
Tiny Tapeout 05 Datasheet
Project Repository

https://github.com/TinyTapeout/tinytapeout-05

August 2, 2024

Contents

1

https://github.com/TinyTapeout/tinytapeout-05

Chip map 7

Projects 10
Chip ROM [0] . 10
TinyTapeout 05 Factory Test 1 . 12
TinyTapeout 05 Loopback Test Module 2 13
Leaky Integrate and Fire Neuron Model [3] 14
Time Multiplexed Neuron Ckt [4] . 16
SAP-1 Computer [5] . 17
Current Based Leaky Integrate and Fire Model [6] 19
TickTockTokens [7] . 20
Spiking LSTM Network [8] . 22
Integrate-and-Fire Neuron. [9] . 24
Neural network on chip [10] . 26
Simple Leaky Integrate and Fire (LIF) Neuron [11] 27
e Spigot [12] . 28
Continued Fraction Calculator [13] . 30
Water Pump Controller [14] . 32
Event Denoising Circuit [15] . 35
7 segment seconds (Verilog Demo) [32] 37
Frequency Encoder/Decoder [33] . 39
UART Greeter with RNN Module [34] . 41
WS2812B LED strip driver [35] . 43
Tiny Tapeout 5 Workshop [36] . 45
Tiny Tapeout 1 [37] . 46
Supercon Workshop [38] . 47
Matrix Multiplier [39] . 48
Clock Divider [40] . 50
Binary Counter [41] . 51
ring osc test [42] . 52
7 segment clock with 4 digits [43] . 53
test001 [44] . 55
Hodgkin-Huxley Chip Design [45] . 56
Character Selector [46] . 58
Intructouction to PRBS [47] . 59
tto5 Supercon Project [64] . 60
Delta Modulation Spike Encoding [65] . 61
GameOfLife [66] . 63
Reflex Game [67] . 64
Logic Gates Tapeout [68] . 65
Stream Cipher w/ LSR (8 bit key) [69] 66
tt5modifyd [70] . 68

2

ALU Chip [71] . 69
Tapeout Test [72] . 70
Calculator chip [73] . 71
Shifty Snakey [74] . 72
Synth [75] . 73
Sawtooth Generator [76] . 74
Blinking A [77] . 76
Supercon 2023 [78] . 77
Sparsity Aware Matrix Vector Multiplication [79] 78
Ring Oscillator and Clock Source Switch [96] 80
Matrix Vector Multiplication (Verilog Demo) [97] 81
IDK WHAT TO DO [98] . 82
7-segment display logic system [99] . 83
Hardware Trojan Example [100] . 84
Analog Clock [101] . 85
7 segment display [102] . 87
W_Li_10/28 [103] . 88
Supecon Gate Play [104] . 89
ECE 183 - Integrate and Fire Network Chip Design [105] 90
tto5 [106] . 92
REBEL-2 Balanced Ternary ALU [107] . 93
Stochastic Multiplier [108] . 95
7 segment seconds - count down [109] . 96
TT05 Submission [110] . 98
Leaky Integrate-and-Fire Neuron [111] . 99
Count via LFSR [128] . 100
I2C BERT [130] . 101
tt05-loopback tile with input skew measurement [132] 103
Flappy VGA [134] . 104
Asynchronous Parallel Processor Demonstrator [136] 106
Hex Countdown [138] . 108
Matrix multiply coprocessor (8x8 1bit) [140] 109
Standard cell generator and tester [142] 110
Winner-Take-All Network (Verilog Demo) [160] 114
Lion cage [161] . 115
Brain Inspired Random Dropout Circuit [162] 117
Event-Based Denoising Circuit [163] . 118
RAM cell test [164] . 120
Classic 8-bit era Programmable Sound Generator AY-3-8913 [165] 121
RNN (Demo) [166] . 130
STDP Neuron [167] . 131
Basic Spiking Neural Network [168] . 132

3

8 bit floating point adder [169] . 133
Perceptron Hardcoded [170] . 135
Cheap and quick STDP [171] . 137
Brain-Inspired Oscillatory Network [172] 138
UART uwuifier [173] . 139
Perceptron and basic binary neural network [174] 140
Leaky Integrate-and-Fire Neuron [175] . 141
7 segment seconds [192] . 144
UABC-ELECTRONICA [194] . 145
bytebeat [196] . 147
Super Mario Tune on A Piezo Speaker [197] 149
Byte Computer [198] . 151
7 segment seconds (VHDL Demo) [199] 153
4-Bit ALU [200] . 155
Classic 8-bit era Programmable Sound Generator SN76489 [201] 157
Miniature Programmable Interrupt Timer [202] 166
7-segment Name Display [203] . 167
Tetris [204] . 169
Simple_Timer-MBA [205] . 170
UART Transceiver [206] . 171
AGL CorticoNeuro-1 [207] . 173
Leaky-Integrated Fire Neuron [224] . 175
MyUART [225] . 177
UART test [226] . 178
Heart Rhythm Analyzer [227] . 179
Spike-timing dependent plasticity (Verilog Demo) [228] 181
Tiny Tapeout 5 TM project1 [229] . 182
Thermocouple-to-temperature converter (digital backend) [230] 183
Naive 8-bit Binary Counter [231] . 185
tinyscanchain Test Design [232] . 186
6 digit chronometer. [233] . 187
Convolutional Network Circuit Chip Design [234] 188
Matrix Vector Multiplication Accelerator [235] 189
Perceptron (Neuromeme) [236] . 191
4 Bit ALU [237] . 193
Binary Neural Network (Verilog Demo) [238] 194
SkullFET [239] . 196
Wavetable Sound Generator [256] . 198
PWM signal generation with Winner-Take-All selection [258] 200
Multimode Modem [260] . 202
Analog emulation monosynth [262] . 204
Tiny Game of Life [264] . 208

4

Stack Machine [266] . 210
ChipTune [268] . 211
Game of Life 8x8 (siLife) [270] . 213
TT05 Analog Testmacro (Ringo, DAC) [271] 215
RBUART [290] . 217
8-bit Floating-Point Adder [292] . 218
6 bit Counter and Piano Music created by Chip Inventor [294] 219
4 Bit Pipelined Multiplier [296] . 220
2-Bit ALU + Dice [298] . 221
TT02 Wokwi 7seg remake [300] . 223
ping pong asic [302] . 225
A Boolean function based pseudo random number generator (PRNG) [320] . 228
Digital Desk Clock [322] . 232
4-bit FIFO/LIFO [324] . 234
One Sprite Pony [326] . 235
4 bit Sync Gray Code Counter [328] . 237
Clock and Random Number Gen [330] . 238
TT05 Analog Test [332] . 239
VGA Experiments [334] . 240
Rule110 cell automata [384] . 242
No Time for Squares [390] . 248
Game of Life 8x32 (siLife) [396] . 250
TROS [398] . 252
ChatGPT designed Spiking Neural Network [450] 254
Karplus-Strong String Synthesis [454] . 256
VGA Dino Game [458] . 258
Dual Compute Unit [460] . 259
Collatz conjecture brute-forcer [462] . 260
Field Programmable Neural Array [518] 263
DFFRAM Example (128 bytes) [526] . 266
Chonky Spiking Neural Net [582] . 267
Hodgkin-Huxley Neuron [590] . 268
PRBS Generator [641] . 270
Stop Watch [643] . 276
vga_spi_rom [645] . 278
RO and counter [647] . 282
8-Bit Shift Register with Output Latches 74HC595 [649] 283
Neptune guitar tuner (proportional window, version b, debug output on bidir

pins, larger set of frequencies) [651] 284
Simon Says game [653] . 286
KianV uLinux SoC [654] . 289
Ring oscillator with counter [655] . 290

5

cpu_8bit [705] . 292
VGA clock [707] . 293
7 segment seconds (Verilog Demo) [709] 295
Frequency counter [711] . 297
RGB Mixer [713] . 299
SPI Peripheral [715] . 300
Multiplexed clock [717] . 302
Shaman: SHA-256 hasher [718] . 305
metastability experiment [719] . 309

Pinout 311

The Tiny Tapeout Multiplexer 312
Overview . 312
Operation . 312
Pinout . 315

Sponsored by 318

Team 318

6

Chip map

Figure 1: Full chip map

7

Figure 2: GDS render

8

Figure 3: Logic density (local interconnect layer)

9

Projects

Chip ROM [0]

• Author: Uri Shaked
• Description: ROM with information about the chip
• GitHub repository
• HDL project
• Mux address: 0
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

ROM memory that contains information about the Tiny Tapeout chip. The ROM is
8-bit wide and 128 bytes long.

The ROM layout The ROM layout is as follows:

Address Length Encoding Description
0 8 7-segment Shuttle name (e.g. “tt05”), null-padded
8 8 7-segment Git commit hash
32 96 ASCII Chip descriptor (see below)

The chip descriptor The chip descriptor is a simple null-terminated string that
describes the chip. Each line is a key-value pair, separated by an equals sign. It
contains the following keys:

Key Description Example value
shuttle The identifier of the shuttle tt05
repo The name of the repository TinyTapeout/tinytapeout-05
commit The commit hash * a1b2c3d4

• The commit hash is only included for Tiny Tapeout 5 and later.

Here is a complete example of a chip descriptor:

10

https://github.com/TinyTapeout/tt-chip-rom

shuttle=tt05
repo=TinyTapeout/tinytapeout-05
commit=a1b2c3d4

How the ROM is generated The ROM is automatically generated by tt-support-
tools while building the final GDS file of the chip. Look at the rom.py file in the
repository for more details.

How to test

Read the ROM contents by setting the address pins and reading the data pins. The
first 16 bytes of the ROM are 7-segment encoded and contain the shuttle name and
commit hash. You can read them by toggling the first four DIP switches and observing
the on-board 7-segment display.

Pinout

Input Output Bidirectional
0 addr[0] data[0] none
1 addr1 data1 none
2 addr2 data2 none
3 addr[3] data[3] none
4 addr[4] data[4] none
5 addr[5] data[5] none
6 addr[6] data[6] none
7 addr[7] data[7] none

11

https://github.com/TinyTapeout/tt-support-tools
https://github.com/TinyTapeout/tt-support-tools
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

TinyTapeout 05 Factory Test 1

• Author: Sylvain Munaut
• Description: Factory test module
• GitHub repository
• HDL project
• Mux address: 1
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

If sel is high, then a counter is output on the output pins and the bidirectional
pins (data_o = counter_o = counter). If sel is low, the bidirectional pins are
mirrored to the output pins (data_o = data_i).

How to test

Set sel high and observe that the counter is output on the output pins (data_o) and
the bidirectional pins (counter_o).
Set sel low and observe that the bidirectional pins are mirrored to the output pins
(data_o = data_i).

Pinout

Input Output Bidirectional
0 sel data_o[0] data_i[0] / counter_o[0]
1 none data_o1 data_i1 / counter_o1
2 none data_o2 data_i2 / counter_o2
3 none data_o[3] data_i[3] / counter_o[3]
4 none data_o[4] data_i[4] / counter_o[4]
5 none data_o[5] data_i[5] / counter_o[5]
6 none data_o[6] data_i[6] / counter_o[6]
7 none data_o[7] data_i[7] / counter_o[7]

12

https://en.wikipedia.org/wiki/Collatz_conjecture
https://github.com/TinyTapeout/tt05-factory-test
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

TinyTapeout 05 Loopback Test Module 2

• Author: Sylvain Munaut
• Description: Loopback test module
• GitHub repository
• HDL project
• Mux address: 2
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Input 0 goes to output 0 through 6. Output 7 is input4 & input5 & input6 & input7

How to test

Toggle input 0, measure the time for output 0 to change.

Pinout

Input Output Bidirectional
0 in0 mirrors in0 none
1 none mirrors in0 none
2 none mirrors in0 none
3 none mirrors in0 none
4 in4 mirrors in0 none
5 in5 mirrors in0 none
6 in6 mirrors in0 none
7 in7 the value of in4 & in5 & in6 & in7 none

13

http://www.ericr.nl/wondrous/pathrecs.html
https://github.com/TinyTapeout/tt05-loopback

Leaky Integrate and Fire Neuron Model [3]

• Author: Miles Segal
• Description: Models the functionality of a leaky integrate and fire neuron, of the

style tipically found in spiking neural networks
• GitHub repository
• HDL project
• Mux address: 3
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Uses a set of registers to divide the clock, and then some combinational logic to convert
from binary to decimal for the display.
Puts the bottom 8 bits of the counter on the bidirectional outputs.
With all the inputs set to 0, the internal 24 bit compare is set to 10,000,000. This
means the counter will increment by one each second.
If any inputs are non zero, then the input will be used as an bits 11 to 18 of the 24 bit
compare register. Example: setting the inputs to 00010000 will program 16384 into
the compare register. With a 10MHz clock the counter will increment ~610 times per
second.

How to test

After reset, the counter should increase by one every second with a 10MHz input clock.
Experiment by changing the inputs to change the counting speed.

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4

14

https://github.com/nfjesifb/Leaky_Integrate_Fire_Neuron_Model

Input Output Bidirectional
5 compare bit 16 segment f second counter bit 5
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

15

Time Multiplexed Neuron Ckt [4]

• Author: Karina Aguilar
• Description: Utilize leaky-integrate-and-fire neurons to make multiple neurons
• GitHub repository
• HDL project
• Mux address: 4
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Apply an input current to the LIF neurons through the switches.
This will add to the membrane potential that decays over time. If the membrane
potential exceeds the threshold, then a spike is triggered.

How to test

After reset, the membrane potential will be set to 0.
Then change the inputs to change the current. A higher current should trigger a higher
firing rate.

Pinout

Input Output Bidirectional
0 current bit 11 membrane potential bit a spike bit 1
1 current bit 12 membrane potential bit b spike bit 2
2 current bit 13 membrane potential bit c spike bit 3
3 current bit 14 membrane potential bit d spike bit 4
4 current bit 15 membrane potential bit e spike bit 5
5 current bit 16 membrane potential bit f unspecified
6 current bit 17 membrane potential bit g unspecified
7 current bit 18 membrane potential bit h unspecified

16

https://github.com/KarinaAguilar/tt05-time-multiplexed-neuron-circuit

SAP-1 Computer [5]

• Author: Brandon Cruz
• Description: Simple as Possible computer into ASIC
• GitHub repository
• HDL project
• Mux address: 5
• Extra docs
• Clock: 10000000 Hz
• External hardware: Oscilloscope

How it works

Originally, Malvino and Brown presented the SAP-1 architecture in a book called Digital
Computer Electronics. The design gained massive popularity when it was build as a
bread board computer by Ben Eater on a series of YouTube videos. The architecture
contains various modules, including the instruction execution set gives the SAP-1 a
total of six stages from 0 to 5, repeating all over again.

• Clock
• Program Counter
• Register A
• Register B
• Adder
• Memory
• Instruction Register
• Bus
• Controller This design doesn’t have inputs, it is dependent only on the clock

that coordinates sequence of the computer’s operation. Its operation consists
on the communication that that bus provides between modules; the signal load
dumps information into a module and the enable signal allows the bus to receive
a signal. The bus is 8-bit width since it is an 8 bit computer, and the registers
are also 8-bit registers. The computer can only perform addition, whether it is
positive numbers or negative numbers (substraction). The signals information
is stored within the memory module. There bus operations are coordinated with
a series of multiplexers and

The more important module is the controller. It controlls the assertion execution
according to the stimuli from the stages. The stages 3 to 5 five depend on the
instructions of the operation codes.

17

https://github.com/brandcrz88/SAP-1_Computer

How to test

Design Output Reading Section The design is engineered to read the output signal
generated from the bus, which contains the information of the add and subtract opera-
tions executed by the design. Currently, the only method to read the signals is through
an oscilloscope. However, a significant enhancement would be the implementation of
a state machine controlling a 3 7-segment display to show the numbers on the 8-bit
bus (up to 255).

Pinout

Input Output Bidirectional
0 n/a bus[0] n/a
1 n/a bus1 n/a
2 n/a bus2 n/a
3 n/a bus[3] n/a
4 n/a bus[4] n/a
5 n/a bus[5] n/a
6 n/a bus[6] n/a
7 n/a bus[7] n/a

18

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Current Based Leaky Integrate and Fire Model [6]

• Author: Shatoparba Banerjee
• Description: Implement a current based LIF neuron
• GitHub repository
• HDL project
• Mux address: 6
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Current-based LIF neurons are a simplified abstraction of the behavior of real neurons,
and they are often used in large-scale neural network simulations due to their computa-
tional efficiency. These models are useful for studying the dynamics of spiking neurons
and their role in information processing in the brain.

How to test

To test the current-based LIF project, follow these steps: Connect the LIF module
to the input switches, 7-segment display, and clock source as specified in the Verilog
module. Use input switches to control the input current, and observe the 7-segment
display for spike detection, while ensuring the clock signal is appropriately set to provide
the desired clock frequency for the simulation.

Pinout

Input Output Bidirectional
0 current bit 11 membrane potential bit a spike bit 0
1 current bit 12 membrane potential bit b unspecified
2 current bit 13 membrane potential bit c unspecified
3 current bit 14 membrane potential bit d unspecified
4 current bit 15 membrane potential bit e unspecified
5 current bit 16 membrane potential bit f unspecified
6 current bit 17 membrane potential bit g unspecified
7 current bit 18 membrane potential bit h unspecified

19

https://github.com/shatoparbabanerjee/tt05-verilog-demo

TickTockTokens [7]

• Author: Johannes Leugering
• Description: Implementation of a processor that uses Tick Tock Tokens for

event-based computation.
• GitHub repository
• HDL project
• Mux address: 7
• Extra docs
• Clock: 10000000 Hz

20

https://github.com/jleugeri/tnt-ticktocktokens
README.md

• External hardware: arduino to generate I/O

How it works

Each TickTockToken (ttt) is indicated by two messages, a start and an end event.
A ttt-Processor uses these tokens to perform event-based computations in a fashion
inspired by Time Petri Nets.

How to test

If I didn’t get lazy half-way though, the test-script provided in the repo should run a
test model successfully, and the documentation should provide a more through expla-
nation.

Pinout

Input Output Bidirectional
0 instruction bit 0 data bit 0 token start flag
1 instruction bit 1 data bit 1 token stop flag
2 instruction bit 2 data bit 2 data bit 2
3 instruction bit 3 data bit 3 data bit 3
4 (reserved) data bit 4 data bit 4
5 (reserved) data bit 5 data bit 5
6 (reserved) data bit 6 data bit 6
7 (reserved) data bit 7 data bit 7

21

Spiking LSTM Network [8]

• Author: Skye Gunasekaran
• Description: A leaky integrate and fire neuron with adaptive threshold.
• GitHub repository
• HDL project
• Mux address: 8
• Extra docs
• Clock: None Hz
• External hardware: None

How it works

A Leaky Integrate-and-Fire (LIF) neuron is a simple mathematical model used in neuro-
science and computational neuroscience to describe the behavior of individual neurons.
It provides a simplified yet effective way to simulate the behavior of real neurons. In
the neuron, there are two key elements: the current and the threshold. If the current
surpasses the threshold, a spike is emitted, otherwise, the spike is 0 (resting). In this
spiking LSTM implementation, the neuron’s threshold is adaptive, and will increase
when the threshold is passed. When the neuron fails to reach the threshold, it will
slowy decay back to the initial threshold.

How to test

After applying the reset, the variables should be initialized, and a current can be applied.
The testbench will record the current, threshold, and spiking behavior of the neuron.
When a higher current is applied, you can see how the threshold increases, and vice
versa when a spike is not emitted.

Pinout

Input Output Bidirectional
0 clk Clock input uo_out Spike output uio_in Unused
1 rst_n Reset signal n/a uio_out Threshold
2 ui_in Voltage current n/a uio_oe Unused
3 ena Unused n/a n/a
4 n/a n/a n/a
5 n/a n/a n/a
6 n/a n/a n/a

22

https://github.com/SkyeGunasekaran/TinyTapeout-ECE183

Input Output Bidirectional
7 n/a n/a n/a

23

Integrate-and-Fire Neuron. [9]

• Author: Kembay Assel
• Description: Implement an IF neuron in silicon.
• GitHub repository
• HDL project
• Mux address: 9
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Apply an input current injection to the IF neuron using switches. This gets added to a
membrane potential. If the membrane potential exceeds the threshold, then it triggers
a spike.

How to test

An 8-bit input current is applied to the IF neuron through the designated input (i.e.,
uio_in). The membrane potential of the IF neuron will respond to the applied input cur-
rent. Larger currents will lead to a higher membrane potential. The neuron is designed
to generate a spike when the membrane potential exceeds a certain threshold.

24

https://github.com/mountains-high/tt05-mountains-high-if

Pinout

Input Output Bidirectional
0 current bit 11 membrane potential bit a spike bit 0
1 current bit 12 membrane potential bit b unspecified
2 current bit 13 membrane potential bit c unspecified
3 current bit 14 membrane potential bit d unspecified
4 current bit 15 membrane potential bit e unspecified
5 current bit 16 membrane potential bit f unspecified
6 current bit 17 membrane potential bit g unspecified
7 current bit 18 membrane potential bit h unspecified

25

Neural network on chip [10]

• Author: Faculty of Technical Sciences Cacak, University of Kragujevac
• Description: Neural network built out of perceptrons
• GitHub repository
• HDL project
• Mux address: 10
• Extra docs
• Clock: 50 000 000 Hz
• External hardware:

How it works

Network calculates output based on user provided input and predefined weight param-
eters of neural network

How to test

Drive inputs to [7:0] ui_in and result of computation of neural network can be obesrved
on [7:0] uo_out

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0] none
1 ui_in1 uo_out1 none
2 ui_in2 uo_out2 none
3 ui_in[3] uo_out[3] none
4 ui_in[4] uo_out[4] none
5 ui_in[5] uo_out[5] none
6 ui_in[6] uo_out[6] none
7 ui_in[7] uo_out[7] none

26

https://github.com/vladamladenovic/neural_network_FTS_Cacak_Serbia
https://github.com/vladamladenovic/neural_network_FTS_Cacak_Serbia
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Simple Leaky Integrate and Fire (LIF) Neuron [11]

• Author: Phillip Marlowe
• Description: Given input current, spike when threshold is reached (also assume

any files with the letters LFI should be LIF)
• GitHub repository
• HDL project
• Mux address: 11
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Based on input current, calculation is made using it and previous membrane potential.
If current membrane potential is above pre-set threshold then spike!

How to test

After reset, input some current and see what happens. Should see an increase on
output and possibly a spike eventually.
A current input of 100 after 20 cycles should produce a spike.

Pinout

Input Output Bidirectional
0 clk_i is the clock nu_o is the next

membrane potential
msb bit of uio_oe is
connected to spike_o

1 current_i is the
current input to the
LFI neuron

spike_o is the single
bit to show when the
neuron is firing

n/a

2 rst_n is for reset n/a n/a
3 n/a n/a n/a
4 n/a n/a n/a
5 n/a n/a n/a
6 n/a n/a n/a
7 n/a n/a n/a

27

https://github.com/phillipmmarlowe/tt05-verilog-HLS-LFI

e Spigot [12]

• Author: diadatp
• Description: Spigot algorithm for calculating the digits of e
• GitHub repository
• HDL project
• Mux address: 12
• Extra docs
• Clock: 350 Hz
• External hardware: 4 x 7447 decoders

How it works

This project implements a bounded spigot algorithm for calculating the digits (currently
31) of e. While there are many ways to calculate the digits of transcendental numbers
like e or pi, this spigot algorithm has much lower memory requirements. It however only
produces a single digit at a time, and the number of digits produced is precommited at
the time of design. For calculating n digits, the algorithm needs at least (n+1) storage
locations. Each digit requires (n+1) calculation steps, repeated (n-1) times producing
(n-1) digits (first digit 2 is not counted). Each calculation step requires a constant
multiply, an add and a divide with remainder. There are many optimizations needed
to fit as many digits as possible into a 1x1 tile. The biggest contributor is the storage
elements. Some quick modeling revealed that the storage elements need to be about
as wide as log(n). The calculation step hardware is shared across all iterations. The
intermediate results are never needed outside each calculation and are never stored in
memory. The memory access is such that each location is read and written to before
moving on to the next. The memory access pattern removes the need for address
decoding, replaced with a massive ring of gated shift registers.

How to test

The digits are output on the bidirectional port and the output port in BCD (Binary-
coded decimal). A BCD to seven segment decoder will be needed to display the
digits. A clock below 500Hz should allow one to see the digits slide across the segment
displays.

Pinout

28

https://github.com/diadatp/tt05_spigot_e
https://github.com/diadatp/tt05_spigot_e/blob/main/README.md

Input Output Bidirectional
0 none digit_2[0] digit_0[0]
1 none digit_21 digit_01
2 none digit_22 digit_02
3 none digit_2[3] digit_0[3]
4 none digit_3[0] digit_1[0]
5 none digit_31 digit_11
6 none digit_32 digit_12
7 none digit_3[3] digit_1[3]

29

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Continued Fraction Calculator [13]

• Author: Kevin You
• Description: Calculates the continued fraction of the square root of a natural

number
• GitHub repository
• HDL project
• Mux address: 13
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

This continued fraction calculator computes the convergents in the standard manner.
It computes the coefficients of the continued fraction, and then recursively computes
the convergents. It turns out that when the target is the square of a natural number,
one can avoid the need of comparisons or taking the floor (except on the first step)
and only use addition, multiplication, and integer division. Still, squeezing the design
in roughly 1000 cells proved quite difficult, and various simplifications were necessary
(such as changing the output from 7-segment to binary).
This calculator, in conjunction with a mobile phone calculator, or paper and pencil, can
be used to calculate the fundumental solution of Pell’s equation x^2 - Dy^2 = 1. To do
this, simply enter D, compute convergents, and verify whether the convergents satisfy
Pell’s equation P^2 - DQ^2 = 1. The first convergents that satisfy Pell’s equation is
the fundumental solution. This procedure combines the continued fraction calculator’s
ability to store various intermediate values and a mobile phone calculator’s ability to
calculate large numbers.

How to test

Enter 14 bit binary number D input via switches, press button 0 to generate the next
convergents P and Q, where sqrt(D) ~ P/Q. Press button 1 to read through the values
of P and Q in order of P[15:8], P[7:0], Q[15:8], Q[7:0].

Pinout

30

https://github.com/kskyou/tt05

Input Output Bidirectional
0 button status LED switch
1 button status LED switch
2 switch status LED switch
3 switch status LED switch
4 switch status LED switch
5 switch status LED switch
6 switch status LED switch
7 switch status LED switch

31

Water Pump Controller [14]

• Author: Hendrik
• Description: Controller for a camping van water pump with multiple tap switches

and timer
• GitHub repository
• Wokwi project
• Mux address: 14
• Extra docs
• Clock: 32768 Hz
• External hardware: 32768Hz clock (does not need to be prcise, actually), power

on reset, controlled water supply system (tap switches, pump), optionally LEDs
and Buzzer for controller states

How it works

The water pump controller is intended to replace the wiring based water pump system
of typical camping vans with a bathroom and a kitchen and addresses some problems
these systems can have.
In such a system, water taps are usually equipped with switches that signal the need
for water as soon as the tap is slightly opened so that a pump can be activated to
pressurize the pipes.
The controller has six inputs so that each tap (e.g sink in the kitchen, sink in the
bathroom, toilet flushing, shower in bathroom, external shower) can use a dedicated

32

https://github.com/fahek/water-pump-controller-tto5
https://wokwi.com/projects/380005495431181313
https://github.com/fahek/water-pump-controller-tto5/blob/main/README.md

input. It has another input for a high pressure switch that would turn off the pump if
the pressure rises when all taps are actually closed.
The main feature is a timer that can give an reminder using a buzzer when the water is
running for an untypically long period and automatically switch off the pump at some
point as well. When the switch off time was reached the buzzer signal can help to
indicate which switch is still active.

