[2] segment g/real_out[2] none
7 real_in[3] dot/real_out[3] none

66

LED Panel Driver [112]

• Author: Tom Keddie
• Description: Drives a 16x16 P10 LED panel
• GitHub repository
• HDL project
• Mux address: 112
• Extra docs
• Clock: 12000000 Hz
• External hardware: led panel, level converter to 5V logic

How it works

• The circuit updates a P10 16x16 LED display module
• It initially displays the string TT03P5
• It provides a 1.2Mbaud uart input to

– paint pixels
– erase pixels
– clear the display
– change the displayed colour

• Functionality is limited by resource availability

– single colour at once
– no double buffer, updates may have artifacts

• Mode pin to allow for 2 different clocking patterns

67

https://github.com/TomKeddie/tinytapeout-2023-tt04a

How to test

• Connect the display module as per the outputs
• Connect the uart
• Power on and see the TT03P5 text
• If the display is swapped by quadrant change the mode pin
• Use the script(s) in the software directory to control the display

Pinout

Input Output Bidirectional
0 uart red0 red1
1 mode blue0 blue1
2 none b green1
3 none blank none
4 none green0 none
5 none a none
6 none clk none
7 none latch none

68

OSU Counter [113]

• Author: Mehmet Aksoy
• Description: flip flop counter
• GitHub repository
• Wokwi project
• Mux address: 113
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

69

https://github.com/maksoy1/tt04-submission-circuit
https://wokwi.com/projects/370722051572189185

Even digits [114]

• Author: Ibrahim Eskikurt
• Description: Even digits
• GitHub repository
• Wokwi project
• Mux address: 114
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

70

https://github.com/ieskikurt/TinytapeoutIE
https://wokwi.com/projects/370796071922577409

Traffic light [115]

• Author: Guvanch Gulmyradov
• Description: OSU RET training
• GitHub repository
• Wokwi project
• Mux address: 115
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

71

https://github.com/ggulmyradov/Guvanch-Trafficlight
https://wokwi.com/projects/370709383347782657

Tutorial4 [116]

• Author: Delwar
• Description: Tutorial4
• GitHub repository
• Wokwi project
• Mux address: 116
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

72

https://github.com/hossaind/tt04-submission-template
https://wokwi.com/projects/371425977920989185

Grain-Flex-FPGA [117]

• Author: Rice Shelley
• Description: FPGA designed in SpinalHDL.
• GitHub repository
• HDL project
• Mux address: 117
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Grain-Flex-FPGA is a 1 CLB FPGA with 8 IO buffers. The single CLB has four 4 input
LUTs each with an optional flipflop at the output. The CLB has four inputs and four
outputs that can be mapped to any IO buffer. Each LUT input pin can be mapped to
any CLB input or any other LUT’s output including its own.

How to test

The FPGA is programmed with a simple scan chain. The SpinalHDL project has a few
examples of creating a bit stream. (Hopefully VTR support coming soon)

Pinout

Input Output Bidirectional
0 Scan chain clock Scan chain data out FPGA IO Buffer
1 Scan chain active

high reset
NA FPGA IO Buffer

2 Scan chain enable NA FPGA IO Buffer
3 Scan chain data in

(sampled on rising
edge of scan chain
clock)

NA FPGA IO Buffer

4 NA NA FPGA IO Buffer
5 NA NA FPGA IO Buffer
6 NA NA FPGA IO Buffer
7 NA dot FPGA IO Buffer

73

https://github.com/RiceShelley/tt04-grain-flex

BFCPU [118]

• Author: Michael Yenik
• Description: Hardware BF CPU
• GitHub repository
• HDL project
• Mux address: 118
• Extra docs
• Clock: 50000000 Hz
• External hardware: bus device (see above, probably RP2040 w/ fw)

How it works

A hardware CPU for the brainfuck esolang, with some BFISA extensions!
The program and data memory don’t remotely fit onto the given area, so they are
handled externally using a custom asynchronous bus protocol. The bus can perform
certain types of transactions (read data, write data, read char from I/O, write char
to I/O, read next program word, read previous program word). These correspond
to reading/writing data memory, reading program memory (the program counter is
implicitly kept outside the BFCPU since it only requests next/prev instructions), and
doing I/O (BF . and , instructions).
The bus is controlled by the BFCPU, with the BFCPU setting the bus type and
ctrl pins, then setting the rdy output pin. When the bus device implementing the
data/program/IO sees a rising edge on rdy, it looks at the type/ctrl pins to know what
to do. In order to prevent bus conflicts, the BFCPU does not drive the bus unless the
bus en pin is set by the bus device.
This allows the bus device to see the rising rdy edge, get ready to read whatever the
BFCPU wants to put on the bus, set bus en, read it, and then unset bus en. If the
BFCPU is trying to read something, then the bus device can simply drive the bus to
the requested value.
Once the bus device has either read what the BFCPU has to say or driven the bus,
it sets the ack input to the BFCPU to allow the BFCPU to continue the transaction.
The BFCPU will accept the ack by setting rdy low, the device must continue to set
ack until rdy goes low. In the case that the bus device is driving the bus to a requested
value, it must continue to drive the bus until rdy goes low.
When a bus transaction is initiated, the type of transaction the CPU is trying to perform
is put onto the bus type pins

• 000 - read data

74

https://github.com/mgyenik/tt04-mgyenik-bfcpu

• 001 - write data
• 010 - read char
• 011 - write char
• 100 - read next program byte
• 101 - read prev program byte

Since the data being read may be at an arbitrary 15 bit address, and we don’t have
enough pins to easily make address and data lines, the address and data are multiplexed
onto the bus. When reading or writing from data memory, the address will be written
onto the bus one byte at a time, then the data to be read/written will be placed onto
the bus. In order to coordinate with the device on the bus about which phase of the
transaction it’s in, we use the two bus ctrl pins

• 00 - lower byte of address (for data read/write)
• 01 - upper byte of address (for data read/write)
• 11 - data phase (for data read/write, IO, and program read)

The BFCPU also supports a simple extension allowing from 2 up to 14 consecutive +,
-, <, and > to be compressed into a-m, n-z, A-M, N-Z, respectively. So the following
BF program ‘++++»»’ can be compressed into ‘cC’.

How to test

It needs a device paired with it that can read the bus signals and interpret the
reads/writes correctly in order to operate. See the description above, as well as
src/test.py in the github repo for an example. Hopefully there will also eventually
be some RP2040 firmware in te repo to use with it!

Pinout

Input Output Bidirectional
0 bus en bus rdy bus bit 0
1 bus ack bus ctrl bit 0 bus bit 1
2 unused bus ctrl bit 1 bus bit 2
3 unused bus type bit 0 bus bit 3
4 unused bus type bit 1 bus bit 4
5 unused bus type bit 2 bus bit 5
6 unused halted bus bit 6
7 unused unused bus bit 7

75

AI Decelerator [119]

• Author: machinaut
• Description: Systolic array for matrix multiplication
• GitHub repository
• HDL project
• Mux address: 119
• Extra docs
• Clock: 50000000 Hz
• External hardware:

How it works

Implements a 2x2 outer product, such that it can stream accumulate a product of a
2xN and Nx2 matrix.
It’s pipelined to run 4-clock-cycle blocks, and has a single 4-stage floating point
multiply-accumulate.
Chip diagram:
This is designed to be placed in a grid of tiles, with each element having 4+1 wires
connecting each side.
Columns move data from north to south (inputs to outputs), and rows move data west
to east (inputs to outputs).
The wires between each tile is 4 data wires and 1 control wire, and are all
1-directional.
Shared clock and reset are not shown, but are assumed to be connected to all tiles.
(See inputs/outputs at the bottom for pin assignment)

col_in[4]
| col_ctrl_in
| |
v v

|--------|
row_in[4] -> | | -> row_out[4]

row_ctrl_in -> | | -> row_ctrl_out
|--------|
| |
| v

76

https://github.com/machinaut/tt04-machinaut-systolic

v col_ctrl_out
col_out[4]

Block timing diagram:
We have 4 clock cycles per block, which advances at the positive edge of each clock.
We’ll use “block” to denote the whole block, and “count” to count the cycles within
a block.
Note the control inputs are always passed through exactly from inputs to outputs on
the next block. However data outputs might be different from data inputs (see modes
below).
Key: ci = col_in, ri = row_in, cc = col_ctrl, rc = row_ctrl, co = col_out, ro =
row_out

Block | 0 | 1 | 2 | ...
Count | 0 1 2 3 | 0 1 2 3 | 0 1 2 3 | ...

-------------|---------|---------|---------|-----
col_in | blk0_ci | blk1_ci | blk2_ci | ...

col_ctrl_in | blk0_cc | blk1_cc | blk2_cc | ...
row_in | blk0_ri | blk1_ri | blk2_ri | ...

row_ctrl_in	blk0_rc	blk1_rc	blk2_rc	...

col_out | | blk0_co | blk1_co | ...
col_ctrl_out | | blk0_cc | blk1_cc | ...

row_out | | blk0_ro | blk1_ro | ...
row_ctrl_out | | blk0_rc | blk1_rc | ...

Modes:
The shared control bits (from both row and column) decide what to do with the data
in the block.

col_ctrl	row_ctrl	mode
0000 | 0000 | passthrough
0WX0 | 1YZ0 | multiply-accumulate
1000 | 0100 | read-write accumulator 0
1100 | 0000 | read-write accumulator 1

77

Passthrough Mode will pass through data unchanged (current block data will be sent
out as the next block).
Multiply-accumulate Mode will interpret the input data as FP8 vectors, and multiply
them and accumulate them (see math below). This mode will also pass through the
data unchanged (current block data will be sent out as the next block). W, X, Y, Z
specify the FP8 format for the inputs (see below).
Read-write accumulator modes will shift input with the accumulator data and output
data. This is used to simultaneously read-out the current accumulator state, and
write-in the next accumulator state.

RW mode	cci	rci	ci	ri	co (next)	ro (next)

0 | 0100 | 1000 | C0 (new)| C1 (new)| C0 (prev) | C1 (prev)
1 | 0000 | 1100 | C2 (new)| C3 (new)| C2 (prev) | C3 (prev)

Multiply-Accumulate Math:
We interpret the column data as vector A0, A1, and the bits of the control input specify
the FP8 format of A0, A1. Ditto for row data and B0, B1. The format bit is 0 if
the value is E5M2 and 1 if the value is E4M4. See this paper for details on the FP8
formats: https://arxiv.org/pdf/2209.05433.pdf
The accumulators (C0, C1, C2, C3) are all FP16.

A0 A1
| |
v v

|-------|-------|
B0 -> | C0 | C1 | -> B0

|-------|-------| (prev)
B1 -> | C2 | C3 | -> B1

|-------|-------|
| |
v v
A0 (prev) A1

Systolic Tiling:
Each block controls what should happen in the following block.
Notionally, this could be used in a systolic tile pattern of N * M tiles, moving data
along columns and rows. This hasn’t been tested. Note that this still works with

78

reading and writing accumulators since all the values are shifted block by block along
the columns and rows.

How to test

I have no idea what clock speeds are safe for this, so probably start out slow and
work your way up until there are glitches. (This is like only 4 pipeline stages for a full
multiply-accumulate, so it has some nasty propagation chains)
To compute A * B + C, where A is a 2xN matrix, B is a Nx2 matrix, and C is a 2x2
matrix, do the following: (A and B can be mixtures of FP8 formats, and C is FP16)
Use the read-write accumulator mode to write in C over two blocks (skip this if you
want to start with C = 0)

Block 0:
col_in: C_0,0 (FP16)
row_in: C_0,1 (FP16)
col_ctrl_in: b1000
row_ctrl_in: b0100

Block 1:
col_in: C_1,0 (FP16)
row_in: C_1,1 (FP16)
col_ctrl_in: b1100
row_ctrl_in: b0000

Then use the multiply-accumulate mode for N blocks

Block K:
col_in: A_0,K A_1,K (FP8, FP8)
row_in: B_K,0 B_K,1 (FP8, FP8)
col_ctrl_in: b0WX0 (where W, X are FP8 format bits for A0, A1)
row_ctrl_in: b1YZ0 (where Y, Z are FP8 format bits for B0, B1)

Finally read out the result from the accumulator, just like you wrote it in

Block 0: (Note we care about the outputs here)
col_ctrl_in: b1000
row_ctrl_in: b0100
col_out: C_0,0 (FP16)

79

row_out: C_0,1 (FP16)
Block 1: (Note we care about the outputs here)

col_ctrl_in: b1100
row_ctrl_in: b0000
col_out: C_1,0 (FP16)
row_out: C_1,1 (FP16)

Example:
I have a 2xK matrix A, with values A00 through A1K, and a Kx2 matrix B, with values
BK0 through BK1, and a 2x2 matrix C with values C00 through C11. We want to
compute A * B + C = D where D is a 2x2 matrix with values D00 through D11.
The basic steps are

• Write in the initial value of C
• Stream in the values of A and B, and multiply-accumulate
• Read out the accumulated result, and call it D

For simplicity, we’ll assume all the A and B values are E5M2 format, but remember
they can be configured per-value.
C and D are both in FP16 format.
Remember that each block is four clock cycles, and each clock cycle 1/4 of the inputs
and outputs are transmitted.

Block	col_in	row_in	cci	rci	col_out	row_out
0 | C00 | C01 | 1000 | 0100 | |
1 | C10 | C11 | 1100 | 0000 | |
2 | A00A10 | B00B01 | 0000 | 1000 | |
3 | A01A11 | B10B11 | 0000 | 1000 | |
... | ... | ... | ... | ... | |
K + 2 | A0KA1K | BK0BK1 | 0000 | 1000 | |
K + 3 | | | 1000 | 0100 | D00 | D01
K + 4 | | | 1100 | 0000 | D10 | D11

So we can compute this in just K + 4 blocks, where K is the inner size of the A and
B matrix product.
(Also we can save 2 blocks if C is zero, since that’s the reset value of the accumula-
tors)

80

Pinout

Input Output Bidirectional
0 Row Data In 0 Row Data Out 0 Row Control Out
1 Row Data In 1 Row Data Out 1 Col Control Out
2 Row Data In 2 Row Data Out 2 Row Control In
3 Row Data In 3 Row Data Out 3 Col Control In
4 Column Data In 0 Column Data Out 0 Unused
5 Column Data In 1 Column Data Out 1 Unused
6 Column Data In 2 Column Data Out 2 Unused
7 Column Data In 3 Column Data Out 3 Unused

81

Tiny (3-bit) LFSR [160]

• Author: Thomas Klassert
• Description: Tiny (3-bit) LFSR
• GitHub repository
• Wokwi project
• Mux address: 160
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Pseudo-random number generator using a 3-bit linear-feedback shift register

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 clock random bit 0 none
1 none random bit 1 none
2 none random bit 2 none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

82

https://github.com/tomatsch87/tt04-submission-tiny-lfsr
https://wokwi.com/projects/374140166551523329

Pulsed Plasma Thruster (PPT) Controller [161]

• Author: Jurica Kundrata
• Description: Controller module which generates triggering pulses for a Pulse

Plasma Thruster, configurable via I2C interface.
• GitHub repository
• HDL project
• Mux address: 161
• Extra docs
• Clock: 32768 Hz
• External hardware:

How it works

The controller generates a given number of pulses at a given frequency and pulse width.
The controller is to be used to control a Pulsed Plasma Thruster, i.e. its HV driver.
The parameters of the controller can be given using the I2C slave interface. The I2C
address is defined by 0b101 and the lower nibble of the input port. The I2C register
map is:
ADDR | XX | Description
0x00 | RW | Clock divider value for the controller
0x01 | RW | Lower byte of pulse period
0x02 | RW | Higher byte of pulse period (6 LSBs used)
0x03 | RW | Lower byte of pulse width
0x04 | RW | Higher byte of pulse width (6 LSBs used)
0x05 | RW | Total number of pulses
0x06 | – | N/A
0x07 | RW | Run command - initiate the pulse train
0x08 | RO | Number of pulses fired
0x09 | – | N/A
0x0A | RO | Done signal - active when the pulse train is finished
The controller can be run without configuration via I2C using the fifth bit of the input
port (run_override signal).
Verified by iverilog simulations and FPGA prototyped on Xilinx Basys 3 board.

83

https://github.com/jk2102/tt04-submission-ppt-controller

How to test

Controller is designed to be used with a 32.768 kHz clock. It can be used without
configuration via I2C interface by pulling HIGH the run_override signal (ui_in[4]).
After reset the controller will produce a pulse train with 0.25 Hz frequency, 1/32s
width and 16 pulses. The pulses are shown on the 7-seg display as alternating between
dash ‘-’ and zero ‘0’. Also it will produce a 1 Hz divided clock at div_clock port, i.e. dot
port of the output port (7-seg display).

Pinout

Input Output Bidirectional
0 I2C address bit 0 ON if pulse train HIGH I2C SCL bus line
1 I2C address bit 1 ON if pulse train HIGH I2C SDA bus line
2 I2C address bit 2 ON if pulse train HIGH none
3 I2C address bit 3 ON if pulse train HIGH none
4 run_override ON if pulse train HIGH none
5 none ON if pulse train HIGH none
6 none OFF if pulse train HIGH none
7 none div_clk none

84

SAP-1 CPU [162]

• Author: Jayraj Desai
• Description: Implementaion of Simple As Possible (SAP-1) CPU based on the

book Digital Computer Electronics by Albert Paul Malvino and Jerald A. Brown
• GitHub repository
• HDL project
• Mux address: 162
• Extra docs
• Clock: 0 Hz
• External hardware: Clock generator and a switch to provide reset signal

How it works

This project is an implementation of a CPU called SAP-1 as referred in the book
‘Digital Computer Electronics’ by Albert Paul Malvino and Jerald A. Brown. Book’s
PDF is available online, a simple internet search will point you to the PDF of the
book. Difference in my implementation versus the one mentioned in the book is that
they have used shared bus architecture, which was possible due to use of TTL tristate
buffers but in CMOS implementation I am not aware of a simple way to infer a tristate
buffer in verilog so made some changes to adapt their architecture. Another important
thing to notice is that even though this project has full implementation of LDA, ADD,
SUB and OUT instructions, I have not implemented interface to an external memory,
instead I have hard coded a 16 x 8 bit memory in the memory_16x8_rom.v which kind
of simulates memory. Hence this CPU can run only one code.
This Project needs two input only clk and rst_n. I plan to provide input clock by
generating it outside using a 555 timer and using a simple switch to provide rst_n
signal.

How to test

As mentioned in how it works this project needs two inputs clk and rst_n. Once these
signals are applied after few clock pulses you should see output of a fixed code at
the output pins which can be viewed using set of 8 LEDs connected serially through
resistors.
Expected output is binary 01 (This is output of first instruction that loads accumulator
with value 01 which is stored at address 0x9 in memory) , 03 (This is output of second
instruction which is add accumulator with value 02 which is stored at 0xA address
in memory), 06 (This is output of third instruction which is add accumulator with
value 03 which is stored at 0xB address in memory) and 02 (This is output of third

85

https://github.com/jayraj4021/tt04-submission-jayraj4021-SAP1

instruction which is subtract accumulator with value 04 which is stored at 0xC address
in memory).

Pinout

Input Output Bidirectional
0 clk = input clock uo_out[0] none
1 rst_n = active low reset uo_out[1] none
2 none uo_out[2] none
3 none uo_out[3] none
4 none uo_out[4] none
5 none uo_out[5] none
6 none uo_out[6] none
7 none uo_out[7] none

86

Multi-channel pulse counter with serial output, v01a [163]

• Author: Adrian Novosel, Dinko Oletic
• Description: Counts number of digital pulses occuring within a time interval

across four input channels, and periodically outputs the values out using serial
output. Wokwi implementation.

• GitHub repository
• Wokwi project
• Mux address: 163
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Design consists of four 12-bit counters with overflow detection, a mm:ss real-time clock
(RTC), a parallel-input-serial output (PISO) readout register, controlled by a readout
state-machine. The counters store number of intermittently-occuring short digital in-
put pulses, accumulated within the RTC’s time-measurement interval 00:00 - 59:59,
at each of the four input channels. Periodically, after every RTC overflow (1 h with
assumed 1 Hz RTC input clock signal), the state-machine performs sequential serial
readout of the RTC time and all channels, and resets all channel counters. Additionally,
readout and individual channel reset is initiated by overflow at any of individual input
channel counter. This an early work-in progress implementation of digital portion of
a low-power sensor interface for readout of a multichannel acoustic emission detector,
based on MEMS-array of piezoelectric microresonators for passive ultrasonic band-pass
filtering: https://ieeexplore.ieee.org/document/9139151. Design is generally applica-
ble for low-power wake-up sensor interfaces, acoustic event detection, non-destructive
testing, particle-counters, or as a generic pulse-counting digital building block.

How to test

Input signals are short rising-edge digital pulses, connected to input pins “ch1”, “ch2”,
“ch3”, “ch4”. Output data becomes ready for serial readout at the output pin “se-
rial_out” when overflow is signalled via the output “ready” pin ovf_global. Output
bits are serially clocked-out using the input pin “clk”. Specifically, RTC overflow is sig-
nalled via output pin “ovf_RTC_out”, and overflow at an individual channel via the pin
“ovf_ch_out”. The rest of output pins are used for debugging of the state-machine’s
internal states.

87

https://github.com/DinkoOletic/tt04-wokwi_unizgfer_multich_pulse_counter_v01a
https://wokwi.com/projects/370533670565165057

Pinout

Input Output Bidirectional
0 reset serial_out none
1 ch1 ovf_global none
2 ch2 a0_out none
3 ch3 a1_out none
4 ch4 a2_out none
5 clk SL_out none
6 RTC ovf_RTC_out none
7 none ovf_ch_out none

88

Delay Line [164]

• Author: Ashley J. Robinson
• Description: A simple delay line with instrumentation
• GitHub repository
• HDL project
• Mux address: 164
• Extra docs
• Clock: 50000000 Hz
• External hardware: FTDI Cable

How it works

• A delay line output changes based on time delay of different variables such as
process, voltage and temperature.

• There are may different delay line architectures.

– https://springerplus.springeropen.com/articles/10.1186/s40064-016-
2090-z.

• This implementation is a simple tapped delay line.
• The continually changing data races through a chain of inverters.
• The chain is sampled at different stages to become a digital signal.
• An edge detection circuit is used find the rising which is then converted in a

binary value.
• A bank of flops is used to sample 8 sequential rising edge values.