How to test

For testing the circuit, the outputs (including the pump output) can be connected
to LEDs or as in the test board to a 7-segment display. In the test board the pump
output corresponds to the top segment. The inputs can be connected to DIP switches.
The clock should be set to 32768 Hz (2^15 Hz). The reset signal should provide a
power-on reset and optionally a manual reset that might be handy for testing. In the
minimal setup, the last three bidirectional I/O pins should be connected via separate
resistors to GND. Connecting them directly to GND should be okay as well for a quick
test. The pins can be outputs that should only be driven to low in this case, but do
not connect them directly to VCC. The other I/O pins can be left open or connected
to GND to avoid floating pins. The connection to GND can be done directly or via
pull-down resistors to plan ahead for more tests with additional circuitry.
The first test is about enabling the pump while not making use of the timer:

• Keep the input 6 (DIP 7) low to disable the timer
• Keep the input 7 (high pressure switch) low
• Set any combination of tap switches (inputs 0 - 5) high
• The pump output (top segment) should be on
• The pump LED and ActiveNormal LED (right hand segments) should be on
• With all tap switches off all outputs should be off as well

The second test is to verify the high pressure switch:

• Set input 7 (the high pressure switch) high
• Set any combination of tap switches high
• Select any state for the timer enable pin (input 6)
• The pump output should be off
• The pump LED, ActiveLEDs and buzzer can be on, depending on the state of

the controller

A simple test for the timer with default values:

• Set input 6 high to enable the timer feature
• Keep input 7 low to see the pump output

33

• Set any combination of tap switches (input 0 - 5) high
• Wait
• After 128s, the LEDs outputs should change from ActiveNormal to ActiveWarn-

ing (bottom right to bottom on the 7-segment display) and the RunLong LED
(top left for 7-segment display) should be activated

• At the same time the buzzer should be activated every two seconds. LEDs would
blink dim (center segment).

• After another 32s, the pump and pump LED should be turned off and the other
LEDs should go from ActiveWarning to ActiveHalted (bottom to bottom left
segment).

• The buzzer should emit a sequence corresponding to the first active tap input
every 16 seconds. Again for LEDs that would be a dim blinking sequence every
16s.

• Set all tap switches to low
• All outputs should be off
• Activate any tap switch
• Pump (and related LEDs) should be on again, buzzer should be off

Testing the configuration feature requires additional external circuits. Please refer to
the testing section of the README of the github project (https://github.com/fahek/water-
pump-controller-tto5#more-advanced-tests).

Pinout

Input Output Bidirectional
0 TapA Pump CFG0
1 TapB PumpEnabled CFG1
2 TapC ActiveNormal CFG2
3 TapD ActiveWarning CFG3
4 TapE ActiveHalted CFG4
5 TapF RunLong TimerScaleConfig
6 EnableTimeout Buzzer WarningTimeConfig
7 PressureHigh BuzzerHaltedOnly TimeoutConfig

34

Event Denoising Circuit [15]

• Author: Emily Lee
• Description: Implementing a Denoiser for Event Based Data in Silicon
• GitHub repository
• HDL project
• Mux address: 15
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

The 8 switches correspond to the tuple data input (L-R): Switches 1 & 2: Value of x
(2 bits) Switches 3 & 4: Value of y ’ ’ Switches 5 & 6: Value of p ’ ’ Switches 7 & 8:
Value of t ’ ’
The denoiser is implemented as a debouncer. A high or low event will only be output if
the data remains the same for 5 clock cycles. Due to white/thermal noise in an event
camera, a cluster of coordinates that have no movement may incorectly spike high and
the result would be a singular bright bit. The debouncing avoids this by first ensuring
the event is consistent before outputting.

How to test

Switches (L-R) 5 & 6 corresponds to the input value of the polarity of the tuple. If a
high event is wanted - switch 5 should be low and switch 6 should be high. If a low
event is wanted = switch 5 must be low, and switch 6 must be low. This will cause
the chip to output the debounced tuple corresponding to a high or low event.

Pinout

Input Output Bidirectional
0 bit 1 of x bit 1 of x Unused
1 bit 0 of x bit 0 of x Unused
2 bit 1 of y bit 1 of y Unused
3 bit 0 of y bit 0 of y Unused
4 bit 1 of p - no real use bit 1 of p Unused
5 toggles event to be passed through if high bit 0 of p Unused

35

https://github.com/nerfectt/tt05-verilog-demo

Input Output Bidirectional
6 bit 1 of t bit 1 of t Unused
7 bit 0 of t bit 0 of t Unused

36

7 segment seconds (Verilog Demo) [32]

• Author: Matt Venn, cloned by Cedric Honnet
• Description: Count up to 10, one second at a time.
• GitHub repository
• HDL project
• Mux address: 32
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Uses a set of registers to divide the clock, and then some combinational logic to convert
from binary to decimal for the display.
Puts the bottom 8 bits of the counter on the bidirectional outputs.
With all the inputs set to 0, the internal 24 bit compare is set to 10,000,000. This
means the counter will increment by one each second.
If any inputs are non zero, then the input will be used as an bits 11 to 18 of the 24 bit
compare register. Example: setting the inputs to 00010000 will program 16384 into
the compare register. With a 10MHz clock the counter will increment ~610 times per
second.

How to test

After reset, the counter should increase by one every second with a 10MHz input clock.
Experiment by changing the inputs to change the counting speed.

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5

37

https://github.com/honnet/TinyTapeout_tt05-submission-template

Input Output Bidirectional
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

38

Frequency Encoder/Decoder [33]

• Author: Hannah Cohen-Sandler
• Description: Encodes data into frequency variations and then decodes it back

into its original form.
• GitHub repository
• HDL project
• Mux address: 33
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Utilizes an array of inputs and outputs to connect to switches, 7-segment displays, and
enable bidirectional paths.
The bottom 7 bits of the second counter are linked to the bidirectional output.
The clock is generated using a Phase-Locked Loop.
The Frequency Encoder encodes data input from switches to a pulse output and uses
the PLL output to enable the encoding operation.
The Frequency Decoder is connected to bidirectional inputs and decodes the pulse
signal based on the PLL output, resulting in a data output.

How to test

Confirm that the system begins in a reset state with rst_n set to 0. Transition the
system out of reset by setting rst_n to 1. Set the constant current input signal (ui_in)
to a specific value to simulate different input scenarios. Activate the chip design by
setting the ena signal to 1. Alter the clk clock signal frequency value and observe
how the changes affect the design’s behavior. Experiment with various inputs, clock
frequencies, and enabling/disabling operations verify the design and accuracy of the
encoding, decoding, and pulse counting.

39

https://github.com/hcohensa/tt05-freq-enc-dec-chip

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 current bit 11 segment a second counter bit 0
1 current bit 12 segment b second counter bit 1
2 current bit 13 segment c second counter bit 2
3 current bit 14 segment d second counter bit 3
4 current bit 15 segment e second counter bit 4
5 current bit 16 segment f second counter bit 5
6 current bit 17 segment g second counter bit 6
7 current bit 18 segment h second counter bit 7

40

UART Greeter with RNN Module [34]

• Author: Jonathan Zentgraf
• Description: Sends ‘Hello’ over UART and fills die space with metastability
• GitHub repository
• Wokwi project
• Mux address: 34
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

The UART transmitter is just a shift register with hardcoded initial values. The output
of the shift register is fed back into itself in an infinite loop. The “RNN” is a few
flip-flops feeding into each other to use up die space. :)

How to test

Testing UART is simple:

1. Connect the UART output to a microcontroller or scope.
2. Set load/enable low (load).
3. Set output enable high.
4. Set load/enable high (enable).
5. Observe as the string “Hello\n” is sent over UART.

The RNN module is trained on random Wokwi wiring, and might be smarter than a
single human neuron. It probably detects something we mortals cannot comprehend,
and is tied to inputs 0-3 and outputs 0-3. It may be fun to drive these with a very fast
clock.

Pinout

Input Output Bidirectional
0 RNN input 0 RNN output 0 none
1 RNN input 1 RNN output 1 none
2 RNN input 2 RNN output 2 none
3 RNN input 3 RNN output 3 none

41

https://github.com/zx96/tiny-tapeout-5
https://wokwi.com/projects/380410498092232705

Input Output Bidirectional
4 none none none
5 none none none
6 Shift register load (low) / enable (high) UART output enabled none
7 UART output enable UART output none

42

WS2812B LED strip driver [35]

• Author: Ciro Cattuto
• Description: Drives a WS2812B LED strip with random colors for each refresh
• GitHub repository
• Wokwi project
• Mux address: 35
• Extra docs
• Clock: 20000000 Hz
• External hardware: WS2812B strip of arbitrary lengthd

How it works

This project drives a strip of WS2812B RGB LEDs, periodically updating the strip with
random color values. The project consists of three main modules:

• a linear feedback 16-bit shift register to generate a stream of pseudo-random
bits

• a 5-bit synchronous increasing counter, wrapping to 0 when the counter reaches
25. WHen driven by a 20 MHz clock source, the counter generates the 1.25 us
pulses required by the WS2812B protocol. The duration of the high phase of
the pulse is controlled by the random bit stream generated above.

• a 16-bit ripple counter increasing at the end of each pulse, used to divide the
pulse frequency and generate the LED strip refresh signal

How to test

Set the clock frequency to 20 MHz and connect OUT2 to the DIN signal of a WS2812B
LED strip. Optionally connect to IN6 the DOUT signal of the last LED of the strip.
Press and release the reset button. The strip should light up with random colors,
updating at a frequency controllable using the SW3 and SW4 switches.

Pinout

Input Output Bidirectional
0 clock source selection shift register output none
1 external clock source shift register clock none
2 refresh freq sel (low) WS2812B LED strip input none
3 refresh freq sel (high) LED strip overflow none

43

https://github.com/ccattuto/tt05-rng-ws2812b-strip
https://wokwi.com/projects/380120751165092865
https://github.com/ccattuto/tt05-rng-ws2812b-strip/blob/main/README.md
https://en.wikipedia.org/wiki/Linear-feedback_shift_register
https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf

Input Output Bidirectional
4 none LED strip refresh none
5 none none none
6 WS2812B LED strip output none none
7 shift register input none none

44

Tiny Tapeout 5 Workshop [36]

• Author: Rob Campbell KG6HUM
• Description: Tiny Tapeout 5 Workshop
• GitHub repository
• Wokwi project
• Mux address: 36
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

First 3 output bits are a binary counter. Can be preset with first 3 input bits. Other
input bits pass through to the output.

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

45

https://github.com/kg6hum/tinytapeout5_test1
https://wokwi.com/projects/380408486941145089

Tiny Tapeout 1 [37]

• Author: James Bryant
• Description: A description
• GitHub repository
• Wokwi project
• Mux address: 37
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

46

https://github.com/james-bryant/tiny-tapeout
https://wokwi.com/projects/380409169798008833

Supercon Workshop [38]

• Author: Caleb Hensley
• Description: Example of logic gates: AND, NAND, OR, XOR
• GitHub repository
• Wokwi project
• Mux address: 38
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Input 0 and 1 input to an AND gate and output to output 0. Input 2 and 3 input to
a NAND gate and output to output 1. Input 4 and 5 input to a OR gate and output
to output 2. Input 6 and 7 input to a XOR gate and output to output 3.

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

47

https://github.com/calliday/tiny-tapeout
https://wokwi.com/projects/380409488188706817

Matrix Multiplier [39]

• Author: Erik Mercado
• Description: Multiple Matrices.
• GitHub repository
• HDL project
• Mux address: 39
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

tt_um_matrix_multiplier:
This module performs a multiplication of two 2x2 matrices, where each element is an
unsigned 2-bit number. The matrices are input via 8-bit wires (ui_in and uio_in), where
every 2 bits represent an element. Error checking is done to ensure that each element
is within the range [0, 2]. If there’s an error, the output is set to zero; otherwise, the
multiplication result is returned via uo_out and uio_out. The module also provides a
uio_oe output signal that serves as an output enable for the resultant matrix.
tb (testbench):
This is the simulation testbench for the tt_um_matrix_multiplier module. It toggles
a clock signal, initializes input values, and instantiates the tt_um_matrix_multiplier.
The testbench is set up to generate VCD files, allowing for waveform viewing using
tools like GTKWave.
test.py:
This Python script uses the cocotb framework to test the matrix multiplication function-
ality. Helper functions are provided to convert 2x2 matrices to binary representations
and vice-versa. A list of test matrices and expected results is present. For each test
case, the script inputs matrices, waits for the multiplication result, and checks against
the expected result. The test concludes by logging a success message if all test cases
pass.

How to test

Synthesize and Implement: Use an FPGA toolchain to synthesize the Verilog code
and implement it on a suitable FPGA. Simulation: Use a simulator compatible with

48

https://github.com/mercadoerik1031/tt05-matrix-multiplier-demo

Verilog (like ModelSim or Icarus Verilog) to run the testbench (tb.v). You can view
the generated VCD file with a tool like GTKWave to visualize the waveform.
Cocotb Test: Setup the cocotb environment and necessary dependencies. Use the
test.py script to run the cocotb test. Monitor the test output to ensure that all matrix
tests pass.

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

49

Clock Divider [40]

• Author: Joey Castillo
• Description: Divides the clock input eight times, with CLK/2 on OUT7, CLK/4

on OUT6, etc.
• GitHub repository
• Wokwi project
• Mux address: 40
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none CLK/256 none
1 none CLK/128 none
2 none CLK/64 none
3 none CLK/32 none
4 none CLK/16 none
5 none CLK/8 none
6 none CLK/4 none
7 none CLK/2 none

50

https://github.com/joeycastillo/joey-tiny-tapeout-5
https://wokwi.com/projects/380408594272345089

Binary Counter [41]

• Author: Chinchilla
• Description: The Just Kidding flip flop has been changed to a binary counter
• GitHub repository
• Wokwi project
• Mux address: 41
• Extra docs
• Clock: 10 Hz
• External hardware: none

How it works

It didn’t last time (3). Counts. With 1 and 0.

How to test

turn on.

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

51

https://github.com/eatb33ts/tinytapeout_jkff
https://wokwi.com/projects/380408784463076353

ring osc test [42]

• Author: Bob Poekert
• Description: simple ring oscillator
• GitHub repository
• Wokwi project
• Mux address: 42
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

This outputs a square wave at… some frequency on pins 0-3, where the pins are phase
shifted by… some frequency.

How to test

Just apply power.

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

52

https://github.com/bobpoekert/tinytapeout
https://wokwi.com/projects/380408396356749313

7 segment clock with 4 digits [43]

• Author: Kumar Abhishek
• Description: Multi mode clock.
• GitHub repository
• HDL project
• Mux address: 43
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Uses a set of registers to divide the clock, and then some combinational logic to convert
from binary to decimal for the display.
Puts the bottom 8 bits of the counter on the bidirectional outputs.
With all the inputs set to 0, the internal 24 bit compare is set to 10,000,000. This
means the counter will increment by one each second.
If any inputs are non zero, then the input will be used as an bits 11 to 18 of the 24 bit
compare register. Example: setting the inputs to 00010000 will program 16384 into
the compare register. With a 10MHz clock the counter will increment ~610 times per
second.

How to test

After reset, the counter should increase by one every second with a 10MHz input clock.
Experiment by changing the inputs to change the counting speed.

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5

53

https://github.com/abhishek-kakkar/tt05-verilog-7seg-clock

Input Output Bidirectional
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

54

test001 [44]

• Author: dmitry
• Description: Just a Test Tiny TapeOut
• GitHub repository
• Wokwi project
• Mux address: 44
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

55

https://github.com/DmitryPustovit/tiny-tapeour-demo
https://wokwi.com/projects/380409481852161025

Hodgkin-Huxley Chip Design [45]

• Author: Ethan Mulle
• Description: Implements the Hodgkin-Huxley model
• GitHub repository
• HDL project
• Mux address: 45
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Uses a set of registers to divide the clock, and then some combinational logic to convert
from binary to decimal for the display.
Puts the bottom 8 bits of the counter on the bidirectional outputs.
With all the inputs set to 0, the internal 24 bit compare is set to 10,000,000. This
means the counter will increment by one each second.
If any inputs are non zero, then the input will be used as an bits 11 to 18 of the 24 bit
compare register. Example: setting the inputs to 00010000 will program 16384 into
the compare register. With a 10MHz clock the counter will increment ~610 times per
second.

How to test

After reset, the counter should increase by one every second with a 10MHz input clock.
Experiment by changing the inputs to change the counting speed.

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5

56

https://github.com/etmulle/ece293-chip-design

Input Output Bidirectional
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

57

Character Selector [46]

• Author: Dakota W Winslow
• Description: A circuit to output latin characters on a 7-segment display
• GitHub repository
• Wokwi project
• Mux address: 46
• Extra docs
• Clock: 1000 Hz
• External hardware:

How it works

This project displays a user-selctable character on the 7-segment display. Input DIPs
1-6 are used to select the character to display. Inputs 7 and 8 are not connected. The
display is driven one segment at a time, so a high clock rate is required to see thew
character. Characters are a mix of upper and lower case, preferring whichever is more
recognizable. See the wikipedia page on 7-segment display representations for reference
[https://en.wikipedia.org/wiki/Seven-segment_display_character_representations].

How to test

Connect the clock line to the ocillator (or press the clock button REALLY fast). Then,
use thew DIP switches to enter a 6-digit binary number corresponding to the character
to be displayed. 0-25 for a-z, then 26:[space], 27:[_], 28:[-], 29:[.], 30:[!], 31:[”]. If
only one segment is displayed, make sure your clock is set properly!

Pinout

Input Output Bidirectional
0 dip0 segment a none
1 dip1 segment b none
2 dip2 segment c none
3 dip3 segment d none
4 dip4 segment e none
5 dip5 segment f none
6 not connected segment g none
7 not connected dot none

58

https://github.com/dakotawinslow/TinyTapeout5
https://wokwi.com/projects/380408823952452609

Intructouction to PRBS [47]

• Author: Chih-Kuan Ho and David Parent
• Description: This is a simple design used to verify the design flow, so that we

can teach lower division college studdnts IC desgin.
• GitHub repository
• Wokwi project
• Mux address: 47
• Extra docs
• Clock: 10k Hz
• External hardware:

How it works

This takes a 4 bit LSFR confugred as a PRBS=X3+X2+1 Reset sets four DFF to zero
to make sure the osiclation starts. This uses XNOR because there was a synth warning
The outpus are for a 7 segment displant and the last out put is for the PRBS

How to test

Set the clock, pulse reser and it it should givne RBS stream.

Pinout

Input Output Bidirectional
0 Clock segment a none
1 Reset segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none segment PRBS none

59

https://github.com/davidparent/PRBS-ASIC
https://wokwi.com/projects/380409904919056385

tto5 Supercon Project [64]

• Author: Ryan Young
• Description: quick full adder design
• GitHub repository
• Wokwi project
• Mux address: 64
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

60

https://github.com/ryanayoung/tto5_superconsubmission001
https://wokwi.com/projects/380409081067502593

Delta Modulation Spike Encoding [65]

• Author: John Madden
• Description: Delta Modulation for Spiking Neural Networks (SNN) based on

snnTorch’s implementation.
• GitHub repository
• HDL project
• Mux address: 65
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

A spike is generated if the difference between the current and previous data inputs
is greater than a specified input threshold. The design is meant to mimic the imple-
mentation of delta modulation in the snnTorch python package. Each clock cycle is
treated as an input/output, therefore there can be consecutive spikes that appear to
be constantly high.
The input parameter, off_spike, enables spike generation when negative threshold
is exceeded. A negative spike is represented by spike[1] = 0. A positive spike is
represented by spike[0] = 1.
All numerical inputs and outputs are unsigned 4-bit integers. You are able to (1) input
the data value, the input (2) the threshold for a spike to be generated, and (3) a
value for the previous register for debugging.
The previous data register is included to be facilitate debugging with the ability to read
the current value in the register and force the register to a specific value.

How to test

The module is intended to have a digital input, such as an ADC with a parallel output
that is directly fed into the data input with a shared clk signal. The threshold is
meant to be tied to a constant value. The module outputs through spikes net.
For simpler testing, the input does not need to be matched to the clk. With the
threshold set, data can be changed and spikes can be viewed on an oscilloscope.

61

https://github.com/jmadden173/tt05-delta-modulation
https://snntorch.readthedocs.io/en/latest/snntorch.spikegen.html#snntorch.spikegen.delta

Pinout

Input Output Bidirectional
0 input threshold bit 0 spike bit 0 parameter off_spike
1 input threshold bit 1 spike bit 1 input load_prev bit
2 input threshold bit 2 nc, constant output low nc, constant output low
3 input threshold bit 3 nc, constant output low nc, constant output low
4 input data bit 0 reg prev bit 0 input force_prev bit 0
5 input data bit 1 reg prev bit 1 input force_prev bit 1
6 input data bit 2 reg prev bit 2 input force_prev bit 2
7 input data bit 3 reg prev bit 3 input force_prev bit 3

62

GameOfLife [66]

• Author: Eric Moderbacher
• Description: a single cell’s logic for conways game of life
• GitHub repository
• Wokwi project
• Mux address: 66
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

63

https://github.com/ericmoderbacher/TapeOut
https://wokwi.com/projects/380409086743445505

Reflex Game [67]

• Author: Alan
• Description: Reflex Game where
• GitHub repository
• HDL project
• Mux address: 67
• Extra docs
• Clock: 10 Hz
• External hardware:

How it works

It doesn’t. boom.

How to test

Make a test bench. boom.

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

64

https://github.com/amabraha/my_tiny_tapeout_reflex_game

Logic Gates Tapeout [68]

• Author: Alexandre Ney Guimaraes
• Description: TesteX
• GitHub repository
• Wokwi project
• Mux address: 68
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

65

https://github.com/AlexandreNeyGuimaraes/TinyTapeoutTest
https://wokwi.com/projects/380409019830656001

Stream Cipher w/ LSR (8 bit key) [69]

• Author: Fiona Fisher
• Description: Uses a stream cipher and linear shift register to encrypt a message.
• GitHub repository
• HDL project
• Mux address: 69
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Holds an internal linear shift register of eight bytes.
When encrypting, each increment of IO_0 takes in the byte currently on the inputs,
XORs it with the most recent byte stored in the LSR, and then puts it into the LSR.
When not encrypting, the message can be viewed by putting an index zero to seven on
the inputs. The output will either be the encrypted message or the decrypted message,
based on I0_2.
The LSR can only be reset with the rst_n signal. If more than sixteen bytes are inputted
into the LSR without resetting, encrypted bytes will be lost, meaning the decryption
of the last byte will not be accurate.
You can toggle between encryption and viewing the message with IO_1. You do not
have to finish inputting the message before viewing the current encryption.

How to test

Set IO_1 to high to indicate encryption. Place a number on the input. Set the IO_0
to high to put it into the LSR. Set the IO_0 to low before adding the next number.
Repeat up to seven times.
Set IO_1 to low to view the message. Use IO_2 to toggle between viewing the message
encrypted (high) or decrypted (low). Use the input to indicate the index of the message
you want to view.
Reset to place a new message on the LSR.

66

https://github.com/Fiona-CMU/streamcipher

Pinout

Input Output Bidirectional
0 bit0 bit0 inc (indicate that input to encryption is valid)
1 bit1 bit1 encrypt
2 bit2 bit2 view (high shows encrypted message, low shows decrpted message)
3 bit3 bit3 none
4 bit4 bit4 none
5 bit5 bit5 none
6 bit6 bit6 none
7 bit7 bit7 none

67

tt5modifyd [70]

• Author: HMaxMax
• Description: triple or gate
• GitHub repository
• Wokwi project
• Mux address: 70
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

68

https://github.com/HMaxMax/tt5modifyd
https://wokwi.com/projects/380409532780455937

ALU Chip [71]

• Author: Devan Grover & Siddharth Kunisetty
• Description: ALU Chip that outputs 7 Segment
• GitHub repository
• HDL project
• Mux address: 71
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

This is a simple, 4 bit ALU that outputs its result on a 7 Segment Display.

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 alu_in_1 [7:4] - First

input into the ALU
7 Segment Out [6:0]
- Output to the 7
Segment display

alu_out [7:4] (OUT) -
Output BCD value of
operation

1 alu_in_2 [3:0] -
Second input into
the ALU

None [7] - NC alu_op_in [3:0] (IN) - Input
operation for the ALU (ADD,
SUBTRACT, AND, OR,
EQUALS, NOT, GT, LT)

2 n/a n/a n/a
3 n/a n/a n/a
4 n/a n/a n/a
5 n/a n/a n/a
6 n/a n/a n/a
7 n/a n/a n/a

69

https://github.com/devgro/TinyTapeoutDemo

Tapeout Test [72]

• Author: bignug13
• Description: For Supercon 2023: Some logic gates that add things
• GitHub repository
• Wokwi project
• Mux address: 72
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Inputs 1-4 (Values: 1,2,4,8) and Inputs 5-8 (Values: 1,2,4,8) are added together and
reflected in Outputs 1-5 (Values: 1,2,4,8,16).

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

70

https://github.com/bignug13/Tapeout
https://wokwi.com/projects/380408936929183745

Calculator chip [73]

• Author: Rylan Morgan
• Description: calculator
• GitHub repository
• HDL project
• Mux address: 73
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Basic ALU. Use the input pins to specify an 8 bit number and output pins to view
result. IO pin 0 is the enter pin, assert high to enter command/value. IO pins 4-1 are
used to select the command for the ALU. IO pins 7-5 are for flags. Ops: 0x0: add 0x1:
subtract 0x2: bitwise or 0x3: bitwise and 0x4: bitwise xor 0x5: left shift by 1 0x6: right
shift by 1 (logic) 0x7: right shift by 1 (arithmetic) 0x8: 2s compliment negate 0x9:
bitwise invert 0xA: reverse bitpatern 0xB: unused 0xC: unused 0xD: unsigned input <
output 0xE: unsigned input > output 0xF: input == output

How to test

enter a bunch of numbers and ops, should work great

Pinout

Input Output Bidirectional
0 NumIn [7:0] number in NumOut [7:0] output OpIn [3:0] what op to run
1 Reset n/a Enter enter command
2 Clock n/a Flags [2:0] overflow, negative, and zero flags
3 n/a n/a n/a
4 n/a n/a n/a
5 n/a n/a n/a
6 n/a n/a n/a
7 n/a n/a n/a

71

https://github.com/rjmorgan11/tt05-rjmorgan11

Shifty Snakey [74]

• Author: poynting
• Description: Shift register snake demo
• GitHub repository
• Wokwi project
• Mux address: 74
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

72

https://github.com/poynting/tt5-shiftsnake
https://wokwi.com/projects/380409369220404225

Synth [75]

• Author: Gyanepsaa Singh
• Description: Sound synthesizer
• GitHub repository
• HDL project
• Mux address: 75
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Basic sound synthesizer module: generates sound signal, modulates it with an ASDR
envelope, and outputs it.

Pinout

Input Output Bidirectional
0 select triangle or sawtooth waveform sound output 2-bit attack
1 None n/a 2-bit decay
2 sampling frequency clock n/a 2-bit sustain
3 hold a note n/a 2-bit release
4 4 frequency selection bits n/a n/a
5 n/a n/a n/a
6 n/a n/a n/a
7 n/a n/a n/a

73

https://github.com/GyanepsaaS/TT_synth_GyanepsaaS

Sawtooth Generator [76]

• Author: Mooneer Salem
• Description: Generates sawtooth waves for use as audio.
• GitHub repository
• HDL project
• Mux address: 76
• Extra docs
• Clock: 50000000 Hz
• External hardware:

How it works

This project increments a counter from 0 to 25,000,000 and back to zero again. The
current value of this counter is then passed into a PDM modulator to generate the
output. Filtering it with a low pass filter (designed for use in the audio range, recom-
mended cutoff ~30 KHz) and then amplifying the result will result in usable audio.

How to test

Add a suitable RC low pass filter to output pin 7. This can be probed by an oscillocope
as-is. To listen to the audio, the output of the RC filter should be attached to a suitable
audio amplifier.

Pinout

Input Output Bidirectional
0 none PCM sawtooth wave

output (bit 9)
PCM sawtooth wave output
(bit 9)

1 none PCM sawtooth wave
output (bit 10)

PCM sawtooth wave output
(bit 10)

2 none PCM sawtooth wave
output (bit 11)

PCM sawtooth wave output
(bit 11)

3 none PCM sawtooth wave
output (bit 12)

PCM sawtooth wave output
(bit 12)

4 Frequency left shift
amount (in bits) –
bit 0

PCM sawtooth wave
output (bit 13)

PCM sawtooth wave output
(bit 13)

74

https://github.com/tmiw/supercon2023-ttl

Input Output Bidirectional
5 Frequency left shift

amount (in bits) –
bit 1

PCM sawtooth wave
output (bit 14)

PCM sawtooth wave output
(bit 14)

6 Frequency left shift
amount (in bits) –
bit 2

PCM sawtooth wave
output (bit 15)

PCM sawtooth wave output
(bit 15)

7 Frequency left shift
amount (in bits) –
bit 3

PDM sawtooth wave
output (needs LPF)

PDM sawtooth wave output
(needs LPF)

75

Blinking A [77]

• Author: Ariella Eliassaf
• Description: Blink an A on the 7segment display
• GitHub repository
• Wokwi project
• Mux address: 77
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

76

https://github.com/AriellaE/blinking-a
https://wokwi.com/projects/380197591775930369

Supercon 2023 [78]

• Author: Alec Probst
• Description: Supercon 2023 Tiny Tapeout Submission. Displays a white pixel

and blue background through VGA. Makes use of Cutout1’s VGA Flappy bird
code.

• GitHub repository
• HDL project
• Mux address: 78
• Extra docs
• Clock: 25MHz Hz
• External hardware: A VGA adaptor

How it works

Correctly times the signal Digital outputs for VGA

How to test

Connect to a VGA connector. Use a D2A Converter.

Pinout

Input Output Bidirectional
0 none R1 none
1 none G1 none
2 none B1 none
3 none vsync none
4 none R0 none
5 none G0 none
6 none B0 none
7 none hsync none

77

https://github.com/alecjprobst/supercon2023

Sparsity Aware Matrix Vector Multiplication [79]

• Author: Test
• Description: Count up to 10, one second at a time.
• GitHub repository
• HDL project
• Mux address: 79
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Uses a set of registers to divide the clock, and then some combinational logic to convert
from binary to decimal for the display.
Puts the bottom 8 bits of the counter on the bidirectional outputs.
With all the inputs set to 0, the internal 24 bit compare is set to 10,000,000. This
means the counter will increment by one each second.
If any inputs are non zero, then the input will be used as an bits 11 to 18 of the 24 bit
compare register. Example: setting the inputs to 00010000 will program 16384 into
the compare register. With a 10MHz clock the counter will increment ~610 times per
second.

How to test

After reset, the counter should increase by one every second with a 10MHz input clock.
Experiment by changing the inputs to change the counting speed.

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5

78

https://github.com/aidanzinn/tt05-verilog-demo-ECE183

Input Output Bidirectional
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

79

Ring Oscillator and Clock Source Switch [96]

• Author: Dave Cox
• Description: A series of NOT gates with whip outs to measure self oscillation,

and a clock switch
• GitHub repository
• Wokwi project
• Mux address: 96
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

There are two functional blocks - a ring oscillator with multiple taps, and a glitchless
clock switch.

How to test

To test the oscillator - Input 0 is input to first inverter in the oscillator. One of the
inverted outputs either 0 (slowest), 1 (mid), or 2 (fastest) should be connected to input
0. To test the clock switch - input 1 selects between clock0 (on input 2) and clock 1
(on input 3). Selected CLK appears on OUT3

Pinout

Input Output Bidirectional
0 0 Osc In 0 OSC OutSlow/segment a none
1 1 ClkSel 1 OSC OutMid/segment b none
2 2 CLK0 in 2 OSC OutFast/segment c none
3 3 Clk1 in 3 ClkOut/segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

80

https://github.com/davecoxhome/tinytapeout
https://wokwi.com/projects/380408455148316673

Matrix Vector Multiplication (Verilog Demo) [97]

• Author: Aled dela Cruz
• Description: Multiplies inputted vector by
• GitHub repository
• HDL project
• Mux address: 97
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Used to multiply a vector by a matrix. The matrix is initially filled with all zeros, but
can be set to 0s by the user. The first input switch, when flipped, will initialize a matrix
multiplication between the current set vector and the empty matrix. If the user wants
to set the matrix, it can done line by line using the second bit. Flipping the second
bit causes the current 6 right most bits to be set to a certain value in the matrix. NO
current functionality to know which row of the matrix is set

How to test

After reset, the counter should increase by one every second with a 10MHz input clock.
Experiment by changing the inputs to change the counting speed.

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

81

https://github.com/alrdelcr/tt05-verilog-alrdelcr

IDK WHAT TO DO [98]

• Author: Benjamin Meyer
• Description: Help me
• GitHub repository
• Wokwi project
• Mux address: 98
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

82

https://github.com/CrypticXVZ/LOL
https://wokwi.com/projects/380416361853146113

7-segment display logic system [99]

• Author: Abrez Hussain, Dean Xavier Batres, Nathan Chau
• Description: 7 segment display counter
• GitHub repository
• Wokwi project
• Mux address: 99
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Binary counter connected to the clock.

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

83

https://github.com/abrez2004/7segment
https://wokwi.com/projects/379319062779062273

Hardware Trojan Example [100]

• Author: Jeremy Hong
• Description: Simple hardware trojan circuit described by Ryan Cornateanu in a

medium article
• GitHub repository
• Wokwi project
• Mux address: 100
• Extra docs
• Clock: 0 Hz
• External hardware: No external hardware required, just TinyTapeout Carrier

Board

How it works

Based off of medium article by Ryan Cornateanu: ”Hardware Trojans IUnder
a Microscope https://ryancor.medium.com/hardware-trojans-under-a-microscope-
bf542acbcc29

How to test

Use DIP switches as input, 1- 4 is for normal circuit that would be considered “secure”,
and 5 - 8 for compromised circuit with embedded Hardware Trojan

Pinout

Input Output Bidirectional
0 r0_normal Output from r0_normal - r3_normal circuit none
1 r1_normal segment b not used none
2 r2_normal segment c not used none
3 r3_normal segment d not used none
4 r0_trojan segment e not used none
5 r1_trojan segment f not used none
6 r2_trojan Output from r0_trojan - r3_trojan circuit none
7 r3_trojan dot not used none

84

https://github.com/hongselectronics/HW_Trojan_hongseleco
https://wokwi.com/projects/380409568391147521
README.md

Analog Clock [101]

• Author: Justin Hui
• Description: LED controller for an Analog Clock taking a 1Hz internal clk input
• GitHub repository
• Wokwi project
• Mux address: 101
• Extra docs
• Clock: 1 Hz
• External hardware: 16 leds

How it works

increments seconds Counter for 60 sec. increments min Counter for 60 min. increments
hour counter for 12 hours
all daisy chained.
The LEDs will show the hour and the last 15min increment

How to test

connect leds to each output pin as described below
RST will set the time to 11:59.
Input Pins 7/8 are used to set the time, by toggling those it should increment the
internal clock by 1 min/hour. You should see the hour output update immediately.
The min output will only change once the next 15min increment passes
Input Pin 1 will stop the clock when high

Pinout

Input Output Bidirectional
0 none hour 12 led hour 8 led
1 stop the clock hour 1 led hour 9 led
2 none hour 2 led hour 10 led
3 none hour 3 led hour 11 led
4 none hour 4 led 0 min
5 none hour 5 led 15 min

85

https://github.com/jhui323444/tt05-submission-template-Justin-Hui-Analog-Clock
https://wokwi.com/projects/379824923824476161

Input Output Bidirectional
6 increment min counter by 1 hour 6 led 30 min
7 increment hour counter by 1 hour 7 led 45 min

86

7 segment display [102]

• Author: Shravyasai Koushik
• Description: Converts binary input up until 9 and some alphabets into 7 segment

display
• GitHub repository
• Wokwi project
• Mux address: 102
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Based on a simple logic circuit consisting of OR and AND gates.

How to test

Utilise first 4 switches as binary input from 0-15.

Pinout

Input Output Bidirectional
0 red switch board 7 segment display none
1 none none none
2 none none none
3 none none none
4 none n/a none
5 none n/a none
6 none n/a none
7 none n/a none

87

https://github.com/Shrav21/tapeouttest
https://wokwi.com/projects/380145600224164865

W_Li_10/28 [103]

• Author: Wendi Li
• Description: The circuit controls the seven segment display to diplay the authors

initial and the date the circuit is designed
• GitHub repository
• Wokwi project
• Mux address: 103
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

88

https://github.com/wendiiiiii/vlsi
https://wokwi.com/projects/379889284755158017

Supecon Gate Play [104]

• Author: Adam Chasen
• Description: One of each with some flippy floppies
• GitHub repository
• Wokwi project
• Mux address: 104
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

89

https://github.com/chaseadam/tt5
https://wokwi.com/projects/380408409844584449

ECE 183 - Integrate and Fire Network Chip Design [105]

• Author: Manju Shettar
• Description: Count up to 10, one second at a time.
• GitHub repository
• HDL project
• Mux address: 105
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

This project emulates a two-layer neural network using a series of integrate and fire
neurons defined in Verilog. The neurons accumulate incoming spikes and when their
cummulative signal surpasses a defined threshold, they generate a spike and reset their
potential.
The network is composed of two neuron layers. The first input layer accepts two 16-bit
inputs, corresponding to external stimuli or current, which the neurons of the first layer
will processes. Based on the internal states of these neurons, they may or may not fire
to generate spikes.
The spikes that are generated from the first layer are used as input to the second layer.
In this model, a spike is defined asw a binary high signal, translated into a 16-bit value
to mimic the input current standard. If there is no spike, there is no input current
(zero).
The second layer defines the neural network’s output. Each neuron in the second layer
may generate a spike, which is represented again with a bit.

How to test

Testing involves applying different input stimuli (current) and observing spiking
states.
By changing the values of ‘input1’ and ‘input2’, and observing the output layers, we
can observe different spiking outputs from the neural network.

Pinout

90

https://github.com/manjushettar/tt-183

Input Output Bidirectional
0 {‘input1[15:0]’:

“16-bit stimulus
input to the first
layer’s first neuron.”}

{‘output_layer21’:
‘Spiking status of the
first neuron in the
second layer’}

{‘uio_in’: ‘Reserved for
future use.’}

1 {‘input2[15:0]’:
“16-bit stimulus input
to the first layer’s
second neuron.”}

{‘output_layer2[0]’:
‘Spiking status of the
second neuron in the
second layer’}

n/a

2 {‘clk’: ‘Clock
signal.’}

n/a n/a

3 {‘rst_n’: “Reset
signal; when low, it
resets the neurons’
current and output
spikes.”}

n/a n/a

4 n/a n/a n/a
5 n/a n/a n/a
6 n/a n/a n/a
7 n/a n/a n/a

91

https://en.wikipedia.org/wiki/Collatz_conjecture

tto5 [106]

• Author: kl
• Description: tto5
• GitHub repository
• Wokwi project
• Mux address: 106
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

92

https://github.com/klei22/tto5
https://wokwi.com/projects/380409236812508161

REBEL-2 Balanced Ternary ALU [107]

• Author: Ole Christian Moholth and Steven Bos
• Description: This 2-trit balanced ternary ALU is part of the REBEL-2 balanced

ternary logic CPU
• GitHub repository
• HDL project
• Mux address: 107
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

WIP. This balanced ternary ALU has several operations based on a novel REBEL-2 ISA.
Operations include MIN,MAX,ADD,SUB,MUL,CMP,SHFT and can be done trit-wise
or word-wise. This project is designed, generated and verified with Mixed Radix Circuit
Synthesizer (MRCS).

How to test

There are many automated test included for MRCS. A verilog testbench for FPGA and
FPGA constraint file is WIP.

93

https://github.com/aiunderstand/tt05-REBEL2-balanced-ternary-ALU

Pinout

Input Output Bidirectional
0 ui_in[7] func2H uo_out[7] carryH uio_in[7] b0H
1 ui_in[6] func2L uo_out[6] carryL uio_in[6] b0L
2 ui_in[5] func1H uo_out[5] out1H uio_in[5] a1H
3 ui_in[4] func1L uo_out[4] out1L uio_in[4] a1L
4 ui_in[3] func0H uo_out[3] out0H uio_in[3] a0H
5 ui_in2 func0L uo_out2 out0L uio_in2 a0L
6 ui_in1 b1H uo_out1 unused uio_in1 unused
7 ui_in[0] b1L uo_out[0] unused uio_in[0] unused

94

http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Stochastic Multiplier [108]

• Author: David Parent
• Description: Creates a PRBS stream whre the probability of a 1 is the multipli-

cation of two, two bit vectors.
• GitHub repository
• Wokwi project
• Mux address: 108
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

See: P. K. Gupta and R. Kumaresan, “Binary multiplication with PN sequences,” IEEE
Trans. Acoust., vol. 36, no. 4, pp. 603–606, Apr. 1988, doi: 10.1109/29.1564.

How to test

Set A and B and clock. Toggle reset low to make sure PRBS gen starts.

Pinout

Input Output Bidirectional
0 CLK PRBS of A*B none
1 RESET PRBS of A none
2 A PRBS of B none
3 B PRBS none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

95

https://github.com/davidparent/Stochastic-Multiplier
https://wokwi.com/projects/380229599886002177

7 segment seconds - count down [109]

• Author: Jeff DiCorpo
• Description: Count down from 9, one second at a time.
• GitHub repository
• HDL project
• Mux address: 109
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Uses a set of registers to divide the clock, and then some combinational logic to convert
from binary to decimal for the display.
Puts the bottom 8 bits of the counter on the bidirectional outputs.
With all the inputs set to 0, the internal 24 bit compare is set to 10,000,000. This
means the counter will increment by one each second.
If any inputs are non zero, then the input will be used as an bits 11 to 18 of the 24 bit
compare register. Example: setting the inputs to 00010000 will program 16384 into
the compare register. With a 10MHz clock the counter will increment ~610 times per
second.

How to test

After reset, the counter should increase by one every second with a 10MHz input clock.
Experiment by changing the inputs to change the counting speed.

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5

96

https://github.com/jeffdi/tt-test

Input Output Bidirectional
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

97

TT05 Submission [110]

• Author: Alexander Whittemore
• Description: I don’t know what this project does yet but hopefully it’s cool.
• GitHub repository
• Wokwi project
• Mux address: 110
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

98

https://github.com/alexwhittemore/TT05-AlexW
https://wokwi.com/projects/380416616536542209

Leaky Integrate-and-Fire Neuron [111]

• Author: Mariana_Huerta
• Description: Implement a LIF neuron in 130 nm CMOS
• GitHub repository
• HDL project
• Mux address: 111
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Start by applying an input current injection to the LIF neuron.
This gets added to a membrane potential which decays by a factor beta over time.
When the membrane potential exceeds the threshold, a spike is triggered.

How to test

Reset the circuit to set the membrane potential to 0.
The inputs can be changed to vary the current. A higher current will result in a higher
spike rate.

Pinout

Input Output Bidirectional
0 current bit 11 membrane potential bit a spike bit 0
1 current bit 12 membrane potential bit b unspecified
2 current bit 13 membrane potential bit c unspecified
3 current bit 14 membrane potential bit d unspecified
4 current bit 15 membrane potential bit e unspecified
5 current bit 16 membrane potential bit f unspecified
6 current bit 17 membrane potential bit g unspecified
7 current bit 18 membrane potential bit h unspecified

99

https://github.com/huertma/tt05-leaky-integrate-fire-neuron

Count via LFSR [128]

• Author: Eric Smith
• Description: Count via LFSR and display on 7 segment
• GitHub repository
• Wokwi project
• Mux address: 128
• Extra docs
• Clock: 1 Hz
• External hardware:

How it works

after sync reset on io[0], send some clocks. increment count on posedge clock

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 reset_n segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

100

https://github.com/ericsmi/tt05-wokwi-lfsr-counter
https://wokwi.com/projects/379764885531576321

I2C BERT [130]

• Author: Darryl Miles
• Description: I2C Bit Error Rate Test
• GitHub repository
• HDL project
• Mux address: 130
• Extra docs
• Clock: 10000000 Hz
• External hardware: I2C Controller/RP2040

How it works

This text will be updated nearer the scheduled TT05 redistribution time (early 2024)
along with the project github README.md and gh-pages documentation. Please
regenerate your documentation.
Issue synchronous reset, ensure interface inputs are set to zero. Power-on-reset config-
uration is possible via the input pins, see documentation.
This design is an I2C peripheral that implements an 8-bit ALU over I2C. The purpose of
the ALU is to allow pattern testing to occur and read back the accumulated result.
There are a few clocking modes, the default uses SCL pin as per the standard.
Connection to I2C interface:

• uio2 = SDA (should be direct to RP2040 pin with capable mode)
• uio[3] = SCL (shouid be direct to RP2040 pin with capable mode)

When in open-drain mode the standard pull-up resistor is in the order of 4k7 to 10k
and no more than 400pF capacitance on lines. Higher speeds my require attention to
those metrics for your setup. The project is peripheral only and does not drive SCL.
So open-drain or push-pull can be used by the controller no matter the mode setup in
this project.
Power-on-reset configuration (set all zero for standard mode):

• ui_in1 sets CLOCKMUX to use divider
• ui_in2 sets PUSHPULL I2C bus mode (by default open-drain is in use)
• ui_in[3] activates DIV12 divider setup on reset (default is 10Mhz for 10Khz)
• {uio_in[7:0], ui_in[7:4]} is the DIV12 value to use

101

https://github.com/dlmiles/tt05-i2c-bert
https://dlmiles.github.io/tt05-i2c-bert/
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

The design is based around a high-speed clock, at default speed of 10MHz with
Other than the default divider setup for CLOCKMUX mode there is no restriction upon
the system clock used, other than trying to operate at low ratios of system-clock:SCL.
The design has been simulated from “6:1” upto 1000000:1. Maybe lower than 6:1 are
possible.

How to test

RP2040 code is expected to be provided to conduct testing based on simulation expec-
tations.

Pinout

Input Output Bidirectional
0 i2cSampleDivisor bit0 segment a none
1 i2cSampleDivisor bit1 segment b none
2 none segment c I2C SCL (bidi)
3 none segment d I2C SDA (bidi)
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot powerOnSense (out)

102

tt05-loopback tile with input skew measurement [132]

• Author: Eric Smith
• Description: Count up to 10, one second at a time.
• GitHub repository
• HDL project
• Mux address: 132
• Extra docs
• Clock: 10000000 Hz
• External hardware: programmable delay lines on inputs

How it works

Need to write this

How to test

Need to write this

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

103

https://github.com/ericsmi/tt05-loopback-with-skew

Flappy VGA [134]

• Author: Daniel Robinson
• Description: A simple flappy bird clone with a button input and 640x480 VGA

output. 25MHz clock required.
• GitHub repository
• HDL project
• Mux address: 134
• Extra docs
• Clock: 25000000 Hz
• External hardware: Some kind of VGA adapter needed. Compatible with Tiny

VGA PMOD. Also needs a debounced button that goes low when pressed on
ui_in[0].

How it works

There are three main modules in the design. The vgaControl module takes in the clock
and outputs the horizontal and vertical sync signals, and provides the current pixel
coordinate to the bitGen module. The gameControl module takes the button input
and updates the game state (bird position, pipe position, hole position, score, etc) each
frame. The bitGen module takes in the game state and pixel coordinate and outputs
the color that the current pixel should be.

How to test

The clock input should be set to 25MHz (or 25.179MHz, either should be
close enough). ui_in[0] should be connected to a debounced button that goes
low when pressed. The VGA output is compatible with the Tiny VGA PMOD
(https://tinytapeout.com/specs/pinouts/). Once everything is connected, a reset
may need to be triggered before normal operation. An image with a yellow square,
green pillars, and blue background should appear. Pressing the button should cause
the bird to flap and start moving towards the pipes. The goal is to go through the
gap in the pipes. Your score will count up in binary on the bidirectional pins each time
you successfully make it through a pipe.

Pinout

Input Output Bidirectional
0 Button R1 score[0]

104

https://github.com/Cutout1/tt05-flappy-vga
https://github.com/Cutout1/tt05-flappy-vga/blob/main/README.md

Input Output Bidirectional
1 none G1 score1
2 none B1 score2
3 none vsync score[3]
4 none R0 score[4]
5 none G0 score[5]
6 none B0 score[6]
7 none hsync score[7]

105

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Asynchronous Parallel Processor Demonstrator [136]

• Author: Paul Schulz
• Description: Implementation for an Asynchronous Parallel Processor
• GitHub repository
• HDL project
• Mux address: 136
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

See Github: https://github.com/PaulSchulz/tt05-async-proc
This circuit is an investigation into an asynchronous parallel processor design. (Work
in progress.)
Note: This is a very early design and doesn’t do very much.
A processing node follows the following state flow:

106

https://github.com/PaulSchulz/tt05-async-proc

• Wait for valid data;
• Process the data to produce an output value, and let neighboring nodes know

that processing in being done;
• Make the result available; and wait for more data to process.

In this example, the processing node is doing a calculation on four(4) inputs of 4 bits.
The calculation is based on a deconstruction of the the “Arctic Circle Theorem” model.
(video)
In future designs: 1) allow the processing nodes to be programmable; 2) layout a
multinode interconnected array (with global clocking); 3) investigate a clockless version;
and 4)

How to test

Reset to clear internal buffers.
Set inputs and load them into the input buffers.
Set clock to calculate result and display on outputs.
Experiment by trying different input values.

Pinout

Input Output Bidirectional
0 input bit 0 segment a (up) bit 0 (not used)
1 input bit 1 segment b (right) bit 1 (not used)
2 input bit 2 segment c bit 2 (not used)
3 input bit 3 segment d (processing) bit 3 (not used)
4 load input 1 (right) segment e bit 4 (not used)
5 load input 2 (up) segment f (left) bit 5 (not used)
6 load input 3 (left) segment g (down) bit 6 (not used)
7 load input 4 (down) dot (data ready) bit 7 (not used)

107

https://www.youtube.com/watch?v=Yy7Q8IWNfHM

Hex Countdown [138]

• Author: Jorge Gómez y Felipe Gómez
• Description: Hexadecimal countdown from F to 0
• GitHub repository
• Wokwi project
• Mux address: 138
• Extra docs
• Clock: 1 Hz
• External hardware:

How it works

Statemachine that on each clock pulse subttracts one on the 7 segment display. Start-
ing in F and finishing on 0.

How to test

Connect a 1Hz square signal as clock and by turning input 1 to 1, the counter will
start counting down stopping on 0. On reset the value will return to F.

Pinout

Input Output Bidirectional
0 Activation signal segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

108

https://github.com/fegomezmir96/Contador
https://wokwi.com/projects/380055891603379201

Matrix multiply coprocessor (8x8 1bit) [140]

• Author: Nick Hay
• Description: Implements a 1bit 8x8 matrix multiple using a systolic array.
• GitHub repository
• HDL project
• Mux address: 140
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 data 0 output 0 sayhi: outputs greeting
1 data 1 output 1 read out multiplied matrix
2 data 2 output 2 use xor rather than or
3 data 3 output 3 none
4 data 4 output 4 none
5 data 5 output 5 none
6 data 6 output 6 none
7 data 7 output 7 none

109

https://github.com/nickjhay/tt05-submission-template

Standard cell generator and tester [142]

(a) steps of generating
a standard cell layer

DUT
input

cw out

input shift register DUT output shift register

delay chain

switch clock divider ring oscillator

ct out

mode
trigger

div

(b) example cells generated
vs their foundry counterparts

(c) structure of digital design to test the custom cells

foundry mux2i_2 foundry maj3_2 foundry dlrtp_1 foundry dfrtp_1

custom mux2i_2 custom maj3_2 custom dlrtp_1 custom dfrtp_1

• Author: htfab

110

• Description: Contains a sky130 compatible standard cell generator, a few exam-
ple cells generated, and a TinyTapeout design for testing them

• GitHub repository
• HDL project
• Mux address: 142
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

This project consists of three parts:

• a standard cell generator for sky130, written in python using the gdstk library
• four example cells ready to drop into the openlane flow
• a digital design wrapping the example cells in an instrumentation framework

Cell generator
Cells are built from a discrete representation. For each layer, blocks are placed in some
tiles of a 6 × n grid. These blocks are then shifted and resized in fixed increments, and
certain pairs of adjacent blocks are connected to each other as shown in figure (a).
Generated cells are then written to gds, lef, mag & maglef files to allow using them
in the openlane flow. Verilog models and liberty characterization data have to be
created separately. Cells are designed to be mixed-and-matched with cells from the
sky130_fd_sc_hd library.
The cell generator lives in the pdk-gen directory of the source tree. The generator
itself is in skygen.py while inputs for the example cells are in cells.py.
Example cells
Four cells from the sky130_fd_sc_hd library were recreated using the generator.
They are shown in figure (b), with more detailed images in the README.md.
The pdk directory is structured in the same way as the sky130 pdk so that you can
copy its contents into $PDK_ROOT/sky130A/libs.ref/sky130_fd_sc_hd to use
the cells with openlane. Just don’t use them for anything serious, they are not that
thoroughly tested.
The subdirectories gds, lef, mag and maglef are outputs from the generator. Netlists
in spice were extracted using magic while models in verilog and characterization
data in lib were just copied from the corresponding foundry cells.
There are some quick analog tests using ngspice in the pdk-test directory.

111

https://github.com/htfab/cell-tester
https://github.com/htfab/cell-tester/blob/main/README.md
https://github.com/htfab/cell-tester/tree/main/pdk-gen
https://github.com/htfab/cell-tester/blob/main/pdk-gen/skygen.py
https://github.com/htfab/cell-tester/blob/main/pdk-gen/cells.py
https://github.com/htfab/cell-tester/blob/main/README.md
https://github.com/htfab/cell-tester/tree/main/pdk
https://github.com/htfab/cell-tester/tree/main/pdk/gds
https://github.com/htfab/cell-tester/tree/main/pdk/lef
https://github.com/htfab/cell-tester/tree/main/pdk/mag
https://github.com/htfab/cell-tester/tree/main/pdk/maglef
https://github.com/htfab/cell-tester/tree/main/pdk/spice
https://github.com/htfab/cell-tester/tree/main/pdk/verilog
https://github.com/htfab/cell-tester/tree/main/pdk/lib
https://github.com/htfab/cell-tester/tree/main/pdk-test

TinyTapeout design
A digital design wrapping the example cells in an instrumentation framework is included
in the TinyTapeout 5 shuttle.
It contains 8 copies of the structure in figure (c) with the 4 foundry cells and the 4
custom cells inserted as DUT. The ring oscillator, clock divider and switch are shared
between the copies.
For simple tests, a copy of the cell is directly attached to the inputs and one of the
outputs.
For advanced tests, a shift register is inserted in the input and output paths that can
be driven much faster than the chip IO would allow.
When mode is 0, the switch relays the trigger signal and the output shift register
performs regular rotations. This allows slow rotation from input to output through
the DUT to check the pipeline as well as preloading inputs and reading outputs of the
advanced tests.
When mode is 1, the switch gates the divided clock from the ring oscillator using the
trigger signal, and the output shift register captures the DUT output into each of its
bits according to the trigger running through a fast delay chain. So on a trigger signal
the preloaded inputs are played at the pace of the divided clock and the DUT output
is sampled into the output buffer at times indicated by the delay chain.
Verilog sources for the design are in the src directory, along with a cocotb testbench
in test.py.