89

https://github.com/ashleyjr/tt04-delay-line
https://github.com/ashleyjr/tt04-delay-line

How to test

• https://github.com/ashleyjr/tt04-delay-line/blob/main/src/test/silicon_test.py

– This python script uses pyserial to run a set of tests on the design
– python3 silicon_test.py –help

• UART

– The UART is the only interface to the design

∗ 9600 baud
∗ Least significant bit first
∗ 1 Start bit
∗ 8 Data bits
∗ No parity bit
∗ 1 Stop bit
∗ Taken from https://github.com/ashleyjr/rtl-uart

– The bottom 4 bits [3:0] of the UART frame make up the command
– 4’h0: Shift In
– Shift the top 4 bits [7:4] of the frame in to memory

∗ The memory is shifted 4 places to the left
∗ The data is placed in to the bottom 4 bits [3:0]
∗ This command is to test the silicon and debug software

– 4’h1: Shift Out

∗ Shift the top 8 bits [39:32] of memory out to UART Tx
∗ The memory is shifted 8 places to the left

– 4’h2: Full Sample

∗ Take a full 32-bit sample from the delay line and place in memory
∗ The sample is placed in to the bottom 32 bits [31:0]
∗ The shift out command may be used to read the sample

– 4’h3: Scope

90

∗ Take 8 samples from the delay line at a 25MHz sample rate
∗ These sample use the edge detection logic to find the position of the

rising edge
∗ These samples are 5 bits wide
∗ The samples are shifted in to the memory

· Sample 0: [39:35]
· Sample 1: [34:30]
· Sample 2: [29:25]
· Sample 3: [24:20]
· Sample 4: [19:15]
· Sample 5: [14:10]
· Sample 6: [9:5]
· Sample 7: [4:0]

∗ The shift out command may be used to read the sample

– 4’h4 to 4’hF inclusive

∗ Ignored

Pinout

Input Output Bidirectional
0 UART Rx UART Tx Tied Low
1 none Tied Low Tied Low
2 none Tied Low Tied Low
3 none Tied Low Tied Low
4 none Tied Low Tied Low
5 none Tied Low Tied Low
6 none Tied Low Tied Low
7 none Tied Low Tied Low

91

Simple Piano [165]

• Author: Sarthak Raheja and Bittu N
• Description: An eight octave twelve key piano with two inbuilt songs. The

design can be customized and incorporated as per user requirement in multiple
use cases.

• GitHub repository
• HDL project
• Mux address: 165
• Extra docs
• Clock: 1000000 Hz
• External hardware: 12 momentary switches, 4 toggle switches, an led bar and a

speaker

How it works

Description: Twelve Independent Tonal Frequencies and Two Pre-defined Songs
Introduction: In this ASIC, we generate twelve independent tonal frequencies and two
predefined songs based on RTTTL. This design features sixteen input switches for
selecting one of two modes, one of eight octaves, any one of twelve notes. In the demo
mode one out of two keys can be used to select the song.
Tone Generation: Clock generation: The design makes use of a 1MHz clock to generate
tonal frequencies/notes. A tone gen module generates a specific frequency, which
is configured based on user input. Song demo mode: The design includes a note
sequencer that steps through one of two predefined songs. The songs are stored as a
list of note-duration pairs. The sequence is generated from an RTTTL description of
the songs.
Output Channels: The ASIC generates one single ended square wave output for the
notes and the remaining outputs are used to drive an LED bar visualizer.

92

https://github.com/diadatp/vlsi-iisc-tt4

Clock, Enable and Reset: Clock Input: The ASIC requires an external clock signal of
1MHz to synchronize its operations. This clock signal ensures that all generated tones
and sentences are coherent and correctly timed. This allows us a frequency resolution
of less than 0.5%. Enable: The design only produces output when the enable pin is
held high. Reset Mechanism: The chip features a reset input, allowing you to reset its
internal state and restart the frequency generation process if needed.

How to test

The design requires a 1MHz clock. The design needs to be reset before using and
enable must be set to 1 for output. To test the piano function, set the mode toggle
to 0 and press any one of the twelve keys just as you would on a piano. To test the
demo function, set the mode toggle to 1 and press either the C or C# keys for a short
song. The audio output is single ended and must be fed to an amplifier.

Pinout

Input Output Bidirectional
0 Note E LED bar [6] Mode piano = 0 & demo = 1
1 Note F LED bar [5] Octave [3]
2 Note F# LED bar [4] Octave [2]
3 Note G LED bar [3] Octave [1]
4 Note G# LED bar [2] Note C
5 Note A LED bar [1] Note C#
6 Note A# LED bar [0] Note D
7 Note B Audio out Note D#

93

Ripple-Carry Adder [166]

• Author: Yannick Reiß
• Description: Add two bytes.
• GitHub repository
• Wokwi project
• Mux address: 166
• Extra docs
• Clock: 0 Hz
• External hardware: 16 input devices, 8 output devices

How it works

Combination of one half adder and 7 full adder, directly connected.

How to test

Connect switches to set the input bytes. Use LEDs or some other kind of output device
to view the sum of the two input bytes.

Pinout

Input Output Bidirectional
0 MSB Byte 1 MSB Result MSB Byte 2
1 6 6 6
2 5 5 5
3 4 4 4
4 3 3 3
5 2 2 2
6 1 1 1
7 LSB Byte 1 LSB Result LSB Byte 2

94

https://github.com/yannickreiss/tt04-ripple-carry-adder
https://wokwi.com/projects/374292646686728193

Led Multiplexer Display [167]

• Author: Baciu Florin-George | BFG-e
• Description: Stores 4 characters and displays them on a 16x4 led matrix
• GitHub repository
• HDL project
• Mux address: 167
• Extra docs
• Clock: 100 Hz
• External hardware: 16x4 led matrix

How it works

If the load is high, the design will load the specified hex char(input data pins) at the
specified location in memory (input char position), therwise the design will go trough
the display columns and represent the chars using the internal character map. The
design should be reseted before use

How to test

Use the input data to add chars to the internal memory.

Pinout

Input Output Bidirectional
0 input data 0 active column number 0 not used
1 input data 1 active column number 1 not used
2 input data 2 active column number 2 not used
3 input data 3 active column number 3 not used
4 input char position 0 line output 0 not used
5 input char position 1 line output 1 not used
6 load line output 2 not used
7 not used line output 3 not used

95

https://github.com/bfgelectronics/tt04-project

LED Matrix Driver [176]

• Author: Michael Bella
• Description: Serial data input 8x8 common anode led matrix driver.
• GitHub repository
• HDL project
• Mux address: 176
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Uses a set of registers to divide the clock, and then some combinational logic to convert
from binary to decimal for the display.
Puts the bottom 8 bits of the counter on the bidirectional outputs.
With all the inputs set to 0, the internal 24 bit compare is set to 10,000,000. This
means the counter will increment by one each second.
If any inputs are non zero, then the input will be used as an bits 11 to 18 of the 24 bit
compare register. Example: setting the inputs to 00010000 will program 16384 into
the compare register. With a 10MHz clock the counter will increment ~610 times per
second.

How to test

After reset, the counter should increase by one every second with a 10MHz input clock.
Experiment by changing the inputs to change the counting speed.

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5

96

https://github.com/mjbella/tt04-led-matrix-driver

Input Output Bidirectional
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

97

8-bit FIFO with depth 16. [177]

• Author: Steve Jenson
• Description: 8-bit FIFO with depth 16 and FWFT read operation
• GitHub repository
• HDL project
• Mux address: 177
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

A FIFO queue is a first-in, first-out digital device that allows two parties to communicate
with a channel of limited size by following specific rules: one party writes, the other
reads. The first thing written will be the first thing read. Reading an empty queue
is disallowed and writing to a full queue is disallowed. Empty and full status can
be checked via the proper status pin before use. In psuedo-code, two parties can
communicate with this FIFO as follows:
Party A

while !full:
write_entry(item)

Party B

while !empty:
item = read_entry()

The queue works in First-Word Fall-Through mode meaning that the top item is always
available on the read bus even if you haven’t set read_request high. If you want
to see the next item in the queue on your next read, be sure to set read_request
high.
almost_full and almost_empty signals exist so you can batch reads and writes.
Instead of checking for full or empty on each read or write you can instead check
almost_full or almost_empty and batch read or writes based on how many slots
are available. For this design taped out in TinyTapeout 4, almost_full means 12 of 16
slots have been used and almost_empty means that 12 of 16 slots are free.

98

https://github.com/stevej/tt04-fifo-stevej
README.md

How to test

Write an item, read an item. Check the status bits. See the unit tests for more ideas!

Pinout

Input Output Bidirectional
0 item[0] item[0] empty (read-only)
1 item[1] item[1] full (read-only)
2 item[2] item[2] underflow (read-only)
3 item[3] item[3] overflow (read-only)
4 item[4] item[4] almost_empty (read-only)
5 item[5] item[5] almost_full (read-only)
6 item[6] item[6] write_enable (set this high

to write a value)
7 item[7] item[7] read_enable (set this high to

read the latest entry from
the FIFO)

99

Pong [178]

• Author: Robbert-Jan de Jager
• Description: This is a small pong game implemented in HDL. It uses a VGA

connector to output the video signal. The game is controlled with 3 buttons per
player. The left button moves the paddle to the left, the right button moves the
paddle to the right and the action button starts the game. The game is over
when one player is out of lives.

• GitHub repository
• HDL project
• Mux address: 178
• Extra docs
• Clock: 25175000 Hz
• External hardware: 3x 2bit DAC for the red, green and blue video signals. VGA

connector. 3 buttons.

100

https://github.com/robojan/tt04-pong
https://github.com/robojan/tt04-breakout-submission/blob/main/README.md

How it works

Basic operation The core of the design is the vga_timing module. This module
generates all the required timing signals. Some of these signals like hsync and vsync are
used to generate the video signal, while others like the horizontal and vertical position
are used to generate the graphics. The horizontal and vertical sync signals are also
used for the game logic.
Before outputting the video signal the video mux selects the correct input color to
display. It does so based on the highest priority component that wants to output a
color.
We have multiple painter modules. These generate from the current game state and
the current horizontal and vertical position the correct color to display. Ideally the
painters would not contribute to the game logic, but for optimization reasons they
do.
While drawing a frame the game logic keeps track of collisions. It does so by checking
if multiple painters want to draw at the same position. If so it will latch a collision,
which will be processed after drawing the frame.
At the end of each frame the game logic will calculate the next ball position, taking
collisions into account. The collision with the paddle is special. To have an entertaining
game that does not play the same every time the ball will bounce off the paddle at a
different angle depending on where it hits. This is done by splitting the paddle into
multiple segments and checking for collisions with these segments. The game logic
will look at the segment when a paddle collision was registered. An exception to the
end of frame gamestate update is the breaking of blocks. It would require too much
memory to keep the updated state for the next frame. Instead we will update the row
of blocks that was just finished drawing.

How to test

This is a small breakout game implemented in HDL. It uses a VGA connector to output
the video signal. The game is controlled with 3 buttons per player. The left button
moves the paddle to the left, the right button moves the paddle to the right and the
action button starts the game. The game is over when all blocks are destroyed or when
the ball hits the bottom of the screen.

101

Required hardware This project requires a VGA monitor and a VGA DAC. An easy
way to create the VGA DAC is to use 3 2-bit R2R DACs. The 2-bit R2R DACs can be
created using 2 resistors per bit. The resistors should be 200Ohm and 390Ohm. For
the 3.3V power supply.
What has not been verified is the current sourcing capability of the ASIC,
If it can not at least source 10mA through each pin and 30mA through
the power supply pins you should add a buffer before the DAC.
The VGA DAC should be connected as follows:

___ ___
Bit 0 ----|___|--+--|___|-- GND

390 | 390
.-.
| |

200 | |
'-'

____ |
Bit 1 ---|____|--+---- Out

390

Every color should have an identical copy of this DAC. The red DAC should be con-
nected to the red VGA pin, the green DAC to the green VGA pin and the blue DAC
to the blue VGA pin. The outputs of the DACs should be connected to the VGA con-
nector. The HSync and VSync pins should also be connected to the VGA connector.
The following connections need to be made to the VGA connector:

• Red DAC output to VGA connector pin 1
• Green DAC output to VGA connector pin 2
• Blue DAC output to VGA connector pin 3
• HSync to VGA connector pin 13
• VSync to VGA connector pin 14
• GND to VGA connector pin 5, 6, 7, 8

Board configuration The ASIC requires an input clock of 25.175MHz. The 7-
Segment display is not used.

Pinout

102

Input Output Bidirectional
0 none HSync none
1 none VSync HBlank
2 Button P2 left Red output bit 0 VBlank
3 Button P2 right Red output bit 1 sound output. Connect to a

speaker with amplifier.
4 Button P2 action Green output bit 0 none
5 Button P1 left Green output bit 1 none
6 Button P1 right Blue output bit 0 none
7 Button P1 action Blue output bit 1 none

103

8 panel display”” [179]

• Author: Jimmy Hartford
• Description: 4 different patterns displaying 8 panels on the 7-seg display
• GitHub repository
• Wokwi project
• Mux address: 179
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

1- figure 8 2- CHS 3- CUSHIng 4- roboticS

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

104

https://github.com/TinyTapeout/hartford_tt04
https://wokwi.com/projects/374962052813090817

Traffic Light [180]

• Author: Courtney
• Description: Lights
• GitHub repository
• Wokwi project
• Mux address: 180
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

105

https://github.com/TinyTapeout/Traffic-Light-2
https://wokwi.com/projects/370690644715216897

Model Railway turntable polarity controller [181]

• Author: Joop aan den Toorn
• Description: A controller that automatically switches the polarity of DC-type

turntables
• GitHub repository
• Wokwi project
• Mux address: 181
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

A controller that automatically switches the polarity of DC-type turntables, to prevent
short-circuits when rotating the turntable along DC-powered tracks. Every track that
connects the turntable to the main tracks must include a short, isolated ‘sensing track’
between the normal tracks and the turntable. When the turntable rotates and makes
contact with any of the tracks, it powers the sensing element. If the polarity does not
match that of the main tracks, the turntable polarity controller will invert it.
This controller is designed to work with a Fleischmann 6152 turntable, using the con-
necting elements 6153 as sensing elements. The sensing elements must be isolated
from the main tracks.
The polarity controller assumes that every sensing element has two tracks. Both are
connected with a high-impedance resistor to the main track they respectively connect
to. e.g.

---<MAIN L>---[ISOLATOR]---<SENS L>---[CONTACT]---<TURNTABLE L>---
| | | | | | | | | | | | | | |

---<MAIN R>---[ISOLATOR]---<SENS R>---[CONTACT]---<TURNTABLE R>---

MAIN TRACK R/L -------| \mbox{\textbackslash}

| | \mbox{\textbackslash}
High R | XOR |-----Polarity switch signal

| | /
SENSING TRACK R/L--------|___/

• Every track and corresponding sensing element form two inputs for an external
XOR port. when polarity is not equal, the XOR output will go from 0 -> 1,

106

https://github.com/jooptoorn/tt04-model_railway_turntable_polarity_controller
https://wokwi.com/projects/374494377414857729

which is fed into the polarity controller [IN0-IN7, D1-D4]. Any of the XOR ports
can command a change in polarity.

• The tracks are suitably connected through resistors and (zener) diodes to the
XOR ports, to convert to digital signals and prevent an overvoltage on its inputs

• If the polarity controller receives a high input for prolonged periods of time, it
assumes an error state where the turntable is not powered. To this end, connect
[OUT6], the change-polarity control signal through a suitable RC delay to [D0]
to trigger an error.

• The turntable polarity controller controls a full-bridge driver on [OUT2] and
[OUT3] that connects the turntable to the main tracks.

• In the original design, the polarity controller uses digital control signals to control
the full-bridge driver. The setup uses N-channel mosfets, where the gate voltage
supply is generated by boosting the track voltage.

• XOR input circuitry, XOR ports, full bridge driver, mosfets and gate-voltage
supply are all external to the polarity controller, but must be implemented if this
design is to be used.

• The clock signal can be generated by the controller. Connect IO port [D6] and
[D7] using an RC network to tune the frequency.

• The controller assumes a reset signal is always activated before the controller is
used. An RC network to VCC can keep the reset signal active while powering
up. Make sure to connect a switch that can ground the reset input to be able
to activate the controller after an error.

POLARITY CONTROLLER
The inputs that can trigger a polarity change are connected through OR ports, hence
every input can trigger a polarity change.
The trigger is used to drive a binary counter that counts down from 3..0 on the clock
signal, which in turn generates signals for the full bridge driver, which is controlled by
OUT2 and OUT3. To avoid shoot-through while switching in the FETs that connect
tracks to either polarity, the outputs are only enabled on counts 1 and 3, using counts
0 and 2 to turn all FETS off. The counter generates a trigger when at value 0 and 2,
so as to always end up in count 1 or 3. For miscellaneous purposes, the counter signal
is provided on [OUT0] and [OUT1].
The counter trigger signal is provided on output OUT6, which can be connected
through an RC delay on D0 to trigger an error when the trigger is active for an
unusually long period of time. This may happen in case of short circuits at the tracks
or other electrical issues. All driver outputs are disabled while an error is active.
The reset signal removes errors and disables the counter and bridge driver outputs.
An inverter network can be used to generate a clock by the IC. To this end, connect
D6 and D7 through an RC network. The delay will tune the clock frequency.

107

How to test

Always reset the controller before using it. After a reset, provide a HIGH polarity switch
trigger signal on IN0..IN7 or D1..D4 and provide a clock signal on CLK. The counter
output must count down between 3..0 on the clock frequency while the trigger signal
is HIGH. Also, OUT4 and OUT6 must be HIGH while the trigger is provided.
Remove the trigger signal. OUT4 must immediately output a LOW.
The counter must now stop at either 1 or 3 but never at 0 or 2. OUT6 will remain
HIGH while counting, but must be LOW when the counter has stopped.
If a particular track polarity is A and its inverse is B, the following conditions must be
met:

COUNT = 3, polarity A is active. OUT2 = HIGH, OUT3 = LOW
COUNT = 2, tracks are disabled. OUT2 = LOW, OUT3 = LOW
COUNT = 1, polarity B is active. OUT2 = LOW, OUT3 = HIGH
COUNT = 0, tracks are disabled. OUT2 = LOW, OUT3 = LOW

Outputs OUT0..OUT3 must be LOW when a LOW->HIGH pulse is provided on D0,
triggering an error which is indicated by a HIGH on OUT7.
Apply a reset signal to enable the outputs again, and ensure OUT7 is LOW.
Connect D6 and D7 through an RC network. Verify a self-oscillation is observed at
output D7

Pinout

Input Output Bidirectional
0 IN0: trigger signal to

change polarity
OUT0: counter
signal

D0: error input. Use to
activate an error and disable
outputs.

1 IN1: trigger signal to
change polarity

OUT1: counter
signal

D1: trigger signal to change
polarity

2 IN2: trigger signal to
change polarity

OUT2: full bridge
control signal for
polarity A

D2: trigger signal to change
polarity

3 IN3: trigger signal to
change polarity

OUT3: full bridge
control signal for
polarity B

D3: trigger signal to change
polarity

108

Input Output Bidirectional
4 IN4: trigger signal to

change polarity
OUT4: indicates a
polarity switch
trigger is active on
one of the inputs

D4: trigger signal to change
polarity

5 IN5: trigger signal to
change polarity

OUT5: VCC D5: not used

6 IN6: trigger signal to
change polarity

OUT6: counter
enabled signal

D6: oscillator input

7 IN7: trigger signal to
change polarity

OUT7: active error
signal

D7: oscillator output

109

Customizable UART string tx [182]

• Author: Tiny Tapeout 02 (J. Rosenthal)
• Description: Customizable UART Transmitter Supports sending multiple ASCII

characters over UART. Each column of flip flops stores a single ASCII character.
To modify a character, change bits 6-0 by modifying whether the respective
multiplex is set to VCC or GND.

To add characters, copy and paste a column. Connect the output of the new column
(Q port of the upper-most D-flip flop) to the input of the stage to the left (bottom-left
most multiplexer port). Remember to connect the multiplexer select signal and the
clock to the new column as well.
Lastly, delete the the output of the first column (Q port of the upper-most D-flip
flop) and create a new connection to the to the input of the new stage you’ve added
(bottom-left most multiplexer port).

• GitHub repository
• Wokwi project
• Mux address: 182
• Extra docs
• Clock: 1 Hz
• External hardware:

How it works

TODO:FIXME

How to test

To begin transmission

1. Set the Arduino serial baud rate Serial.begin(<baud rate>); in
the *.ino file to 300

2. Set the Wokwi clock frequency "attrs": { "frequency":
"300" } in the diagram.json to 300 as well

3. Set the slide switch to the clock
4. Set SW7 to OFF (“Load”)
5. Set SW8 to ON (“Output Enable”)
6. Set SW7 to ON (“TX”)

110

https://github.com/psychogenic/tt04-UARTstring
https://wokwi.com/projects/347144898258928211
https://wokwi.com/projects/347144898258928211

If there’s no output from the Wokwi Arduino serial monitor, try toggling SW7 OFF
and ON again.
Congratulations! You should now see your customized letters being output!
Note that garbage characters may be printed upon initialization.

Pinout

Input Output Bidirectional
0 N/A segment a none
1 N/A segment b none
2 N/A segment c none
3 N/A segment d none
4 N/A segment e none
5 N/A segment f none
6 load/tx segment g none
7 output enable N/A none

111

7-Seg ‘Tiny Tapeout’ Display [183]

• Author: Tiny Tapeout 02 (J. Rosenthal)
• Description: This circuit will output a string of characters (’tiny tapeout’) to

the 7-segment display.
• GitHub repository
• Wokwi project
• Mux address: 183
• Extra docs
• Clock: 1 Hz
• External hardware:

How it works

The logic to light the characters appears in the bottom half of the simulation window.
The top half of the simulation window implements a modulo-11 counter. In other words,
the counter increments up to 11 then resets. This counter is used to determine which
character we should output to the 7-segment display. The truth table for the design
can be found in the Design Spreadsheet: https://docs.google.com/spreadsheets/d/1-
h9pBYtuxv6su2EC8qBc6nX_JqHXks6Gx5nmHFQh_30/edit

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 N/A segment a none
1 N/A segment b none
2 N/A segment c none
3 Clock Disable (Test Mode) segment d none
4 Test Logic A segment e none
5 Test Logic B segment f none
6 Test Logic C segment g none

112

https://github.com/psychogenic/tt04-7segstringdisplay
https://wokwi.com/projects/347497504164545108
https://wokwi.com/projects/347497504164545108

Input Output Bidirectional
7 Test Logic D N/A none

113

UART character tx [192]

• Author: Tiny Tapeout 02 (J. Rosenthal)
• Description: This circuit will output a string of characters (’tiny tapeout’) to

the uart.
• GitHub repository
• Wokwi project
• Mux address: 192
• Extra docs
• Clock: 1 Hz
• External hardware:

How it works

Supports ASCII characters from 0x40 (@) to 0x5F (_), including capital letters from
the latin alphabet.