How to test

Note that the outputs are in pairs that should ideally behave in the same way during
the tests below.
Test 1

• Adjust inputs 0, 1 & 2 manually and check the outputs.
• Outputs 0 & 1 (mux2i) should equal the negation of A0 (input 0) if S (input 2)

is low, and the negation of A1 (input 1) if S is high.
• Outputs 2 & 3 (maj3) should be high if at least two of inputs 0, 1 & 2 is high.
• Outputs 4 & 5 (dlrtp) should behave as a latch. If RESET_B (input 2) is low,

the output should be low as well, otherwise it should relay D (input 1) if GATE
(input 0) is high and keep its output when GATE is low.

112

https://github.com/htfab/cell-tester/tree/main/src
https://github.com/htfab/cell-tester/blob/main/src/test.py

• Outputs 6 & 7 (dfrtp) should behave as a flop. If RESET_B (input 2) is low,
it should reset into the low state. Otherwise it should save the D (input 1) state
when CLK (input 0) is low and update the output it when CLK is high.

Test 2

• Make sure the mode bit (input 3) is low.
• Adjust inputs 0, 1 & 2, and keep toggling the trigger bit (input 4).
• On each positive edge of the trigger, a set of inputs is pushed into the pipeline

and the corresponding outputs should emerge on the bidirectional pins 56 ticks
later.

Test 3

• Set the mode bit (input 3) low.
• Preload a sequence of up to 12 inputs by adjusting pins 0, 1 & 2, then toggling

the trigger bit (input 4) high and back low.
• Set the clock divider bits (inputs 5-7) as appropiate; zero should be fine for a

first test.
• Set the mode bit (input 3) high.
• Toggle the trigger bit (input 4) high and back low.
• Set the mode bit (input 3) low.
• Read out the output sequence by toggling the trigger bit (input 4) up to 44

times.

Pinout

Input Output Bidirectional
0 A0/A/GATE/CLK foundry mux2i direct foundry mux2i instrumented
1 A1/B/D custom mux2i direct custom mux2i instrumented
2 S/C/RESET_B foundry maj3 direct foundry maj3 instrumented
3 mode bit custom maj3 direct custom maj3 instrumented
4 trigger bit foundry dlrtp direct foundry dlrtp instrumented
5 clock divider bit 0 custom dlrtp direct custom dlrtp instrumented
6 clock divider bit 1 foundry dfrtp direct foundry dfrtp instrumented
7 clock divider bit 2 custom dfrtp direct custom dfrtp instrumented

113

Winner-Take-All Network (Verilog Demo) [160]

• Author: Nicholas Kuipers
• Description: Implement a WTA network
• GitHub repository
• HDL project
• Mux address: 160
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Take in an 8-bit current and parse two sets of 4 bits. Only output the 4 bits of highest
value (if equal, preference to MSB)

How to test

After reset, result values and comparator are reset to 0

Pinout

Input Output Bidirectional
0 current bit 11 membrane potential bit a spike bit 0
1 current bit 12 membrane potential bit b unspecified
2 current bit 13 membrane potential bit c unspecified
3 current bit 14 membrane potential bit d unspecified
4 current bit 15 membrane potential bit e unspecified
5 current bit 16 membrane potential bit f unspecified
6 current bit 17 membrane potential bit g unspecified
7 current bit 18 membrane potential bit h unspecified

114

https://github.com/Kuipman/tt05-wta-demo

Lion cage [161]

• Author: Axel Andersson & Per Andersson
• Description: Count up to 15 lions, moving through a tunnel between a cage and

an enclosure.
• GitHub repository
• HDL project
• Mux address: 161
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Two sensors are set in the tunnel. The sensor closest to the cage is G1, the other G2.
Only one lion can walk through the tunnel at a time. A lion is allowed to reverse in
the tunnel.
As the lion starts walking out, (G1, G2) = (1, 0), the counter increments by 1. One
of two scenarios then occurs: either the sensors read (G1, G2) = (0, 0) before it reads
(G1, G2) = (0, 1). In that case, the counter will decrement as the lion must have gone
back into the cage. Otherwise, the sensors will read (G1, G2) = (0, 1) before it reads
(G1, G2) = (0, 0), thereby letting us know that it has passed (G1, G2) = (1, 1) as
well. The counter will not change in this case.
If we read (G1, G2) = (1, 1) before reading (G1, G2) = (1, 0), we know a lion is
moving from the enclosure to the cage. We then repeat the above two cases. This
allows us to create a two state graph of the problem, transitioning from S0 to S1 on
either (G1, G2) = (1, 0) or (G1, G2) = (1, 1) and returning back on (G1, G2) = (0,
1) or (G1, G2) = (0, 0), incrementing the counter if S0->S1 on (G1, G2) = (1, 0)
and decrementing the counter if S1->S0 on (G1, G2) = (0, 0).

How to test

After reset, the counter should increase by 1 if a lion moves from the cage to the
enclosure, and the opposite if vice versa.

Pinout

115

https://github.com/Muncherkin/tt_um_muncherkin_lioncage

Input Output Bidirectional
0 G1, first sensor in tunnel segment a They do nothing.
1 G2, second sensor in tunnnel segment b n/a
2 n/a segment c n/a
3 n/a segment d n/a
4 n/a segment e n/a
5 n/a segment f n/a
6 n/a segment g n/a
7 n/a n/a n/a

116

Brain Inspired Random Dropout Circuit [162]

• Author: Kevin Sandoval
• Description: This random dropout circuit simulates a dropout mechanism that

is commonly used in neural networks for the ourpose of preventing overfitting.
• GitHub repository
• HDL project
• Mux address: 162
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

not there yet |

How to test

not there yet|

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

117

https://github.com/Ksandov4/CHIPDESIGN

Event-Based Denoising Circuit [163]

• Author: Sean Venadas
• Description: Takes an 8-bit signal with 4 parameters: x, y, p, t. When p is high,

signal is outputted and filtered to reduce noise. Otherwise, output signal is zero.
• GitHub repository
• HDL project
• Mux address: 163
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Uses a set of registers to divide the clock, and then some combinational logic to convert
from binary to decimal for the display.
Puts the bottom 8 bits of the counter on the bidirectional outputs.
With all the inputs set to 0, the internal 24 bit compare is set to 10,000,000. This
means the counter will increment by one each second.
If any inputs are non zero, then the input will be used as an bits 11 to 18 of the 24 bit
compare register. Example: setting the inputs to 00010000 will program 16384 into
the compare register. With a 10MHz clock the counter will increment ~610 times per
second.

How to test

After reset, the counter should increase by one every second with a 10MHz input clock.
Experiment by changing the inputs to change the counting speed.

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4

118

https://github.com/seanvenadas/tt05-verilog-ece183chip

Input Output Bidirectional
5 compare bit 16 segment f second counter bit 5
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

119

RAM cell test [164]

• Author: Rodolfo Sanchez
• Description: Simple test with of a memory cell
• GitHub repository
• Wokwi project
• Mux address: 164
• Extra docs
• Clock: 0 Hz
• External hardware: None

How it works

Simple test wiht

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 IN0 to IN3 - input data OUT0 - OUT3 - output data not used
1 IN4, IN5 - address selection n/a n/a
2 IN6 - write read n/a
3 n/a n/a n/a
4 n/a n/a n/a
5 n/a n/a n/a
6 n/a n/a n/a
7 n/a n/a n/a

120

https://github.com/RodSchz/tt05-RodSchz-RAMtest
https://wokwi.com/projects/378231665807713281

Classic 8-bit era Programmable Sound Generator AY-3-8913
[165]

• Author: ReJ aka Renaldas Zioma
• Description: The AY-3-8913 is a 3-voice programmable sound generator (PSG)

chip from General Instruments. The AY-3-8913 is a smaller variant of AY-3-8910
or its analog YM2149.

• GitHub repository
• HDL project
• Mux address: 165
• Extra docs
• Clock: 2000000 Hz
• External hardware: DAC (for ex. Digilent R2R PMOD), RC filter, amplifier,

speaker

How it works

This Verilog implementation is a replica of the classical AY-3-8913 programmable
sound generator. With roughly a 1500 logic gates this design fits on a single tile of
the TinyTapeout.

121

https://github.com/rejunity/tt05-psg-ay8913
README.md
https://en.wikipedia.org/wiki/General_Instrument_AY-3-8910

The goals of this project

1. closely replicate the behavior and eventually the complete design of the orig-
inal AY-3-891x with builtin DACs

2. provide a readable and well documented code for educational and hardware
preservation purposes

3. leverage the modern fabrication process

A significant effort was put into a thorough test suite for regression testing and
validation against the original chip behavior.
Chip technical capabilities

• 3 square wave tone generators
• A single white noise generator
• A single envelope generator able to produce 10 different shapes
• Chip is capable to produce a range of waves from a 30 Hz to 125 kHz, defined

by 12-bit registers.
• 16 different volume levels

Registers The behavior of the AY-3-891x is defined by 14 registers.

Register Bits used Function Description
0 xxxxxxxx Channel A Tone 8-bit fine frequency
1xxxx —//— 4-bit coarse frequency
2 xxxxxxxx Channel B Tone 8-bit fine frequency
3xxxx —//— 4-bit coarse frequency
4 xxxxxxxx Channel C Tone 8-bit fine frequency
5xxxx —//— 4-bit coarse frequency
6 ...xxxxx Noise 5-bit noise frequency
7 ..CBACBA Mixer Tone and/or Noise per channel
8 ...xxxxx Channel A Volume Envelope enable or 4-bit amplitude
9 ...xxxxx Channel B Volume Envelope enable or 4-bit amplitude
10 ...xxxxx Channel C Volume Envelope enable or 4-bit amplitude
11 xxxxxxxx Envelope 8-bit fine frequency
12 xxxxxxxx —//— 8-bit coarse frequency
13xxxx Envelope Shape 4-bit shape control

Square wave tone generators Square waves are produced by counting down the
12-bit counters. Counter counts up from 0. Once the corresponsding register value is
reached, counter is reset and the output bit of the channel is flipped producing square
waves.

122

Noise generator Noise is produced with 17-bit Linear-feedback Shift Register (LFSR)
that flips the output bit pseudo randomly. The shift rate of the LFSR register is
controller by the 5-bit counter.
Envelope The envelope shape is controlled with 4-bit register, but can take only 10
distinct patterns. The speed of the envelope is controlled with 16-bit counter. Only a
single envelope is produced that can be shared by any combination of the channels.
Volume Each of the three AY-3-891x channels have dedicated DAC that converts 16
levels of volume to analog output. Volume levels are 3 dB apart in AY-3-891x.
Historical use of the AY-3-891x
The AY-3-891x family of programmable sound generators was introduced by General
Instrument in 1978. Soon Yamaha Corporation licensed and released a very similar
chip under YM2149 name.
Both variants of the AY-3-891x and YM2149 were broadly used in home computers,
game consoles and arcade machines in the early 80ies.

• home computers: Apple II Mockingboard sound card, Amstrad CPC, Atari ST,
Oric-1, Sharp X1, MSX, ZX Spectrum 128/+2/+3

• game consoles: Intellivision, Vectrex, Amstrad GX4000
• arcade machines: Frogger, 1942, Spy Hunter and etc.

The AY-3-891x chip family competed with the similar Texas Instruments SN76489.
The original pinout of the AY-3-8913
The AY-3-8913 was a 24-pin package release of the AY-3-8910 with a number of
internal pins left simply unconnected. The goal of AY-3-8913 was to reduce complexity
for the designer and reduce the foot print on the PCB. Otherwise the functionality of
the chip is identical to AY-3-8910 and AY-3-8912.

,--._.--.
GND ---|1 24|<-- /cs*

BDIR -->|2 23|<-- a8*
BC1 -->|3 22|<-- /a9*
DA7 <->|4 21|<-- /RESET
DA6 <->|5 20|<-- CLOCK
DA5 <->|6 19|--- GND
DA4 <->|7 18|--> CHANNEL C OUT
DA3 <->|8 17|--> CHANNEL A OUT
DA2 <->|9 16| not connected
DA1 <->|10 15|--> CHANNEL B OUT
DA0 <->|11 14|<-- test*

123

https://en.wikipedia.org/wiki/Linear-feedback_shift_register
https://en.wikipedia.org/wiki/Mockingboard
https://en.wikipedia.org/wiki/Amstrad_CPC
https://en.wikipedia.org/wiki/Atari_ST
https://en.wikipedia.org/wiki/Oric
https://en.wikipedia.org/wiki/Sharp_X1
https://en.wikipedia.org/wiki/MSX
https://en.wikipedia.org/wiki/ZX_Spectrum
https://en.wikipedia.org/wiki/Intellivision
https://en.wikipedia.org/wiki/Vectrex
https://en.wikipedia.org/wiki/Amstrad_GX4000
https://www.vgmpf.com/Wiki/index.php/AY-3-8910#Games
https://en.wikipedia.org/wiki/Texas_Instruments_SN76489

test* <--|12 13|<-- VCC
`-------'

* -- omitted from this Verilog implementation

Difference from the original hardware
This Verilog implementation is a completely digital and synchronous design that dif-
fers from the original AY-3-8913 design which incorporated internal DACs and analog
outputs.
Audio signal output While the original chip had no summation The module provides
two alternative outputs for the generated audio signal:

1. digital 8-bit audio output suitable for external Digital to Analog Converter (DAC)
2. pseudo analog output through Pulse Width Modulation (PWM)

Master output channel In contrast to the original chip which had only separate
channel outputs, this implementation also provides an optional summation of the chan-
nels into a single master output.
No DC offset This implementation produces output 0/1 waveforms without DC
offset.
No /A8, A9 and /CS pins The combination of /A8, A9 and /CS pins orginially
were intended to select a specific sound chip out the larger array of devices connected
to the same bus. In this implementation this mechanism is omitted for simplicity, /A8,
A9 and /CS are considered to be tied low and chip behaves as always enabled.
Synchronous reset and single phase clock The original design employed 2 phases
of the clock and asynchronous reset mechanism for operation of the registers.
To make it easier to synthesize and test on FPGAs this implementation uses single
clock phase and synchronous reset for registers.
The reverse engineered AY-3-891x
This implementation would not be possible without the reverse engineered schematics
and analysis based on decapped AY-3-8910 and AY-3-8914 chips.

124

https://github.com/lvd2/ay-3-8910_reverse_engineered
https://github.com/lvd2/ay-3-8910_reverse_engineered
https://siliconpr0n.org/map/gi/ay-3-8910
https://siliconpr0n.org/map/gi/ay-3-8914

How to test

The data bus of the AY-3-8913 chip has to be connected to microcontroller and receive
a regular stream of commands. The AY-3-8913 produces audio output and has to be
connected to a speaker. There are several ways how the overall schematics can be
established.
8-bit parallel output via DAC One option is to connect off the shelf data parallel
Digital to Analog Converter (DAC) for example Digilent R2R Pmod to the output pins
and route the resulting analog audio to piezo speaker or amplifier.

uController AY-3-8913
,---------. ,---._.---.
| | 2 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|BC1 SEL1|<-- 0
| GPIOx|----------->|BDI | ,----------.
| GPIOx|----------->|DA0 OUT0|-------->|LSB |
| GPIOx|----------->|DA1 OUT1|-------->| |
| GPIOx|----------->|DA2 OUT2|-------->| pDAC | Headphones
| GPIOx|----------->|DA3 OUT3|-------->| or | or
| GPIOx|----------->|DA4 OUT4|-------->| RESISTOR | Buzzer
GPIOx	----------->	DA5 OUT5	-------->	ladder	/	
GPIOx	----------->	DA6 OUT6	-------->		.--/	
GPIOx	----------->	DA7 OUT7	-------->	MSB	-----	
`---------' `---------' `----------' `--` |

| `|
|

GND ---

AUDIO OUT through RC filter Another option is to use the Pulse Width Modu-
lated (PWM) AUDIO OUT pin that combines 4 channels with the Resistor-Capacitor
based low-pass filter or better the Operation Amplifier (Op-amp) & Capacitor based
integrator:

uController AY-3-8913
,---------. ,---._.---.
| | 2 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|BC1 SEL1|<-- 0
GPIOx	----------->	BDIR
GPIOx	----------->	DA0
GPIOx	----------->	DA1

125

https://digilent.com/reference/pmod/pmodr2r/start

| GPIOx|----------->|DA2 | C1
| GPIOx|----------->|DA3 | ,----||----.
| GPIOx|----------->|DA4 | | |
| GPIOx|----------->|DA5 | | Op-amp | Speaker
| GPIOx|----------->|DA6 AUDIO| | |X | /|
| GPIOx|----------->|DA7 OUT |-----+---|-X | C2 .--/ |
`---------' `---------' | }---+---||---| |

,--|+/ `--` |
| |/ | `|
| |

GND --- GND ---

Separate channels through the Op-amp The third option is to externally combine
4 channels with the Operational Amplifier and low-pass filter:

uController AY-3-8913
,---------. ,---._.---.
| | 2 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|BC1 SEL1|<-- 0
GPIOx	----------->	BDIR
GPIOx	----------->	DA0
GPIOx	----------->	DA1
GPIOx	----------->	DA2
GPIOx	----------->	DA3
GPIOx	----------->	DA4
GPIOx	----------->	DA5 A
GPIOx	----------->	DA6 B
GPIOx	----------->	DA7 C
`---------' `---------' | }---+---||---| |

,--|+/ `--` |
| |/ | `|
| |

GND --- GND ---

Summary of commands to communicate with the chip
The AY-3-8913 is programmed by updating its internal registers via the data bus. Below
is a short summary of the communication protocol of AY-3-891x. Please consult AY-
3-891x Technical Manual for more information.

126

https://github.com/rejunity/tt05-psg-ay8913/blob/main/docs/AY-3-8910_Manual.pdf
https://github.com/rejunity/tt05-psg-ay8913/blob/main/docs/AY-3-8910_Manual.pdf

BDIR BC1 Bus state description
0 0 Bus is inactive
0 1 (Not implemented)
1 0 Write bus value to the previously latched register #
1 1 Latch bus value as the destination register #

Latch register address First, put the destination register adress on the bus of the
chip and latch it by pulling both BDIR and BC1 pins high.
Write data to register Put the desired value on the bus of the chip. Pull BC1 pin
low while keeping BDIR pin high to write the value of the bus to the latched register
address.
Inactivate bus by pulling both BDIR and BC1 pins low.

Register Format Description Parameters
0,2,4 ffffffff A/B/C tone period f - low bits
1,3,5 0000FFFF —//— F - high bits
6 000fffff Noise period f - noise period
7 00CBAcba Noise / tone per channel CBA - noise off,

cba - tone off
8,9,10 000Evvvv A/B/C volume E - envelope on,

v - volume level
11 ffffffff Envelope period f - low bits
12 FFFFFFFF —//— F - high bits
13 0000caAh Envelope Shape c - continue, a -

attack, A - alternate,
h - hold

Note frequency
Use the following formula to calculate the 12-bit period value for a particular note:

𝑡𝑜𝑛𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑐𝑦𝑐𝑙𝑒𝑠 = 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(16𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

For example 12-bit period that plays 440 Hz note on a chip clocked at 2 MHz would
be:

𝑡𝑜𝑛𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑐𝑦𝑐𝑙𝑒𝑠 = 2000000𝐻𝑧/(16𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 440𝐻𝑧) = 284 = 11𝐶ℎ𝑒𝑥

An example to play a note at a maximum volume

127

BDIR BC1DA7..DA0 Explanation
1 1 xxxx0000 Latch tone A coarse register address 0 = 0000𝑏𝑖𝑛
1 0 xxxx0001 Write high 4-bits of the 440 Hz note 1 = 0001𝑏𝑖𝑛
1 1 xxxx0001 Latch tone A fine register address 1𝑑𝑒𝑐 = 0001𝑏𝑖𝑛
1 0 00011100 Write low 8-bits of the note 1𝐶ℎ𝑒𝑥 = 00011100𝑏𝑖𝑛
1 1 xxxx1000 Latch channel A volume register address 8 = 1000𝑏𝑖𝑛
1 0 xxx01111 Write maximum volume level 15𝑑𝑒𝑐 = 1111𝑏𝑖𝑛 with the

envelope disabled

Timing diagram

CLK ____ ____ ____ ____ ____ ____
__/ `____/ `____/ `____/ `____/ `____/ `____ ...
| | | | | |
| | | | | |

BDIR ______ ______ ______ ______ ______ ______
_/ `__/ `__/ `__/ `__/ `__/ `__

BC1 _______ _______ ________
_/ `___________/ `__________/ `___________

DA7..DA0_____ ________ ________ ________ ________ ________
_/ 0000 `/xxxx0001`/ 0001 `/00011100`/ 1000 `/xxx01111`

latch write latch write latch

Externally configurable clock divider

SEL1 SEL0 Description Clock frequency
0 0 Standard mode, clock divided by 8 1.7 .. 2.0 MHz
1 1 —–//—– 1.7 .. 2.0 MHz
0 1 New mode for TT05, no clock divider 250 .. 500 kHZ
1 0 New mode for TT05, clock div. 128 25 .. 50 MHz

SEL1 SEL0 Formula to calculate the 12-bit tone period value for a note
0 0 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(16𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
1 1 —–//—–
0 1 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(2𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

128

SEL1 SEL0 Formula to calculate the 12-bit tone period value for a note
1 0 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(128𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

Pinout

Input Output Bidirectional
0 DA0 - multiplexed

data/address bus
audio out (pwm) (in) BC1 bus control

1 DA1 - multiplexed
data/address bus

digita audio least
significant bit

(in) BDIR bus direction

2 DA2 - multiplexed
data/address bus

digita audio (in) SEL0 clock divider

3 DA3 - multiplexed
data/address bus

digita audio (in) SEL1 clock divider

4 DA4 - multiplexed
data/address bus

digita audio (out) channel A (PWM)

5 DA5 - multiplexed
data/address bus

digita audio (out) channel B (PWM)

6 DA6 - multiplexed
data/address bus

digita audio (out) channel C (PWM)

7 DA7 - multiplexed
data/address bus

digita audio most
significant bit

(out) AUDIO OUT master
(PWM)

129

RNN (Demo) [166]

• Author: Ridger Zhu
• Description: Count up to 10, one second at a time.
• GitHub repository
• HDL project
• Mux address: 166
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Apply an input current to an RNN hidden state, where the hidden state will multiply
with a 8x8 matrix.

How to test

After reset, the hidden state will be set to 0.
Then change the inputs to change the current. You can read the output current to
know the result.

Pinout

Input Output Bidirectional
0 current bit 11 out bit a unspecified
1 current bit 12 out bit b unspecified
2 current bit 13 out bit c unspecified
3 current bit 14 out bit d unspecified
4 current bit 15 out bit e unspecified
5 current bit 16 out bit f unspecified
6 current bit 17 out bit g unspecified
7 current bit 18 out bit h unspecified

130

https://github.com/ridgerchu/first-chip

STDP Neuron [167]

• Author: William Bodeau
• Description: A single LIF neuron with post-synaptic STDP learning.
• GitHub repository
• HDL project
• Mux address: 167
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Oh god I don’t wanna

How to test

Oh god I don’t wanna

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

131

https://github.com/Gharenthi/tt05-verilog-fork-stdp

Basic Spiking Neural Network [168]

• Author: Abhinandan singh
• Description: Study of spike generation in a SNN.
• GitHub repository
• HDL project
• Mux address: 168
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Spiking pattern of the three input neurons will be used as an input. The Spikes of the
two output neurons can be plotted on time charts. Example:

How to test

Feed in diferent spiking patterns of the input neurons (1, 2 and 3). The network will
pass the spikes in the forward direction accoding to the defined weights.

Pinout

Input Output Bidirectional
0 spike bit 11 spike bit a unspecified
1 spike bit 12 spike bit b unspecified
2 spike bit 13 unspecified unspecified
3 unspecified unspecified unspecified
4 unspecified unspecified unspecified
5 unspecified unspecified unspecified
6 unspecified unspecified unspecified
7 unspecified unspecified unspecified

132

https://github.com/abhiucsc/SNN293

8 bit floating point adder [169]

• Author: Philip Mohr
• Description: Adds two 8 Bit floating point numbers
• GitHub repository
• HDL project
• Mux address: 169
• Extra docs
• Clock: None Hz
• External hardware:

How it works

Adds two 8 bit floating point numbers under consideration of rounding and infinity
cases. The two floats use the 8 bit input and the 8 bit bidirectional input. 1 bit sign,
4 bit exponent, 3 bit mantissa.

How to test

Every clock the output should give the addition of the two floats.

Pinout

Input Output Bidirectional
0 Float a Mant[0] Float out Mant[0] Float b Mant[0]
1 Float a Mant1 Float out Mant1 Float b Mant1

133

https://github.com/BTFLV/tt05-btflv-8bit-fp-adder
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Input Output Bidirectional
2 Float a Mant2 Float out Mant2 Float b Mant2
3 Float a Exp[0] Float out Exp[0] Float b Exp[0]
4 Float a Exp1 Float out Exp1 Float b Exp1
5 Float a Exp2 Float out Exp2 Float b Exp2
6 Float a Exp[3] Float out Exp[3] Float b Exp[3]
7 Float a Sign Float out Sign Float b Sign

134

http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Perceptron Hardcoded [170]

• Author: Sathyaprakash Narayanan
• Description: Hardcoded Perceptron
• GitHub repository
• HDL project
• Mux address: 170
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Uses a set of registers to divide the clock, and then some combinational logic to convert
from binary to decimal for the display.
Puts the bottom 8 bits of the counter on the bidirectional outputs.
With all the inputs set to 0, the internal 24 bit compare is set to 10,000,000. This
means the counter will increment by one each second.
If any inputs are non zero, then the input will be used as an bits 11 to 18 of the 24 bit
compare register. Example: setting the inputs to 00010000 will program 16384 into
the compare register. With a 10MHz clock the counter will increment ~610 times per
second.

How to test

After reset, the counter should increase by one every second with a 10MHz input clock.
Experiment by changing the inputs to change the counting speed.

Pinout

Input Output Bidirectional
0 unspecified perceptron_output a unspecified
1 unspecified perceptron_output b unspecified
2 unspecified perceptron_output c unspecified
3 unspecified perceptron_output d unspecified
4 unspecified perceptron_output e unspecified
5 unspecified perceptron_output f unspecified

135

https://github.com/satabios/ttf-perceptron

Input Output Bidirectional
6 unspecified perceptron_output g unspecified
7 unspecified perceptron_output h unspecified

136

Cheap and quick STDP [171]

• Author: J. Przepioski
• Description: Due to schedule: Implement most basic functional STDP
• GitHub repository
• HDL project
• Mux address: 171
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Apply an input current injection to the LIF neuron using switches.
This gets added to a membrane potential which is decayed over time. If the membrane
potential exceeds the threshold then trigger a spike.

How to test

After reset, the membrane potential will be set to 0.
Then change the inputs to change the current. A higher current should trigger a higher
firing rate.

Pinout

Input Output Bidirectional
0 current bit 11 membrane potential bit a spike bit 0
1 current bit 12 membrane potential bit b unspecified
2 current bit 13 membrane potential bit c unspecified
3 current bit 14 membrane potential bit d unspecified
4 current bit 15 membrane potential bit e unspecified
5 current bit 16 membrane potential bit f unspecified
6 current bit 17 membrane potential bit g unspecified
7 current bit 18 membrane potential bit h unspecified

137

https://github.com/jkprz/tt05-verilog-demo

Brain-Inspired Oscillatory Network [172]

• Author: Derek Abarca
• Description: Two neuron modules interact with a synapse module to produce

rhythmic oscillations.
• GitHub repository
• HDL project
• Mux address: 172
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Fill in later

How to test

Fill in later

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

138

https://github.com/derekabarca/tt05-OscilatorNetworks

UART uwuifier [173]

• Author: Anish Singhani
• Description: Operates on a UART signal and uwuifies it
• GitHub repository
• HDL project
• Mux address: 173
• Extra docs
• Clock: 6000000 Hz
• External hardware: UART transceiver

How it works

UART interface 115200 baud at 6MHz

How to test

Connect inline with a UART

Pinout

Input Output Bidirectional
0 none none none
1 none none none
2 none none none
3 uart rx none none
4 none uart tx none
5 none none none
6 none none none
7 none none none

139

https://github.com/asinghani/uwuifier-tt05

Perceptron and basic binary neural network [174]

• Author: Connor Guzikowski
• Description: Taking in the number of curves and edges of a number, the output

is the expected number.
• GitHub repository
• HDL project
• Mux address: 174
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Takes in a 7 bit input, with the 3 leftmost bits being the number of edges of a number,
and the other bits are the numbers of curves in the number. The output has 8 bits,
separated into two halves the first half is the output of the perceptron, and the second
half is the output of the binary neural network.

How to test

After reset, the counter should increase by one every second with a 10MHz input clock.
Experiment by changing the inputs to change the counting speed.

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

140

https://github.com/connorguzi/tt05-perceptron

Leaky Integrate-and-Fire Neuron [175]

• Author: Muhammad Hadir Khan
• Description: A Leaky Integrate-and-Fire Neuron that mimics the biological neu-

ron and is configurable from the outside world
• GitHub repository
• HDL project
• Mux address: 175
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

The state machine first configures the different parameters of the neuron which is then
provided a synaptic current to read out the membrane potential and spiking of the
neuron.
The configurable parameters of the neuron are: 1) beta (which controls the decay of
the membrane potential) 2) threshold (which is used in comparison with the membrane
potential to generate a spike)

141

https://github.com/hadirkhan10/tt05-leaky-neuron

Initially, the neuron is in an IDLE state where everything remains 0. Upon configuring
the setting bits with uio_in[7:1] the state goes to BETA where the beta value of
the neuron is configured using the ui_in[7:0] bits. After which the setting bits is
again configured to make the state go to THRESH state which configures the threshold
value of the neuron. Finally, the setting bits are used to go to the READ state and
the current injection is provided with ui_in where the neuron starts to integrate the
current onto the membrane potential.
At each timestep, the membrane potential is analyzed with uo_out[7:0] and the
spike is outputted through uio_out[0].

How to test

After reset, the neuron is in the idle state and remains there unless the setting bits
are configured. Setting the uio_in[7:1] bits to 1 changes the state to BETA. After
configuring the beta value changing the setting bits to 2 takes to the THRESH state
where the threshold of the neuron is configured. Then changing the setting bits to 3
takes to the READ state where the current is integrated and the membrane potential
changes as well as the spike is outputted if the membrane potential becomes equal or
greater than the configured threshold.
Experiment by changing the beta, threshold and input current values to see how the
neuron reacts.

Pinout

Input Output Bidirectional
0 configure beta,

threshold and current
membrane potential spike output

1 configure beta,
threshold and current

membrane potential configure the state

2 configure beta,
threshold and current

membrane potential configure the state

3 configure beta,
threshold and current

membrane potential configure the state

4 configure beta,
threshold and current

membrane potential configure the state

5 configure beta,
threshold and current

membrane potential configure the state

6 configure beta,
threshold and current

membrane potential configure the state

142

Input Output Bidirectional
7 configure beta,

threshold and current
membrane potential configure the state

143

7 segment seconds [192]

• Author: Matt Venn
• Description: counts up to 9 and wraps to 0. One step per clock cycle
• GitHub repository
• Wokwi project
• Mux address: 192
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Uses SR flops and avoid combinational logic in the clock path which caused clock
glitches on the previous version.

How to test

Press the reset button, then press the clock button to advance the count.

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

144

https://github.com/mattvenn/tt05-seven-segment-seconds-wokwi
https://wokwi.com/projects/380119282165535745

UABC-ELECTRONICA [194]

• Author: UABC
• Description: Displays the word UABC-ELECTRONICA on a 7-segment display.

Each letter is displayed in a time, one by one.
• GitHub repository
• HDL project
• Mux address: 194
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Uses a set of registers to divide the clock, and then some combinational logic to convert
from binary to decimal for the display.
Puts the bottom 8 bits of the counter on the bidirectional outputs.
With all the inputs set to 0, the internal 24 bit compare is set to 10,000,000. This
means the counter will increment by one each second.
If any inputs are non zero, then the input will be used as an bits 11 to 18 of the 24 bit
compare register. Example: setting the inputs to 00010000 will program 16384 into
the compare register. With a 10MHz clock the counter will increment ~610 times per
second.

How to test

After reset, the counter should increase by one every second with a 10MHz input clock.
Experiment by changing the inputs to change the counting speed.

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4

145

https://github.com/rogeermv/UABC_ELECTRONICA_2023

Input Output Bidirectional
5 compare bit 16 segment f second counter bit 5
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

146

bytebeat [196]

• Author: proppy
• Description: Attempt implement the formula from one of the original bytebeat

video in hardware.
• GitHub repository
• HDL project
• Mux address: 196
• Extra docs
• Clock: 8000 Hz
• External hardware: 8bit pcm DAC, rotary encoder

How it works

The main module accept parameters from 4x 4-bit parameters buses and generate PCM
samples according to the following formula: ((t*a)&(t>>b))|((t*c)&(t>>d)).
Derivative of this project can easily be created by editing the formula in
src/bytebeat.x and using the XLS: Accelerated HW Synthesis toolkit to
regenerate the Verilog code. See the following notebook for more information.

147

http://countercomplex.blogspot.com/2011/10/algorithmic-symphonies-from-one-line-of.html
https://www.youtube.com/watch?v=tCRPUv8V22o
https://github.com/proppy/tt05-bytebeat
https://colab.research.google.com/gist/proppy/1258e007febb077c42ccea1d28e092c4/xls_audio_playground.ipynb
https://github.com/google/xls
https://colab.research.google.com/gist/proppy/1258e007febb077c42ccea1d28e092c4/xls_audio_playground.ipynb

How to test

• Tweak parameters pins using a absolute encoders
• Feed the data coming from the sample bus to a DAC

Pinout

Input Output Bidirectional
0 param a bit 0/3 pcm sample bit 0/7 param c bit 0/3
1 param a bit 1/3 pcm sample bit 1/7 param c bit 1/3
2 param a bit 2/3 pcm sample bit 2/7 param c bit 2/3
3 param a bit 3/3 pcm sample bit 3/7 param c bit 3/3
4 param b bit 0/3 pcm sample bit 4/7 param d bit 0/3
5 param b bit 1/3 pcm sample bit 5/7 param d bit 1/3
6 param b bit 2/3 pcm sample bit 6/7 param d bit 2/3
7 param b bit 3/3 pcm sample bit 7/7 param d bit 3/3

148

Super Mario Tune on A Piezo Speaker [197]

• Author: Milosch Meriac
• Description: Plays Super Mario Tune over a Piezo Speaker connected across

uio_out[1:0]
• GitHub repository
• HDL project
• Mux address: 197
• Extra docs
• Clock: 100000 Hz
• External hardware: Piezo speaker connected across io_out[1:0]

How it works

Converts an RTTL ringtone into verilog using Python - and plays it back using differ-
ential PWM modulation

How to test

Provide 100kHz clock on “clk” pin, briefly hit reset low (“rst_n”) and uio_out[1:0] will
play a differential sound wave over a connected piezo speaker (Super Mario)

Pinout

149

https://github.com/meriac/tt05-play-tune
https://github.com/meriac/tt05-play-tune#readme

Input Output Bidirectional
0 ui_in[0] ui_in[0] piezo_speaker_p (uio_out[0])
1 ui_in1 ui_in1 piezo_speaker_n (uio_out1)
2 ui_in2 ui_in2 GND
3 ui_in[3] ui_in[3] GND
4 ui_in[4] ui_in[4] GND
5 ui_in[5] ui_in[5] GND
6 ui_in[6] ui_in[6] GND
7 ui_in[7] ui_in[7] GND

150

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Byte Computer [198]

• Author: Rutuparn Pawar
• Description: An 8 bit turing complete computer
• GitHub repository
• HDL project
• Mux address: 198
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Byte computer is an in-order, no register file, no-cache, non-pipelined and no branch
predictor implementation of an 8-bit Turing complete computer thus making it ex-
tremely simple and small enough for TinyTapeout. The computer fetches instruction
at the address in the program counter which has an initial value of zero. The instruc-
tion is decoded and then executed followed by setting appropriate condition flags. The
program counter is incremented and the fetch -> decode -> execute process repeats
until a halt instruction is fetched and executed. See README in project repository for
waveform illustrating the fetch -> decode -> execute process.

How to test

External memory and memory control logic is required to test the design which can be
implemented using a microcontroller. The memory should be preloaded with a program
created using the available instructions and the data processed by the program. The
expected memory behaviour is to write data to memory at address indicated by the
addr signal when we signal is high and vice versa. The halt signal indicates that the
computer has encountered and ececuted a halt instruction.

Pinout

Input Output Bidirectional
0 data[7] data[7] we
1 data[6] data[6] halt
2 data[5] data[5] none
3 data[4] data[4] addr[4]
4 data[3] data[3] addr[3]

151

https://github.com/InputBlackBoxOutput/Byte-Computer
https://github.com/InputBlackBoxOutput/Byte-Computer

Input Output Bidirectional
5 data2 data2 addr2
6 data1 data1 addr1
7 data[0] data[0] addr[0]

152

http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

7 segment seconds (VHDL Demo) [199]

• Author: Matt Venn
• Description: Count up to 10, one second at a time.
• GitHub repository
• HDL project
• Mux address: 199
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Uses a set of registers to divide the clock, and then some combinational logic to convert
from binary to decimal for the display.
Puts the bottom 8 bits of the counter on the bidirectional outputs.
With all the inputs set to 0, the internal 24 bit compare is set to 10,000,000. This
means the counter will increment by one each second.
If any inputs are non zero, then the input will be used as an bits 11 to 18 of the 24 bit
compare register. Example: setting the inputs to 00010000 will program 16384 into
the compare register. With a 10MHz clock the counter will increment ~610 times per
second.

How to test

After reset, the counter should increase by one every second with a 10MHz input clock.
Experiment by changing the inputs to change the counting speed.

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5

153

https://github.com/TinyTapeout/tt05-vhdl-demo

Input Output Bidirectional
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

154

4-Bit ALU [200]

• Author: CE JMU Wuerzburg
• Description: A simple 4-Bit ALU which contains two types of adders, multipliers,

a comparator and a barrel-shifter
• GitHub repository
• HDL project
• Mux address: 200
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

The ALU contains a ripple carry adder, a carry lookahead adder, a matrix multiplier, a
wallace-tree multiplier, a comparator and a barrel-shifter. Everything is implemented
fully combinational. A 3-bit opcode is used to select the respective component.

How to test

No clock is required. The first 4 input bits a[3…0] form the first operand, the last
4 input bits b[3…0] form the second operand. The outputs s[7…0] are used for the
compuational results, the results for shifting a, or the results of comparing a with b.

155

https://github.com/CEJMU/tt05-alu

The bidirectional input bits 0, 1 and 2 are used as opcode to select the component,
c.f. Figure above. If the barrel-shifter is used, a[3…0] will be shifted, b[1…0] is used to
specify the shift width, whereas b2 selects the shift direction.

Pinout

Input Output Bidirectional
0 a[0] s[0] (1, if 𝑎 > 𝑏) opcode[0]
1 a1 s1 (1, if 𝑎 < 𝑏) opcode1
2 a2 s2 (1, if 𝑎 == 𝑏) opcode2
3 a[3] s[3] none
4 b[0] s[4] none
5 b1 s[5] none
6 b2 (0 = shift right, 1 = shift left) s[6] none
7 b[3] s[7] none

156

http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Classic 8-bit era Programmable Sound Generator SN76489
[201]

• Author: ReJ aka Renaldas Zioma
• Description: The SN76489 Digital Complex Sound Generator (DCSG) is a pro-

grammable sound generator chip from Texas Instruments.
• GitHub repository
• HDL project
• Mux address: 201
• Extra docs
• Clock: 4000000 Hz

157

https://github.com/rejunity/tt05-psg-sn76489
README.md

• External hardware: DAC (for ex. Digilent R2R PMOD), RC filter, amplifier,
speaker

How it works

This Verilog implementation is a replica of the classical SN76489 programmable sound
generator. With roughly a 1400 logic gates this design fits on a single tile of the
TinyTapeout.
The goals of this project

1. closely replicate the behavior and eventually the complete design of the orig-
inal SN76489

2. provide a readable and well documented code for educational and hardware
preservation purposes

3. leverage the modern fabrication process

A significant effort was put into a thorough test suite for regression testing and
validation against the original chip behavior.
The future work
The next step is to incorporate analog elements into the design to match the original
SN76489 - DAC for each channel and an analog OpAmp for channel summation.
Chip technical capabilities

• 3 square wave tone generators
• 1 noise generator
• 2 types of noise: white and periodic
• Capable to produce a range of waves typically from 122 Hz to 125 kHz, defined

by 10-bit registers.
• 16 different volume levels

Registers The behavior of the SN76489 is defined by 8 “registers” - 4 x 4 bit volume
registers, 3 x 10 bit tone registers and 1 x 3 bit noise configuration register.

Channel Volume registers Tone & noise registers
0 Channel #0 attenuation Tone #0 frequency
1 Channel #1 attenuation Tone #1 frequency
2 Channel #2 attenuation Tone #2 frequency
3 Channel #3 attenuation Noise type and frequency

158

https://en.wikipedia.org/wiki/Texas_Instruments_SN76489

Square wave tone generators Square waves are produced by counting down the 10-
bit counters. Each time the counter reaches the 0 it is reloaded with the corresponding
value from the configuration register and the output bit of the channel is flipped
producing square waves.
Noise generator Noise is produced with 15-bit Linear-feedback Shift Register (LFSR)
that flips the output bit pseudo randomly. The shift rate of the LFSR register is
controller either by one of the 3 hardcoded power-of-two dividers or output from the
channel #2 tone generator is used.
Attenuation Each of the four SN76489 channels have dedicated attenuation modules.
The SN76489 has 16 steps of attenuation, each step is 2 dB and maximum possible
attenuation is 28 dB. Note that the attenuation definition is the opposite of volume /
loudness. Attenuation of 0 means maximum volume.
Finally, all the 4 attenuated signals are summed up and are sent to the output pin of
the chip.
Historical use of the SN76489
The SN76489 family of programmable sound generators was introduced by Texas In-
struments in 1980. Variants of the SN76489 were used in a number of home computers,
game consoles and arcade boards:

• home computers: TI-99/4, BBC Micro, IBM PCjr, Sega SC-3000, Tandy 1000
• game consoles: ColecoVision, Sega SG-1000, Sega Master System, Game Gear,

Neo Geo Pocket and Sega Genesis
• arcade machines by Sega & Konami and would usually include 2 or 4 SN76489

chips

The SN76489 chip family competed with the similar General Instrument AY-3-8910.
The original pinout of the SN76489AN

,--._.--.
D5 -->|1 16|<-- VCC
D6 -->|2 15|<-- D4
D7 -->|3 14|<-- CLOCK

ready* <--|4 13|<-- D3
/WE -->|5 12|<-- D2
/ce* -->|6 11|<-- D1

AUDIO OUT <--|7 10|<-- D0
GND ---|8 9| not connected*

`-------'
* -- omitted from this Verilog implementation

159

https://en.wikipedia.org/wiki/Linear-feedback_shift_register
https://en.wikipedia.org/wiki/TI-99/4A
https://en.wikipedia.org/wiki/BBC_Micro
https://en.wikipedia.org/wiki/IBM_PCjr
https://en.wikipedia.org/wiki/SG-1000#SC-3000
https://en.wikipedia.org/wiki/Tandy_1000
https://en.wikipedia.org/wiki/ColecoVision
https://en.wikipedia.org/wiki/SG-1000
https://en.wikipedia.org/wiki/Master_System
https://en.wikipedia.org/wiki/Game_Gear
https://en.wikipedia.org/wiki/Neo_Geo_Pocket
https://en.wikipedia.org/wiki/Sega_Genesis
https://en.wikipedia.org/wiki/General_Instrument_AY-3-8910

Difference from the original hardware
This Verilog implementation is a completely digital and synchronous design that differs
from the original SN76489 design which incorporated analog parts.
Audio signal output While the original chip had integrated OpAmp to sum generated
channels in analog fashion, this implementation does digital signal summation and
digital output. The module provides two alternative outputs for the generated audio
signal:

1. digital 8-bit audio output suitable for external Digital to Analog Converter (DAC)
2. pseudo analog output through Pulse Width Modulation (PWM)

Separate 4 channel output Outputs of all 4 channels are exposed along with the
master output. This allows to validate and mix signals externally. In contrast the
original chip was limited to a single audio output pin due to the PDIP-16 package.
No DC offset This implementation produces output 0/1 waveforms without DC
offset.
No /CE and READY pins Chip enable control pin /CE is omitted in this design for
simplicity. The behavior is the same as if /CE is tied low and the chip is considered
always enabled.
Unlike the original SN76489 which took 32 cycles to update registers, this implemen-
tation handles register writes in a single cycle and chip behaves as always READY.
Synchronous reset and single phase clock The original design employed 2 phases
of the clock for the operation of the registers. The original chip had no reset pin and
would wake up to a random state.
To make it easier to synthesize and test on FPGAs this implementation uses single
clock phase and synchronous reset for registers.
A configurable clock divider was introduced in this implementation.

1. the original SN76489 with the master clock internally divided by 16. This clas-
sical chip was intended for PAL and NTSC frequencies. However in BBC Micro
4 MHz clock was employed.

2. SN94624/SN76494 variants without internal clock divider. These chips were
intended for use with 250 to 500 KHz clocks.

3. high frequency clock configuration for TinyTapeout, suitable for a range between
25 MHz and 50 Mhz. In this configuration the master clock is internally divided
by 128.

The reverse engineered SN76489
This implementation is based on the results from these reverse engineering efforts:

160

https://en.wikipedia.org/wiki/BBC_Micro

1. Annotations and analysis of a decapped SN76489A chip.
2. Reverse engineered schematics based on a decapped VDP chip from Sega Mega

Drive which included a SN76496 variant.

How to test

The data bus of the SN76489 chip has to be connected to microcontroller and receive
a regular stream of commands. The SN76489 produces audio output and has to be
connected to a speaker. There are several ways how the overall schematics can be
established.
8-bit parallel output via DAC One option is to connect off the shelf data parallel
Digital to Analog Converter (DAC) for example Digilent R2R Pmod to the output pins
and route the resulting analog audio to piezo speaker or amplifier.

uController SN76489
,---------. ,---._.---.
| | 4 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|D0 SEL1|<-- 0
| GPIOx|----------->|D1 | ,----------.
| GPIOx|----------->|D2 OUT0|-------->|LSB |
| GPIOx|----------->|D3 OUT1|-------->| |
| GPIOx|----------->|D4 OUT2|-------->| pDAC | Headphones
| GPIOx|----------->|D5 OUT3|-------->| or | or
| GPIOx|----------->|D6 OUT4|-------->| RESISTOR | Buzzer
| GPIOx|----------->|D7 OUT5|-------->| ladder | /|
| GPIOx|----------->|/WE OUT6|-------->| | .--/ |
`---------' | OUT7|-------->|MSB |-----| |

`---------' `----------' `--` |
| `|
|

GND ---

AUDIO OUT through RC filter Another option is to use the Pulse Width Modu-
lated (PWM) AUDIO OUT pin that combines 4 channels with the Resistor-Capacitor
based low-pass filter or better the Operation Amplifier (Op-amp) & Capacitor based
integrator:

uController SN76489
,---------. ,---._.---.
| | 4 Mhz ->|CLK SEL0|<-- 0

161

https://github.com/gchiasso/76489A-analysis
https://github.com/emu-russia/SEGAChips/tree/main/VDP/PSG
https://digilent.com/reference/pmod/pmodr2r/start

| GPIOx|----------->|D0 SEL1|<-- 0
| GPIOx|----------->|D1 |
| GPIOx|----------->|D2 |
| GPIOx|----------->|D3 | C1
| GPIOx|----------->|D4 | ,----||----.
| GPIOx|----------->|D5 | | |
| GPIOx|----------->|D6 | | Op-amp | Speaker
| GPIOx|----------->|D7 AUDIO| | |X | /|
| GPIOx|----------->|/WE OUT |-----+---|-X | C2 .--/ |
`---------' `---------' | }---+---||---| |

,--|+/ `--` |
| |/ | `|
| |

GND --- GND ---

Separate channels through the Op-amp The third option is to externally combine
4 channels with the Operational Amplifier and low-pass filter:

uController SN76489
,---------. ,---._.---.
| | 4 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|D0 SEL1|<-- 0
| GPIOx|----------->|D1 |
| GPIOx|----------->|D2 |
| GPIOx|----------->|D3 | C1
| GPIOx|----------->|D4 | ,----||----.
| GPIOx|----------->|D5 chan0|---. | |
| GPIOx|----------->|D6 chan1|---+ | Op-amp | Speaker
| GPIOx|----------->|D7 chan2|---+ | |X | /|
| GPIOx|----------->|/WE chan3|---+--+---|-X | C2 .--/ |
`---------' `---------' | }---+---||---| |

,--|+/ `--` |
| |/ | `|
| |

GND --- GND ---

Summary of commands to communicate with the chip
The SN76489 is programmed by updating its internal registers via the data bus. Be-
low is a short summary of the communication protocol of SN76489. Please consult
SN76489 Technical Manual for more information.

162

https://github.com/rejunity/tt05-psg-sn76489/blob/main/docs/SN76489AN_Manual.pdf

Command Description Parameters
1cc0ffff Set tone fine frequency f - 4 low bits, c - channel #
00ffffff Follow up with coarse

frequency
f - 6 high bits

11100bff Set noise type and
frequency

b - white/periodic, f - frequency control

1cc1aaaa Set channel attenuation a - 4 bit attenuation, c - channel #

NF1 NF0 Noise frequency control
0 0 Clock divided by 512
0 1 Clock divided by 1024
1 0 Clock divided by 2048
1 1 Use channel #2 tone frequency

Write to SN76489 Hold /WE low once data bus pins are set to the desired values.
Pull /WE high before setting different value on the data bus.
Note frequency
Use the following formula to calculate the 10-bit period value for a particular note :

𝑡𝑜𝑛𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑐𝑦𝑐𝑙𝑒𝑠 = 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(32𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

For example 10-bit value that plays 440 Hz note on a chip clocked at 4 MHz would
be:

𝑡𝑜𝑛𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑐𝑦𝑐𝑙𝑒𝑠 = 4000000𝐻𝑧/(32𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 440𝐻𝑧) = 284 = 11𝐶ℎ𝑒𝑥

An example to play a note accompanied with a lower volume noise

/WE D7 D6/5 D4..D0 Explanation
0 1 00 01100 Set channel #0 tone low 4-bits to 𝐶ℎ𝑒𝑥 = 1100𝑏𝑖𝑛
0 0 00 10001 Set channel #0 tone high 6-bits to

11ℎ𝑒𝑥 = 010001𝑏𝑖𝑛
0 1 00 10000 Set channel #0 volume to 100%, attenuation

4-bits are 0𝑑𝑒𝑐 = 0000𝑏𝑖𝑛
0 1 11 00100 Set channel #3 noise type to white and divider to

512

163

/WE D7 D6/5 D4..D0 Explanation
0 1 11 11000 Set channel #3 noise volume to 50%, attenuation

4-bits are 8𝑑𝑒𝑐 = 1000𝑏𝑖𝑛

Timing diagram

CLK ____ ____ ____ ____ ____ ____
__/ `____/ `____/ `____/ `____/ `____/ `___ ...
| | | | | |
| | | | | |

/WE _ __ __ __ __ _______
`_____/ `______/ `______/ `______/ `______/ *

^
D7..D0_______ ________ ________ ________ ________ |

/10001100 00010001 10010000 11100100 11111000`|______
chan#0 chan#0 chan#0 chan#3 chan#3 |

tone=h??C =h11C atten=0 div=16 atten=8 |
h011C = 440 Hz /16 = ~1 Khz |

white noise |
|

noise restarts
after /WE goes high and

there was a write to noise register

Configurable clock divider
Clock divider can be controlled through SEL0 and SEL1 control pins and allows to
select between 3 chip variants.

SEL1 SEL0 Description Clock frequency
0 0 SN76489 mode, clock divided by 16 3.5 .. 4.2 MHz
1 1 —–//—– 3.5 .. 4.2 MHz
0 1 SN76494 mode, no clock divider 250 .. 500 kHZ
1 0 New mode for TT05, clock div. 128 25 .. 50 MHz

164

SEL1 SEL0 Formula to calculate the 10-bit tone period value for a note
0 0 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(32𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
1 1 —–//—–
0 1 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(2𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
1 0 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(256𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

Some examples of music recorded from the chip simulation

• https://www.youtube.com/watch?v=ghBGasckpSY
• https://www.youtube.com/watch?v=HXLAdA02I-w

Pinout

Input Output Bidirectional
0 D0 data bus digital audio LSB (in) /WE write enable
1 D1 data bus digital audio (in) SEL0 clock divider
2 D2 data bus digital audio (in) SEL1 clock divider
3 D3 data bus digital audio (out) channel 0 (PWM)
4 D4 data bus digital audio (out) channel 1 (PWM)
5 D5 data bus digital audio (out) channel 2 (PWM)
6 D6 data bus digital audio (out) channel 3 (PWM)
7 D7 data bus digital audio MSB (out) AUDIO OUT master (PWM)

165

Miniature Programmable Interrupt Timer [202]

• Author: Steve Jenson
• Description: When the given 16-bit counter reaches 0 an interrupt pin is asserted

for one clock cycle.
• GitHub repository
• HDL project
• Mux address: 202
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

A minimal clone of a programmable interrupt timer. Inspried by the Intel 8253 but
without most of the features or headaches. See the README.md for detailed documen-
tation.

How to test

set input pins to 0x00. pull write enable high, address line 0 low, address line 0 low.
set input pins to 0x10, pull write enable high, address line 0 low, address line 1 high.
pull bidi pin 3 (timer_start) high, count 10 clock cycles and see if the interrupt pin
has pulled high for 1 cycle

Pinout

Input Output Bidirectional
0 config[0] - use a clock divider divider on? /we write enable for config
1 config1 - repeat the interrupt? counter set? set config address 0
2 config2 pit active? set config address 1
3 config[3] pit in reset? start the timer
4 config[4] pit currently interrupting? none
5 config[5] f none
6 config[6] g none
7 config[7] h none

166

https://github.com/stevej/tt05-minipit-stevej
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

7-segment Name Display [203]

• Author: Gerry Chen
• Description: Displays names on the 7-segment display one at a time.
• GitHub repository
• HDL project
• Mux address: 203
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Uses a counter to display names on a 7-segment display.
A clock divider slows down the segments to 1 per second (default) as in the 7-segment
counter template project. The bottom 8-bits of the counter are output on the bidirec-
tional outputs. The bottom-5 bits of the dedicated inputs define how fast the clock
divider is: if non-zero, this formula is used for the wraparound value of the divider:
{ui_in[4:2], 18’b0, ui_in[1:0]}. Setting the input to 0bxxx00001 will therefore have
clock divider of 1 (i.e. match the clock) so that a manual debounced push-button can
be used in place of the clock.
Each second, one letter of a name is displayed. The top 3-bits of the dedicated inputs
define which name is displayed.