How to test

Example Sending ‘A’

1. Set the Arduino serial baud rate Serial.begin(<baud rate>); in
the *.ino file to 300

2. Set the Wokwi clock frequency "attrs": { "frequency":
"300" } in the diagram.json to 300 as well

3. Set SW7 to OFF (“Load”)
4. Set SW2 to ON and SW3-6 to OFF
5. Set SW7 to ON (“TX”)
6. Set SW8 to ON (“Output Enable”) If there’s no output from the Wokwi Arduino

serial monitor, try toggling SW7 OFF and ON again. Congratulations! You
should now see the letter being output in the Wokwi Arduino Serial monitor
at the bottom of the simulation. Note that garbage characters may be printed
upon initialization.

Pinout

114

https://github.com/psychogenic/tt04-UARTcharacter
https://wokwi.com/projects/347140425276981843
https://wokwi.com/projects/347140425276981843

Input Output Bidirectional
0 n/a segment a none
1 bit 0 segment b none
2 bit 1 segment c none
3 bit 2 segment d none
4 bit 3 segment e none
5 bit 4 segment f none
6 load/tx segment g none
7 output enable N/A none

115

Padlock [193]

• Author: Tiny Tapeout 02 (J. Rosenthal)
• Description: Set a code for your precious safe
• GitHub repository
• Wokwi project
• Mux address: 193
• Extra docs
• Clock: Hz
• External hardware:

How it works

Set a code for your precious safe! Controls

• Switch 2 is used to reset the safe.
• Switch 8 is used to set your code (ON = set, OFF = locked)
• Switches 3 to 5 are used to set the code.
• The push button is used to enter your code.

How to test

Press the green button in the top left of the pane to begin the simulation. Set your
desired code using Switches 3 to 5. Once you’ve done so, toggle Switch 8 to ON then
back OFF–the safe is now set! Turn ON Switch 2, and press the push button. The
red LED labeled “Locked” should turn on and the seven segment display should show
“L” (for locked). Next turn OFF Switch 2 to begin entering codes.

Pinout

Input Output Bidirectional
0 N/A segment a none
1 N/A segment b none
2 Code 0 segment c none
3 Code 1 segment d none
4 Code 2 segment e none
5 N/A segment f none
6 N/A segment g none
7 Set Code dot none

116

https://github.com/psychogenic/tt04-padlock
https://wokwi.com/projects/347417602591556180
https://wokwi.com/projects/347417602591556180

8bits Counter by AI [194]

• Author: Noritsuna Imamura
• Description: This verilog code is generated by LLaMa2 on PC.
• GitHub repository
• HDL project
• Mux address: 194
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

This is a simple 8bits counter. This was generated automatically by an Edge AI. Its
EdgeAI environment is that of https://github.com/noritsuna/Edge_Circuit_Designer
.

How to test

Check reset, ena, counter function.

Pinout

Input Output Bidirectional
0 none counter bit 0 none
1 none counter bit 1 none
2 none counter bit 2 none
3 none counter bit 3 none
4 none counter bit 4 none
5 none counter bit 5 none
6 none counter bit 6 none
7 none counter bit 7 none

117

https://github.com/noritsuna/tt04-tt_um_8bitcounter_AI

FM Transmitter [195]

• Author: Jan Kral (jan.kral@vut.cz), Ondrej Kolar (ondrej.kolar@vut.cz)
• Description: FM transmitter with I2S input
• GitHub repository
• HDL project
• Mux address: 195
• Extra docs
• Clock: 50000000 Hz
• External hardware: 4-bit R-2R DAC, I2S source, SPI (optional)

How it works

Our design takes an audio signal and modulates it to a higher carrier frequency, using
FM modulation. The modulator in our design is based on a numerically controlled
oscillator (NCO) with several modifications.
The frequency control word, which increments the phase accumulator, is being added
with the audio signal. This results in the phase increments proportional to the current
audio sample level. The variation directly determines the actual shift of the output
signal frequency. For the conversion of phase to a harmonic signal (sine wave) NCOs
usually use look-up tables or CORDIC algorithm. However, both of these methods
are resource-heavy, therefore the design adopts a very rough, piecewise linearized ap-
proximation of the sine function. The main upside of this approach is the lightweight
implementation, which utilizes only simple bit-shifting and addition operations.
Since the output digital-to-analog converter suggested below is not followed by a re-
construction filter , the output signal will not be present only on a single frequency but
also on several higher ones, sometimes called mirrors (as they appear on frequencies
mirrored by the sampling frequency and its multiples). Thanks to this, it is possible to
get the signal in the range of FM broadcast band, even with the sampling frequency
lower than the carrier frequency.

118

mailto:jan.kral@vut.cz
mailto:ondrej.kolar@vut.cz
https://github.com/jankralx/tt04-fm-transmitter
https://github.com/jankralx/tt04-fm-transmitter/blob/main/README.md
https://en.wikipedia.org/wiki/Frequency_modulation
https://en.wikipedia.org/wiki/Numerically_controlled_oscillator
https://en.wikipedia.org/wiki/Numerically_controlled_oscillator
https://en.wikipedia.org/wiki/CORDIC
https://en.wikipedia.org/wiki/Reconstruction_filter
https://en.wikipedia.org/wiki/Reconstruction_filter

How to test

Disclaimer! Our design is not intended for real on air use. Any signals
generated by our design are far from ideal and require proper filtering.
Improper use will most probably violate your local regulations. Use only
at your own risk!
For testing the design you need to provide an audio source using the I2S bus interface.
You can use for example Raspberry Pi. For the output, you need to build a DAC. A
simple R–2R resistor ladder network) should be enough for testing. The schematic is
provided in our GitHub repository.

Pinout

Input Output Bidirectional
0 i2s_clk dac[0] (LSB) none
1 i2s_din dac[1] none
2 i2s_ws dac[2] none
3 i2s_ws_align_pin dac[3] (MSB) none
4 audio_chan_sel_pin none spi_clk (in)
5 multiply_sel_pin none spi_csn (in)
6 dith_disable_pin none spi_mosi (in)
7 none none spi_miso (inout)

119

https://en.wikipedia.org/wiki/Resistor_ladder#R%E2%80%932R_resistor_ladder_network_(digital_to_analog_conversion
https://github.com/jankralx/tt04-fm-transmitter

Test 4x4 memory [196]

• Author: Marchand Nicolas
• Description: A 4x4 memory adapted from :https://www.researchgate.net/figure/Structure-

of-SRAM-Cell-The-design-of-SRAM-usually-involves-edge-triggered-flip-flops-
The_fig3_324963843

• GitHub repository
• Wokwi project
• Mux address: 196
• Extra docs
• Clock: 1 Hz
• External hardware: the switches and the 7-segment can be enough - either

How it works

it uses 16 flip flop logic to create the memory of 4 lines of 4bits
2 switches controle the lines, 4 switches sets the bits of a line, 2 switches setup the
read and chip select (CS to be 1 to work), 4 outputs show the inverted value of the
stored bit for the first line of 4 bits 4 outputs show the actual 4 bits of the selected
line (updated by switching CS or RD)

truth table operation | CS | RD | Line1 | Line2 | In3 | In2 | In1 | In0 | Out3 | Out2
| Out1 | Out0 |

No operation | 0 | X | X | X | X | X | 0 | 0 | X | X | X | X |

Write operation | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | X | X | X | X | 1 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | X | X | X | X |
1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | X | X | X | X |
1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | X | X | X | X |
Read operation | 1 | 1 | 0 | 0 | X | X | X | X | 1 | 0 | 0 | 0 | | 1 | 1 | 0 | 1 | X | X | X
| X | 0 | 1 | 0 | 0 | | 1 | 1 | 1 | 0 | X | X | X | X | 0 | 0 | 1 | 0 | | 1 | 1 | 1 | 1 | X | X |
X | X | 0 | 0 | 0 | 1 |

How to test

Setting the input switch to on should store the data and turn the corresponding LED
of the 7-segment ON or off regarding to the stored value.

120

https://github.com/MCH-NI/tt04-Test
https://wokwi.com/projects/369864099838656513

Pinout

Input Output Bidirectional
0 in 0 - updates the

value of bit0 of the
selected line with in4
and in5

out 0 - segment a -
value of bit0 of the
selected line with in4
and in5

none

1 in 1 - updates the
value of bit1 of the
selected line with in4
and in5

out 1 - segment b -
value of bit1 of the
selected line with in4
and in5

none

2 in 2 - updates the
value of bit2 of the
selected line with in4
and in5

out 2 - segment c -
value of bit2 of the
selected line with in4
and in5

none

3 in 3 - updates the
value of bit3 of the
selected line with in4
and in5

out 3 - segment d -
value of bit3 of the
selected line with in4
and in5

none

4 in 4 - selects the line
with in5

out 4 - segment e -
control of bit0 of the
first line (value Q-)

none

5 in 5 - selects the line
with in4

out 5 - segment f -
control of bit1 of the
first line (value Q-)

none

6 clk/step push-button
to select write or
read operation or can
be automated on the
clock

out 6 - segment g -
control of bit2 of the
first line (value Q-)

none

7 in 7 - chip select,
allways ON (1) to
wrok

out 7 - dot - control
of bit3 of the first
line (value Q-)

none

121

ROTFPGA v2 [197]

• Author: htfab
• Description: A reconfigurable logic circuit made of identical rotatable tiles

122

• GitHub repository
• HDL project
• Mux address: 197
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

ROTFPGA v2 is a reconfigurable logic circuit built from identical copies of the tile
in Figure (a) containing a NAND gate, a D flip-flop and a buffer, with each tile
individually rotated or reflected as described by the FPGA configuration. It is a port
of the original ROTFPGA from Caravel to TinyTapeout. Porting the design required
a 50-fold decrease in chip area which was achieved using a combination of cutting
corners, heavy optimization and a few design changes. In particular:

• The FPGA was reduced from 24×24 to 8×8 tiles. There are 8 inputs and 8
outputs instead of 12 each.

• To compensate for smaller size, tiles can also be mirrored in addition to rotation.
• Tiles (being the most repeated part of the design) were rewritten as hand-

optimized gate-level Verilog.
• Each tile only contains 1 flip-flop (the one exposed to the user). Configuration

is now stored in latches.
• Configuration and reset are performed using a routing-efficient scan chain, so

the design is no longer routing constrained. This allows standard cells to be
placed with >80% density.

• Openlane and its components are 2 years more mature, hardening the same HDL
more efficiently.

Configuration
Each tile can be configured in 8 possible orientations. Bits 0, 1 and 2 correspond to
a diagonal, horizontal and vertical flip respectively. Any rotation or reflection can be
described as a combination as shown in Figure (d). (The bottom row looks somewhat
different, but we just rearranged the wires so that the inputs and outputs line up with
the unmirrored tiles.)
Tiles are arranged in an 8×8 grid:

• Top, bottom, left and right inputs and outputs are connected to the tile in the
respective direction.

• Tiles mostly wrap around, e.g. the bottom output of a cell in the last line connects
to the top input of the cell in the first line.

123

https://github.com/htfab/rotfpga2
https://github.com/htfab/rotfpga2/blob/main/README.md
https://github.com/htfab/rotfpga

• As an exception to the wrapping rules, left inputs in the first column correspond
to chip inputs and right outputs in the last column correspond to chip outputs.

• There is a scan chain meandering through all the tiles, visiting lines from top to
bottom and within each line going from left to right.

Figure (c) shows a 4×4 model of the tile grid. When the scan enable input is 0, the
FPGA operates normally and each tile sets its flip-flop to the input it receives from
one of the neighboring tiles according to its current rotation/reflection (black arrows).
When scan enable is 1, it sets the flip-flop to the value received through the scan chain
instead (grey arrows). This allows us to set the initial state of each flip-flop and also
to query their state later for debugging. With some extra machinery it also allows us
to change the rotations/reflections.
When the 2-bit configuration input is is 01, each cell updates its vertical flip bit to the
current value of its flip-flop. Similarly, for 10 it sets the horizontal flip and for 11 it
sets the diagonal flip. When configuration is 00, all three flip bits are latched and the
orientation doesn’t change.
One can thus configure the FPGA by sending the sequence of all diagonal flip bits
through the scan chain, then setting configuration to 11 and back to 00, then sending
all horizontal flip bits, setting configuration to 10 and back to 00, and finally sending
the vertical flip bits and setting configuration to 01 and back to 00.
Note that in order to save space the flip bits are stored in latches, not registers. Chang-
ing the configuration input from 00 to 11 or vice versa can cause a race condition where
it is temporarily 01 or 10, overwriting the horizontal or vertical flip bits. Therefore one
should configure the diagonal flips first.
Loop breaker
The user design may intentionally or inadvertantly contain combinational loops such
as ring oscillators. To help debug such designs, the chip has a loop breaker mechanism
using a loop breaker enable input as well as a 2-bit loop breaker class input.
Tiles are assigned to loop breaker classes according to Figure (b). The loop breaker
latches a tile output if and only if the following conditions are all met:

• The loop breaker enable input is 1.
• The current tile has a non-empty class that is different from the loop breaker

class input.
• The output doesn’t come from the tile’s flip-flop.

The loop breaker has the following properties:

124

• If loop breaker enable is 1 and loop breaker class is constant, there are no
combinational loops running. If we also pause the clock, the circuit keeps a
steady state.

• If loop breaker enable is 1 and we cycle loop breaker class through all possible
values repeatedly while the clock is paused, everything will eventually propagate.
If we also assume that the design has no race conditions, it will behave in the
same way as if loop breaker enable was 0.

Reset
Setting the active-low reset input to 0 has the following effect:

• Override scan enable to 1, scan chain input to 0 and disengage the latches for
vertical, horizontal and diagonal flips. When kept low for 64 clock cycles this
will reset the state and configuration in every tile.

• Override loop breaker enable to 1 and loop breaker class to 00. This ensures
that we play nice with other designs on TinyTapeout and keep a steady state
while our design is not selected.

How to test

Follow the test suite in src/test.py.

Pinout

Input Output Bidirectional
0 tile(0,0) left in tile(7,0) right out scan enable input
1 tile(0,1) left in tile(7,1) right out scan chain input
2 tile(0,2) left in tile(7,2) right out configuration input bit 0
3 tile(0,3) left in tile(7,3) right out configuration input bit 1
4 tile(0,4) left in tile(7,4) right out loop breaker enable input
5 tile(0,5) left in tile(7,5) right out loop breaker class input bit 0
6 tile(0,6) left in tile(7,6) right out loop breaker class input bit 1
7 tile(0,7) left in tile(7,7) right out scan chain output

125

Arithmetic logic unit of four operations between two 8-bit
numbers [198]

• Author: Alejandro Araya, María Bogantes, Isaías González
• Description: Calculates addition, multiplication, logical xor and shift left opera-

tions between two numbers.
• GitHub repository
• HDL project
• Mux address: 198
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

This circuit is designed to solve four arithmetic logic operations between two 8-bit
numbers. The numbers are entered from a 4x4 matrix keyboard. The data entered
from the keyboard is manipulated with decoders, encoders and registers, to finally reach
an ALU. In the ALU one of the operations of addition, multiplication, xor or shift left
will be calculated.
The circuit generates a two-bit counter that goes to a decoder, the decoder is respon-
sible for activating the keyboard columns high. Pressing the keyboard columns will
cause them to switch from high to low, resulting in the matrix_in input. The data that
enter to matrix_in goes to an encoder. The encoder, according to the input, will have
as output a hexadecimal value, which will be saved if en_reg is active. When en_reg
is active, the data is saved at the address provided by switches 2 to 3. This address is
the location where the data will be saved in the register bank.
The operands that enter the ALU are obtained from the register bank, the addresses
of these operands are indicated with switches 4 to 5 and 6 to 7. To indicate the
ALU operation, switches 0 to 1 are used, depending on the value entered, one of the
following operations will be performed:

• 00 - A + B
• 01 - A * B
• 10 - A xor B
• 11 - A « 1

Finally, the result of the operation is obtained in the 8-bit alu_r output.

126

https://github.com/Iosaias/VLSI_Bootcamp

How to test

After reset, the counter should increase by one every second with a 10MHz input
clock.

Pinout

Input Output Bidirectional
0 op [1:0] (selects

operation)
alu_r [7:0]
(operation result)

matrix_in [0:3] (keyboard
data)

1 add_s [3:2] n/a en_reg (if active, saves
kayboard data in the register
bank)

2 add_op1 [5:4]
(defines first operand
direction)

n/a 2bc [1:0] (two bit counter)

3 add_op2 [7:6]
(defines second
operand direction)

n/a z (zero flag)

4 n/a n/a n/a
5 n/a n/a n/a
6 n/a n/a n/a
7 n/a n/a n/a

127

FIR Filter [199]

• Author: Daniel González
• Description: FIR Filter with 4 coefficients
• GitHub repository
• HDL project
• Mux address: 199
• Extra docs
• Clock: 10000000 Hz
• External hardware: Requires a microcontroller to send the x[n] values for the

input signal

How it works

Uses for coefficients which can be defined by the user with the swtichs, or by default
1s are used. The last 4 values of the input signal are multiplied by the coefficients and
sum to generate the output value.

How to test

You have to send the input signal x[n] with the uio_in, and the output uio_out will be
the output signal y[n]

128

https://github.com/DanielG1010/verilog-template
https://github.com/DanielG1010/verilog-template

Pinout

Input Output Bidirectional
0 {‘ui_in’: ‘Assign

custom coefficients,
ui_in[7:3] with sel
[2:1] and enable [0]’}

{‘uio_out’: ‘Output
y[n]’}

None

1 {‘uo_out’: ‘does
nothing’}

n/a n/a

2 {‘ui_in’: ‘Input x[n]’} n/a n/a
3 {‘uio_oe’: ‘does

nothing’}
n/a n/a

4 {‘ena’: ‘enables the
shift register for
taking the inputs’}

n/a n/a

5 {‘clk’: ‘clock’} n/a n/a
6 {‘rst_n’: ‘when 0

past values of x[n]
are set to 0 and
coefficients to 1s’}

n/a n/a

7 n/a n/a n/a

129

Tamagotchi [208]

• Author: Fabian Alvarez
• Description: Simple Console Tamagotchi
• GitHub repository
• HDL project
• Mux address: 208
• Extra docs
• Clock: 27000000 Hz
• External hardware:

How it works

Connect rx and tx to a serial terminal. The game will start automatically, if the
tamagotchi dies, press the reset button to start again. feed all the stats to keep the
tamagotchi alive (food, sleep, happiness, hygiene, social), when the tamagotchi are
sleeping, you cannot interact with it. Controls:

• E: feed
• S: sleep
• P: play
• B: clean
• T: talk
• W: wake up

How to test

Use a 27MHz clock. Connect rx and tx to a serial terminal. The game will start
automatically, if the tamagotchi dies, press the reset button to start again.

Pinout

Input Output Bidirectional
0 rx tx none
1 none none none
2 none none none
3 none none none
4 none none none
5 none none none

130

https://github.com/SantaCRC/tamagotchi

Input Output Bidirectional
6 none none none
7 none none none

131

LFMPDM (Lightning Fast Matrix Programmable Design
Module) [209]

• Author: Emilio Baungarten
• Description: 8xLUTs 4-input
• GitHub repository
• HDL project
• Mux address: 209
• Extra docs
• Clock: Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 i_addr_load_data[0] o_Data i_LUT [0]
1 i_addr_load_data[1] none i_LUT [1]
2 i_addr_load_data[2] none i_LUT [2]
3 i_addr_load_data[3] none i_LUT [3]
4 i_Data none none
5 i_config_enable none none
6 none none none
7 none none none

132

https://github.com/Baungarten-CINVESTAV/tt04-submission-4-LUT

7 SEGMENTS CLOCK [210]

• Author: Juan Carlos Garcia Lopez
• Description: 7 SEGMENTS CLOCK
• GitHub repository
• HDL project
• Mux address: 210
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 disp_type ampm none
1 fmt segments_ none
2 prog disp_select_ none
3 adjust segment_select_ none
4 n/a n/a none
5 n/a n/a none
6 n/a n/a none
7 n/a n/a none

133

https://github.com/Juan-Garcial/tt04_jcgarcia

Multi Pattern LED Sequencer [211]

• Author: Francisco Javier Rodriguez Navarrete
• Description: Project for the MPLS LED lights
• GitHub repository
• HDL project
• Mux address: 211
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

The ‘tt_um_MultiPatternLEDSequencer_RSYO3000.v’ is just a wrapper for the tiny-
tapeout I/O. Inside this, theres a top wrapper for the project called ‘MultiPatternLED-
Sequencer.v’ that connects to the tinytapeout wrapper and instances the following
modules: ‘PLL_10MHztoNHz.v’ and ‘MPLS.v’
The ‘PLL_10MHztoNHz.v’ contains a verilog that can change the 10MHz frequency
input to 1Hz, 2Hz 5Hz and 50Hz, to see the LEDs with various frequencies via the
(‘clk_selector’) signal.
The ‘MPLS.v’ is the main module, it uses a combination of counters, feedback loops,
and pattern selection logic to generate different LED patterns. The pattern selection
signal (‘pattern_sel’) determines which LED pattern to display.

• The ‘demo_counter’ is used to cycle through all the available patterns when
(‘pattern_sel’) is 31.

• The ‘pattern_counter’ and ‘oh_counter’ are used to generate specific timing
sequences for the LED patterns.

• The ‘lfsr_reg’ implements a Linear Feedback Shift Register (LFSR) to generate
pseudo-random sequences.

• A ‘case’ selects from the selected (‘pattern_sel’) to display the selected pattern
out of the 30 available patterns through the 8 outputs. The 30 patterns are the
following ones:

– Pattern 0: All LEDs OFF Turn off all the LEDs.
– Pattern 1: All LEDs ON Turn on all the LEDs at once.
– Pattern 2: Blinking LEDs Make the LEDs alternate between on and

off, creating a blinking effect.

134

https://github.com/RSYO3000/tt04-submission-mpls

– Pattern 3: Running lights The LEDs move in a sequence, like lights
running down a line.

– Pattern 4: Alternating LEDs Alternate the LEDs in an on-off pattern.
– Pattern 5: Negative running lights Similar to pattern 3, but with the

LEDs off where they were on, and vice versa.
– Pattern 6: KR effect The LEDs flicker and shift, producing a mysterious
“Knight Rider” effect.

– Pattern 7: Bouncing lights Lights bounce back and forth.
– Pattern 8: LED wave effect Create a wave-like pattern that travels

along the LEDs.
– Pattern 9: Alternating LED groups Divide the LEDs into groups of

2 that alternate turning on and off.
– Pattern 10: Heartbeat Make the LEDs pulse in a heartbeat-like rhythm.
– Pattern 11: p-Random LFSR LEDs Use a random number generator

to make the LEDs light up in a pseudo-random pattern.
– Pattern 12: XOR All XOR all counters, creating a unique show.
– Pattern 13: Binary counter Display a binary counting sequence on the

LEDs.
– Pattern 14: Clockwise LED rotation Rotate the LEDs in a clockwise

direction.
– Pattern 15: XOR Pattern XOR between one hot counter and binary

counter.
– Pattern 16: Bouncing lights Similar to pattern 7, but with a slightly

different bounce effect.
– Pattern 17: Diagonal Bounce Make the LEDs bounce diagonally

across the LEDs.
– Pattern 18: Circular Bounce Create a circular bounce effect, like lights

moving in a loop.
– Pattern 19: Random Bounce The LEDs bounce pseudo-randomly.
– Pattern 20: Negative Diagonal Bounce Like pattern 17, but with

the LEDs off where they were on, and vice versa.
– Pattern 21: Accelerating Bounce The bouncing effect speeds up over

time.

135

– Pattern 22: Gravity Effect LEDs appear to “fall” downward, creating
a gravity-like effect.

– Pattern 23: Spring Effect Like pattern 8, but with a spring-like bounce
in the wave effect.

– Pattern 24: Reflecting Bounce Create a bouncing pattern that reflects
off the edges.

– Pattern 25: Double Bounce Similar to pattern 17, but with the middle
LEDs on.

– Pattern 26: Wave Bounce A wave-like pattern that bounces back and
forth.

– Pattern 27: Breathing Effect Make the LEDs “breathe” by gradually
brightening and dimming.

– Pattern 28: Alternating Binary and One-Hot Switch between binary
counting and one-hot encoding.

– Pattern 29: Alternating LFSR and One-Hot Alternate between the
LFSR sequence and one-hot encoding.

– Pattern 30: Alternating LFSR and Binary Switch between the LFSR
sequence and binary counting.

– Pattern 31: DEMO This mode cycles through all the available patterns
automatically, showcasing the variety of the patterns.

How to test

To test the MPLS module, follow these steps:

• To create a simulation displaying all the patterns, run the target “make
mpls_sim” in the src folder, this will run the testbench via icarus verilog for all
patterns with a fixed time of simulation enough to see the patterns.

• There is another target that simulates the PLL and 10MHz to 1Hz, 2Hz, 5Hz
and 50Hz with the MPLS module by using “make tt_sim” in the src folder,
running this one is not recommended since its meant for long testing and the
VCD file can go up to 16GB if you let it run everything.

Pinout

136

Input Output Bidirectional
0 N/C LED[7] none
1 pattern_sel[4] LED[6] none
2 pattern_sel[3] LED[5] none
3 pattern_sel[2] LED[4] none
4 pattern_sel[1] LED[3] none
5 pattern_sel[0] LED[2] none
6 clk_selector[1] LED[1] none
7 clk_selector[0] LED[0] none

137

Generador de PWM [212]

• Author: Rodrigo Garcia
• Description: This is PWM generator
• GitHub repository
• HDL project
• Mux address: 212
• Extra docs
• Clock: 10000000 Hz
• External hardware: Dos push buttons y un osciloscopio

How it works

General Description

The project is a simple Pulse Width Modulation (PWM) generator with a variable duty cycle. The duty cycle is controlled
using two buttons: one to increase and another to decrease the duty cycle. The project is designed to operate with a 10
MHz clock as its time base.

Button Signals

increase_duty and decrease_duty are signals directly connected to ui_in[0] and ui_in[1], respectively.

Debounce Logic

The code includes debounce logic for the buttons. It uses a counter (counter_debounce) to generate a slow clock enable signal
(slow_clk_enable). This slow clock is used to sample the button states and eliminate debounce.

PWM Logic

The code utilizes a 4-bit counter (counter_PWM) to generate a PWM signal. The duty cycle of the PWM signal is controlled by the
DUTY_CYCLE variable, which can be increased or decreased using the debounce logic signals (duty_inc and duty_dec).

DFF_PWM Module

This is a simple D flip-flop used for debounce. It samples the D input when the en (enable) signal is high.

138

https://github.com/gar19085/tt04-PWM

How to test

Button Connections

Connect two buttons to the system. These buttons are used to control the duty cycle of the PWM signal.

• Connect input pin 0 to one of the buttons. This button is used to increase the
duty cycle of the PWM signal. Make sure the button has a pull-down resistor
connected to ensure a defined logical level when not pressed.

• Connect input pin 1 to the other button. This button is used to decrease the
duty cycle of the PWM signal. Just like the first button, ensure that this one
also has a pull-down resistor connected.

Oscilloscope Connection

Connect an oscilloscope to output pin 0 of the dedicated outputs of the system. Adjust the oscilloscope settings to
measure and display the PWM signal correctly.

Pinout

Input Output Bidirectional
0 increase_duty out_pwm none
1 decrease_duty none none
2 none none none
3 none none none
4 none none none
5 none none none
6 none none none
7 none none none

139

Multi stage path for delay measurements. [213]

• Author: Daniel Mundo, Noel Prado, Victor Vanegas
• Description: Verilog coding for cascaded not gates connected as a ring oscillator.

After running the flow it is observed that the synthesizer does not support com-
binatorial feedback and that it collapsed several cascaded not gates into buffers.
The original purpose for the ring oscillator will not be achieved but it is observed
that synthesized circuit is still useful for measuring some gate delays that can
be compared to theoretical calculations for educational purposes.

• GitHub repository
• HDL project
• Mux address: 213
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

The ui_in signals first two bits are used to control the transmission of the input signal
thru the gates all the way to the several external outputs that are taps to different gate
stages as to measure different stage delays for educational purposes.

How to test

One can put a square wave generator in the inputs and use a scope to measure the
delay of the gates. The delay can be compared with theoretical calculations.

Pinout

Input Output Bidirectional
0 EN (ui_in[0]) Tap 1 (uo_out[0]) none
1 EN_2 (ui_in[1]) Tap 2 (uo_out[1]) none
2 none Tap 3 (uo_out[2]) none
3 none none none
4 none none none
5 none none none
6 none none none
7 none none none

140

https://github.com/mun19508/tt04-measure_delay

ASCII Text Printer Circuit [214]

• Author: Noel Prado, Daniel Mundo, Angel Orellana and Julio Lopez.
• Description: A circuit that is able to print two different texts. It utilizes 8 output

pins, each character is printed as the ASCII character described in 8 bits.
• GitHub repository
• HDL project
• Mux address: 214
• Extra docs
• Clock: 0 Hz
• External hardware: Any microcontroller, we have tested it using TIVA C and a

FPGA.

How it works

This circuit is designed to output ASCII-encoded text sequences. The circuit can
display two different texts.
Select Input: The select pins (ui_in[1:0]), a 2-bit binary input, determine which
text sequence will be displayed:

• 2'b00 or 2'b11: Outputs a sequence of characters that correspond to the
beginning of a traditional song from Guatemala.

• 2'b01 or 2'b10: Outputs a sequence of characters with the names of the people
that participated in this project.

The text is displayed character-by-character, with each character’s ASCII representation
determined by the current value of an internal counter. The counter increments with
each clock cycle until the specified limit for the chosen text sequence is reached, at
which point it resets, allowing the sequence to be displayed repetitively.

How to test

To test this project, one needs to use an external microcontroller, where one can read
digital input pins synchronously. After reading the characters via the input pins, you
can send the pins to a computer via UART communication and display the texts on
the computer terminal.

Pinout

141

https://github.com/NoelFPB/Soy_de_Zacapa

Input Output Bidirectional
0 select bit 0 Bit 0 none
1 select bit 1 Bit 1 none
2 none Bit 2 none
3 none Bit 3 none
4 none Bit 4 none
5 none Bit 5 none
6 none Bit 6 none
7 none Bit 7 none

142

Clock synchronizer [215]

• Author: Mateo Guerrero Gonzalo Hernandez Cesar Azambuya Francisco Veirano
• Description: Testing different ways of clock synchronizers to avoid metastability

problems.
• GitHub repository
• HDL project
• Mux address: 215
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

This project is composed by different clock synchronizers subblocks. The function of
these subblocks is to mitigate the problem of metastability caused when you have two
clock domains and you want to transfer a signal from one domain to another. Then,
with a selector input, you can select the output from the different subblocks in order
to test and measure their performance to avoid this problem.
So, the project has: A first register at the input to hold the data. This 8 bits-length
data is registered by CLK1.
This data is registered by another second register but with another clock, in this case
CLK2. The data of the output of this register has a high probability to be metastable.
The output of the first register is the input of the three different blocks to be tested.
1- The first one, 2 flip-flop synchronizer, is composed by two register in cascade (A
connected to B), triggered by CLK2. There is probability that while sampling the input
A-d by flip flop A in CLK2 clock domain, output A-q may go into metastable state.
But during the one clock cycle period of CLK2 clock, output A-q may settle to some
stable value. Output of flop B can go to metastable if A does not settle to stable
value during one clock cycle, but probability for B to be metastable for a complete
destination clock cycle is very close to zero.
2- The second, Recirculation mux synchronization, in order to synchronize data, a
control pulse is generated in source clock domain (CLK1) when data is available at
source flop. Control Pulse is then synchronized using 2 flip flop synchronizer or pulse
synchronizer (Toggle or Handshake) depending on clock ratio between source (CLK1)
and destination (CLK2) domain. Synchronized control pulse is used to sample the
data on the bus in destination domain. Data should be stable until it is sampled in
destination clock domain (CLK2).

143

https://github.com/pacoveirano/tt04-synchronizer

3- The third, Toggle block, is the same as Recirculation mux synchronization block,
but in this case we generate the control pulse using a Toggle synchronizer. The toggle
synchronizer is used to synchronize a pulse generating in source clock domain (CLK1)
to destination clock domain (CLK2). A pulse cannot be synchronized directly using
2 FF synchronizer. While synchronizing from fast clock domain (CLk2) to slow clock
domain (CLk1) using 2 FF synchronizer, the pulse can be skipped which can cause the
loss of pulse detection and hence subsequent circuit which depends upon it, may not
function properly.
The project also has enable control block. This block controls that the synchronizer
subblocks run only once each, generating a pulse in their respective enable inputs.

How to test

First, you need to define the frequency you want to use with CLK1 and CLK2. After
reset, you need to put an input data on data_in bus (uio_in). If you want to use de
enable control block, you need to put enable_block input (ui_in[6]) at low level all
the time, and rise a pulse of one period of CLK1 duration in trigger input (ui_in[7]).
Otherwise, you can put enable_block in high level all the time. In this case, all blocks
are going to be updating their values constantly. You will see at the output the signal
and examine if the signal has a metastable state or not, switching between the diferent
output using the sel input (ui_in[3:1]). Also, you can use the input stb and pulse_in
to measure the performance of the blocks associated to these inputs. These signals
are used as triggers to register data in CLK2 domain.

Pinout

Input Output Bidirectional
0 clk, clock of the first

clock domain.
data_out connected
to uo_out. This is
the data output of
the different block
depending of the
value of sel.

data_in connected to uio_in,
set as input. This is the data
input to be synchronized.

1 clk_2 connected to
ui_in[0]. This is the
second clock domain.

When the input sel =
0 you will see the
output of the first FF
(triggered by CLK1).

n/a

144

Input Output Bidirectional
2 sel connected to

ui_in[3:1]. This the
selector tu select the
different output
between the different
blocks.

When the input sel =
1 you will see the
output of the second
FF (triggered by
CLK2).

n/a

3 stb connected
ui_in[4]. This is the
pulse needed to
synchronize with the
second block.

When the input sel =
2 you will see the
first block using to
synchronize
(triggered by CLK2).

n/a

4 pulse_in connected
to ui_in[5]. This is
the pulse needed to
synchronize with the
third block.

When the input sel =
3 you will see the
second block using
to synchronize
(triggered by CLK1
and CLK2).

n/a

5 rst_n. Reset of the
system.

When the input sel =
4 you will see the
third block using to
synchronize
(triggered by CLK1
and CLK2).

n/a

6 ena. Will go high
when the design is
enabled.

When the input sel =
5 you will see the
output {stb_in, ctrl,
stb_out, A, B1, B2,
B3, pulse_out}, the
intermediate signals
of the different
blocks.

n/a

7 enable_block
connected to
ui_in[6]. This signal
is used to enable all
subblocks.

When the input sel =
6 you will see the
output {0, 0, ena_A,
ena_1, ena_2,
ena_3, done} the
enables of the
different blocks.

n/a

145

Simple PWM Generator [224]

• Author: Daniel Barrios
• Description: Generates a PWM signal with a duty cycle that can be varied with

inputs pins
• GitHub repository
• HDL project
• Mux address: 224
• Extra docs
• Clock: 5000000 Hz
• External hardware:

How it works

The PWM Generator takes a clock and generates a PWM by comparating the selected
bus against a counter. Another input is added to determine the maximum resolution
for the counter (meaning high resolution requires more bits for counting, which results
in an overall lower frequency). By dinamically changing the counter max it is easy to
generate the new signal. Also a DFF is added to the output of the comparator in order
to synchronize the signal and reduce the possible glitches that can arise by changing
values mid-run.

How to test

To test, just connect the duty bus to the desired value at the output, while also setting
the Maximum Bits in the bidirectional pins to the desired quantity (max - 111). After
pressing restart the PWM should work as desired.

Pinout

Input Output Bidirectional
0 Duty[0] PWM output Bit selector [0]
1 Duty[1] none Bit selector [1]
2 Duty[2] none Bit selector [2]
3 Duty[3] none none
4 Duty[4] none none
5 Duty[5] none none
6 Duty[6] none none

146

https://github.com/DanielBarrios2190/tt04-submission-pwmgen

Input Output Bidirectional
7 Duty[7] none none

147

CLK Frequency Divider [225]

• Author: Ramon Sarmiento
• Description: Generates several frequency clock signals from a user-selected M

module
• GitHub repository
• HDL project
• Mux address: 225
• Extra docs
• Clock: Hz
• External hardware:

How it works

The frequency divider consists of a counter module M chosen by the user as an input
to the project. When the counter reaches the value M-1, a signal is enabled which will
function as a clock of another 7-bit counter and each output of this counter can be
used as a clock signal, each signal is divided by 2 in frequency. The pulse of the M
module counter was enabled as output but it is not recommended to use it as clock
signal, but it can be used in other applications.

How to test

To test the design you only need to choose the M module with the switches on the
dedicated inputs.

Pinout

Input Output Bidirectional
0 Modulo[0] segment a CLK 1/2
1 Modulo[1] segment b CLK 1/4
2 Modulo[2] segment c CLK 1/8
3 Modulo[3] segment d CLK 1/16
4 Modulo[4] segment e CLK 1/32
5 Modulo[5] segment f CLK 1/64
6 Modulo[6] segment g CLK 1/128
7 Modulo[7] dot Modulo M signal

148

https://github.com/RamonSsc/tt04-submission-Vfreq

UIS Traffic Light [226]

• Author: Jorge Eduardo Angarita Pérez
• Description: Traffic light control for LatinPractice Bootcamp at UIS
• GitHub repository
• HDL project
• Mux address: 226
• Extra docs
• Clock: 32768 Hz
• External hardware: Three Different Color LEDs (Optional)

How it works

This is a Finite State Machine (FSM) that utilizes an instantiated module of the “CLK
Frequency Divider” by Ramón Sarmiento to perform internal counting for a traffic light
control system.

How to test

Set the first input to “1” and await the activation of the Red light. It will remain active
for 30 seconds, provided the correct frequency is employed. Afterward, it will transition
to the Green state within 3 seconds, remaining in this state for an additional 20 seconds.
Finally, it will transition back to the Red state over the course of 3 seconds.

Pinout

Input Output Bidirectional
0 Start Green Light none
1 none Yellow Light none
2 none Red Light none
3 none none none
4 none none none
5 none none none
6 none none none
7 none none none

149

https://github.com/Gior-gio/tt04-submission-TrafficLight
https://github.com/Gior-gio/tt04-submission-TrafficLight/blob/main/info.yaml

4 bit adder [227]

• Author: Nestor Matajira
• Description: Add two 4 bit numbers
• GitHub repository
• HDL project
• Mux address: 227
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Consists of 4 adders, 1 half adder and 3 full adders

How to test

Between bit 0 to 3 set the first number, and from pin 4 to 7 set the second number.

Pinout

Input Output Bidirectional
0 A[0] S[0] none
1 A[1] S[1] none
2 A[2] S[2] none
3 A[3] S[3] none
4 B[0] S[4] none
5 B[1] none none
6 B[2] none none
7 B[3] none none

150

https://github.com/NestorMatajira/tt04-submission-sumador

8-bit ALU [228]

• Author: Nicolas Orcasitas Garcia
• Description: 8-bit ALU with 8 operations
• GitHub repository
• HDL project
• Mux address: 228
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

151

https://github.com/NicolasOrcasitas/tt04-submission-8bit-ALU

Collatz Conjecture [229]

• Author: Sergio Sebastian Oliveros Sepulveda
• Description: A circuit that computes the Collatz orbit
• GitHub repository
• HDL project
• Mux address: 229
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

The circuit takes an 8-bit input value and produces two outputs: the number of it-
erations required to reach 1 and a status bit indicating whether the calculation is in
progress or complete. Once the process is finished, the circuit keeps the value of the
iterations indefinitely so that it can be checked.

How to test

To test the circuit it is necessary to have as input the clock signal, a number of
maximum 8 bits and the rst_n signal to start the iterations. It is taken into account
that rst_n is at 0 when it is active, so once it takes this value, the circuit begins to
perform the calculations until it reaches 1, then it keeps the values.

Pinout

Input Output Bidirectional
0 clk Process indicator

(busy bit)
Number of iterations to
reach 1 (8 bits number)

1 ena n/a n/a
2 rst_n n/a n/a
3 Number to test n/a n/a
4 n/a n/a n/a
5 n/a n/a n/a
6 n/a n/a n/a
7 n/a n/a n/a

152

https://github.com/Sergio-Oliveros/tt04-submission-Collatz

8 bit 4 data sorting network [230]

• Author: Emmanuel Díaz Marín
• Description: The circuit orders the 4 input numbers according to their value,

with the highest number at output 0
• GitHub repository
• Wokwi project
• Mux address: 230
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Sorting networks can be visualized as combinatorial circuits where a set of denoted
compare-swap (CS) circuits can be connected in accordance to a specific network
topology. This way the CS circuit is formed by a full adder configured as a subtractor
and a pair of multiplexers, the carry of the subtractor is used for the selection of the
multiplexer.

How to test

1. Reset signal.
2. Enter the 4 8-bit inputs (8 clock positive flanks).
3. Enable the control/load signal for 8 clock positive flanks.
4. See the results.

Pinout

Input Output Bidirectional
0 Number 1 Highest number none
1 Number 2 Second highest number none
2 Number 3 Third highest number none
3 Number 4 Fourth highest number none
4 none Not used none
5 none Not used none
6 none Not used none
7 Control Not used none

153

https://github.com/ManuDamar/tt04-8-bit-sorting-network
https://wokwi.com/projects/370011087462055937

BCD to 7 segments [231]

• Author: Josue Marcelo Castillo Acosta, Kaylee Michelle Diaz Rodriguez, Juliana
Hernandez Hernandez

• Description: un decodificador de binario a decimal
• GitHub repository
• Wokwi project
• Mux address: 231
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

emplea una funcion logica para que mediante un numero binario salga el numero en el
display

How to test

ingresar en las entradas un numero binario

Pinout

Input Output Bidirectional
0 bit 0 segment a none
1 bit 1 segment b none
2 bit 2 segment c none
3 bit 3 segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

154

https://github.com/Pinging78/tt04-submission-demo
https://wokwi.com/projects/374968111036708865

4 bit full adder [240]

• Author: Hugo Jesús Navarro Hernández, David Mora Mendez, Nadia Fernanda
Barradas Solis, Juan Giovani Landa Cervantes

• Description: A full adder of binary numbers with logic gates
• GitHub repository
• Wokwi project
• Mux address: 240
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

“Takes 2 numbers and adds them using binary code with logic gates”

How to test

“Selecting the different switches and switching them on and off to turn on the leds,
each switch has an assigned value, such as 1, 2, 4, 8, 16”

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

155

https://github.com/Nadiadoki/tt04-4-bit-full-adder
https://wokwi.com/projects/374967675785369601

Circuito Religioso [241]

• Author: Eunice Husai Garcia Javier, Axel Daniel Luna Carmona, Aneesa Miranda
Peredo García, Daniel Alberto Gil Martinez

• Description: Un circuito BCD display 7 segmentos que despliega caracteres para
formar una palabra

• GitHub repository
• Wokwi project
• Mux address: 241
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Son compuertas logicas que crean una funcion para desplegar caracteres en un display
de 7 segmentos. Eb este caso los caracteres forman dos palabras por lo que utilizamos
una entrada de seleccion para elegir cual de ambas se muestran.

How to test

En las entradas 0 a 3 escribir un numero binario con la ultima entrada (3) como el bit
menos significante. Al escribirlos en orden de 0 a 9 se desplegará la palabra, la cual se
selecciona con la entrada 7.

Pinout

Input Output Bidirectional
0 bit 3 segment a none
1 bit 2 segment b none
2 bit 1 segment c none
3 bit 0 segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 control dot none

156

https://github.com/husaigarciajavier/tt04-circuito-creyente
https://wokwi.com/projects/374974793636964353

Demultiplexor NAND [242]

• Author: Mauricio Caballero Hernández - Alejandro Duran Morales - Marvin Yahir
Salamanca Ramirez - Kevin Ortiz Sarate

• Description: Demultiplexor de 3 entradas independientes y 3 entradas de direc-
ción que arrojan valore logicos de 0 y 1 en 8 salidas diferentes, constituido por
compuertas NAND y NOT, imitando el comportamiento de un LS138

• GitHub repository
• Wokwi project
• Mux address: 242
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Introduciendo un total de 6 señales en el circuito se puede arrojar una señal negada (un
valor de 0 logico) en una de las 8 salidas disponibles. Las primeras 3 entradas dentro
del circuito son clasificadas como entradas de dirección y se encargan de configurar el
Demultiplexor, los otros 3 puertos de entrada admiten valores de entrada independi-
entes que terminan por infliur en las entradas de las compuertas logicas NAND y eso
enconjunto permite que se arrojen valores logicos, predominando los estados altosen 7
de 8 salidas, mientras que la salida restante arroja un valor logico de 0 (lo cual admite
un total de 8 combinaciones posibles con resultados diferentes). Todo el cuerpo del
Demultiplexor esta conformado por compuertas NAND de 4 entradas y su demanda de
compuertas NOT es minima en comparacion.