How to test

After reset, a new letter should displayed each second with a 10MHz input clock.
Changing the 3 MSB of the input should change which name is displayed. Changing
the 5 LSB of the input should change how quickly the letters are updated.

Pinout

Input Output Bidirectional
0 name bit 2 segment a second counter bit 0
1 name bit 1 segment b second counter bit 1
2 name bit 0 segment c second counter bit 2
3 clock divider bit 23 segment d second counter bit 3
4 clock divider bit 22 segment e second counter bit 4

167

https://github.com/gchenfc/Gerrys-Custom-ASIC-tt05
https://github.com/gchenfc/Gerrys-Custom-ASIC-tt05

Input Output Bidirectional
5 clock divider bit 21 segment f second counter bit 5
6 clock divider bit 1 segment g second counter bit 6
7 clock divider bit 0 dot second counter bit 7

168

Tetris [204]

• Author: Carson Swoveland
• Description: Implements the second-most-popular game of all time in hardware
• GitHub repository
• HDL project
• Mux address: 204
• Extra docs
• Clock: 6250000 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 Move Left VGA HSync A0/D0
1 Move Down VGA VSync A1/D1
2 Move Left VGA Red A2/D2
3 Spin Counterclockwise VGA Green A3
4 Spin Clockwise VGA Blue A4
5 none Memory Start A5
6 none Memory Continue none
7 none Memory Write Enable none

169

https://github.com/SuperTails/tt-tetris

Simple_Timer-MBA [205]

• Author: Morteza Biglari-Abhari
• Description: Count up to the specified value (between 01 to 99), one second at

a time. Time_Out will be ‘1’ when reaches the expected value
• GitHub repository
• HDL project
• Mux address: 205
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

This is a two-digits timer, which can count from 00 to 99 in seconds. The time to stop
counting is given through 8 input switches (ui_in) as two BCD numbers (which can be
from 00 to 99). This number is loaded into an internal register when input Load is ‘1’.
Then when input Start is ‘1’ the counting begins. The timer stops when it reaches the
specified count number and then output Time_Out will become ‘1’. Seconds (either
Ones or Tens) is displayed on 7-Seg display depending on uio_in[3].

How to test

After reset, when Start and Load inputs are activated the counter should increase by
one every second with a 10MHz input clock. Experiment by changing the inputs to
count different number of seconds

Pinout

Input Output Bidirectional
0 Timeout (in Seconds) bits 7 to 0 segment a Load bit 0 (uio_in[0])
1 n/a segment b Start bit 1 (uio_in1)
2 n/a segment c Tens or Ones select bit 3 (uio_in[3])
3 n/a segment d Time_Out uio_out[7]
4 n/a segment e n/a
5 n/a segment f n/a
6 n/a segment g n/a
7 n/a dot n/a

170

https://github.com/mabhari/tt05-my_simple_timer
https://en.wikipedia.org/wiki/Collatz_conjecture

UART Transceiver [206]

• Author: Nathan Zhu
• Description: UART Transceiver with tx and rx functions at 9600 baud rate
• GitHub repository
• HDL project
• Mux address: 206
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Given paramaters of the clock frequency and the desired baud rate, we can calculate
the number of ticks of the clock to correspond to a tick at the desired baud rate. Then
we can send the start bit, 8 data bits, and a stop bit. Our design uses oversampling to
get the value at the middle of the pulse, and then returns our data bit with a read_done
signal. For the transmitter, we take a data byte of input and, using the pulse width
calculated earlier, send a proper UART sequence with the correct timing.

How to test

After reset, the receiver will wait for the start bit, and then 8 data bits, and then a
stop bit. After reset, we can set the 8 data bits and a data_ready bit and the resulting
uart transmission sequence will appear on the tx output signal.

Pinout

Input Output Bidirectional
0 rx bit to signal the

bits we receive,
dataReady
highlighting data is
ready for tx

segment a /
dataOut[0] / tx for
uart packet bits

finished_read - finished
reception / dataIn[0]

1 none segment b /
dataOut1

dataIn1

2 none segment c /
dataOut2

dataIn2

171

https://github.com/njzhu/tt05_uart_transceiver
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
3 none segment d /

dataOut[3]
dataIn[3]

4 none segment e /
dataOut[4]

dataIn[4]

5 none segment f /
dataOut[5]

dataIn[5]

6 none segment g /
dataOut[6]

dataIn[6]

7 bit to test if we want
tx or rx

segment h /
dataOut[7]

dataIn[7]

172

AGL CorticoNeuro-1 [207]

• Author: Arfan Ghani
• Description: Information is encoded as a sequence of events or spikes in neuro-

inspired computing. Investigating how information is represented and processed
as spike trains is of particular interest. This chip implements several test clusters
featuring various spike trains.

• GitHub repository
• Wokwi project
• Mux address: 207
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

The input clock is connected with the inputs of the neuron clusters. The bi-directional
pins are provided where external input stimulus could be provided. The raster spiking
plots are generated to observe the variability of different spiking neuron clusters.

How to test

Provide input clock frequencies to the neuron clusters and observe the output through
the oscilloscope.

Pinout

Input Output Bidirectional
0 CLOCK Attached to

the on-board clock
OUT0 on-board
CLOCK

D0 OUTPUT from a 1-bit
FF

1 INO Connected with
a 1-bit FF

OUT1 Output from
the LFSR

D7 OUTPUT from (1x3x3)
cluster

2 IN1 external input to
the MUX

OUT2 Output from
2-bit FF

D1 OUTPUT from the
(5X5) cluster

3 IN2 Enable signal to
the MUX

OUT3 Output from
3-bit FF

D2 OUTPUT from (6x6x6)
cluster

173

https://github.com/arfanghani/tt05-submission-AGhani
https://wokwi.com/projects/376553022662786049

Input Output Bidirectional
4 IN3 Connected as a

SELECT pin for the
MUX (connected
with (1x3x2x1) and
(6x6x6) cluster.

OUT4 Output from
4-bit FF

D3 OUTPUT from (6x6x6)
cluster

5 IN4 Input to the
(6x6x6) cluster

OUT5 Output from
5-bit FF

D4 connected as an
OUTPUT pin from either
the (6x6x6) cluster or the
(1x3x2x1) cluster (where IN3
is the input select pin)

6 IN5 Input to the
(6x6x6) cluster

OUT6 Output from
6-bit FF

D5 INPUT to the (6x6x6)
cluster

7 IN6 Input to the
(6x6x6) cluster

OUT7 MUX output) D6 INPUT to the (6x6x6)
cluster

174

Leaky-Integrated Fire Neuron [224]

• Author: Ruhai Lin
• Description: Adaptive LIF Neuron
• GitHub repository
• HDL project
• Mux address: 224
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

When a LIF (Leaky - Integrate and Fire) neuron integrates enough current stimulation,
it will be activated and Fire once spike. This current is introduced by the 8-bit chip input
pin, but while integrating, the LIF neuron gradually loses the previously accumulated
current like an hourglass, so it is called Leaky. this module implements this biological
behavior with a mathematical equation. The state of the neuron can be monitored
externally through the 8-bit chip output pins.
The LIF neuron module also includes adaptive threshold and adaptive decay rate to
dynamically adjust its own fire threshold or decay rate. The adaptive threshold can be
enabled by setting bit 0 of the bidirectional IO, and the adaptive decay rate can be
enabled by setting bit 1 of the bidirectional IO. simulations show that this allows the
LIF neuron to enhance the sparsity of spikes while preserving the input features, which
improves the efficiency of the chip.

How to test

LIF neurons will receive current inputs in three different gears (strong, medium, and
weak). The spike rate should be higher when the current is stronger and lower when the
current is weaker. After turning on adaptive threshold and adaptive decay rate the chip
needs to retain this feature while trying to enhance sparsity to avoid neurons that fire
frequently or not at all, to make it consistent with realistic biological characteristics.

Pinout

Input Output Bidirectional
0 current bit 11 membrane a adaptive_threshold_enable bit 0

175

https://github.com/ruhai-lin/tt05-lif-demo

Input Output Bidirectional
1 current bit 12 membrane b adaptive_beta_enable bit 1
2 current bit 13 membrane c second counter bit 2
3 current bit 14 membrane d second counter bit 3
4 current bit 15 membrane e second counter bit 4
5 current bit 16 membrane f second counter bit 5
6 current bit 17 membrane g second counter bit 6
7 current bit 18 membrane h spike bit 7

176

MyUART [225]

• Author: LogicComputing
• Description: A small UART that outputs my name
• GitHub repository
• HDL project
• Mux address: 225
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

This design contains a small UART that will output a string every ~1s. No input is
required. It expect a 10 MHz clock.

How to test

You simply need to connect an UART RX on uo_out[0] and you will see my name !
UART is 115200 baud, one start bit, eight bit of data, one parity bit and one stop bit.
I generate a sinus signal on uo_out[7:1].

Pinout

Input Output Bidirectional
0 none {‘uo_out[0]’: ‘UART with my name every ~1s.’} none
1 none {‘uo_out[7:1]’: ‘A sinus is generated.’} none
2 none n/a none
3 none n/a none
4 none n/a none
5 none n/a none
6 none n/a none
7 none n/a none

177

https://github.com/LogicComputing/tt05-myUART

UART test [226]

• Author: Rodolfo Sanchez Fraga
• Description: UART test
• GitHub repository
• Wokwi project
• Mux address: 226
• Extra docs
• Clock: 0 Hz
• External hardware: UART receiver

How it works

This project is an edited version of the example CUSTOMISABLE DESIGN - UART
from digital design guide. Implements a a UART transmitter using registers made from
D-flip flops and multiplexers. The characters QSM are sent continuously.

How to test

To begin transmission:

1. Connect CLK signal
2. Set IN6 (“Load”) to OFF
3. Set IN7 (“Output Enable”) to ON
4. Set IN6 (“Load”) to ON

Pinout

Input Output Bidirectional
0 IN6 - Load TX OUT0 - Output enable indicator
1 IN7 - Output enable OUT1 - Load TX indicator
2 n/a n/a n/a
3 n/a n/a n/a
4 n/a n/a n/a
5 n/a n/a n/a
6 n/a n/a n/a
7 n/a n/a n/a

178

https://github.com/RodSchz/tt05-RodSchz-uart_test
https://wokwi.com/projects/380438365946734593

Heart Rhythm Analyzer [227]

• Author: Nissan Kunju
• Description: The design integrates a threshold-based filtering mechanism fol-

lowed by peak detection on the filtered data.
• GitHub repository
• HDL project
• Mux address: 227
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

The peak detection module implements a peak detection circuit that checks for the
occurrence of a peak in the input data stream over three consecutive clock cycles. The
threshold filtering module is a threshold filter that processes the input data based on
the threshold and higher flag, and then passes it to the peak detection module. The
clock divider module divides the input clock signal by 2 to generate a new clock signal
clk2. Example: setting the inputs to 00010000 will program 16384 into the compare
register. With a 10MHz clock the counter will increment ~610 times per second.

How to test

Keep the reset at 0 for two clock pulses. Change the reset to 1. Set the threshold pin
to 1 and send the lower four bits first. Set the higher pin to 1 and send the higher four
bits. Switch the threshold to 0. Alternate between sending the lower and higher four
bits as inputs.

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5
6 compare bit 17 segment g second counter bit 6

179

https://github.com/tkmceberl/tt05-tkm-heart

Input Output Bidirectional
7 compare bit 18 dot second counter bit 7

180

Spike-timing dependent plasticity (Verilog Demo) [228]

• Author: Binh Nguyen
• Description: Update neuron weight using spike-timing dependent plasticity
• GitHub repository
• HDL project
• Mux address: 228
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Uses a set of registers to implement a leaky integrate-and-fire (LIF) neuron for spike-
timing dependent plasticity learning (STDP) rule. Two LIF neurons are instantiated
and a stdp module handles the logic for the timing and weight update.

How to test

After reset, a current is applied at different amplitudes and the input to the neuron
is integrated at every clock cycle If a pre-synaptic spike and post-synaptic spike oc-
curs, time difference is measured and applied to the synatic weight update for this
connection.

Pinout

Input Output Bidirectional
0 drive current LIF spike second counter bit 0
1 n/a LIF state second counter bit 1
2 n/a synaptic weight second counter bit 2
3 n/a n/a second counter bit 3
4 n/a n/a second counter bit 4
5 n/a n/a second counter bit 5
6 n/a n/a second counter bit 6
7 n/a n/a second counter bit 7

181

https://github.com/howyoubinh/tt05-stdp-demo

Tiny Tapeout 5 TM project1 [229]

• Author: Miho Yamada
• Description: counter
• GitHub repository
• Wokwi project
• Mux address: 229
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

182

https://github.com/keropiyo/tt05-submission-template
https://wokwi.com/projects/380465686251921409

Thermocouple-to-temperature converter (digital backend)
[230]

• Author: Aidan Medcalf
• Description: Converts digitized thermocouple voltage into temperature.
• GitHub repository
• HDL project
• Mux address: 230
• Extra docs
• Clock: 10000000 Hz
• External hardware: Thermocouple AFE with compatible ranging, for chosen

thermocouple type

How it works

Converts 10-bit thermocouple ADC counts into temperature by approximating the
transfer function with piecewise linear segments and interpolating.

• Interface: SPI (16-bit word)
• ADC interface: SPI (16-bit word, 10 bits used)
• Output: Temperature in “centi-celsius”, predivided by 4; 16-bit over full positive

range of thermocouple type
• ADC passthrough: When enabled, directly connects SPI master to ADC for

configuration
• Type-J and type-K thermocouples supported

ADC range: 0 counts = 0 mV = 0 C, max counts (1023) = max mV = max C.
Example: For type-K thermocouple, 1023 counts = 54.886 mV = 1372 C
Temperature output: Output is in “centi-Celsius”, or hundredths of degrees C, pre-
divided by 4, with a granularity of 0.4C. T = A / 25.0 Where T is in degrees C, and
A is the value read from SPI. For example, for a type-K thermocouple at 415.06C, A
= 10376 (0x2888), and T = 415.04. Note the error of 0.02C.
Configuration: There are two configuration bits. Write to cfg[1:0] by issuing a SPI
transaction with the high bit set (i.e. write 0x800X).

• cfg1: Thermocouple type: 0 = J, 1 = K
• cfg[0]: ADC passthrough enable

183

https://github.com/AidanMedcalf/tt05-thermocouple
https://github.com/AidanMedcalf/tt05-thermocouple/blob/main/README.md
https://en.wikipedia.org/wiki/Collatz_conjecture

How to test

Requires a J or K thermocouple analog front-end with compatible ranging. Wait 20
clocks after reset, then read 16-bit temperaute from device.

Pinout

Input Output Bidirectional
0 unused unused SCE
1 unused unused SIN
2 unused unused SOUT
3 unused unused SCK
4 unused unused ADC_SCE
5 unused unused ADC_SOUT
6 unused unused ADC_SIN
7 unused unused ADC_SCK

184

Naive 8-bit Binary Counter [231]

• Author: Sean Bruton
• Description: A simple 8-bit binary counter
• GitHub repository
• Wokwi project
• Mux address: 231
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Eight D flip flops chained together count the clock input and use the 8 outputs to
represent the binary value. The counter lacks useful features like a deterministic initial
state or a reset function. This was constructed during the Hackaday Supercon 2023
ASIC workshop as a rapid learning exercise.

How to test

Pulse the clock and monitor the outputs for the binary value.

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

185

https://github.com/sbruton/asic-poc
https://wokwi.com/projects/380412382001715201

tinyscanchain Test Design [232]

• Author: Anish Singhani
• Description: Test design for tinyscanchain, based on seven segment seconds

design
• GitHub repository
• HDL project
• Mux address: 232
• Extra docs
• Clock: 1000 Hz
• External hardware:

How it works

tinyscanchain is a scan-chain implementation in less than 80 lines of Python. This is
a test design based on the use of seven segment seconds.

How to test

After reset, the counter should increase by one every second with a 1kHz input clock.
Experiment by changing the inputs to change the counting speed. Use the scan chain
to test the internal state of the design.

Pinout

Input Output Bidirectional
0 enable segment a unused
1 scan chain input segment b unused
2 scan chain enable segment c unused
3 unused segment d unused
4 unused segment e unused
5 unused segment f unused
6 unused segment g unused
7 unused scan chain output unused

186

https://github.com/asinghani/tinyscanchain-tt05

6 digit chronometer. [233]

• Author: Carlos Guerra & Marco Gurrola
• Description: 6 digit chronometer. Displays 2 digits for minutes, 2 digits for

seconds and 2 digits for hundredths of a second.
• GitHub repository
• HDL project
• Mux address: 233
• Extra docs
• Clock: Hz
• External hardware: You need six 7 segment common cathode displays, push

buttons.

How it works

The project consists of a 50 MHz chronometer in which minutes, seconds and hun-
dredths of a second are shown through six 7 segment displays. It can be initialized or
paused pressing the start button, pressing the reset button will cause it to restart the
counter.

How to test

For testing the chronometer project connect push buttons to the reset and bt_ent
(start button) inputs. It is designed to work with six 7 segment common cathode dis-
plays. Unidirectional output pins must be connected to displays cathodes. Bidirectioanl
output pin must be connected to displays anodes.

Pinout

Input Output Bidirectional
0 bt_ent (start button) Display cathode 1 Segment a
1 reset Display cathode 2 Segment b
2 clk Display cathode 3 Segment c
3 n/a Display cathode 4 Segment d
4 n/a Display cathode 5 Segment e
5 n/a Display cathode 6 Segment f
6 n/a n/a Segment g
7 n/a n/a dot

187

https://github.com/CarlosGS99/Chronometer_UdG

Convolutional Network Circuit Chip Design [234]

• Author: Rogelio Franco
• Description: Silicon Chip design of a CNN
• GitHub repository
• HDL project
• Mux address: 234
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Explain how the project works later…

How to test

After reset, the counter should increase by one every second with a 10MHz input clock.
Experiment by changing the inputs to change the counting speed.

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

188

https://github.com/suhrojo/ConvolutionalNC-Design

Matrix Vector Multiplication Accelerator [235]

• Author: Mathias Eriksen
• Description: This project takes in a 3x3 weight matrix in Compressed Sparse Row

format, value is quantized and 8 bits long. It also takes in the corresponding 3
bit spike train. It then computes the matrix vector multiplication product and
outputs the resulting vector on the output line

• GitHub repository
• HDL project
• Mux address: 235
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Uses a set of registers and flags from the CPU to fetch the weight matrix in CSR
format as well as the spike train. The values are passed in one at a time, and the entire
matrix is loaded into registers that are internal to the IC
Once the full sparse matrix and spike train are loaded in, an algorithm is used to
compute the resultant vector of the matrix vector multiplication of the weight matrix
and the spike train
Finally, the output vector is transmitted on the output line, along with a flag bit which
flips each time a new value is sent out.

How to test

After reset, send values in CSR format using the input bits described below. Send a
value by toggling the sending CPU flag for one clock cycle while the values are in their
respective registers. Repeat for the entire matrix, toggling the sending CPU flag low
between each value. Then, check the return values by waiting for the sending out flag
from the IC to flip. After the first flip, the other two values will be sent on each clock
edge.

Pinout

Input Output Bidirectional
0 Input Value bit 0 Output Value bit 0 FETCH Ready flag (out)

189

https://github.com/MathiasTEriksen/tt05-SparcityAware

Input Output Bidirectional
1 Input Value bit 1 Output Value bit 1 Sending out flag (out)
2 Input Value bit 2 Output Value bit 2 Done sending flag (in)
3 Input Value bit 3 Output Value bit 3 Sending CPU flag (in)
4 Input Value bit 4 Output Value bit 4 Column Value bit 0
5 Input Value bit 5 Output Value bit 5 Column Value bit 1
6 Input Value bit 6 Output Value bit 6 Row Value bit 0
7 Input Value bit 7 Output Value bit 7 Row Value bit 1

190

Perceptron (Neuromeme) [236]

• Author: Dylan Louie
• Description: A perceptron or a 9 + 10 adder
• GitHub repository
• HDL project
• Mux address: 236
• Extra docs
• Clock: Hz
• External hardware:

How it works

Reads from two 8-bit input and creates a weighted sum
of the 16 bits.
The 8-bit wieights are default 10000000 and are unuptatable. (10000000 represents
0.5 if the you conceptualize a . on the far left or represents 128 if you conceptualize a
. on the far right)
If the weighted sum is greater than the threshold, 11111110, than it will classify the
input as 1 otherwise it will classify it as 0.
9 + 10 = 21
Credit/Thanks to my Professor: UCSC’s Neuromorphic Lab’s Jason K Eshraghian
Ph.D.

How to test

Any input with all 0’s should be classified as 0.
Math:
Note: The threshold is 11111110 which can be thought of as 0.99993896484
w0i0 + w1i1 + … + w15*i15
0.50 + 0.50 + … + 0.5*0 = 0
Any input with fifteen 0’s and one 1’s should be classified as 0.
Math:
w0i0 + w1i1 + … + w15*i15

191

https://github.com/Sinfinite01/tt05-verilog-Sinfinite

0.51 + 0.50 + … + 0.5*0 = 0.5
Any input with two or more 1’s should be classified as 1.
Math:
w0i0 + w1i1 + w2i2 + … + w15i15
0.51 + 0.51 + 0.50 + … + 0.50 = 1
0.51 + 0.51 + 0.51 + 0.50 + … + 0.5*0 > 1

Pinout

Input Output Bidirectional
0 input 0 asssociated

with weight 0
Read as an 8 bit
output along with
other outputs

input 9 asssociated with
weight 9

1 input 1 asssociated
with weight 1

Read as an 8 bit
output along with
other outputs

input 10 asssociated with
weight 10

2 input 2 asssociated
with weight 2

Read as an 8 bit
output along with
other outputs

input 11 asssociated with
weight 11

3 input 3 asssociated
with weight 3

Read as an 8 bit
output along with
other outputs

input 12 asssociated with
weight 12

4 input 4 asssociated
with weight 4

Read as an 8 bit
output along with
other outputs

input 13 asssociated with
weight 13

5 input 5 asssociated
with weight 5

Read as an 8 bit
output along with
other outputs

input 14 asssociated with
weight 14

6 input 6 asssociated
with weight 6

Read as an 8 bit
output along with
other outputs

input 15 asssociated with
weight 15

7 input 7 asssociated
with weight 7

None input 16 asssociated with
weight 16

192

4 Bit ALU [237]

• Author: Lucius Chee
• Description: A simple 4-bit, 13 instruction, arithmetic logic unit.
• GitHub repository
• HDL project
• Mux address: 237
• Extra docs
• Clock: 0 Hz
• External hardware: digital logic (e.g. buttons/sensors)

How it works

The input 8 bits are split into the upper 4 bits (value y), and lower 4 bits (value x).
Depending on the instruction given after the select pin, operations will be performed
on the values to give an 8 bit output. The select pins use the bi-directional I/O.
|Select (bidi 3 - 0)|Operation| |0|+| |1|-| |2|*| |3|/| |4|bitwise AND| |5|bitwise OR|
|6|bitwise XOR| |7|bitwise NAND| |8|bitwise NOR| |9|~ (negation of 8 bits)| |10|%
(modulo)| |11|« (left shift)| |12|» (right shift)| |other|input bits as is|

How to test

After reset, the counter should increase by one every second with a 10MHz input clock.
Experiment by changing the inputs to change the counting speed.

Pinout

Input Output Bidirectional
0 x3 output 7 instruction select bit 0
1 x2 output 6 instruction select bit 1
2 x1 output 5 instruction select bit 2
3 x0 output 4 none
4 y3 output 3 none
5 y2 output 2 none
6 y1 output 1 none
7 y0 output 0 none

193

https://github.com/czlucius/tt05_alu

Binary Neural Network (Verilog Demo) [238]

• Author: Aravind Ramamoorthy
• Description: a single neuron in a Binarized Neural Network (BNN), performing

binary multiplication with XNOR, accumulation, and sign activation.
• GitHub repository
• HDL project
• Mux address: 238
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

This model simulates the behavior of a single neuron within a Binarized Neural Network
(BNN)
The XNOR operation is used to perform binary multiplication. A 32-bit signal used for
accumulating the results of multiple XNOR operations, simulating the weighted sum
of inputs.
“Sign activation function” applies to the accumulated result. It maps the accumulated
value to either +1 or -1 based on the sign.

How to test

Reset the circuit to set to 0. The constant Input and weight is provided with enable
signal to begin XNOR multiplication

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5
6 compare bit 17 segment g second counter bit 6

194

https://github.com/aravindbe/tt05-BNN-demo

Input Output Bidirectional
7 compare bit 18 dot second counter bit 7

195

SkullFET [239]

• Author: Uri Shaked
• Description: Bare-bone transistors
• GitHub repository
• HDL project
• Mux address: 239
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Hand-crafted, skull-shaped MOSFET transistors. �
The project contains three SkullFET devices: a NOT gate, a NAND gate, and a SR
flip-flop.

196

https://github.com/urish/tt05-skullfet

How to test

Input some values into A and B, and observe the outputs. The first output is connected
to the SkullFET inverter, and the second output is connected to the SkullFET NAND
gate.
Pulse ~S to set the SkullFlop (Q), and pulse ~R to reset it.

Pinout

Input Output Bidirectional
0 A ~A none
1 B ~(A&B) none
2 ~S ~Q none
3 ~R Q none
4 none none none
5 none none none
6 none none none
7 none none none

197

Wavetable Sound Generator [256]

• Author: Ryota Suzuki
• Description: Small wavetable/PSG type sound generator with I2S output
• GitHub repository
• HDL project
• Mux address: 256
• Extra docs
• Clock: 50000000 Hz
• External hardware: I2S DAC is required (I tested this design with FPGA and

PCM5102A DAC)

How it works

This project is Small wave table/PSG type sound generator with I2S output. Major
features are:

• 4 channel sound generator
• 4-bit x 32depth wave table (can be uses as 2 of 16depth wave table)
• 8 selectable waveform (3x pulse,1x noise, 4x wave table)
• 8-bit volume(only for PSG mode, wave table mode is 4-step volume)
• 16-bit frequency
• Sampling Frequency is 48828.125Hz (at 50MHz clock)
• I2S output (16-bit mono)
• SPI control interface

You can control this sound generator by SPI interface. SPI mode is mode 0 (CPOL=0,
CPHA=0), and transaction length is 24-bit. first 8-bit is register address, and next
16-bit is data. Data is MSB first.

Addr Description Width
0x00-0x03 Frequency[0]-[3] 16bit
0x04-0x07 Volume[0]-[3] 8bit (lower 8bits are valid)
0x08-0x0b Waveform Select[0]-[3] 3bit (lower 3bits are valid)
0x20-0x3f WaveTable[0]-[31] 4bit (lower 4bits are valid)

How to test

Connect I2S output to I2S DAC, and control this sound generator by SPI interface.
SPI input is connected to RP2040’s SPI1 on TT05 breakout board.

198

https://github.com/JA1TYE/tt05-TYE-tone-generator

Pinout

Input Output Bidirectional
0 SPI CS Input I2S Bit Clock none
1 SPI CLK Input I2S Word Select none
2 SPI MOSI Input I2S Data none
3 none none none
4 none none none
5 none none none
6 none none none
7 none none none

199

PWM signal generation with Winner-Take-All selection
[258]

• Author: Ruibin Mao
• Description: 8-channel 12-bit PWM signal generation. Time-domain Winner-

Take-All (WTA) able to find smallest PWM signal and k-smallest signal
• GitHub repository
• HDL project
• Mux address: 258
• Extra docs
• Clock: 20000000 Hz
• External hardware:

How it works

• General Description This design aims to build a PWM generation and a Winner-
Take-All selection circuit for smallest PWM duration detection. The circuit has
8 built-in 12-bit PWM signal generation with a common trigger. The circuit
can also accept external 8-bit PWM signals with internal 8-bit switch. User can
choose for each channel whether to use internal PWM signals or external signals.
The 8-channel PWM signal will go through a synchronization stage to make sure
it synchronizes with the internal clock. The winner-take-all is done by sensing
the falling edge of the PWM signal. The falling edge detection pulse will be
stored in the falling edge register once it’s been triggered. The nearest neighbor
(NN) signal or smallest duration signal will be detected once a first falling edge
is triggered. An internal counter will count how many falling edges are triggered
and once it reaches threshold K, the falling edge register will latch the address.
So that the K nearest results are stored.

• Detail of the internal modules SPI 1: It’s for the pulse-width configuration of 8
PWM signals. Users should latch 96-bit signals through the SPI 1 to configure
all PWM signals. This channel can also shift out the results of 8-channel time-to-
digital converter (TDC) which is used to convert the PWM duration into digital
signals. SPI 2: It’s for the configuration of internal switch of 8-channel. Each
switch will select either internal PWM or external signal is used. Another 3-bit
signal is used to set the number K which is K-smallest duration of input PWM
signal. The MISO will shift out the 8-bit smallest PWM address and 8-bit K-
smallest PWM address. PWM_sync: It synchronize the PWM signals comming
in and convert it to digital signal with TDC and detect the falling edge. k_nn:
It senses the 8 falling edges and store them once it’s been triggered. An internal
counter will count the number of falling edges at each clock cycle and latch the
address of existing falling edges.

200

https://github.com/Jaylenne/tt05-wta-pwm
README.md

How to test

The testing can refer to the testbench in src/test.py After resetting, the user should
do

1. Config the 8 channel PWM pulse width and 3-bit threshold K using SPI 1 and
SPI 2. For SPI 1, user should send 12*8=96 bit signals using FPGA, the order
is “Channel 0-1-2-3-4-5-6-7”.

2. Config the switch and 3-bit threshold using SPI 2, the order is “8-bit switch -
3-bit threshold”. For each channel, external signal will be used if switch bit is ‘1’
or the internal PWM is used if switch bit is ‘0’.

3. Activate the PWM trigger which is ui_in[4].
4. Wait for at least 2**12 clock cycles.
5. Readout the 12-bit TDC result with SPI 1, the order is “Channel 0-1-2-3-4-5-6-

7”.
6. Readout the 8-bit smallest address and K-smallest address, the order is “nn -

k_nn”

Pinout

Input Output Bidirectional
0 SPI 1 SS SPI 1 MISO External PWM signal 0
1 SPI 2 SS SPI 2 MISO External PWM signal 1
2 SPI 1 MOSI PWM[0] signal External PWM signal 2
3 SPI 2 MOSI PWM[0] after

cross-domain
synchronization

External PWM signal 3

4 PWM Trigger PWM[0] falling edge
detection

External PWM signal 4

5 None PWM[7] signal External PWM signal 5
6 None PWM[7] after

cross-domain
synchronization

External PWM signal 6

7 None PWM[7] falling edge
detection

External PWM signal 7

201

Multimode Modem [260]

• Author: Joerdson Silva
• Description: Performs digital modulation and demodulation in amplitude, fre-

quency and phase schemes.
• GitHub repository
• HDL project
• Mux address: 260
• Extra docs
• Clock: 50000000 Hz
• External hardware: oscilloscope or signal analyzer

How it works

The multimode modem uses a clock signal to generate digitized signals over time, in
sinusoidal format (carrier wave). From this digitized sinusoid, the modulation process is
applied using different methods for each scheme, implemented through specific internal
blocks to perform modulations ASK (switching the amplitude of the sine wave), FSK
(switching the frequency of the sine wave through a digital signal modulator) and
PSK (phase coding). In the demodulation stage, these three modulation schemes are
analyzed to recover the original information, manifesting as ‘0’ or ‘1’ values that reflect
the data signal already restored after the process.

How to test

The multimode modem has the following inputs and outputs:

• Input - clock (1 bit)
• Input - reset (1 bit)
• Input - sel (2 bits)
• Output - mod_out (7 bits)
• Output - demod_out (1 bit)

Apply a “clock” of 40~50 MHz. Then, apply a “reset” signal of logic level “1” to
synchronize the modem system and then make the “reset” signal a logic level “0”.
After that, select the type of modulation to be used, as per the sequence below:

• Sel = “01” <= ASK modulation and demodulation
• Sel = “10” <= FSK modulation and demodulation
• Sel = “11” <= PSK modulation and demodulation

202

https://github.com/joerdsonsilva/tt05-multimode-modem
README.md

After selecting the modulation type, the modulated signal is expressed at the
“mod_out” output, and the demodulated signal at the “demod_out” output.

Pinout

Input Output Bidirectional
0 clock mod_out_0 none
1 reset mod_out_1 none
2 sel_0 mod_out_2 none
3 sel_1 mod_out_3 none
4 none mod_out_4 none
5 none mod_out_5 none
6 none mod_out_6 none
7 none demod_out none

203

Analog emulation monosynth [262]

• Author: Toivo Henningsson
• Description: One synth voice with two oscillators and a 2nd order filter
• GitHub repository
• HDL project
• Mux address: 262
• Extra docs
• Clock: 50000000 Hz
• External hardware: audio plug to connect to audio input, voltage divider to

protect it!

How it works

The synth contains two oscillators with controllable frequency and waveform and a
second order low pass filter with controllable cutoff frequency, resonance, and input
amplification, similar to a simple analog synth. (Though the analog synth usually
has the variable amplification after the filter.) The created audio samples are passed
through a pulse width modulator (PWM) to create an audio signal on an output pin.
Sweep rates can be programmed for each parameter, to create simple envelopes. All
parameters can be set through a register interface. By changing the sweep rates at
specific points in time, more complex envelopes can be created.
The sample rate is 50 MHz/32, or 1.5625 MHz, far above the audible range, to avoid
aliasing issues while allowing a fine enough spacing of oscillator frequencies: the os-
cillator period is always a whole number of samples, which avoid inharmonic aliasing
effects.
The oscillators use counters that count down by a 2^n each sample. If the counter
would become negative, the period is added. A second (n bit) sawtooth counter counts
how many times the period has been added. After one period, the sawtooth counter
has incremented 2^n times, and wraps around.
To reach lower octaves, an octave divider is used. oct_enables[i] is high once every
2^i cycles. An octave oct is specified for the oscillator frequency, and the counter is
only update when oct_enables[oct] is high. This keeps the same relative frequency
accuracy for each octave.
The octave + period arrangement means that the full period is specified in a simple
floating point format. This serves as a quasi exponential conversion, which emulates
the V/octave, V/dB etc scales typically used in analog synths, and causes a quasi
exponential response when sweeping the frequencies.

204

https://github.com/toivoh/tt05-synth
https://github.com/toivoh/tt05-synth/blob/main/README.md

The filter is two pole filter with two states. Small update steps are taken every sample.
Instead of a multiplier, a barrel shifter (variable right shift) is used to calculate the
state change. The barrel shifter and associated adder is shared between all filter update
steps (and the dither step for the PWM). The synth cycles through the 6 steps for each
sample, and adds steps up to 32 to come up to 5 bits of PWM resolution. The PWM
resolution is increased through dithering; at 48 kHz sample rate, it can be considered
to be 10 bits. The resolution should further increase for lower frequencies.
The octave of the cutoff frequency is used to determine the shift amount. Depending
on the position within the octave, the shift amount is decreased by one more or less
often, to average the right amplification.
The volume is adjusted by tying the filter update that feeds the input signal into the
filter to its own frequency. In the same way, the damping as adjusted by having a
separate frequency for the filter’s damping step.
The a dither signal is formed by bit reversing the oct_counter counter (which is used
for the octave divider), and added to the output signal before rounding off to 5 bits
for the PWM output.
For more details, see README.md in the project repository.

How to test

The synth is controlled by writing to its configuration registers:

• Keep the write strobe low when not writing.
• Set the 4 bit write address, and an 8 bit data value.
• While keeping the address and data stable, bring the write strobe high and then

low again.

– The write address and data are sampled at 2-10 cycles after the rising edge
of the write strobe.

The output comes in two forms:

• As a Pulse Width Modulated (PWM) signal.
• As an 8 bit value on the 8 output pins, that can be reconstructed using a resistor

ladder.

The PWM signal should be simpler to use, but be sure to reduce the voltage with a
resistive divider or similar before connecting it to an audio device. Note:Make sure
that you know what you are doing when connecting an audio device to
the output. Don’t apply more than 1 V between the terminals of an audio

205

plug that is connected to line in or similar. 3.3 V direct from the chip
might damage your audio device.
Most control registers consume 16 bits of address space each. The memory map is
laid out as follows: (one 16 bit word per line)

offset	high byte	low byte
0 | osc1_period |
2 | osc2_period |
4 | cutoff_period |
6 | damp_period |
8 | vol_period |
10 | osc2_sweep | osc1_sweep |
12 | damp_sweep | cutoff_sweep |
14 | cfg | vol_sweep |

The registers are initialized to all ones at reset, which turns off all oscillators. The
frequency registers are in a kind of floating point format:

• Oscillator periods are 13 bits: 4 bits exponent + 9 bits mantissa
• Cutoff, damping, and volume periods are 9 bits: 4 bits octave + 5 bits period
• Sweep periods are 8 bits signed: 1 bit sign + 4 bits octave + 3 bits mantissa

Increasing the exponent by one doubles the period, and goes down one octave. An
exponent of 15 turns off the oscillator. The volume depends on the ratio between
the cutoff and volume periods (not their float representations). The damping depends
on the ratio between the cutoff and damping periods (not their float representations).
As the damping period gets longer than the cutoff period, resonance increases around
the cutoff frequency. If damping is low and/or volume is high, the filter will begin to
saturate (which is sometimes a desirable effect).
Each sweep will increase or decrease the corresponding period.
The cfg register contains additional settings:

• Bits 0-1: Waveform for oscillator 0: 0 = pulse, 1 = square, 2 = noise, 3 = saw
• Bits 2-3: Waveform for oscillator 1
• Bits 4-5: Unused
• Bits 6-7: Filter mode for oscillator 1 and 2 respectively, 0 = 1st order falloff, 1

= 2nd order falloff

For more details, see README.md in the project repository.

206

Pinout

Input Output Bidirectional
0 write data bit 0 sample bit 0 write address bit 0
1 write data bit 1 sample bit 1 write address bit 1
2 write data bit 2 sample bit 2 write address bit 2
3 write data bit 3 sample bit 3 write address bit 3
4 write data bit 4 sample bit 4 unused
5 write data bit 5 sample bit 5 unused
6 write data bit 6 sample bit 6 PWM output
7 write data bit 7 sample bit 7 write strobe

207

Tiny Game of Life [264]

• Author: Petros Emmanouilidis
• Description: Simulates cellular automaton Conway’s Game of Life on an 8x8

grid using shift registers.
• GitHub repository
• HDL project
• Mux address: 264
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

The circuit employs 2 distinct shift registers to run the simulation: A Load Shift Register
stores the initial state of the grid based on the user’s input. Once the simulation
commences, all cells in the Load Shift Register are updated and copied in parallel inside
the Update Shift Register. This update step occurs within a single clock cycle. After
updating the grid, the circuit outputs each new value sequentially before proceeding
to the next state of the game. The output stage of the game lasts 64 clock cycles
(one clock cycle for each cell in the grid) and involves pushing the updated cells from
the Update Shift Register back to the Load Shift Register. Once all updated values
have trickled into the Load Shift Register, the circuit returns to its update phase,
restarting the cycle of update and output. After the simulation commences, the circuit
will oscillate between updating and outputting indefinitely (unless reset) without any
further user input.
Inputting Values:
Before starting the game, the user can sequentially load the grid’s values into the
circuit, one cell at a time. Cells are organized in row major order and the circuit can,
at any time, hold 64 cells. If the user attempts to load more than 64 values, the oldest
ones are pushed off the grid. The value of any inputted cell is specified using the 0th
input line ui_in[0]. Loading a single cell into the circuit takes 1 clock cycle, meaning
that inputting the entire table into the register takes 64 clock cycles.
Starting the Game:
To commence the simulation, the user must assert the 1st input line ui_in1. Upon
doing so, the circuit stops receiving further user inputs and starts playing the game.
The value present in ui_in[0] while ui_in1 is asserted is not loaded into the table.
Output Encoding:

208

https://github.com/Petros-Emmanouilidis/tt05-Petros-Emmanouilidis-tiny-game-of-life
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

During the output phase, the circuit drives all 8 output lines. The 0th bit uo_out[0]
encodes the value of the currently displayed cell. Bits 1 to 8, uo_out[7:1] encode the
location of the cell in the table. The location can take values 1 to 64 inclusive and is
in row major order (meaning that 1 corresponds to the cell in the top left corner and
64 corresponds to the cell in the bottom right corner). During update, output bits
uo_out[7:1] are set to 0 and the data output at uo_out[0] is invalid. During input, all
output lines are invalid.

How to test

Load values through ui_in[0] (one cell value per clock cycle) and start the game by
asserting ui_in1. Make sure that ui_in1 starts out disasserted; otherwise, the game will
commence without any values loaded into the table, and the circuit will be inaccessible
unless reset.
In general, pray it works.

Pinout

Input Output Bidirectional
0 Data Input Line Data Output Line none
1 Start Game 0th bit of cell location none
2 none 1st bit of cell location none
3 none 2nd bit of cell location none
4 none 3rd bit of cell location none
5 none 4th bit of cell location none
6 none 5th bit of cell location none
7 none 6th bit of cell location none

209

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Stack Machine [266]

• Author: Mingkai Chen
• Description: 8-bit stack machine
• GitHub repository
• HDL project
• Mux address: 266
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Simple 8-bit stack machine

How to test

Test in hardware or with simulation

Pinout

Input Output Bidirectional
0 Data Data Data
1 n/a n/a n/a
2 n/a n/a n/a
3 n/a n/a n/a
4 n/a n/a n/a
5 n/a n/a n/a
6 n/a n/a n/a
7 n/a n/a n/a

210

https://github.com/mingkaic1/tt05-stack-machine

ChipTune [268]

• Author: Wallace Everest
• Description: Vintage 8-bit sound generator
• GitHub repository
• HDL project
• Mux address: 268
• Extra docs
• Clock: 1789773 Hz
• External hardware: Computer COM port

How it works

ChipTune implements an 8-bit Programmable Sound Generator (PSG). Input is from
a serial UART interface. Output is PWM audio.

Overview This project replicates the Audio Processing Unit (APU) of vintage video
games.

211

https://github.com/WallieEverest/tt05
https://github.com/WallieEverest/tt05/blob/main/README.md

Statistics
• Tiles: 1x2
• DFF: 458
• Total Cells: 2760
• Utilization: 72%

TinyTapeout 5 Configuration TT04 devices from the eFabless Multi-Project
Wafer (MPW) shuttle are delivered in QFN-64 packages, mounted on a daughterboard
for breakout.
Based on data from:

• https://github.com/WallieEverest/tt04

Changes: 1.) Static registers addressed by the serial UART have been connected to the
external reset, providing a known startup. 2.) Default values for REG signals have been
removed, allowing ‘X’ propagation during simulation until the design reaches steady
state.

How to test

The ChipTune project can be interfaced to a computer COM port (9600,n,8,1). An
analog PWM filter and audio driver are needed for the test rig.

Pinout

Input Output Bidirectional
0 None Blink None
1 None Link None
2 RX TX None
3 None PWM None
4 None Square1 None
5 None Square2 None
6 None Triangle None
7 None Noise None

212

Game of Life 8x8 (siLife) [270]

• Author: Uri Shaked
• Description: Silicon implementation of Conway’s Game of Life
• GitHub repository
• HDL project
• Mux address: 270
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

It is a silicon implementation of Conway’s Game of Life. The game is played on a 8x8
grid, and the rules are as follows:

• Any live cell with fewer than two live neighbours dies, as if by underpopulation.
• Any live cell with two or three live neighbours lives on to the next generation.
• Any live cell with more than three live neighbours dies, as if by overpopulation.
• Any dead cell with exactly three live neighbours becomes a live cell, as if by

reproduction.

How to test

Load initial grid row by row. Each row is loaded by selecting the row number (using the
row_sel[2:0] inputs), setting the cell_in[7:0] inputs to the desired state, and pulsing
the wr_en input.
Once the grid is loaded, set the en input to 1 to start the game. The game will advance
one step in each clock cycle. To pause the game, set the en input to 0.
To view the current state of the grid, set the row_sel[2:0] inputs to the desired row
number, and read the cell_out[7:0] outputs.

Pinout

Input Output Bidirectional
0 row_sel[0] cell_out[0] cell_in[0]
1 row_sel1 cell_out1 cell_in1
2 rol_sel2 cell_out2 cell_in2

213

https://github.com/urish/tt05-silife-8x8
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
3 none cell_out[3] cell_in[3]
4 none cell_out[4] cell_in[4]
5 none cell_out[5] cell_in[5]
6 en cell_out[6] cell_in[6]
7 wr_en cell_out[7] cell_in[7]

214

TT05 Analog Testmacro (Ringo, DAC) [271]

• Author: Harald Pretl and Jakob Ratschenberger
• Description: For future analog enablement of TinyTapeout we designed a few

simple analog blocks for testing the flow. The first block is a ca. 500kHz ring
oscillator outputting a square-wave signal. The second block is a 3bit R-2R
DAC outputting a programmable dc voltage. Both analog output signals can be
gated or shorted using integrated transmission gates. To add a further level of
madness, we have placed and routed this analog macro using an experimental
automatic analog PnR tool, currently under development by the authors.

• GitHub repository
• HDL project
• Mux address: 271
• Extra docs
• Clock: 0 Hz
• External hardware: scope, multimeter

How it works

A ring oscillator (ca. 500kHz) produces a square-wave signal available at UA[0]. A
3-bit R-2R DAC produces a dc voltage availabel at UA1.

How to test

Enable the respective blocks, and enable the transmission gates to connect the block
outputs to UA[0] and UA1, respectively. The DAC voltage can be changed by setting
the digital inputs accordingly.

Pinout

Input Output Bidirectional
0 dac_in[0] UA[0]: Ringo output (when TG enabled) none
1 dac_in1 UA1: DAC output (when TG enabled) none
2 dac_in2 none none
3 Enable TG for DAC output to UA1 none none
4 none none none
5 Enable TG for ringo output to UA[0] none none
6 Enable ringo none none

215

https://github.com/iic-jku/tt05-analog-test
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture

Input Output Bidirectional
7 Short UA[0] and UA1 for testing none none

216

https://en.wikipedia.org/wiki/Collatz_conjecture

RBUART [290]

• Author: Brian ‘redbeard’ Harrington
• Description: A simple UART device
• GitHub repository
• Wokwi project
• Mux address: 290
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

This implements a low baud rate UART which should output ASCII characters “Red.”

How to test

To test the project, connect the TX and RX pins to the TX and RX pins on your
computer. You should see the characters being printed on your computer.

Pinout

Input Output Bidirectional
0 N/A segment a none
1 Bit 0 segment b none
2 Bit 1 segment c none
3 Bit 2 segment d none
4 Bit 3 segment e none
5 Bit 4 segment f none
6 Bit 5 segment g none
7 Bit 6 dot none

217

https://github.com/brianredbeard/tt05-submission-template
https://wokwi.com/projects/380409528895479809

8-bit Floating-Point Adder [292]

• Author: Matt Ngaw
• Description: A floating-point adder following the FP8 E5M2 standard.
• GitHub repository
• HDL project
• Mux address: 292
• Extra docs
• Clock: Hz
• External hardware:

How it works

The circuit combinationally computes the floating-point sum.

How to test

Hold two 8-bit inputs on the input and bi-directional pins, and the floating-point sum
comes out of the output pins.

Pinout

Input Output Bidirectional
0 input 1 bit 0 output bit 0 input 2 bit 0
1 input 1 bit 1 output bit 1 input 2 bit 1
2 input 1 bit 2 output bit 2 input 2 bit 2
3 input 1 bit 3 output bit 3 input 2 bit 3
4 input 1 bit 4 output bit 4 input 2 bit 4
5 input 1 bit 5 output bit 5 input 2 bit 5
6 input 1 bit 6 output bit 6 input 2 bit 6
7 input 1 bit 7 output bit 7 input 2 bit 7

218

https://github.com/mattngaw/98154-tt05-fp8adder

6 bit Counter and Piano Music created by Chip Inventor
[294]

• Author: Matheus
• Description: Chip Inventor
• GitHub repository
• HDL project
• Mux address: 294
• Extra docs
• Clock: 27000000 Hz
• External hardware:

How it works

There are two diagrams created by the Chip Inventor platform, whereas by using blocks,
you can create your own semiconductor design. The piano tune is one diagram. A
song-throwing buzzer can be configured with one button and a buzzer. A 6-bit counter
diagram is the other. Chip Inventor website: https://chipinventor.com

How to test

Using a buzzer, it’s possible to listen to a music note. Connecting 4 LEDs in pull_up
makes it possible to see the binary value.

Pinout

Input Output Bidirectional
0 btn1 buzzer none
1 none l1 none
2 none l2 none
3 none l3 none
4 none l4 none
5 none led0 none
6 none led1 none
7 none none none

219

https://github.com/matheus-VBLabs/tt05_chip_inventor_01

4 Bit Pipelined Multiplier [296]

• Author: Aldo
• Description: A Pipelined Booth Multiplier
• GitHub repository
• HDL project
• Mux address: 296
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Not operation inteded, just for learning purposes

How to test

Not operation inteded, just for learning purposes

Pinout

Input Output Bidirectional
0 none none none
1 none none none
2 none none none
3 none none none
4 none none none
5 none none none
6 none none none
7 none none none

220

https://github.com/crispy245/tt05-4-CSA-Bit-Pipelined-Multiplier-Crispo

2-Bit ALU + Dice [298]

• Author: Andrew Nam
• Description: This is an extremely professional design that Steve Jobs approves.

It consists of a 2-bit ALU and an impressive dice. Can translate binary code into
single digit display.

• GitHub repository
• Wokwi project
• Mux address: 298
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 {‘IN0’: ‘Input A0’} {‘segment a’:

‘Normal digit
display’}

Not used

1 {‘IN1’: ‘Input A1’} {‘segment b’:
‘Normal digit
display’}

Not used

2 {‘IN2’: ‘Not used’} {‘segment c’:
‘Normal digit
display’}

Not used

3 {‘IN3’: ‘Selection bit
(0,0)–> Addition,
(0,1)–> Subtraction,
(1,0)–> Logic AND,
(1,1)–> Logic OR’}

{‘segment d’:
‘Normal digit
display’}

Not used

221

https://github.com/andrewjh09nam/tinytapeout05_andy_ALU_dice
https://wokwi.com/projects/380477805171811329

Input Output Bidirectional
4 {‘IN4’: ‘Selection

bit’}
{‘segment e’:
‘Normal digit
display’}

Not used

5 {‘IN5’: ‘Selection bit
(0)–> ALU, (1)–>
Dice’}

{‘segment f’:
‘Normal digit
display’}

Not used

6 {‘IN6’: ‘Input B0’} {‘segment g’:
‘Normal digit
display’}

Not used

7 {‘IN7’: ‘Input B1’} dot Not used

222

TT02 Wokwi 7seg remake [300]

• Author: Darryl Miles
• Description: TT02 Wokwi 7seg remake (MUX transposed)
• GitHub repository
• Wokwi project
• Mux address: 300
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

This is a remake of the Matt Venn’s original TT02 7seg wokwi project.
This version inverted the MUX SEL lines at the reset, so the transition is on the
opposite edge.
This project wokwi link:, https://wokwi.com/projects/380490286828784641
The original project wokwi link: https://wokwi.com/projects/380490286828784641

How to test

Select project and manually clock to see incrementing 7SEG output.

223

https://github.com/dlmiles/tt05-7seg-mux-transpose
https://wokwi.com/projects/380490286828784641
https://dlmiles.github.io/tt05-7seg-mux-transpose/

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

224

ping pong asic [302]

• Author: Timonas Juonys
• Description: Hardware implemented ping pong for two players on a 16x24 led

matrix as a display
• GitHub repository
• Wokwi project
• Mux address: 302
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Explain how your project works The game uses a up/down counter for x/y for each
player plus the ball. Button inputs are stored in input register, so bouncing should not
be an issue. Rest pin (active low) should be pulsed low at every start up to clear all the
clock registers. If this is not done, the multiple internal clock divider flip flops might
start out wrong, and that could mess up other functions. The ball gets updated with
every ball_en pulse, while the padles are updated with the padles_en pulse. These
canot happen at the same time because then the could jump past the padles. The
comparator logic is asyncronous, and it will reverse the balls direction if it registers a
collision.
Since the led matrix can only light 1 collum or 1 row at any one time, the 3 objects
to be lit(padle1, padle2, and the ball) have to be lit for a period of time before the
next object is lit. this is achieved by the inner multiplexer which is driven byt a mod
3 counter which is driven byt the multiplexer clock. The chip outputs are the outputs
of this multiplexer (some logic is done after the multiplexer but it is irrelevant). The x
pixels (horizontal axis) is not decoded internally, and thus have to be decoded externally.
They are connected as horz0 to horz4 pins. Even though there are 5 bits, the led display
is only 24leds wide, so only a 5 to 24 decodes is necesary. The y pixels are decoded
internaly since they need some processing done on them because they have to light
multiple leds if a padle is to be lit contra one led for the ball. Thats why the y pixels get
decoded and placed in a piso shift register which is controlled by D0 and D1. Shifting
out these bits needs to be carefully timed with the multiplexer clock since the mux_clk
is the one who decites which outputs (padle1, padle2, or ball) are in the shift register
in the first place. Muxes for horixzontal pins and vertical pins are driven byt he same
celect lines, so both x and y bits represent the same object at anny given time.
player1 and player 2 points pins are meant to go into a decade cointer driveing a
7 segment display. If a pause is wanted after a point os scored, these two can be

225

https://github.com/Timonas04/pong_game
https://wokwi.com/projects/380361576213660673

monitored and the clk_in can be stoped to pause the game. The position registers are
reset internally, so its not necessary to reset the whole chip at every point score.
maybe important: pixel[0,0] is in the bootm left corner

How to test

Explain how to test your project easiest way to test some functionality would be to
hook up left right buttons for player 1, pull padels_en high, set the mux_clk low, and
a clk on the clock line. As long as the board has been reset and the mux clk has not
been active after that, the outputs will be of padle1. Then the horz0 to horz4 bits can
be monitored. They should be still if no button has been presed, count up when the
right button is pressed, and count down when teh left button is pressed. The ball_en
should be puuled low to freze the ball. If the ball goes of the screen, padles1_x will
reset to 0.
for full functionality the chip will need 16 bit sipo shift register, 5 to 24 decoder, 16*24
led matrix, 8 input buttons, bcd counters + 7 segment displays to display points and
a timing unit to generate the necesary timing signals, padles_en, ball_en, mux_clk,
shift_reg_en, shift_reg_clk and inp_reg_en

Pinout

Input Output Bidirectional
0 player1_up button horz0 (lsd) shift_reg_en (when D0 low,

shift register ff mirror
vertical pixels,when D0 high,
then the shifting can start)

1 player1_down button horz1 binary encoded
position in the x
direction

shift_reg_clk for vertical
pixels

2 player1_left button horz2 not used, pulled low
internally

3 player1_right button horz3 not used, pulled low
internally

4 player2_up button horz4 mux_clk - multiplexes
between padle1, padle2, and
ball, as the led matrix can
only display one at a time

226

Input Output Bidirectional
5 player2_down button points player1 pulses

when player 1 gets a
point

padles_en enable padle
counters

6 player2_left button points player2 ball_en enable ball counters
7 player2_right button vertical pixels shift

register out
inp_reg_en enables input
register. this should happen
when clk=1, ball_en=0,
padles_en=0

227

A Boolean function based pseudo random number generator
(PRNG) [320]

• Author: SEAL, CSE Department, IIT Kharagpur
• Description: Boolean function based pseudo random number generator imple-

mented using finite field
• GitHub repository
• HDL project
• Mux address: 320
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Principle of operation of Boolean function based pseudo random number
generator (PRNG)
This implementation of a PRNG contains linear mappings to and from the following
blocks:

• one 𝐺𝐹(24) normal base,
• three instances of 𝐺𝐹(24) multipliers,
• one 𝐺𝐹(24) inverter, and
• one square scaler.