How to test

Para probar el circuito es necesario utilizar un dip switch de 6 entradas donde las
primeras 3 posiciones conformaran las entradas de dirección (E0-E2) mientras que las
posiciones 4 a 6 seran las entradas independientes (A0-A2). En su estado natural, (sin
señales de entrada más que la E0), se arrojara el estado bajo a O0, Para arrojar un
valor de 0 a la salida O1 es necesario mantener activa la entrada de direccion E0 y
la entrada independiente A0. Para cambiar a la salida O2 se mantiene la entrada de
dirección E0 y la entrada A1. Para cambiar a la salida O3 se mantiene la entrada de
dirección E0 y la entrada A0 + A1. Para cambiar a la salida O4 se mantiene la entrada
de dirección E0 y la entrada A2. Para cambiar a la salida O5 se mantiene la entrada de
dirección E0 y la entrada A0 + A2. Para cambiar a la salida O6 se mantiene la entrada
de dirección E0 y la entrada A1 + A2. Para cambiar a la salida O7 se mantiene la

157

https://github.com/Anjouri/tt04-submission-template
https://wokwi.com/projects/374815911155542017

entrada de dirección E0 y la entrada A0 + A1 + A2. Para que todas las salidas arrojen
un valor logico de 1 se necesita que se activen las entradas E1 + E2.

Pinout

Input Output Bidirectional
0 E0 (Entrada de dirección) segment a none
1 E1 (Entrada de dirección) segment b none
2 E2 (Entrada de dirección) segment c none
3 A0 (Entrada independiente) segment d none
4 A1 (Entrada independiente) segment e none
5 A2 (Entrada independiente) segment f none
6 n/a segment g none
7 n/a dot none

158

Sumador/Sustractor de 3 bit con acarreo y prestamo [243]

• Author: ONIX-M50
• Description: Este es un pequeño proyecto para la iniciativa VLSI, el cual consta

de un circuito que realiza tanto la suma como la sustracción de dos numeros de
3 bits, los cuales pueden venir acompañados de un bit de acarreo o prestamo
respectivamente.

• GitHub repository
• Wokwi project
• Mux address: 243
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Este circuito recibe 2 numeros de 3 bits cada uno y opcionalmente un bit de acarreo y/o
un bit de prestamo. El circuito realiza tanto la adición como la sustracción de dichos
números y el resultado de ambas operaciones es entregado a la salida. Se utilizan 4
pines de salida para el resultado de la suma y 4 pines para el resultado de la resta.

How to test

Las entradas IN0 a IN2 corresponden al primer número de 3 bits, mientras que las en-
tradas IN4 a IN6 corresponden al segundo número de 3 bits, por otro lado, las entradas
IN3 e IN7 corresponden al los posibles bits de acarreo y préstamo respectivamente. Las
salidas OUT0 a OUT3 corrreponden al resultado de la suma de los npumeros binarios
de entrada, siendo OUT3 el acarreo. Mientras que las salidas OUT4 a OUT7 corre-
sponden al resultado de la resta de los números binarios de entrada, siendo OUT4 el
prestamo.

Pinout

Input Output Bidirectional
0 A0 X0 none
1 A1 X1 none
2 A2 X2 none
3 carry carry none
4 B0 Y0 none

159

https://github.com/ONIX-M50/DesdeWokwi
https://wokwi.com/projects/374903567624066049

Input Output Bidirectional
5 B1 Y1 none
6 B2 Y2 none
7 borrow borrow none

160

Hardware Lock [244]

• Author: Lautiux
• Description: A simple hardware pin made with a shift register formed by joining

various flip-flops.
• GitHub repository
• Wokwi project
• Mux address: 244
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Entering the right pin the output turns on.

How to test

Enter the following pin serially one bit at a time through the input 0 (10100100010).
For a 1 turn input 0 ON and send a clock pulse, for a 0 turn input 0 OFF and send a
clock pulse. Do that 11 times and with the correct pin the output shoud turn on, if
not it shoud stay off.

Pinout

Input Output Bidirectional
0 PIN INPUT segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

161

https://github.com/lautitux/tt04-submission-ucu-microchip
https://wokwi.com/projects/374515580784897025

Custom falling and rising edge detection [245]

• Author: Kelvin Kung
• Description: Build a custom edge detection circuit using flip-flop
• GitHub repository
• Wokwi project
• Mux address: 245
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

162

https://github.com/kelvinutp/TinyTapeOut-circuits
https://wokwi.com/projects/374909346558831617

4-bit-alu [246]

• Author: Angelo Machorro
• Description: 4 bit alu
• GitHub repository
• HDL project
• Mux address: 246
• Extra docs
• Clock: 0 Hz
• External hardware: buttons or dip switches

How it works

Its a 4-bit alu, can make addition, substraction, multiplication, division and bitwise-
and.

How to test

A and B input are the data for ALU, S is the operation selects, in the next table we
presents the operations

operation S Result
addition 0 A + B
substraction 1 A - B
multiplication 2 A * B
division 3 A/B
bitwise and 4 A & B

Pinout

Input Output Bidirectional
0 A3 R7 S0
1 A2 R6 S1
2 A1 R5 S2
3 A0 R4 none
4 B3 R3 none
5 B2 R2 none
6 B1 R1 none

163

https://github.com/Angardo18/tt04-submission-angardo-alu

Input Output Bidirectional
7 B0 R0 none

164

Angardo’s pong [247]

• Author: Angel Orellana
• Description: Is a pong game
• GitHub repository
• HDL project
• Mux address: 247
• Extra docs
• Clock: 10000000 Hz
• External hardware: 6 pushbutton, 8x8 neopixel matrix

How it works

This is a pong game, it uses a neopixel led matrix 8x8 as display. To control the game,
each player has two push buttons to move up and down the paddle, an extra push
button is used to start the game. The game ends when the ball touch the left or
the right side of the matrix. To set the initial conditions of the game press the reset
button.

How to test

To use the project you must to connect the 6 push butttons (two for player 1, two for
player 2, one for start game, and 1 for reset) with an pull up resistor, also you need
conect the data in pin of neopixel matrix to driver_neopixel output.

Pinout

Input Output Bidirectional
0 start driver_neopixel none
1 p1_up none none
2 p1_down none none
3 p2_up none none
4 p2_down none none
5 none none none
6 none none none
7 none none none

165

https://github.com/Julio18211/tt04-pong

(11,7) hamming code encoder and decoder with UART
[256]

• Author: LEOGLM
• Description: (11,7) hamming code encoder and decoder using UART Protocol
• GitHub repository
• HDL project
• Mux address: 256
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

The project is divided into two parts: a (11,7) Hamming code encoder connected to a
UART transmitter, and a decoder connected to a UART receiver. Both the encoder and
decoder share the same set of input/output ports, which can be switched by inserting
an impulse at ui_in[0]. The encoder adds four parity bits to a sequence of parallel
data, improving its error detection and correction capabilities. The UART transmitter
then rearranges and sends the coded data in series. On the receiving end, the UART
receiver receives the message in series and converts it back to parallel form for further
processing. Finally, the decoder decodes the message, corrects any potential errors,
and outputs the original message, ensuring reliable and accurate data transmission.

How to test

To test the encoder, a sequence of parallel data can be inserted and the resulting coded
data in series can be checked for accuracy. For the decoder, a sequence of coded data
in series can be inputted, with a maximum of one bit error, to verify whether the
decoder can output the correct data.

Pinout

Input Output Bidirectional
0 encoder and decoder switching state encoder_input/decoder_output
1 encoder_enable encoder_output encoder_input/decoder_output
2 decoder_input decoder_output encoder_input/decoder_output
3 encoder_input decoder_output encoder_input/decoder_output
4 encoder_input decoder_output encoder_input/decoder_output

166

https://github.com/LEOGLM0312/tt04-submission-hamming_code

Input Output Bidirectional
5 encoder_input decoder_output encoder_input
6 encoder_input decoder_output none
7 encoder_input decoder_output none

167

Multi-channel pulse counter with serial output, v01b [257]

• Author: Adrian Novosel, Dinko Oletic
• Description: Counts number of digital pulses occuring within a time interval

across four input channels, and periodically outputs the values out using serial
output. Verilog HDL implementation.

• GitHub repository
• HDL project
• Mux address: 257
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Design consists of four 12-bit counters with overflow detection, a mm:ss real-time clock
(RTC), a parallel-input-serial output (PISO) readout register, controlled by a readout
state-machine. The counters store number of intermittently-occuring short digital in-
put pulses, accumulated within the RTC’s time-measurement interval 00:00 - 59:59,
at each of the four input channels. Periodically, after every RTC overflow (1 h with
assumed 1 Hz RTC input clock signal), the state-machine performs sequential serial
readout of the RTC time and all channels, and resets all channel counters. Additionally,
readout and individual channel reset is initiated by overflow at any of individual input
channel counter. This an early work-in progress implementation of digital portion of
a low-power sensor interface for readout of a multichannel acoustic emission detector,
based on MEMS-array of piezoelectric microresonators for passive ultrasonic band-pass
filtering: https://ieeexplore.ieee.org/document/9139151. Design is generally applica-
ble for low-power wake-up sensor interfaces, acoustic event detection, non-destructive
testing, particle-counters, or as a generic pulse-counting digital building block.

How to test

Input signals are short rising-edge digital pulses, connected to input pins “ch1”, “ch2”,
“ch3”, “ch4”. Output data becomes ready for serial readout at the output pin “se-
rial_out” when overflow is signalled via the output “ready” pin ovf_global. Output
bits are serially clocked-out using the input pin “clk”. Specifically, RTC overflow is sig-
nalled via output pin “ovf_RTC_out”, and overflow at an individual channel via the pin
“ovf_ch_out”. The rest of output pins are used for debugging of the state-machine’s
internal states.

168

https://github.com/DinkoOletic/tt04-HDL_unizgfer_multich_pulse_counter_v01b

Pinout

Input Output Bidirectional
0 ch1 serial_out none
1 ch2 ovf_global none
2 ch3 a0_out none
3 ch4 a1_out none
4 RTC a2_out none
5 clk SL_out none
6 reset ovf_RTC_out none
7 none ovf_ch_out none

169

State machine of an impulse counter [258]

• Author: Adrian Novosel
• Description: This design is not meant to be a standalone circuit. It is a state ma-

chine of my bachelor’s thesis project which was also submitted to Tiny Tapeout.
This submittal will be used for debugging and will give a better insight into the
working principle of its source design. (https://github.com/DinkoOletic/tt04-
wokwi_unizgfer_multich_pulse_counter_v01a)

• GitHub repository
• Wokwi project
• Mux address: 258
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

By clocking the state machine adress pins a2, a1 and a0 change their values every 12
clocks. Shift/load pin is set to 1 and then back to zero every 12 clocks. Other outputs
are used for debugging.

How to test

After an impulse on reset pin and a subsequent impulse on the ovf pin, you can start
clocking the circuit. Adress pins marked with “a” should follow the sequence: “100”-
>“000”->“001”->“010”->“011”->“000”. Shift/load pin wil be set to 1 after every
adress change and then set back to 0 on the next clock. The sequence will repeat
itself.

Pinout

Input Output Bidirectional
0 reset counter flop1 a2
1 ovf counter flop2 a1
2 clk counter flop3 a0
3 bi oe counter flop4 shift/load
4 none zero sm flop1
5 none one sm flop 2
6 none global reset sm flop 3

170

https://github.com/adriannovosel/tt04-state-machine
https://wokwi.com/projects/374969806854695937

Input Output Bidirectional
7 none ovf sm flop 4

171

Logic Circuit 1 [259]

• Author: Patryk Warnke MY REMOTE IOT
• Description: Logic Circuit Timing Test. Serial 1
• GitHub repository
• Wokwi project
• Mux address: 259
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

172

https://github.com/MyRemoteI0T/tt04-submission
https://wokwi.com/projects/375061599421794305

Variable Duty-Cycle TRNG [260]

• Author: Thomas Pluck
• Description: Generates a random bit with a given probability with a special ring

oscillator
• GitHub repository
• HDL project
• Mux address: 260
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

This design is a close adaptation of the concept presented by:
Minh-Hai Nguyen; Cong-Kha Pham A wide frequency range and adjustable duty cycle
CMOS ring voltage controlled oscillator https://ieeexplore.ieee.org/abstract/document/5670690
This design has seven 7-stage ring oscillators that have a final stage NAND which is
takes as input the inverter chain and the ena wire - that is, the oscillator should only
run when ena is high.
The oscillators are all tied at their NAND-outputs to a single node which passes the
signal through an “inverter bias” system that are biased using Harald Pretl’s vDAC
system which uses the first 4 input pins to select a voltage:
https://github.com/iic-jku/tt03-tempsensor/tree/main/src
Note: This circuit is only active when ena is enabled.
The inverter-bias system pass through two D-flip flops connected in series with their
set signals tied high and reset being connected to the rst_n control wire and their
clocks being controlled by CLK. Finally, these are passed through a ena-enabled AND
which gates the final output of the TRNG.

How to test

Simulate the analog, hope for the best.

Pinout

173

https://github.com/ThomasPluck/tt04-biased-trng

Input Output Bidirectional
0 signal sample none
1 control 1 none none
2 control 2 none none
3 control 3 none none
4 none none none
5 none none none
6 none none none
7 none none none

174

Pseudo Random Number Generator [261]

• Author: International Hellenic University - Department of Information and Elec-
tronic Engineering

• Description: This project implements a pseudo-random number generator using
Verilog. It generates pseudo-random numbers and outputs them to drive two
7-segment displays.

• GitHub repository
• HDL project
• Mux address: 261
• Extra docs
• Clock: 50000000 Hz
• External hardware: 7 segment display

How it works

The pseudo-random number generator is based on LFSR. It takes three inputs:

• clk: Clock input.
• en: Enable signal.
• rst_n: Active-low reset signal.

The generator produces 8-bit pseudo-random numbers, which can be used to control
two 7-segment displays. As source of pseudo-randomnes used 2 LFSRs. One that
works with 8 bit and one with 16 bit. The circuit dont have input data, just 1 clock
and 1 enable pin. The output will be a 7 segment display, so 14 output pins. The
16 bit LFSR produce the input of a 16-to-8 multiplexer and the 8 bit LFSR produce
the selection bits of 16-to-8 multiplexer. The 16-to-8 multiplexer is implemented by
8 2-to-1 multiplexers. The final stage is convert the data readable by 2 7 segment
displays.
LFSR16 —— bit 0 ——> | 16-to-8 mux | —— bit 1 ——> | |———-> output 0
. | |———-> output 1 . | | . . |inputs | . —— bit 15 ——> | | . | | | |———->
output 7 LFSR8 —— bit 0 ——> |select | —— bit 1 ——> | | . | | . | | . | | ——
bit 7 ——> | |

How to test

To test the pseudo-random number generator, you can follow these steps:

• Connect the clk, en, and rst_n signals appropriately.
• Connect 2 7 segments display as output.

175

https://github.com/IIntzes/tt4_prng
https://github.com/IIntzes/tt4_prng/blob/main/README.md

• Apply clock pulses at 50MHz and high logic control signals at en to generate
and display pseudo-random numbers.

Pinout

Input Output Bidirectional
0 clk segment0 a segment1 b
1 en segment0 b segment1 c
2 rst_n segment0 c segment1 d
3 n/a segment0 d segment1 e
4 n/a segment0 e segment1 f
5 n/a segment0 f segment1 g
6 n/a segment0 g n/a
7 n/a segment1 a n/a

176

SAR ADC Backend [262]

• Author: Hugo Frisk
• Description: A digital backend of a successive approximation digital to analog

converter (SAR ADC) featuring two interfaces: I2C or an 11-bit parallel bus.
• GitHub repository
• Wokwi project
• Mux address: 262
• Extra docs
• Clock: 100000 Hz
• External hardware: Op-amp, some precise capacitors, resistors, negative supply,

and, p-channel and n-channel mosfets

How it works

This is the digital backend of a charge redistrbution successive approximation analog
to digital converter (SAR ADC). A SAR ADC converts an analog voltage to a digital
value by successively recreating better and better approximations of the input analog
signal. The analog frontend consists of a bank of capacitors where every capacitor has
half of the previous capacitors capacitance. Each capacitor can be connected to either
the positive or the negative supply, controlled by the digital backend. This forms a
variable capacitive divider, or in simpler terms, a digital to analog converter with very
high output impedence. The voltage created by the divider is sent to a comparator
and compared with a reference voltage. In this implementation, the hold circuit that
samples the analog input is combined with the capacitor bank.
See this document from Texas Instruments that the design is based on:
https://www.ti.com.cn/cn/lit/an/slyt176/slyt176.pdf

177

https://github.com/PepperoniPingu/tt04-submission-SAR-ADC-Backend
https://wokwi.com/projects/372347167704674305

How to test

The precision of the ADC can be set to either 11-bits or 6-bits (for faster measurements).
When PRECSEL is low, the ADC is in 11-bit mode. When PRECSEL is high, the ADC
is in 6-bit mode. S6 through S10 should be left floating when in 6-bit mode.
In the picture of this design there is an example circuit of how the analog frontend
could be built. Note that it is not tested so use your own judgement and don’t blow
up your chip.
There are two ways to interface with the ADC:

1. Through a 6- or 11-bit paralell bus: To make a measurement, pulse
START/BUSY high. While the measurement is taking place the pin will remain
high as to signal that it is busy. When the pin goes low, the measurement is
done. Store the measurement by reading S0 through S10. S0 is MSB and S10
is LSB.

2. Through I2C: Connect SCL and SDA to a microcontroller with pullups. The I2C
address of the ADC can be configured to either 0x34 or 0x35. When ADRSEL is
high, the address is 0x34 and when it is low it is 0x35. To make a measurement,
send a write command to configured address with the data 0x01. Read the
measurement by requesting 2 bytes from configured address. The ADC will
NACK the request if it is still busy with the measurement.

Make sure RST_N is pulsed low after a power cycle.
The clock speed that this design works at is yet to be determined and is left as an
exercise to the engineer.

Pinout

Input Output Bidirectional
0 CMPR S0 START/BUSY
1 PRECSEL S1 SCL
2 ADRSEL S2 SDA
3 none S3 S8
4 none S4 S9
5 none S5 S10
6 none S6 INCTRL
7 none S7 GNDCTRL

178

FCFM 7-segment display [263]

• Author: Diego Sanz
• Description: Displays UCHILE-FCFM- into the 7-segment display
• GitHub repository
• Wokwi project
• Mux address: 263
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

It uses a Ripple Counter made from DSR flip-flops to count each character from
UCHILE-FCFM- and displays it into the 7-segment display, the logic behind was opti-
mized using the Quine McCluskey algorithm.

How to test

You can test the desing by stepping the clock to see UCHILE-FCFM- in the 7-segment
display. Also you can disable the counter with the 3th input and input a counter value
by hand using the 4th to 7th inputs.

Pinout

Input Output Bidirectional
0 clock segment a none
1 reset segment b none
2 none segment c none
3 counter_disable segment d none
4 A (most significant bit of the counter) segment e none
5 B segment f none
6 C segment g none
7 D (least significant bit of the counter) dot none

179

https://github.com/DiegoSanzB/tinytapeout_submission
https://wokwi.com/projects/375176944142127105
README.md

another ring oscillator based temperature sensor [272]

• Author: Rodrigo Munoz (UCH)
• Description: 4 differents Ring oscillator whose frecuency depends on temperature.

It project is based on https://github.com/JorgeMarinN/tt03_ac3e-usm_ro-
based_tempsens

• GitHub repository
• HDL project
• Mux address: 272
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

After ena=1 and the reset cycle, a counter counts the number of cycles of the selected
ring oscillator in one period of the system clock. the ring oscillator is selected by
osc_sel input, each oscillator have different frequency.
This count is added cumulatively, the number of counts added is given by the entry
sum_sel: (sum_sel+1)*4 = number of counts added.
When the data 0x00 (START CODE) is received by the uart, the sum total of three
bytes long is sent back in LSB first.
additionally, on each clock cycle the output of the oscillator cycle counter is divided by
2 and sent to the output uo_out[7:1] and uio_out[7:0].

How to test

After reset and enable are set, the ring oscillator should start and then when a START
code (0x00) is received by UART, the cumulative sum value of 3 bytes is sent back.
The oscillator counter divided by 2 is present on uo_out[7:1] and uio_out[7:0].

Pinout

Input Output Bidirectional
0 ui_in[0] =

clk_external
uo_out[0] = tx
(UART tx)

[‘uio_out[7:0] = oscillator
counter bits 15 to 8’]

180

https://github.com/rodrigomunoz1/tt04-verilog-ro-temperature-sensor

Input Output Bidirectional
1 ui_in[1] = clk_sel

(select the system
clock input)

uo_out[7:1] =
oscillator counter
bits 7 to 1

n/a

2 ui_in[4:2] = sum_sel
(number of oscillator
counts added
(sum_sel+1)*4)

n/a n/a

3 ui_in[5] = rx (UART
RX)

n/a n/a

4 ui_in[7:6] = osc_sel
(select one of 4 ring
oscillators)

n/a n/a

5 n/a n/a n/a
6 n/a n/a n/a
7 n/a n/a n/a

181

RO-based temperature sensor with hysteresis [273]

• Author: Francisco Aguirre, Francisca Donoso, based on design by Daniel Arevalos
and Jorge Marín

• Description: Ring oscillator whose frequency depends on temperature, with a
hysteresis module for temperature detection.

• GitHub repository
• HDL project
• Mux address: 273
• Extra docs
• Clock: 1000000 Hz
• External hardware:

How it works

This temperature sensor uses a ring oscillator connected to a counter to determine the
number of cycles within a clock period. The numbers of cycles are averaged across 4
samples, using a simple 2-bit right shift, and then sent through UART as well as the
standard I/O pins. As a ring oscillator’s frequency is related to the temperature, we
can then use this output to determine the temperature vs frequency characteristic.

How to test

After reset and enable are set, the ring oscillator should start. You can then use the
UART rx channel to send the START code, which will kick-start the data-sending
module. This module will start outputting the average of the last 4 samples of the
ring oscillator to the UART tx channel. These samples are taken every clock cycle,
which you can adjust by providing an external clock through the external clock pin, and
then using the selector pin to switch to it. We suggest using a clock around 1MHz, as
otherwise the counter may either be too fast or too slow. Additionally, you can send
a REG code to adjust the registers used by the hysteresis module, allowing you to set
the upper threshold, and then the lower threshold, through transmission from the tx
channel.

Pinout

Input Output Bidirectional
0 clk_internal tx counter[0]
1 clk_sel temp_warn counter[1]

182

https://github.com/Grimrist/tt04_usm_ro-based_tempsens-hyst

Input Output Bidirectional
2 enable_inv_osc n/a counter[2]
3 enable_nand_osc n/a counter[3]
4 rx n/a counter[4]
5 osc_sel n/a counter[5]
6 n/a n/a counter[6]
7 n/a n/a counter[7]

183

Microrobotics FSM [274]

• Author: Lucas Irribarra, Felipe Rifo
• Description: Simple FSM for Micro-srobots
• GitHub repository
• HDL project
• Mux address: 274
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

A simple FSM controls the direction of a micro-robot based on sensors placed around
the robot. The speed is driven by a PWM signal with an 8-bit resolution that can be
set through input pins when the RESET pin is active.
The design also supports the use of an H bridge to allow the motors bidirectional
rotation.

How to test

After reset, the PWM value should be setted by the input pins and the signal is on
one of the output pins for testing. Experiment by changing the inputs to change the
states of the FSM and the motor directions.

Pinout

Input Output Bidirectional
0 none motor B left pwm resolution bit 0
1 none motor B Right pwm resolution bit 1
2 none motor A Left pwm resolution bit 2
3 none motor A Right pwm resolution bit 3
4 none 0 pwm resolution bit 4
5 Front sensor 0 pwm resolution bit 5
6 Left sensor 0 pwm resolution bit 6
7 Rigt sensor pwm signal pwm resolution bit 7

184

https://github.com/FRifoM99/tt04_MicroRobotics_FSM

MINI ALU [275]

• Author: Vicente Martinez, Cristobal Sanchez, Mauricio Pinto, Antar Derpich
• Description: This project is a Mini Alu with 4 bits, 2 bidirectionals used as

inputs that indicates which operation is the Alu doing between XOR, OR, AND
& addition

• GitHub repository
• Wokwi project
• Mux address: 275
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

A mini calculator with two bidirectionals that will change between which operations
are being executed, then with the switches of the 4 bits A and the 4 Bits B they will
define the values that will pass through the mini calculator resulting in 4 bits and in
the case of addition a Carry. The bidirectionals bits are defined by: (00:XOR) (01:OR)
(10:AND) (11:+)

How to test

First of all, Use the bidirectionals to define all the operations, then try all the possible
responses of each operation and see if they fit what it should be.

Pinout

Input Output Bidirectional
0 A0 O0 S0
1 A1 O1 S1
2 A2 O2 none
3 A3 O3 none
4 B0 Carry none
5 B1 none none
6 B2 none none
7 B3 none none

185

https://github.com/ChipUSM/ac3e-usm-VLSICamp-MiniAlu
https://wokwi.com/projects/375042398768251905

PWM Quisquilloso [276]

• Author: Rebeca Orellana, Abigail Alarcon
• Description: Regulates the power or velocity at which a device functions. This

PWM was designed to work with an extern clock of 12.5 KHz so the exit has a
frequency of 50 Hz and it can control a servomotor.

• GitHub repository
• Wokwi project
• Mux address: 276
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Receives an 8 bits entrance, which the first is conected from a clock made with log-
icgates. The next bit is linked to the continuation of the clock and so on, with OR
entrance that allow comparing the entry numbers until forming just one number writ-
ten in binary that indicates the time. This has led lights connected in the output to
check the clock account.

How to test

Enter a value at the entries between 0 and 255 to determinate the working cycle.

Pinout

Input Output Bidirectional
0 IN0 OUTC0 PWM
1 IN1 OUTC1 none
2 IN2 OUTC2 none
3 IN3 OUTC3 none
4 IN4 OUTC4 none
5 IN5 OUTC5 none
6 IN6 OUTC6 none
7 IN7 OUTC7 none

186

https://github.com/ChipUSM/ac3e-usm-VLSICamp-PWM
https://wokwi.com/projects/374778387606763521

CPU 8 bit [277]

• Author: Daniel Arevalos, Patricio Carrasco, Mario Romero, Benjamin Villegas
• Description: Simple CPU of 8 bit
• GitHub repository
• HDL project
• Mux address: 277
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

a simple 8 bit cpu based on 8bitworkshop.

How to test

brief explanation

Pinout

Input Output Bidirectional
0 data_in[0] data_out[0] write
1 data_in[1] data_out[1] address[0]
2 data_in[2] data_out[2] address[1]
3 data_in[3] data_out[3] address[2]
4 data_in[4] data_out[4] address[3]
5 data_in[5] data_out[5] address[4]
6 data_in[6] data_out[6] address[5]
7 data_in[7] data_out[7] address[6]

187

https://github.com/P-coryan/Risc-V-TinyTapeout04

A Risc-V Instruction memory i2c programmer [278]

• Author: Pablo Alonso
• Description: This proyect implements an i2c port capable of programing memory

of a RISC-V processor
• GitHub repository
• HDL project
• Mux address: 278
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

The i2c port is capable of handle 4 registers:

• register 0: Set the instruction memory to read/write
• register 1: It loads the value of the instruction memory setted in register 0
• register 2: the desired value to be loaded to instruction memory setted in register

0
• register 3: Not used, yet read and write to it is possible.

How to test

Connect any controller with an i2c master port and next is how to read, or write the
memory:

• To Read: MASTER: Start + device_addr [0x55] (7-bits) + master ACK +
address_to_read + ACK | | STOP SLAVE: | 8bit_data_from_memory + ACK
|

Pinout

Input Output Bidirectional
0 ext_sda_in ext_sda_out none
1 ext_scl_in ext_scl_out none
2 ext_i2c_rst none none
3 i2c_cs none none
4 pc_src none none

188

https://github.com/Pablopabota/tt04-submission-demo_design

Input Output Bidirectional
5 none none none
6 none none none
7 sda_oe none none

189

IFSC 6-bit Locker [279]

• Author: Gabriel Mota, Luis Davi Kenig Paganella and Vinícius Westphal de Paula
• Description: A lock that receives a 6-bit entry combination.
• GitHub repository
• Wokwi project
• Mux address: 279
• Extra docs
• Clock: 0 Hz
• External hardware: requires two step buttons and some LED or display

How it works

The circuit has 6 input pins (representing a 6-bit password), 1 for the Step button
(Clock of the circuit), and 1 for the Reset button. Each of the 6 inputs is connected to
2 registers, called password register and attempt register. Control between the state
of registering a password and trying to enter a password is done by a latch connected
with its output to one AND gate and its inverted output to another AND gate. When
powering up the circuit, a reset must be performed first to ensure its correct operation.
Then, it is possible to register the default password using the switches. The first clock
pulse through the button registers the default password in 6 D-type flip-flops (DSR),
which store this information in the circuit indefinitely until the Reset button is pressed.
When the Step button is pressed again, the next clock signals update the other 6 DSR
flip-flops in the attempt register. The comparison between each pair of flip-flops is
done by an XOR gate with an inverter at the end, as it is necessary to compare when
both flip-flops have the same logic state. To prevent the lock from being released
when no password is registered (since in the initial state both sets of flip-flops would
be cleared), an AND gate is inserted into a set of OR gates connected to the output
of each “password register” flip-flop. In other words, the comparison between flip-flops
will only be enabled when a password has been registered.

190

https://github.com/viniwestphal/tt04-submission-IFSC-Locker
https://wokwi.com/projects/375246321309880321

How to test

For the circuit to operate, it is necessary to use a Step button that connects to pin IN0
to VCC when pressed, and another Reset button in the same configuration, connected
to pin IN1. The remaining inputs from IN2 to IN7 are connected to 6 switches linked to
VCC. When powering up the circuit, the circuit is reset with the Reset button, allowing
a password to be registered. The user must adjust the switches as desired to form
a combination and then press the Step button to register the password. After that,
the next times the Step button is pressed, comparisons are made between the original
combination and the tested combination, and a logical signal is sent to the output pins
that can be used as desired.

Pinout

Input Output Bidirectional
0 Step Button Lock Exit State none
1 Reset Button Lock Exit State none
2 Switch Entry 1 Lock Exit State none
3 Switch Entry 2 Lock Exit State none
4 Switch Entry 3 Lock Exit State none
5 Switch Entry 4 Lock Exit State none
6 Switch Entry 5 Lock Exit State none
7 Switch Entry 6 Lock Exit State none

191

Randomizer and status checker [288]

• Author: Thomas Linden, Karla Gabrielly Viana Nascimento, Maria Eduarda
Amelco, Arthur Hasse

• Description: it randomizes a number between 0 and 3, a corresponding led will
light up. After that will compare with a button pressed by the user and say if it
was true or false

• GitHub repository
• Wokwi project
• Mux address: 288
• Extra docs
• Clock: 64 Hz
• External hardware:

How it works

General Description: The circuit is a random number generator, that will turn on a
random LED between LED 1 and LED 4. Then, the player should press the button
with the number corresponding to the LED that is on, and the circuit will say if it is

192

https://github.com/karla-gabrielly/tt04-submission-Randomizer-and-Status-Checker
https://wokwi.com/projects/375217288209912833

the RIGHT or WRONG button. The button 0 will make the circuit restart, generating
another random number.
Blocks Description: When ON, the circuit will run a 4 bit counter, that will oscilate
between 0 and 3 (binary). When the 0 button receives an input, the randomizer will
select the number out of the counter, and send it to decoder, that will turn on one of
the LEDs.
Now, the user have to press a button between 1 and 4, that correspondes to the LED
that is on. This signal is sent to the comparator, that will cross the information with
the LEDs that is on, and will sign if was pushed the right or the wrong button with
the Right or Wrong LEDs.
As the goal is to use “no hold” buttons, the signal will be sent to the state maintainer,
that will keep it in high level, so the right/wrong LEDs keep on. When the button 0
is pressed again, the state maintainer will reset it output.

How to test

In the inputs, the user will need to connect 5 momentary switch labeled from “Button
0” to “Button 4.” The clock signal considered in CLK is 64 Hz, but any value above
20 Hz will work as expected.
On the ON/OFF input, a switch should be connected, or it can be driven directly to a
high logic level.
On the outputs, 6 LEDs should be connected.
To start, the first step is to turn the switch to ON/OFF, and then press BUTTON
0.
One of the four LEDs will light up.The user should press the button corresponding to
the LED that is on. If the correct button is pressed, the RIGHT LED will light up; if
another button is pressed, the WRONG LED will light up.

Pinout

Input Output Bidirectional
0 clock LED 1 none
1 on/off LED 2 none
2 button 0 LED 3 none
3 button 1 LED 4 none
4 button 2 LED True none

193

Input Output Bidirectional
5 button 3 LED False none
6 button 4 none none
7 seletor none none

194

Simulador de cruzamento de semáforo [289]

• Author: Gabriel Marcio Vieira, Renan Rosa Ferreira, Francisco Eduardo
Gonçalves, Dayane Cassuriaga

• Description: Simulator of a traffic light at a two-way intersection with a pedes-
trian crosswalk.

• GitHub repository
• Wokwi project
• Mux address: 289
• Extra docs
• Clock: 1 Hz
• External hardware:

How it works

This circuit will use the chips internal clock and the PCBs low-level reset. The project
in question belongs to the domain of traffic control systems and involves the imple-
mentation of a simulation of a traffic light using logical gate circuits. The simulation
scenario takes place at an intersection composed of two main avenues, offering drivers
the option to proceed straight or make a turn in their respective directions. In this con-
text, four sets of traffic lights are present, but the control logic is applied to only two
of them simultaneously. The system also incorporates a state dedicated to pedestrians,
activated when all vehicle traffic lights display the red color, thus allowing safe pedes-
trian crossing. The overall operation of the system is based on logical combinations
that determine each of the possible states

How to test

Testing involves observing each traffic light state without punctuation: hardware setup,
initial states, input signals, output monitoring, pedestrian activation, and the cycle of
states.

Pinout

Input Output Bidirectional
0 none S1 Vermelho none
1 none S1 Amarelo none
2 none S1 Verde none
3 none S2 Vermelho none

195

https://github.com/GabrielVieiraa18/ProjetoSemaforo
https://wokwi.com/projects/375245713375900673

Input Output Bidirectional
4 none S2 Amarelo none
5 none S2 Verde none
6 none Pedestres (PD) Vermelho none
7 none Pedestres (PD) Verde none

196

Full_adder_carry_juang_garzons [290]

• Author: Juan Guillermo Garzón Sánchez
• Description: Es un sumador de 4 bits con carril el cual muestra el resultado

mediante una pantalla de 7 segmentos, teniendo la limitación de que solo podrá
mostrar resultados menores a 4 bits por lo tanto hasta 15 en decimal, ya que
después de este tamaño estará en overflow , los dos números de entrada se
introducen en los interruptores, el primer número va de los interruptores del 4 al
1 y el segundo número del 8 al 5

• GitHub repository
• Wokwi project
• Mux address: 290
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

197

https://github.com/juangarzon04/full_adder_juang_garzons
https://wokwi.com/projects/374636462642973697

4-trit balanced ternary program counter and convertor
[291]

• Author: Steven bos
• Description: A 4-trit synchronous balanced ternary (BT) program counter allow-

ing tri-directional counting (up, down, hold) and jump/load the program counter.
The other part is a 3-trit asyncronous BT radix converter.

• GitHub repository
• HDL project
• Mux address: 291
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

This design tests various aspects of the MRCS verilog generator in combination with
the new pin capabilities of TT. It tests both a sync and async design and uses all
the available pins including the bidirectional io. The program counter is the ternary
version of the binary one submitted for TT2. It is scalable, loadable (needed for both
initialization and jump) and can count up,down and hold. 4-trit BT counters have a
range of -40 to 40. The second design has two radix converters: BT to signed binary
and immediately followed by a signed binary to BT converter. The output is thus a
copy of the input if within range. The design is 4-bit signed binary as intermediate
format and has a range of -8 to 7. BT input should thus not be higher or the output

198

https://github.com/aiunderstand/tt04-balanced-ternary-counter-and-radix-convertor
https://github.com/aiunderstand/tt04-balanced-ternary-counter-and-radix-convertor/tree/main/README.md

is wrong. The BT encoding is 2’b10 is logical 1, 2’b11 is logical 0, 2’b01 is logical -1
and 2’b00 is illegal.

How to test

The repository has a FPGA folder where a verilog testbench is included with test input.
The screenshot shown in the readme is expected as output (a pyramid counting up
and down). The design is also tested on the Basys3 FPGA. The FPGA version is only
minor different than the verilog file for the ASIC as the data direction (bi-dir) pins are
not needed for the FPGA. Inputs {data2,data1,data0} are used for the radix convertor
chain and inputs {data3,data2,data1,data0} for the program counter.

Pinout

Input Output Bidirectional
0 clock uo_out[7] PC data3

MST
{‘uio_in[7]’: ‘data3 MST’}

1 reset uo_out[6] PC data3 {‘uio_in[6]’: ‘data3’}
2 ui_in[7] data2 MST

(most significant trit)
uo_out[5] PC data2
MST

{‘uio_out[5]’: ‘RC data2
MST’}

3 ui_in[6] data2 uo_out[4] PC data2 {‘uio_out[4]’: ‘RC data2
MST’}

4 ui_in[5] data1 MST uo_out[3] PC data1
MST

{‘uio_out[3]’: ‘RC data1
MST’}

5 ui_in[4] data1 uo_out[2] PC data1 {‘uio_out[2]’: ‘RC data1
MST’}

6 ui_in[3] data0 MST uo_out[1] PC data0
MST

{‘uio_out[1]’: ‘RC data0
MST’}

7 ui_in[2] data0 uo_out[0] PC data0 {‘uio_out[0]’: ‘RC data0
MST’}

199

uDATAPATH_Collatz [292]

• Author: CMUA F.Segura-Quijano, J.S.Moya
• Description: uDATAPATH_Collatz
• GitHub repository
• HDL project
• Mux address: 292
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Our uDATAPATH_Collatz is a component that computes the Collatz Array Sequence
for a given input number. The input and output are 8-bit vectors (data bus). The
component is synchronous and has a reset signal to read the input data and perform
the series calculation. The component implementation is based on a 4-register Dat-
apath and ALU such that the implementation emulates basic assembler instructions
programmed in a simple state machine.

How to test

To test the component, you must put a data on the input bus BB_SYSTEM_data_InBUS[7:0],
activate the Reset signal. In the output bus BB_SYSTEM_data_OutBUS[7:0] you
can see the calculated string. * The series will be calculated close to the clock rate.
Visually you will not be able to see the intermediate data unless you use a probe
reading per digital channel from an oscilloscope.

Pinout

Input Output Bidirectional
0 clk BB_SYSTEM_data_OutBUS[0] none
1 rst_n BB_SYSTEM_data_OutBUS[1] none
2 BB_SYSTEM_data_InBUS[0] BB_SYSTEM_data_OutBUS[2] none
3 BB_SYSTEM_data_InBUS[1] BB_SYSTEM_data_OutBUS[3] none
4 BB_SYSTEM_data_InBUS[2] BB_SYSTEM_data_OutBUS[4] none
5 BB_SYSTEM_data_InBUS[3] BB_SYSTEM_data_OutBUS[5] none
6 BB_SYSTEM_data_InBUS[4] BB_SYSTEM_data_OutBUS[6] none

200

https://github.com/darkfsegura/tt04-verilog-cmua-uDATAPATH_Collatz

Input Output Bidirectional
7 BB_SYSTEM_data_InBUS[5] BB_SYSTEM_data_OutBUS[7] none

201

Adder [293]

• Author: Juan David Prieto Garzon
• Description: 4-bit Adder
• GitHub repository
• Wokwi project
• Mux address: 293
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Our adder is a component that adds two 4-bit inputs. It was designed with FULL-
ADDERS cells. The output is a 5-bit vector taking into account the last carry of the
sum.

How to test

To test the adder we only have to put the values of the operands in the 8 input bits.
It is a combinational system.

Pinout

Input Output Bidirectional
0 X0 S0 none
1 X1 S1 none
2 X2 S2 none
3 X3 S3 none
4 Y0 S4 none
5 Y1 n/a none
6 Y2 n/a none
7 Y3 n/a none

202

https://github.com/JuanPriet0/tt04-wokwi-cmua-Adder
https://wokwi.com/projects/375174630101280769

Binary to 7 segment [294]

• Author: Juan S Moya & Fredy Segura
• Description: A simple binary to 7-segment decoder
• GitHub repository
• Wokwi project
• Mux address: 294
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

The binary to 7-segment LED decoder has four 1-bit inputs IN3, IN2, IN1, IN0, and
seven 1-bit outputs OUT0, OUT1, OUT2, OUT3, OUT4, OUT5, OUT6, for controlling
the seven segment of the LED display

How to test

Increase the inputs from 0000 to 1001 to display the numbers from 0 to 9, respec-
tively.

Pinout

Input Output Bidirectional
0 IN3 OUT0 (segment a) none
1 IN2 OUT1 (segment b) none
2 IN1 OUT2 (segment c) none
3 IN0 OUT3 (segment d) none
4 none OUT4 (segment e) none
5 none OUT5 (segment f) none
6 none OUT6 (segment g) none
7 none none none

203

https://github.com/JuanSebastianMoya7/tt04-wokwi-cmua-bin_to_7seg
https://wokwi.com/projects/375163050120587265

Neuron [295]

• Author: David Leonardo Caro Estepa
• Description: Artificial Neuron with 2 inputs of 2 bits
• GitHub repository
• Wokwi project
• Mux address: 295
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Our Neuron is a component that emulates the behavior of an artificial neuron. It is
a simple demonstration with 2 inputs of 2 bits that emulate the inputs of the neuron
and 2 inputs of 2 bits that emulate the corresponding weights. These weights would
simulate values that have already been calculated, that is, the inference state. As an
activation function, a small test with a linear comparator was proposed. The output
of the neuron is one or zero depending on the value of the inputs and the weights.

How to test

To test the neuron, values must be placed on the 2 2-bit inputs and on the two weight
values. The system generates an output at 1 or 0 that represents activation or not of
the neuron.

Pinout

Input Output Bidirectional
0 X0 Y none
1 X1 n/a none
2 Y0 n/a none
3 Y1 n/a none
4 WX0 n/a none
5 WX1 n/a none
6 WY0 n/a none
7 XY1 n/a none

204

https://github.com/dlcaro1004/tt04-wokwi-cmua-Neuron
https://wokwi.com/projects/375165100039571457

Later [304]

• Author: Alejandro Silva
• Description: Later
• GitHub repository
• HDL project
• Mux address: 304
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Later

How to test

Later

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

205

https://github.com/asilvaj1/tt04-submission-template_silva

serializer [305]

• Author: Sergio Alejandro Rosales Nuñez
• Description: shift register
• GitHub repository
• HDL project
• Mux address: 305
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 clk Q none
1 rst eos none
2 D[0] none none
3 D[1] none none
4 D[2] none none
5 D[3] none none
6 D[4] none none
7 D[5] none none

206

https://github.com/srosales700/tt04-submission-template_sergio

4-bits 1-channel PWM and ALU 4 bits [306]

• Author: Alonso
• Description: This is a 4-bits and 1-channel PWM module
• GitHub repository
• HDL project
• Mux address: 306
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Set ui_in[7:0] as input

How to test

Read u0_out to get the output

Pinout

Input Output Bidirectional
0 ui_in[7] uo_out[4] none
1 ui_in[6] uo_out[3] none
2 ui_in[5] uo_out[2] none
3 ui_in[4] uo_out[1] none
4 ui_in[3] uo_out[0] none
5 ui_in[2] n/a none
6 ui_in[1] n/a none
7 ui_in[0] n/a none

207

https://github.com/alonso59/tt04-submission-alu4

up-down counter with parallel load and BCD output [307]

• Author: Diego Hernán Gaytán Rivas
• Description: This device is an up-down counter for numbers ranging from zero

to fifteen, with options for enable, clear count, and parallel loading. The count
updates at a rate of one second per increment or decrement.

• GitHub repository
• HDL project
• Mux address: 307
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

The design operates by receiving a 10 MHz clock signal and using a frequency divider
composed of a counter and a comparator to generate a 1 Hz output signal. This 1 Hz
signal is used to feed an up-down counter circuit, which includes a synchronous enable
to halt the count, a port to clear the count by setting the output to zero, and a port
to indicate the desire to load a value directly from the circuit’s inputs. The value is
loaded in the next clock cycle, and the count continues from that point. Finally, the
count value is decoded into BCD code for display on a seven-segment display.

How to test

After resetting and setting the “en” port high, the device will begin a hexadecimal
count with values ranging from 0 to F. Now, if the “up” port is set high, the count will
be in ascending order, whereas if it’s set low, it will be in descending order. Additionally,
there is an option to clear the count by raising the “syn_clear” port, which would reset
the counter to zero. In the case where you want to load a value between 0 and F into
the counter to start the count, you should set the “load” port high and then lower it to
continue the count. The value to load will be taken directly from the first four input
ports.

Pinout

Input Output Bidirectional
0 data in bit 0 segment a none
1 data in bit 1 segment b none

208

https://github.com/DgaytanR/tt04-submission-template

Input Output Bidirectional
2 data in bit 2 segment c none
3 data in bit 3 segment d none
4 enable segment e none
5 syn_clear segment f none
6 up segment g none
7 load dot none

209

Later [308]

• Author: Ciro Bermudez
• Description: Later
• GitHub repository
• HDL project
• Mux address: 308
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Later

How to test

Later

Pinout

Input Output Bidirectional
0 none none none
1 none none none
2 none none none
3 none none none
4 none none none
5 none none none
6 none none none
7 none none none

210

https://github.com/cirofabianbermudez/tt04-submission-template_ciro

Contador con carga [309]

• Author: Cristian Torres
• Description: Es un contador del 0 al 16 con carga
• GitHub repository
• HDL project
• Mux address: 309
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 clk sal none
1 rst segment b none
2 ini segment c none
3 ent segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

211

https://github.com/cristiantorresg21/tt04-submission-Ucontrol

onehot_decoder [310]

• Author: Martin Gonzalez
• Description: this module is a 3bits onehot decoder
• GitHub repository
• HDL project
• Mux address: 310
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 in[0] out[0] none
1 in[1] out[1] none
2 in[2] out[2] none
3 none out[3] none
4 none out[4] none
5 none out[5] none
6 none out[6] none
7 none out[7] none

212

https://github.com/MartinGonzalez-N/tt04-onehot-MartinGonzalez-N

CDMA Transmitter/Receiver [311]

• Author: Santiago Robledo Acosta
• Description: This is a CDMA Transmitter/Reciever to academically study the

Spread-Spectrum effect while sending singals and to observe pseudonoise
• GitHub repository
• HDL project
• Mux address: 311
• Extra docs
• Clock: 10000000 Hz
• External hardware: OPAM, Testboard, LED

How it works

This is a very simple circuit, it consists in two LSFR register lineary connecated in an
specific way in order to generate two m-sequences, in order to generate this pair of
m-sequences, we input an initial vaule called seed, this is because we cannot generate
a PN signal if the LSFR registers have an initial value of 0s. For this design we used
two LSFR with 5 D Flip-Flops. With this we can generate a PN signal with a length
of(2^5)-1. With this PN signal and modulus 2 adding the signal we want to tranmit,
we generate a CDMA signal, which we are going to study simulating a channel with
an OPAM in order to add noise to the CDMA and feed it back to the designed circuit
to see the bit-error rate of this device. With this we hope to study and put to test.

• CDMA
• Gold Sequences.
• The effect of the noise in the CDMA.
• Reception process with a simulated channel.
• Apply the knowledge aquired within the Latinpractice Bootcamp initiative and

apply the knowledge to design and print in a silicon waffle the proposed device.

How to test

As we used a hardware description language (Verilog), we created an specific testbench
for the cdma.v, this testbench simply initializes the input signals to 0 in order to
generate the adequate signal such as the clock, a test signal to send that lasts 31 clock
cycles (Spread-spectrum), a seed value to load both LSFR The stimulus simple will
assign a value to set_i and deactivate it to load the seed, after that, the LSFR have a
linear feedback and will contantly generate the Gold signal each clock cycle. With the
test signal_i we the system will generate the CDMA signal and assign it to CDMA_o,
the Gold signal is assigned to Gold_o, this is the tranmition process.

213

https://github.com/Santiago-Robledo/tt04-submission-template_santiago

For the reception process, we simply assign the value of CDMA_o to receptor_i and
the output will be observerd at receptor_o, we can observe that we recovered signal_i
as it shows the same time diagram as receptor_o.
As for the LED_o it works as a simple indicator that the inputed seed is valid for
transmission.
The template will include the verilog file with its testbench.

Pinout

Input Output Bidirectional
0 signal_i cdma_o none
1 seed_i[0] gold_o none
2 seed_i[1] receptor_o none
3 seed_i[2] led_o none
4 seed_i[3] none none
5 seed_i[4] none none
6 receptor_i none none
7 load_i none none

214

clock divider [320]

• Author: Uriel jaramillo
• Description: divide the clock
• GitHub repository
• HDL project
• Mux address: 320
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none cout1 none
1 none cout2 none
2 none cout3 none
3 none cout4 none
4 none cout5 none
5 none cout6 none
6 none cout7 none
7 none cout8 none

215

https://github.com/urielcho/tt04-submission-divider

reciprocal [321]

• Author: raul pacheco rodriguez
• Description: module reciprocal
• GitHub repository
• HDL project
• Mux address: 321
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 in out none
1 none none none
2 none n/a none
3 none n/a none
4 none n/a none
5 none n/a none
6 none n/a none
7 none n/a none

216

https://github.com/RaulprTech/tt04-submission-pwl

Later [322]

• Author: Fabian
• Description: Later
• GitHub repository
• HDL project
• Mux address: 322
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

217

https://github.com/cirofabianbermudezmarquez/tt04-submission-template_fabian

Time Multiplexed Nand-gate [323]

• Author: Frans Skarman
• Description: The furthest you can go in the time/space tradeoff
• GitHub repository
• HDL project
• Mux address: 323
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

TODO

How to test

TODO

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

218

https://github.com/TheZoq2/tt04-time-multiplexed-nand-gate

Octal classifier [324]

• Author: Eduardo Zurek, Margarita Narducci, Diana Rueda
• Description: Classifies images of numbers from 0 to 7 using the 16 most signifi-

cant pixels
• GitHub repository
• HDL project
• Mux address: 324
• Extra docs
• Clock: 10000000 Hz
• External hardware: N.A

How it works

The system classifies images of numbers from 0 to 7 using the 16 most significant pixels
The system´s input or features are the 16 most significant pixels of an 8x8 image with
a number from 0 to 7. The output is shown in the 7 segments display.

How to test

In order to emulate an image in the input, the features must be set to one or zero
according to the number of the image Example of the image of a zero: feature_10=0
feature_13=1 feature_18=0 feature_19=1 feature_20=0 feature_21=0 fea-
ture_26=0 feature_27=1 feature_28=0 feature_34=0 feature_36=0 feature_42=0
feature_43=1 feature_45=0 feature_60=0 feature_61=1

Pinout

Input Output Bidirectional
0 feature_10 = ui_in[0]; segment a feature_28 = uio_in[0];
1 feature_13 = ui_in[1]; segment b feature_34 = uio_in[1];
2 feature_18 = ui_in[2]; segment c feature_36 = uio_in[2];
3 feature_19 = ui_in[3]; segment d feature_42 = uio_in[3];
4 feature_20 = ui_in[4]; segment e feature_43 = uio_in[4];
5 feature_21 = ui_in[5]; segment f feature_45 = uio_in[5];
6 feature_26 = ui_in[6]; segment g feature_60 = uio_in[6];
7 feature_27 = ui_in[7]; dot feature_61 = uio_in[7];

219

https://github.com/mnarducci80/tt04-verilog-demouninorte

MULDIV unit (4-bit signed/unsigned) [325]

• Author: Darryl Miles
• Description: Combinational Multiply and Divide Unit (signed and unsigned)
• GitHub repository
• HDL project
• Mux address: 325
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Combinational multiply / divider unit (no clock in use)
Multiplier (signed/unsigned) Method uses Ripple Carry Array as ‘high speed multiplier’
Setup operation mode bits MULDIV=0 and OPSIGNED(unsigned=0/signed=1) Setup
A (multiplier 4-bit) * B (multiplicand 4-bit) Expect result P (product 8-bit)
Divider (signed/unsigned) Method uses Full Adder with Mux as ‘combinational
restoring array divider algorithm’. Setup operation mode bits MULDIV=1 and
OPSIGNED(unsigned=0/signed=1) Setup Dend (dividend 4-bit) / Dsor (divisor 4-bit)
Expect result Q (quotient 4-bit) with R (remainder 4-bit)
Divider has error bit indicators that take precedence over any result. If any error bit
is set then the output Q and R should be disregarded. When in multiplier mode error
bits are muted to 0. No input values can cause an overflow error so the bit is always
reset.
The project was sketched out and tested with logisim-evolution https://github.com/logisim-
evolution/logisim-evolution then exported direct to verilog (as if it was for a FPGA
development board using the built in process).

How to test

Setup the input state expect immediate output (after gate propagation delays).

Pinout

220

https://github.com/dlmiles/tt04-muldiv4
https://dlmiles.github.io/tt04-muldiv4/

Input Output Bidirectional
0 MUL A[0], DIV

Dend[0]
MUL P[0], DIV Q[0] (unused)

1 MUL A[1], DIV
Dend[1]

MUL P[1], DIV Q[1] (unused)

2 MUL A[2], DIV
Dend[2]

MUL P[2], DIV Q[2] (unused)

3 MUL A[3], DIV
Dend[3]

MUL P[3], DIV Q[3] (unused)

4 MUL B[0], DIV
Dsor[0]

MUL P[4], DIV R[0] DIV error overflow (output
only)

5 MUL B[1], DIV
Dsor[1]

MUL P[5], DIV R[1] DIV error divide-by-zero
(output only)

6 MUL B[2], DIV
Dsor[2]

MUL P[6], DIV R[2] OPSIGNED mode (input
only)

7 MUL B[3], DIV
Dsor[3]

MUL P[7], DIV R[3] MULDIV mode (input only)

221

RS Write Decodifier [326]

• Author: Francisco Javier Rodriguez Navarrete
• Description: Project for the 12 bit reservation station decodifier
• GitHub repository
• HDL project
• Mux address: 326
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

It works via selecting the corresponding RS needed

How to test

Manupulate the input switches to see the decodifier outputs

Pinout

Input Output Bidirectional
0 in_rs_write[7] out_rs_write[7] in_rs_write[11]
1 in_rs_write[6] out_rs_write[6] in_rs_write[10]
2 in_rs_write[5] out_rs_write[5] in_rs_write[9]
3 in_rs_write[4] out_rs_write[4] in_rs_write[8]
4 in_rs_write[3] out_rs_write[3] out_rs_write[11]
5 in_rs_write[2] out_rs_write[2] out_rs_write[10]
6 in_rs_write[1] out_rs_write[1] out_rs_write[9]
7 in_rs_write[0] out_rs_write[0] out_rs_write[8]

222

https://github.com/fjrn-cinvestav/tt04-submission-rsdeco

Password FSM [327]

• Author: Francisco Javier Rodriguez Navarrete
• Description: Project for the Password FSM
• GitHub repository
• HDL project
• Mux address: 327
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

This is a FSM that has a hard coded password that the user has to guess.

How to test

The password is 3044238

Pinout

Input Output Bidirectional
0 iv_data[3] o_acknowledge[7] none
1 iv_data[2] o_acknowledge[6] none
2 iv_data[1] o_acknowledge[5] none
3 iv_data[0] o_acknowledge[4] none
4 N/C o_acknowledge[3] none
5 N/C o_acknowledge[2] none
6 i_send_data o_acknowledge[1] none
7 i_CE o_acknowledge[0] none

223

https://github.com/RSX92/tt04-submission-fsmlock

Priority e [336]

• Author: Juan Carlos Garcia Lopez
• Description: 7 SEGMENTS CLOCK
• GitHub repository
• HDL project
• Mux address: 336
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 data_in data_out none
1 n/a Valid none
2 n/a n/a none
3 n/a n/a none
4 n/a n/a none
5 n/a n/a none
6 n/a n/a none
7 n/a n/a none

224

https://github.com/JUAN-GALO/tt04-submission-template

frecuencimeter [337]

• Author: Juan Carlos Garcia Lopez and Emilio Isaac Baungarten Leon
• Description: frecuencimeter
• GitHub repository
• HDL project
• Mux address: 337
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 data_in segments_ none
1 n/a disp_select_ none
2 n/a segment_select_ none
3 n/a n/a none
4 n/a n/a none
5 n/a n/a none
6 n/a n/a none
7 n/a n/a none

225

https://github.com/Juan-garcial2/tt04-submission-template

lfsr random number generator [338]

• Author: Arun A V
• Description: 4-bit Linear Feedback Shift Register with configurable feedback

polynomials based on the mod input, and it resets to the initial state when
reset is asserted.

• GitHub repository
• HDL project
• Mux address: 338
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Uses a set of registers to divide the clock, and then some combinational logic to convert
from binary to decimal for the display.
Puts the bottom 8 bits of the counter on the bidirectional outputs.
With all the inputs set to 0, the internal 24 bit compare is set to 10,000,000. This
means the counter will increment by one each second.
If any inputs are non zero, then the input will be used as an bits 11 to 18 of the 24 bit
compare register. Example: setting the inputs to 00010000 will program 16384 into
the compare register. With a 10MHz clock the counter will increment ~610 times per
second.

How to test

After reset, the counter should increase by one every second with a 10MHz input clock.
Experiment by changing the inputs to change the counting speed.

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3

226

https://github.com/arunav321/tt04-sahrdaya-prng

Input Output Bidirectional
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

227

i2c_6 bits [339]

• Author: Sergio Alejandro Rosales Nuñez
• Description: i2c address 0x04
• GitHub repository
• HDL project
• Mux address: 339
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 clk data_from_master[0] sda_in
1 rst data_from_master[1] sda_out
2 scl data_from_master[2] data_to_master[0]
3 none data_from_master[3] data_to_master[1]
4 none data_from_master[4] data_to_master[2]
5 none data_from_master[5] data_to_master[3]
6 none ctrl data_to_master[4]
7 none none data_to_master[5]

228

https://github.com/sergio7000/tt04-submission-template

Fastest Finger [340]

• Author: Chris Burton
• Description: Shows which button was pressed first
• GitHub repository
• Wokwi project
• Mux address: 340
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

If when a button is pressed the output for all other buttons is low, the output is set
high.

How to test

Connect buttons up to IN0-IN7 and whichever one is pressed first will set the corre-
sponding OUT0-OUT7 high.

Pinout

Input Output Bidirectional
0 Button 0 LED 0 / segment a none
1 Button 1 LED 1 / segment b none
2 Button 2 LED 2 / segment c none
3 Button 3 LED 3 / segment d none
4 Button 4 LED 4 / segment e none
5 Button 5 LED 5 / segment f none
6 Button 6 LED 6 / segment g none
7 Button 7 LED 7 / dot none

229

https://github.com/burtyb/tt04-fastest-finger
https://wokwi.com/projects/375227079413963777

Fastest Finger (Clocked) [341]

• Author: Chris Burton
• Description: Shows which button was pressed first
• GitHub repository
• Wokwi project
• Mux address: 341
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

The 3-bit counter increments from the clock input, this then goes through a 3-8 decoder.
If the output of the decoder is high and it’s corresponding INx is high, OUTx is set
high and the clock signal to the adder is interrupted.

How to test

Connect buttons up to IN0-IN7 and whichever one is pressed first will set the corre-
sponding OUT0-OUT7 high.

Pinout

Input Output Bidirectional
0 Button 0 LED 0 / segment a none
1 Button 1 LED 1 / segment b none
2 Button 2 LED 2 / segment c none
3 Button 3 LED 3 / segment d none
4 Button 4 LED 4 / segment e none
5 Button 5 LED 5 / segment f none
6 Button 6 LED 6 / segment g none
7 Button 7 LED 7 / dot none

230

https://github.com/burtyb/tt04-fastest-finger-clocked
https://wokwi.com/projects/375300958229329921

Oscillators II [342]

• Author: Mikhail Svarichevsky
• Description: Free-running oscillators to verify simulation vs reality + TRNG
• GitHub repository
• HDL project
• Mux address: 342
• Extra docs
• Clock: 1000000 Hz
• External hardware:

How it works

Combinational loops with dividers to bring output frequency to <50kHz range

How to test

Select oscillator (pins 4-6) and mesaure frequency on one of output pins. Observe true
random numbers at pin 7.

Pinout

Input Output Bidirectional
0 unused generated clock none
1 unused clock divided by 2^1 none
2 shift register clk clock divided by 2^2 none
3 shift register data clock divided by 2^3 none
4 clock source id_0 clock divided by 2^4 none
5 clock source id_1 clock divided by 2^9 none
6 clock source id_2 TRNG output none
7 unused Bit 11 of shift register none

231

https://github.com/BarsMonster/tt04-MicroAsicVII

Simple ALU [343]

• Author: Rebot449
• Description: A simple ALU with only 6 instructions
• GitHub repository
• HDL project
• Mux address: 343
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Based off the Overture Architecture fround in the game “Turing Complete”
The ALU has only 6 instructions which are decided by the 3 least significant bits.
xxxxx000: Logical OR xxxxx001: Logical NAND xxxxx010: Logical NOR xxxxx011:
Logical AND xxxxx100: Addition of Data_0 + Data_1 xxxxx101: Subraction (Data_1
- Data_0)

How to test

The ALU should perform the logical and arithmetic operations as stated by the
coressponding instructions above.

Pinout

Input Output Bidirectional
0 i_instruction //ALU

instruction, 8 bit
wide input

o_result //ALU data
output, 8 bit wide

none

1 i_data_0 // Data
input 0, 8 bit wide
input

n/a none

2 i_data_1 // Data
input 1, 8 bit wide
input

n/a none

3 n/a n/a none
4 n/a n/a none

232

https://github.com/Rebot449/tt04-submission-template

Input Output Bidirectional
5 n/a n/a none
6 n/a n/a none
7 n/a n/a none

233

TinyTapeout 04 Loopback Test Module [352]

• Author: Sylvain Munaut
• Description: Loopback test module
• GitHub repository
• HDL project
• Mux address: 352
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Input 0 goes to output 0 through 6. Output 7 is input4 & input5 & input6 & input7

How to test

Toggle input 0, measure the time for output 0 to change.

Pinout

Input Output Bidirectional
0 in0 mirrors in0 none
1 none mirrors in0 none
2 none mirrors in0 none
3 none mirrors in0 none
4 in4 mirrors in0 none
5 in5 mirrors in0 none
6 in6 mirrors in0 none
7 in7 the value of in4 & in5 & in6 & in7 none

234

https://github.com/TinyTapeout/tt04-loopback

Adjustable Frequency LED Chaser [353]

• Author: Daniel Teal
• Description: Animates a seven-segment display given any clock
• GitHub repository
• Wokwi project
• Mux address: 353
• Extra docs
• Clock: any Hz
• External hardware:

How it works

This is a simple LED chaser animation for a seven-segment display, but a configurable
bank of clock dividers allows the animation to run at human speeds (1-10Hz) for all
input clock frequencies. The intent is to support a wide range of testing situations: as
long as there’s any clock and display whatsoever, you get a pretty demo.
It can also be used as a frequency counter in a pinch.

How to test

The chip clock input should be connected to any clock source of nonzero frequency.
Examples include a manual tactile switch, a kHz clock source, or the maximum MHz
source supported by the chip. The reset input is not used. Standard inputs 0–4 can be
set high or low and are ideally adjustable, e.g., via a DIP switch array. These inputs
may safely be toggled high and low while the chip is running. Inputs 5–7 are not used.
Standard outputs 0–5 should be connected in order to the perimeter elements of a
seven-segment display or equivalent. Outputs 6–7 are not connected internally (and
so may be connected to a display anyway with no effect). The bidirectional IO is not
used.

235

https://github.com/dteal/tt04-led-chaser
https://wokwi.com/projects/375288605206694913

By default, a new frame of the 6-frame LED chaser pattern is displayed on outputs
0 through 5 every rising clock edge. Inputs 0 through 4 toggle clock dividers of 2x
(21), 4x (22), 16x (24), 256x (28), and 65536x (216) respectively. These dividers stack
multiplicatively for a maximum clock division of 231 = 2.15e9, which easily slows the
maximum expected 50MHz clock to sub-Hertz frequencies.
Combine a subset of the clock dividers for fine adjustment. For example, one might
find the original clock signal makes the animation far too fast to see, applying the
65536x divider makes it too slow, and the combination of 256x and 16x dividers (for
a total 4096x) works well. Clock division factors are intentionally chosen to be able to
express any power of two.
Finally, note the first six frames after chip startup may be partially incorrect due to
noise. Later frames should be correct.

Pinout

Input Output Bidirectional
0 enable 2x (21) divider segment a n/c
1 enable 4x (22) divider segment b n/c
2 enable 16x (24) divider segment c n/c
3 enable 256x (28) divider segment d n/c
4 enable 65536x (216) divider segment e n/c
5 n/c segment f n/c
6 n/c n/c n/c
7 n/c n/c n/c

236

Simple QSPI DAC [354]

• Author: Piotr Kuligowski
• Description: Simple implementation of 8-bit R-2R DAC using QSPI interface +

bi-directional port test breakout.
• GitHub repository
• Wokwi project
• Mux address: 354
• Extra docs
• Clock: 0 Hz
• External hardware: To test the DAC you need to remove 7seg display and connect

external R-2R network to implement DAC.

How it works

After reset, it is a very simple QSPI-based, 8-bit DAC (digital to analog converter).
You feed it with 4-bit halves, which are then read on each rising edge of CLK. It also
breakouts UIO’s pins to test it externally (delays, electrical characteristics, etc).

How to test

After power up set nCS high, set RST_N low, then set RST_N high. If you want to
set a new DAC value, first set nCS low, then set 4-bits, beginning from the lowest half.
Now trigger a rising edge of CLK, set highest 4-bits and trigger another rising edge of
CLK. Now you can continue setting next bytes (divided into 4-bit halves) or set nCS
high and start from the beginning, by setting nCS low. You can observe effects on the
7seg display or remove it and implement R-2R network to have the acutal DAC. There
is also a break out of bi-directional ports to test them externally.

Pinout

Input Output Bidirectional
0 DATA0 OUT0 INTERMEDIATE0
1 DATA1 OUT1 INTERMEDIATE1
2 DATA2 OUT2 INTERMEDIATE2
3 DATA3 OUT3 INTERMEDIATE3
4 nCS OUT4 TESTED_UIO
5 none OUT5 TESTED_UIO_IN
6 none OUT6 TESTED_UIO_OUT

237

https://github.com/pkuligowski/tt04-simple-qspi-dac
https://wokwi.com/projects/375310871188385793

Input Output Bidirectional
7 none OUT7 TESTED_UIO_OE

238

AQALU [355]

• Author: Artin Ghanaatpisheh-Sanani and Quardin Lyttle
• Description: 2 bit ALU with 4 Bit Opcode
• GitHub repository
• HDL project
• Mux address: 355
• Extra docs
• Clock: 10000000 Hz
• External hardware: an external circuit with LEDs or a BCD converter to represent

the numerical outputs

How it works

4 bit Op Code ALU. OpCodes are as follows-

• 0000 AND
• 0001 OR
• 0010 NOT
• 0011 XOR
• 0100 NAND
• 0101 NOR
• 0110 XNOR
• 0111 Addition
• 1000 Subtraction
• 1001 Multiplication
• 1010 Compare
• 1011 Shift L Logically
• 1100 Shift R Logically
• 1101 Shift L Arithmetically
• 1110 Shift R Arithmetically
• 1111 Running Sum

239

https://github.com/quardinlyttle/tt04-AQALU

Running Sum takes the current 4bit number at the input and continously adds it to
the output every second.
Compare is 2’b10 when A is greater than B, 2’b01 when B is greater than A. 2’b11
when equal.
NOT treats A and B as a combined 4bit input.
Subtraction anticipates am unsigned number input (treats them as positive numbers
essentially) however will give signed output depending on the operation. It acts as
A-B.

How to test

Testing can be done by connecting the outputs to LEDs and treating them as an 8 bit
output. Seeing how they correspond to the selected OpCodes and inputs.

Pinout

Input Output Bidirectional
0 OpCode 0 segment a Output bit 0
1 OpCode 1 segment b Output bit 1
2 OpCode 2 segment c Output bit 2
3 OpCode 3 segment d Output bit 3
4 B 0 segment e Output bit 4
5 B 1 segment f Output bit 5
6 A 0 segment g Output bit 6
7 A 1 dot Output bit 7

240

Simple TMR [356]

• Author: Piotr Kuligowski
• Description: Simple TMR (triple modular redundancy) voters with error injection

option.
• GitHub repository
• Wokwi project
• Mux address: 356
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

It is a simple implementation of one D-flip-flop, three D-flip-flops with TMRed outputs
and a single TMRed D-flip-flop that allows to inject errors.

How to test

Set inputs, trigger clock and observe outputs

Pinout

Input Output Bidirectional
0 FF0_D_SINGLE Q0_SINGLE none
1 FF1_D_TMRed_WITH_INJECTION FF1_OUT0 none
2 FF2_D_TMRed_OR_INJECT_IN0_OF_D1 FF1_OUT1 none
3 FF3_D_TMRed_OR_INJECT_IN1_OF_D1 FF1_OUT2 none
4 FF4_D_TMRed_OR_INJECT_IN2_OF_D1 FF1_TMRed_OUT none
5 FF1_FF2_FF3_FF4_EN FF2_TMRed_OUT none
6 FF1_INJECT FF3_TMRed_OUT none
7 CLK FF4_TMRed_OUT none

241

https://github.com/pkuligowski/tt04-simple-tmr
https://wokwi.com/projects/375326293008530433

Poor Person’s Boundary Scan [357]

• Author: Verneri Hirvonen
• Description: JTAG test logic with a 8-bit TDR for ‘external’ boundary scan
• GitHub repository
• HDL project
• Mux address: 357
• Extra docs
• Clock: Hz
• External hardware: JTAG debug adapter

How it works

The design contains JTAG test logic with four test data registers:

1. boundary_scan
2. blink_in
3. blink_out
4. blink_dir

boundary_scan is connected between fixed input and output registers and can be used
to either read the input pins or drive the output pins.
blink_in, blink_out, and blink_dir are connected to pins 6 and 7 of the bidirectional
IO and can be used to read/write the bidirectional pins.
The default clk and rst_n are left unconnected because the JTAG interface provides
its own clock and reset and those are routed through user IO.

How to test

The cocotb simulation contains helper routines for driving the JTAG state machine and
can be used as a example of how to shift values into different JTAG internal registers.
In general the design is controlled with the following procedure:

1. Reset core either through the TRSTn input or through a reset sequence on TMS. The reset sequence is achieved by holding TMS high and cycling TCK at least 5 times.
2. Shift in IR value to select appropriate TDR
3. Shift bits to TDR to read/write its value.

242

https://github.com/chiplet/tt04-jtag
https://github.com/chiplet/tt04-jtag/blob/main/README.md

Blinky pins are controlled with the following JTAG TDRs. Each TDR is two bits
wide.

- blink_in IR=0x02 = blink pin inputs
- blink_out IR=0x03 = blink pin outputs
- blink_dir IR=0x04 = blink pin directions, high = output, low = input

For example, to assign blink[0] high and blinky[1] low, execute the following
sequence:

1. Shift 0x04 to IR to select blink_dir TDR
2. Shift 0b11 to the selected TDR to set both pins as outputs
3. Shift 0x02 to IR to select blink_in TDR
4. Shift 0b01 to set blink[0] to high and blink[1] to low

Pinout

Input Output Bidirectional
0 boundary_scan input

0
boundary_scan
output 0

JTAG TCK (hardcoded
input)

1 boundary_scan input
1

boundary_scan
output 1

JTAG TMS (hardcoded
input)

2 boundary_scan input
2

boundary_scan
output 2

JTAG TDI (hardcoded input)

3 boundary_scan input
3

boundary_scan
output 3

JTAG TRSTn (hardcoded
input)

4 boundary_scan input
4

boundary_scan
output 4

JTAG TDO (hardcoded
output)

5 boundary_scan input
5

boundary_scan
output 5

JTAG state machine in state
Test-Logic Reset (hardcoded
output)

6 boundary_scan input
6

boundary_scan
output 6

Blink pin 0 (bidirectional)

7 boundary_scan input
7

boundary_scan
output 7

Blink pin 1 (bidirectional)

243

Probador de lógica básico [358]

• Author: Felipe R. Serrano Domínguez
• Description: It allows to validate the operation of basic logic devices; gates and

flip-flops individually
• GitHub repository
• Wokwi project
• Mux address: 358
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Through common inputs and different outputs for every gate; AND, NAND, OR, NOR,
NOT and XOR can be observe the logic states. It also allows you to test the different
types of basic flip flops D, RS and JK

How to test

To test logic gates all inputs are common (A,B). The outputs for each gate are ad-
dressed to different ports.
To test the flip flops must be selected using the selection pins (6,7). pin 6 enables the
JK or the rest. pin 7 states enable D or SR so only one flip flop can be tested at a time.
It is expected to be able to validate its basic operation by means of truth tables.

Pinout

Input Output Bidirectional
0 CLK (FLIP FLOPS) OUT 0 (GATE AND) none
1 RST (FLIP FLOPS) OUT 1 (GATE NAND) none
2 INO (INPUT A GATE) OUT 2 (GATE OR) none
3 IN1 (INPUT B GATE) OUT 3 (GATE NOR) none
4 IN2 (INPUT J FLIP FLOP) OUT 4 (GATE NOT) none
5 IN3 (INPUT K FLIP FLOP) OUT 5 (GATE XOR) none
6 IN4 (SET FLIP FLOP) OUT 6 (FLIP FLOP Q) none
7 IN5 (D FLIP FLOP) OUT 7 (FLIP FLOP Q’) none

244

https://github.com/felipe-SD/tt04-submission-template-2
https://wokwi.com/projects/375248885704300545

LIF Neuron, Telluride 2023 [359]

• Author: Paola Vitolo, Andrew Wabnitz, ReJ aka Renaldas Zioma
• Description: Standalone test for a Binarized Leaky Integrate and Fire neuron that

is part of the larger experimental design from Telluride Neuromorphic Workshop
2023

• GitHub repository
• HDL project
• Mux address: 359
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Binarized Leaky Integrate and Fire (LIF) neuron supports binary [0/1] inputs and [-
1/1] binarized weights. Inputs are multiplied by weights and accumulated on the
internal membrane. Membrane is exponentially decaying with every clock cycle. Once
membrane value (potential) reaches threshold, neuron spikes and membrane value is
decreased.

membrane += inputs * weights
membrane *= decay_factor
membrane -= threshold if membrane > threshold
spike = 1 if membrane > threshold

How to test

While reset is held high, input values are assigned to weights After reset cycle neuron
is active. The only output of the neuron is the binary spike!

Pinout

Input Output Bidirectional
0 input1 / weight1 spike none
1 input2 / weight2 none none
2 input3 / weight3 none none
3 input4 / weight4 none none
4 input5 / weight5 none none

245

https://github.com/rejunity/tt04-LIF-neuron-telluride2023

Input Output Bidirectional
5 input6 / weight6 none none
6 input7 / weight7 none none
7 input8 / weight8 none none

246

rusty_adder [368]

• Author: Kevin Webb
• Description: A (tiny) 8 bit adder built using RustHDL
• GitHub repository
• HDL project
• Mux address: 368
• Extra docs
• Clock: 10000 Hz
• External hardware:

How it works

Adds two 8 bit inputs (ui_in and uio_in) together to and outputs via uo_out. Imple-
mentation was written in rust using Rust-HDL and exported as verilog

How to test

set ui_in and uio_in and toggle reset line

Pinout

Input Output Bidirectional
0 input a bit 0 a + b bit 0 input b bit 0
1 input a bit 1 a + b bit 1 input b bit 1
2 input a bit 2 a + b bit 2 input b bit 2
3 input a bit 3 a + b bit 3 input b bit 3
4 input a bit 4 a + b bit 4 input b bit 4
5 input a bit 5 a + b bit 5 input b bit 5
6 input a bit 6 a + b bit 6 input b bit 6
7 input a bit 7 a + b bit 7 input b bit 7

247

https://github.com/kpwebb/tt04-kpwebb-tinycan

Pinout

The chip is packaged in a 64-pin QFN package. The pinout is shown below.

Pin 1

1 16

u
io

[1
]

u
io

[2
]

u
io

[3
]

u
io

[4
]

u
io

[5
]

u
io

[6
]

u
io

[7
]

8 17

3233

ct
rl

_e
n
a

11

ct
rl

_s
e
l_

in
c

ct
rl

_s
e
l_

rs
t_

n
48

cl
k

37

rs
t_

n

41

u
i_

in
[0

]
u
i_

in
[1

]
u
i_

in
[2

]
u
i_

in
[3

]
u
i_

in
[4

]

u
i_

in
[5

]

ui_in[6]

49

ui_in[7]

53uo_out[0]
uo_out[1]

64

uo_out[2]

57uo_out[3]
uo_out[4]
uo_out[5]
uo_out[6]
uo_out[7]

uio[0] 62

Bottom View

Figure 1: Pinout

Note: you will receive the chip mounted on a breakout board. The pinout is provided
for advanced users, as most users will not need to solder the chip directly.

248

https://github.com/efabless/caravel_board/tree/main/hardware/breakout/caravel_breakout_QFN

The Tiny Tapeout Multiplexer

Overview

The Tiny Tapeout Multiplexer distributes a single set of user IOs to multiple user
designs. It is the backbone of the Tiny Tapeout chip.
It has the following features:

• 10 dedicated inputs
• 8 dedicated outputs
• 8 bidirectional IOs
• Supports up to 384 user designs (24 mux units, each with up to 16 designs)
• Designs can have different sizes. The basic unit is a called a tile, and designs

can occupy 1, 2, 4, 8, or 16 tiles.

Operation

The multiplexer consists of three main units:

1. The controller - used to set the address of the active design
2. The spine - a bus that connects the controller with all the mux units
3. Mux units - connect the spine to individual user designs

The Controller

The mux controller has 3 inputs lines:

Input Description
ena Sent as-as (buffered) to the downstream mux units
sel_rst_n Resets the internal address counter to 0 (active low)
sel_inc Increments the internal address counter by 1

It outputs the address of the currently selected design on the si_sel port of the spine
(see below).
For instance, to select the design at address 12, you need to pulse sel_rst_n low,
and then pulse sel_inc 12 times:

249

Figure 2: Mux Diagram

250

Figure 3: Mux Controller Diagram

Figure 4: Mux signals for activating the design at address 12

Internally, the controller is just a chain of 10 D flip-flops. The sel_inc signal is
connected to the clock of the first flip-flop, and the output of each flip-flop is connected
to the clock of the next flip-flop. The sel_rst_n signal is connected to the reset of
all flip-flops.
The following Wokwi projects demonstrates this setup: https://wokwi.com/projects/364347807664031745.
It contains an Arduino Nano that decodes the currently selected mux address and
displays it on a 7-segment display. Click on the button labeled RST_N to reset the
counter, and click on the button labeled INC to increment the counter.

The Spine

The controller and all the muxes are connected together through the spine. The spine
has the following signals going on it:
From controller to mux:

• si_ena - the ena input
• si_sel - selected design address (10 bits)
• ui_in - user clock, user rst_n, user inputs (10 bits)
• uio_in - bidirectional I/O inputs (8 bits)

251

From mux to controller:

• uo_out - User outputs (8 bits)
• uio_oe - Bidirectional I/O output enable (8 bits)
• uio_out - Bidirectional I/O outputs (8 bits)

The only signal which is actually generated by the controller is si_sel (using
sel_rst_n and ‘sel_inc“, as explained above). The other signals are just going
through from/to the chip IO pads.

The Multiplexer (The Mux)

Each mux branch is connected to up to 16 designs. It also has 5 bits of hard-coded
address (each unit gets assigned a different address, based on its position on the die).
The mux implements the following logic:
If si_ena is 1, and si_sel matches the mux address, we know the mux is active.
Then, it activates the specific user design port that matches the remaining bits of
si_sel.
For the active design:

• clk, rst_n, ui_in, uio_in are connected to the respective pins coming from
the spine (through a buffer)

• uo_out, uio_oe, uio_out are connected to the respective pins going out to
the spine (through a tristate buffer)

For all others, inactive designs (including all designs in inactive muxes):

• clk, rst_n, ui_in, uio_in are all tied to zero
• uo_out, uio_oe, uio_out are disconnected from the spine (the tristate buffer

output enable is disabled)

Pinout

mprj_io pin Function Signal
0 (none)
1 Housekeeping SPI * SDO
2 Housekeeping SPI SDI
3 Housekeeping SPI CSB
4 Housekeeping SPI SCK

252

mprj_io pin Function Signal
5 Clock output user_clock2 †
6 Input clk
7 Input n_rst
8 Input ui_in[0] ‡
9 Input ui_in[1]
10 Input ui_in[2]
11 Input ui_in[3]
12 Input ui_in[4]
13 Input ui_in[5]
14 Input ui_in[6]
15 Input ui_in[7]
16 Output uo_out[0]
17 Output uo_out[1]
18 Output uo_out[2]
19 Output uo_out[3]
20 Output uo_out[4]
21 Output uo_out[5]
22 Output uo_out[6]
23 Output uo_out[7]
24 Bidirectional uio[0]
25 Bidirectional uio[1]
26 Bidirectional uio[2]
27 Bidirectional uio[3]
28 Bidirectional uio[4]
29 Bidirectional uio[5]
30 Bidirectional uio[6]
31 Bidirectional uio[7]
32 Mux Control ctrl_ena
33 (none)
34 Mux Control ctrl_sel_inc
35 (none)
36 Mux Control ctrl_sel_rst_n
37 (none)

• The Housekeeping SPI is an SPI interfaces provided by the Caravel harness. You
can use it to change the configuration of the GPIO pins and control the clock for
the internal Caravel RISC-V core. We do not plan to use it in the Tiny Tapeout
Demo board.
† The user_clock2 signal outputs the internal clock signal of caravel. You
could use it to provide a clock to your design by connecting it to the clk input

253

https://caravel-harness.readthedocs.io/en/latest/housekeeping-spi.html

(mprj_io pin 6). We do not plan to use it in the Tiny Tapeout Demo board.
‡ Internally, there’s no difference between clk, n_rst, and ui_in pins. They
are all just bits in the pad_ui_in bus. However, we use different names to
make it easier to understand the purpose of each bit.

254

Chip Errata

This section lists the known issues with the chip and suggests workarounds where
possible.

Undefined pin states

The state of the bidirectional pins and output pins is not defined when no design
is selected. This means that the bidirectional pins may be configured as outputs,
with either high or low output values, or as inputs. Take care to avoid shorting the
bidirectional pins to other outputs or to VDD or GND when no design is selected. As
a workaround, you can connect these pins to external devices or other pins through a
resistor.

255

Sponsored by

Team

Tiny Tapeout would not be possible without a lot of people helping. We would espe-
cially like to thank:

• Uri Shaked for wokwi development and lots more
• Sylvain Munaut for help with scan chain improvements
• Mike Thompson for verification expertise
• Jix for formal verification support
• Proppy for help with GitHub actions
• Maximo Balestrini for all the amazing renders and the interactive GDS viewer
• James Rosenthal for coming up with digital design examples
• All the people who took part in TinyTapeout 01 and volunteered time to improve

docs and test the flow
• The team at YosysHQ and all the other open source EDA tool makers
• Efabless for running the shuttles and providing OpenLane and sponsorship
• Tim Ansell and Google for supporting the open source silicon movement
• Zero to ASIC course community for all your support
• Jeremy Birch for help with STA
• Aisler for sponsoring PCB development

256

https://efabless.com/
https://wokwi.com/
https://twitter.com/tnt
https://www.linkedin.com/in/michael-thompson-0a581a/
https://twitter.com/jix_
https://twitter.com/proppy
https://twitter.com/maxiborga
https://www.yosyshq.com/
https://efabless.com/
https://www.youtube.com/watch?v=EczW2IWdnOM
https://zerotoasiccourse.com/
https://aisler.net/

	Render of whole chip
	Projects
	Chip ROM [0]
	TinyTapeout 04 Factory Test [1]
	VGA clock [2]
	7 segment seconds [3]
	Number Factorizer [4]
	Odd even sorter [5]
	The Bulls and Cows game [6]
	VGA Output for Arduino [16]
	Digital Cipher & Interlock System [17]
	Simon Says game [18]
	YKM 7-seg driver [19]
	Configurable PID Block [20]
	PWM audio [21]
	4-bit ALU [22]
	RGB Mixer [23]
	raybox-zero [33]
	ChipTune [37]
	OpenSource PWM Peripheral [48]
	Experiment Number Six: Laplace LUT [50]
	Karplus-Strong String Synthesis [52]
	USB Device [54]
	Audio-PWM-Synth [64]
	German Traffic Light [71]
	Dandy VGA [96]
	Tiny Breakout [98]
	VC 16-bit CPU [99]
	Risc-V Nano V [100]
	USB CDC (Serial) [101]
	Tiny processor [102]
	fft-4-tt [103]
	LED Panel Driver [112]
	OSU Counter [113]
	Even digits [114]
	Traffic light [115]
	Tutorial4 [116]
	Grain-Flex-FPGA [117]
	BFCPU [118]
	AI Decelerator [119]
	Tiny (3-bit) LFSR [160]
	Pulsed Plasma Thruster (PPT) Controller [161]
	SAP-1 CPU [162]
	Multi-channel pulse counter with serial output, v01a [163]
	Delay Line [164]
	Simple Piano [165]
	Ripple-Carry Adder [166]
	Led Multiplexer Display [167]
	LED Matrix Driver [176]
	8-bit FIFO with depth 16. [177]
	Pong [178]
	8 panel display"" [179]
	Traffic Light [180]
	Model Railway turntable polarity controller [181]
	Customizable UART string tx [182]
	7-Seg `Tiny Tapeout' Display [183]
	UART character tx [192]
	Padlock [193]
	8bits Counter by AI [194]
	FM Transmitter [195]
	Test 4x4 memory [196]
	ROTFPGA v2 [197]
	Arithmetic logic unit of four operations between two 8-bit numbers [198]
	FIR Filter [199]
	Tamagotchi [208]
	LFMPDM (Lightning Fast Matrix Programmable Design Module) [209]
	7 SEGMENTS CLOCK [210]
	Multi Pattern LED Sequencer [211]
	Generador de PWM [212]
	Multi stage path for delay measurements. [213]
	ASCII Text Printer Circuit [214]
	Clock synchronizer [215]
	Simple PWM Generator [224]
	CLK Frequency Divider [225]
	UIS Traffic Light [226]
	4 bit adder [227]
	8-bit ALU [228]
	Collatz Conjecture [229]
	8 bit 4 data sorting network [230]
	BCD to 7 segments [231]
	4 bit full adder [240]
	Circuito Religioso [241]
	Demultiplexor NAND [242]
	Sumador/Sustractor de 3 bit con acarreo y prestamo [243]
	Hardware Lock [244]
	Custom falling and rising edge detection [245]
	4-bit-alu [246]
	Angardo's pong [247]
	(11,7) hamming code encoder and decoder with UART [256]
	Multi-channel pulse counter with serial output, v01b [257]
	State machine of an impulse counter [258]
	Logic Circuit 1 [259]
	Variable Duty-Cycle TRNG [260]
	Pseudo Random Number Generator [261]
	SAR ADC Backend [262]
	FCFM 7-segment display [263]
	another ring oscillator based temperature sensor [272]
	RO-based temperature sensor with hysteresis [273]
	Microrobotics FSM [274]
	MINI ALU [275]
	PWM Quisquilloso [276]
	CPU 8 bit [277]
	A Risc-V Instruction memory i2c programmer [278]
	IFSC 6-bit Locker [279]
	Randomizer and status checker [288]
	Simulador de cruzamento de semáforo [289]
	Full_adder_carry_juang_garzons [290]
	4-trit balanced ternary program counter and convertor [291]
	uDATAPATH_Collatz [292]
	Adder [293]
	Binary to 7 segment [294]
	Neuron [295]
	Later [304]
	serializer [305]
	4-bits 1-channel PWM and ALU 4 bits [306]
	up-down counter with parallel load and BCD output [307]
	Later [308]
	Contador con carga [309]
	onehot_decoder [310]
	CDMA Transmitter/Receiver [311]
	clock divider [320]
	reciprocal [321]
	Later [322]
	Time Multiplexed Nand-gate [323]
	Octal classifier [324]
	MULDIV unit (4-bit signed/unsigned) [325]
	RS Write Decodifier [326]
	Password FSM [327]
	Priority e [336]
	frecuencimeter [337]
	lfsr random number generator [338]
	i2c_6 bits [339]
	Fastest Finger [340]
	Fastest Finger (Clocked) [341]
	Oscillators II [342]
	Simple ALU [343]
	TinyTapeout 04 Loopback Test Module [352]
	Adjustable Frequency LED Chaser [353]
	Simple QSPI DAC [354]
	AQALU [355]
	Simple TMR [356]
	Poor Person's Boundary Scan [357]
	Probador de lógica básico [358]
	LIF Neuron, Telluride 2023 [359]
	rusty_adder [368]

	Pinout
	The Tiny Tapeout Multiplexer
	Overview
	Operation
	Pinout

	Chip Errata
	Undefined pin states

	Sponsored by
	Team