The input and output strings of the PRNG are split into five and three shares,
respectively. Our PRNG generates random values based on the five input bytes
or variables. Instead of relying solely on a single seed or input, it takes several
inputs thereby introducing more control over the randomness of the generated
values. Thus, the multiple input bytes are used as seeds. The seeds are generated
from external factors like time, user-provided data, and environmental conditions.
Additionally, previous random values produced by our PRNG design can also be
considered as a valid seed. This results in a more tailored or context-aware
randomness, which finds its application in simulations, games, cryptography, or
data generation. The operation of the Boolean function based PRNG can be
classified into three phases, namely, Affine transformation (1𝑠𝑡 phase), Finite
field inversion (2𝑛𝑑 phase) and the combination of Finite field multiplication
and inverse linear mapping (3𝑟𝑑 phase) as evident from the block diagram in
Figure 1. The working procedure of these phases are discussed as follows:

First phase- Affine transformation
In the first phase, three shares are processed by the linear input mapping and

228

https://github.com/fleathlushby/tt05_boolean_pseudo_random_generator

afterwards fed into a multiplier. Similarly, a uniform reduction to two shares is fed
into the square scaler.

(𝑎, 𝑏, 𝑐)\𝑚𝑎𝑝𝑠𝑡𝑜(𝑎, 𝑏\𝑜𝑝𝑙𝑢𝑠𝑐)\\\\(1)
The output of the multiplier is partially re-masked by 8 bits of randomness while the
square scaler output is left as it is. We use fresh randomness at the end of the first phase
to satisfy uniformity during the combination of the square scaler’s and the multiplier’s
outputs. The result is saved in a register, 𝑃1 as illustrated in the block diagram.
Second phase- Finite field inversion
In the second phase, the overall five shares are combined into four shares. Due to the
previous remasking, this can be done uniformly as such:

(𝑥, 𝑦, 𝑎, 𝑏, 𝑐)\𝑚𝑎𝑝𝑠𝑡𝑜(𝑥, 𝑦\𝑜𝑝𝑙𝑢𝑠(𝑟1\𝑜𝑝𝑙𝑢𝑠𝑟2), 𝑎\𝑜𝑝𝑙𝑢𝑠(𝑏\𝑜𝑝𝑙𝑢𝑠𝑟1), 𝑐\𝑜𝑝𝑙𝑢𝑠𝑟2)\\\\(2)

In the above equation, 𝑥, 𝑦 denote the square scaler output, while 𝑎, 𝑏, 𝑐 denote the
multiplier output. Note that a register needs to hold all five shares before recombination
to prevent leakage. After recombination, the four shares are fed into the inverter and
re-masked with 8 bits of randomness. A register stage named 𝑃2, preventing glitches,
follows this inverter.
Third phase- Finite field multiplication and inverse linear mapping
In the final stage, the re-masked outputs are reduced to three shares uniformly by the
following function.

(𝑎, 𝑏, 𝑐, 𝑑)\𝑚𝑎𝑝𝑠𝑡𝑜(𝑎\𝑜𝑝𝑙𝑢𝑠(𝑏\𝑜𝑝𝑙𝑢𝑠𝑟3), 𝑐\𝑜𝑝𝑙𝑢𝑠𝑟4, 𝑑\𝑜𝑝𝑙𝑢𝑠𝑟3\𝑜𝑝𝑙𝑢𝑠𝑟4)\\\\(3)

Subsequently, these shares are fed into two multipliers. Finally, the inverse linear
mapping follows. With this construction, it is enough to have three input shares to the
generator since the multiplier block requires only three shares. At this stage, we again
add a randomness after the inverter to break the dependency between the inputs of
the multipliers in the third phase.
In general, we need to reduce the number of shares from five to four at the end of the
first phase as the inverter in the second phase can process four input strings. Moreover,
the multipliers in the final stage is capable of processing three shares of input thus
enforcing the reduction of shares from four to three at the end of the second phase.
A working example is presented below for a better understanding:
In this example, the five input bytes are assigned values of 0𝑥62, 0𝑥04, 0𝑥05, 0𝑥𝑓8
and 0𝑥95, respectively. Preliminarily, the ‘ena’, an active high input signal is assigned
a logic ‘0’. After the power on reset, the ‘ena’ is pulled up to logic ‘1’, thus enabling
the input data loading. The five input bytes are loaded sequentially into an input buffer
which is 40 bits wide. As soon as the buffer is populated, the ‘ena’ signal is set to
active low. This marks the end of the data loading procedure. After the data loading

229

stage, the input values are then processed by linear mapping and three shares of data
are produced which are 𝐼𝑁1 = 0𝑥𝑎8, 𝐼𝑁2 = 0𝑥81 and 𝐼𝑁3 = 0𝑥7𝑒. In the first
and second phase, the remaining two input values of 𝑅0 = 0𝑥𝑓8 and 𝑅1 = 0𝑥95 are
utilized for introducing randomness.
The two inputs to the square scaler are 𝑆𝑄𝐼𝑁1 = 0𝑥2 and 𝑆𝑄𝐼𝑁2 = 0𝑥0. Our
design acquires 𝑆𝑄𝐼𝑁1 by XOR-ing the first and last 4 bits of 𝐼𝑁1 , whereas
𝑆𝑄𝐼𝑁2 is acquired by XOR-ing the first and last 4 bits of 𝐼𝑁2\𝑜𝑝𝑙𝑢𝑠𝐼𝑁3.
The strings 𝐼𝑁1[7 ∶ 4], 𝐼𝑁2[7 ∶ 4], 𝐼𝑁3[7 ∶ 4], 𝐼𝑁1[3 ∶ 0], 𝐼𝑁2[3 ∶ 0],
and 𝐼𝑁3[3 ∶ 0] are given as inputs to the multiplier and represented by
𝑀𝑈𝐿𝐼𝑁1, 𝑀𝑈𝐿𝐼𝑁2, 𝑀𝑈𝐿𝐼𝑁3, 𝑀𝑈𝐿𝐼𝑁4, 𝑀𝑈𝐿𝐼𝑁5 and 𝑀𝑈𝐿𝐼𝑁6, respec-
tively. The signals, 𝑟1 and 𝑟2 are 4 bits wide, the values of which are obtained by
slicing 𝑅0. At the end of the first phase, five shares of data are produced along with
the randomness, namely, 𝑆𝑄𝑂𝑈𝑇 1, 𝑆𝑄𝑂𝑈𝑇 2, 𝑀𝑈𝐿𝑂𝑈𝑇 1, 𝑀𝑈𝐿𝑂𝑈𝑇 2, 𝑀𝑈𝐿𝑂𝑈𝑇 3
and 𝑟, respectively. The values of the individual signals are summarized below:
Inputs:
𝑟1\𝑔𝑒𝑡𝑠0𝑥𝑓 , 𝑟2\𝑔𝑒𝑡𝑠0𝑥8,
𝑀𝑈𝐿𝐼𝑁1\𝑔𝑒𝑡𝑠0𝑥𝑎, 𝑀𝑈𝐿𝐼𝑁2\𝑔𝑒𝑡𝑠0𝑥8, 𝑀𝑈𝐿𝐼𝑁3\𝑔𝑒𝑡𝑠0𝑥7, 𝑀𝑈𝐿𝐼𝑁4\𝑔𝑒𝑡𝑠0𝑥8,
𝑀𝑈𝐿𝐼𝑁5\𝑔𝑒𝑡𝑠0𝑥1, 𝑀𝑈𝐿𝐼𝑁6\𝑔𝑒𝑡𝑠0𝑥𝑒
Outputs:
𝑟\𝑔𝑒𝑡𝑠0𝑥7,
𝑆𝑄𝑂𝑈𝑇 1\𝑔𝑒𝑡𝑠0𝑥0, 𝑆𝑄𝑂𝑈𝑇 2\𝑔𝑒𝑡𝑠0𝑥6,
𝑀𝑈𝐿𝑂𝑈𝑇 1\𝑔𝑒𝑡𝑠0𝑥𝑓 , 𝑀𝑈𝐿𝑂𝑈𝑇 2\𝑔𝑒𝑡𝑠0𝑥𝑒, 𝑀𝑈𝐿𝑂𝑈𝑇 3\𝑔𝑒𝑡𝑠0𝑥8
In the second phase, the corresponding input values, 𝐼𝑁𝑉𝐼𝑁1, 𝐼𝑁𝑉𝐼𝑁2, 𝐼𝑁𝑉𝐼𝑁3
and 𝐼𝑁𝑉𝐼𝑁4 to the inverter are 0𝑥0, 0𝑥1, 0𝑥𝑒 and 0𝑥0. The subsequent outputs,
𝐼𝑁𝑉𝑂𝑈𝑇 2 and 𝐼𝑁𝑉𝑂𝑈𝑇 3 are again combined with the random values 𝑟3 and 𝑟4,
whereas the outputs, 𝐼𝑁𝑉𝑂𝑈𝑇 1 and 𝐼𝑁𝑉𝑂𝑈𝑇 4 are left as is. The values of 𝑟3 and
𝑟4 are acquired by slicing 𝑅1. At the end of this phase, there are four shares of data
along with the randomness bits, 𝑟. The remaining input and output values of this
stage are summarized below:
Inputs:
𝑟3\𝑔𝑒𝑡𝑠0𝑥9, 𝑟4\𝑔𝑒𝑡𝑠0𝑥5,
Outputs:
𝑟\𝑔𝑒𝑡𝑠0𝑥𝑐,
𝐼𝑁𝑉𝑂𝑈𝑇 1\𝑔𝑒𝑡𝑠0𝑥6, 𝐼𝑁𝑉𝑂𝑈𝑇 2\𝑔𝑒𝑡𝑠0𝑥𝑏, 𝐼𝑁𝑉𝑂𝑈𝑇 3\𝑔𝑒𝑡𝑠0𝑥2, 𝐼𝑁𝑉𝑂𝑈𝑇 4\𝑔𝑒𝑡𝑠0𝑥0
In the final stage, 𝑀𝑈𝐿𝐼𝑁1, 𝑀𝑈𝐿𝐼𝑁2 and 𝑀𝑈𝐿𝐼𝑁3 are given as inputs to each of
the multipliers (see Equation 3). The corresponding outputs of the two multipliers,
𝑀𝑈𝐿𝑂𝑈𝑇 1, 𝑀𝑈𝐿𝑂𝑈𝑇 2, 𝑀𝑈𝐿𝑂𝑈𝑇 3, 𝑀𝑈𝐿𝑂𝑈𝑇 4, 𝑀𝑈𝐿𝑂𝑈𝑇 5 and 𝑀𝑈𝐿𝑂𝑈𝑇 6
are concatenated to form three strings of eight bits each and fed to the inverse
linear mapping module. Thus, we acquire the final output bytes, 𝑂𝑈𝑇 1, 𝑂𝑈𝑇 2 and
𝑂𝑈𝑇 3. These values are outlined below:
Inputs:

230

𝑀𝑈𝐿𝐼𝑁1\𝑔𝑒𝑡𝑠0𝑥4, 𝑀𝑈𝐿𝐼𝑁2\𝑔𝑒𝑡𝑠0𝑥7, 𝑀𝑈𝐿𝐼𝑁3\𝑔𝑒𝑡𝑠0𝑥𝑐,
Outputs:
𝑀𝑈𝐿𝑂𝑈𝑇 1, 𝑀𝑈𝐿𝑂𝑈𝑇 4\𝑔𝑒𝑡𝑠0𝑥𝑏𝑏, 𝑀𝑈𝐿𝑂𝑈𝑇 2, 𝑀𝑈𝐿𝑂𝑈𝑇 5\𝑔𝑒𝑡𝑠0𝑥𝑎6, 𝑀𝑈𝐿𝑂𝑈𝑇 3, 𝑀𝑈𝐿𝑂𝑈𝑇 6\𝑔𝑒𝑡𝑠0𝑥68,
𝑂𝑈𝑇 1\𝑔𝑒𝑡𝑠0𝑥55, 𝑂𝑈𝑇 2\𝑔𝑒𝑡𝑠0𝑥𝑎2, 𝑂𝑈𝑇 3\𝑔𝑒𝑡𝑠0𝑥0𝑐

How to test

After reset, the ena signal is set to logic ‘1’. This enables the device to load input
values in multiple shares. After loading all the input shares, the ena signal is reset.
After two clock cycles, the output ready (uio_out) is set to logic ‘1’ and the multiple
output shares are generated.

Pinout

Input Output Bidirectional
0 input bit output bit output ready
1 input bit output bit none
2 input bit output bit none
3 input bit output bit none
4 input bit output bit none
5 input bit output bit none
6 input bit output bit none
7 input bit output bit none

231

Digital Desk Clock [322]

• Author: Samuel Ellicott
• Description: Simple Digital Clock Project.
• GitHub repository
• HDL project
• Mux address: 322
• Extra docs
• Clock: 5000000 Hz
• External hardware: shift registers, 7-segment displays

How it works

Simple digital clock, displays hours, minutes, and seconds in either a 24h format. Since
there are not enough output pins to directly drive a 6x 7-segment displays, the data
is shifted out serially using an internal 8-bit shift register. The shift register drives 6-
external 74xx596 shift registers to the displays. Clock and control signals (serial_clk,
serial_latch) are also used to shift and latch the data into the external shift registers
respectively. The time can be set using the hours_set and minutes_set inputs. If
set_fast is high, then the the hours or minutes will be incremented at a rate of 5Hz,
otherwise it will be set at a rate of 2Hz. Note that when setting either the minutes,
rolling-over will not affect the hours setting. If both hours_set and minutes_set
are presssed at the same time the seconds will be cleared to zero.

How to test

Connect serial output to a 6x 8-bit shift registers to display the output on 6x 7-segment
displays

Pinout

Input Output Bidirectional
0 refclk serial_data none
1 use_refclk serial_latch none
2 fast_set serial_clk none
3 hours_set none none
4 minutes_set none none
5 none none none
6 none none none

232

https://github.com/sellicott/sellicott_tt5_digital_clock
https://github.com/sellicott/sellicott_tt5_digital_clock/blob/main/README.md

Input Output Bidirectional
7 none none none

233

4-bit FIFO/LIFO [324]

• Author: Haozhe Zhu
• Description: A FIFO/LIFO memory
• GitHub repository
• HDL project
• Mux address: 324
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

This memory module can operate as both a First-In-First-Out (FIFO) and a Last-In-
First-Out (LIFO) memory, which can be selected using the mode pin. It can store a
maximum of 30 4-bit numbers, which is preserved upon mode switch. In addition, it
is equipped with a 7-segment display that displays the current number of stored data
entries (not more than nine). Should the stored entries surpass nine, the display will be
deactivated, and an overflow flag will be triggered. If the memory is full, further write
attempts has no effect on stored data. If the memory is empty, further read attempts
will invalidate the output data and clear output valid flag. If no read operation has
been performed after the most recent reset, the output is also invalid.

How to test

Load some data into the memory and then read them out.

Pinout

Input Output Bidirectional
0 Data In [0] segment a Data Out [0]
1 Data In 1 segment b Data Out 1
2 Data In 2 segment c Data Out 2
3 Data In [3] segment d Data Out [3]
4 Write Enable segment e Full Flag Out
5 Read Enable segment f Empty Flag Out
6 Mode (FIFO=0) segment g Output Valid Flag Out
7 Manual Clock dot Display Overflow Flag Out

234

https://github.com/HaozheZhu/tt05-HZ
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

One Sprite Pony [326]

• Author: Leo Moser
• Description: This SVGA design has exactly one trick up its sleeve: it displays a

sprite!
• GitHub repository
• HDL project
• Mux address: 326
• Extra docs
• Clock: 40 MHz or 10 MHz Hz
• External hardware: Tiny VGA PMOD

How it works

A one-trick pony is someone or something that is good at doing only one thing. Ac-
cordingly, a one-sprite pony can display only one sprite, and that’s exactly what this
design does:
This Verilog design produces SVGA 800x600 60Hz output with a background and one
sprite. Internally, the resolution is reduced to 100x75, thus one pixel of the sprite is
actually 8x8 pixels. The design can operate at either a 40 MHz pixel clock or a 10
MHz pixel clock by setting a configuration bit.

235

https://github.com/mole99/tt05-one-sprite-pony
https://github.com/mole99/tt05-one-sprite-pony

The sprite is 12x12 pixel in size and is initialized at startup with a pixelated version of
the Tiny Tapeout logo.
An SPI receiver accepts various commands, e.g. to replace the sprite data, change the
colors or set the background.

How to test

Connect a Tiny VGA to the output Pmod connector. By default, you should see
the TinyTapeout logo moving around the screen. By sending commands over SPI via
the bidirectional Pmod you can change the sprite and the background, set the sprite
position and much more. See the longer documentation for all commands.

Pinout

Input Output Bidirectional
0 none R1 CS
1 none G1 MOSI
2 none B1 MISO
3 none VS SCK
4 none R0 Vertical Pulse
5 none G0 Horizontal Pulse
6 none B0 none
7 none HS none

236

4 bit Sync Gray Code Counter [328]

• Author: EconomIC Engineers
• Description: Using a clock, a counter will rise using gray code binary values
• GitHub repository
• HDL project
• Mux address: 328
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

4 bit Syncronous Gray Code Counter

How to test

Connect the Input to a clock and Output to LEDs to demonstrate binary values chang-
ing

Pinout

Input Output Bidirectional
0 CLK LED a none
1 none LED b none
2 none LED c none
3 none LED d none
4 none none none
5 none none none
6 none none none
7 none none none

237

https://github.com/ariz207/tt05_GrayCounter

Clock and Random Number Gen [330]

• Author: Austin Lo
• Description: Divider up it 16bit input and a simple random number
• GitHub repository
• HDL project
• Mux address: 330
• Extra docs
• Clock: 200000000 Hz
• External hardware:

How it works

Uses a set of registers to divide the clock.
Both 8 bit input are used for the divider
Can divide up to 65565, target uses 20 Mhz as example.

How to test

After reset, the clock should be divided by the input a 20MHz input clock. Experiment
by changing the inputs

Pinout

Input Output Bidirectional
0 division input bit 0 uo_out[0] clock output division input bit 8
1 division input bit 1 Random Number Output division input bit 9
2 division input bit 2 Random Number Output division input bit 10
3 division input bit 3 Random Number Output division input bit 11
4 division input bit 4 Random Number Output division input bit 12
5 division input bit 5 Random Number Output division input bit 13
6 division input bit 6 Random Number Output division input bit 14
7 division input bit 7 Random Number Output division input bit 15

238

https://github.com/lolo0827/tapeout-v2

TT05 Analog Test [332]

• Author: Matt Venn
• Description: Test voltage divider
• GitHub repository
• HDL project
• Mux address: 332
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

3 resistors are used to build a voltage divider connected between power & ground.
Output taps are uo_out[2:0]

How to test

Enable the block and check the uo_outputs. Expected that only uo_out2 is high.

Pinout

Input Output Bidirectional
0 none {‘UA[0]’: ‘divider out 0’} not used
1 n/a {‘UA1’: ‘divider out 1’} n/a
2 n/a {‘UA2’: ‘divider out 2’} n/a
3 n/a n/a n/a
4 n/a n/a n/a
5 n/a n/a n/a
6 n/a n/a n/a
7 n/a n/a n/a

239

https://github.com/mattvenn/tt05-analog-test
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

VGA Experiments [334]

• Author: Tom Keddie
• Description: Simple Game
• GitHub repository
• HDL project
• Mux address: 334
• Extra docs
• Clock: 25175000 Hz
• External hardware: Digilent VGA PMOD or mole99 vga pmod

How it works

VGA game using paddles attached to input. No scoring, no diagonal ball movement

How to test

Attach VGA pmod and connect to monitor. Use the inputs to move the paddles

Pinout

Input Output Bidirectional
0 left paddle up r1/r0 (mole99/digilent) g0
1 left paddle down g1/r1 (mole99/digilent) g1
2 right paddle up b1/r2 (mole99/digilent) g2
3 right paddle down vsync/r3 (mole99/digilent) g3
4 none r0/b0 (mole99/digilent) hsync
5 none g0/b1 (mole99/digilent) vsync
6 none b0/b2 (mole99/digilent) tied low
7 pmod sel (high=mole99, low=digilent) hsync/b3 (mole99/digilent) tied low

240

https://github.com/TomKeddie/tinytapeout-2023-tt05a

241

Rule110 cell automata [384]

242

• Author: ReJ aka Renaldas Zioma
• Description: Cellular automaton based on the Rule 110
• GitHub repository
• HDL project
• Mux address: 384
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

This design executes over 200 cells of an elementary cellular automaton every cycle
applying Rule 110 to all of them in parallel. Roughly 115 cells with parallel read/write
bus can be placed on 1x1 TinyTapeout tile. Without read/write bus, up to 240 cells
fit on a 1x1 tile!
The edge of chaos - Rule 110 exhibits complex behavior on the boundary between
stability and chaos. It could be explored for pseudo random number generator and
data compression.
Gliders - periodic structures with complex behaviour, universal computation and self-
reproduction can be implemented with Rule 110.
Turing complete - with a particular repeating background pattern Rule 110 is known
to be Turing complete. This implies that, in principle, any calculation or computer
program can be simulated using such automaton!
Definition of Rule 110
The following rule is applied to each triplet of the neighboring cells. Binary represen-
tation 01101110 of 110 defines the transformation pattern.

1. Current iteration of the automaton
111 110 101 100 011 010 001 000
| | | | | | | |
v v v v v v v v

2. The next iteration of the automaton
.0. .1. .1. .0. .1. .1. .1. .0.

Interesting links for further reading

• Elemental Cellular Automaton Rule 110
• Gliders in Rule 110

243

https://github.com/rejunity/tt05-rule110
https://en.wikipedia.org/wiki/Rule_110
http://www.comunidad.escom.ipn.mx/genaro/Rule110.html
http://www.comunidad.escom.ipn.mx/genaro/Papers/Papers_on_CA_files/MARTINEZ.pdf

• Compression-based investigation of the dynamical properties of cellular automata
and other systems

How to test

After RESET all cells will be set to 0 except the rightmost that is going to be 1.
Automaton will immediately start running. Automaton produce new state every cycle
for all the cells in parallel. One hardware cycle is one iteration of the automaton.
Automaton will run until /HALT pin is pulled low.
The following diagram shows 10 first iteration of the automaton after RESET.

X
XX

XXX
XX X
XXXXX

XX X
XXX XX
XX X XXX

XXXXXXX X
automaton state on the XX XXX

10th iteration after RESET ----> XXX XX X

To read automaton state

1) pull /HALT pin low and 2) set the cell block address pins.

Cells are read in 8 cell blocks and are addressed sequentially from right to left. Adress
#0 represents the rightmost 8 cells. Adress #1 represents the cells from 16 to 9 on
the rights and so forth.

automaton state on the
10th iteration after RESET ----> XXX XX X
00000000 ... 00000000000000000000011100001101
| | | | | |
[adr#14] ... [addr#3][addr#2][addr#1][addr#0]

cells are addressed in blocks of 8 bits

The state of the 8 cells in the block will appear on the Output pins once the cell block
address is set.

244

https://arxiv.org/abs/0910.4042
https://arxiv.org/abs/0910.4042

Timing diagram

CLK ___ ___ ___ ___ ___ ___ ___
__/ `___/ `___/ `___/ `___/ `___/ `___ ... _/ `___
| | | | | | |
| | | | | | |

WRITE ____ _______
X__HALT__ ... _/

WRITE_______________ ______________ _______________
_/ ADDR#0 `/ ADDR#1 `/ ADDR#2

READ OUTPUT_______ ________ ________
______/00001101`_______/00000111`______/00000000`_

^ ^
| |

these are the expected values on
the 10th cycle after RESET

HALT - /HALT, inverted halt automata
ADDR# - cell block address bits 0..4

(Over)write automaton state
To write state of the cells, 1) pull /HALT pin low, 2) set the cell block address pins,
3) set the new desired cell state on the Input pins and 4) finally pull /WE pin low.
Cells are updated in 8 cell blocks and are addressed sequentially from right to left.
Adress #0 represents the rightmost 8 cells. Adress #1 represents the cells from 16 to
9 on the rights and so forth.

Timing diagram

CLK ___ ___ ___ ___ ___ ___ ___
__/ `___/ `___/ `___/ `___/ `___/ `___ ... _/ `___
| | | | | | |
| | | | | | |

WRITE ____ _______
X__HALT__ ... _/

245

WRITE_______________ ______________ _______________
_/ ADDR#0 `/ ADDR#1 `/ ADDR#2

WRITE INPUT_________ ______________ _____________
__/ 00000111 `/ 11100110 `/ 11010111 `_

WRITE______ __ ________ __ ________ __ __ ... _________
`_WE___/ `_WE___/ `_WE___/

wait 1 cycle wait 1 cycle

__
____ WE - /WE, inverted write enable
HALT - /HALT, inverted halt automata

ADDR# - cell block address bits 0..4

The following diagram shows 10 cycles of automaton after /HALT pulled back to
high.

[adr#14] ... [addr#3][addr#2][addr#1][addr#0]
| | | | | |
00000000 ... 00000000110101111110011000000111

XX X XXXXXX XX XXX
XXXXXXX X XXX XX X
XX X XXXX X XXXXX
XXX XX XX XXX XX X

XX X XXX XXX XX X XXX XX
XXXXX XX XXX XXXXXX XX X XXX
XX X XXXXX XXX XXXXXXXX X

XXX XXXX XXX X XX XXX
XX X XX X XX XXX XXX XX X

10 cyles later -> XXXXXXXX XX XXXXX X XX X XXXXX

Pinout

Input Output Bidirectional
0 write cell 0 state read cell 0 state /WE, inverted write enable
1 write cell 1 state read cell 1 state /HALT, inverted halt automata
2 write cell 2 state read cell 2 state ADDR#, cell block address bit 0
3 write cell 3 state read cell 3 state ADDR#, cell block address bit 1

246

Input Output Bidirectional
4 write cell 4 state read cell 4 state ADDR#, cell block address bit 2
5 write cell 5 state read cell 5 state ADDR#, cell block address bit 3
6 write cell 6 state read cell 6 state ADDR#, cell block address bit 4
7 write cell 7 state read cell 7 state none

247

No Time for Squares [390]

• Author: Tommy Thorn
• Description: It’s a 12-hour clock, drawn with triangles rendered by a race-the-

beam triangle render
• GitHub repository
• HDL project
• Mux address: 390
• Extra docs
• Clock: 31500000 Hz
• External hardware: TinyVGA, 31.5 MHz clock, reset, hour & min buttons

How it works

Every frame the 640x480 VGA matrix is scanned, advancing the state of the intersecting
lines of the three triangles. If the (x,y) coordinate of the “beam” lines on the positive
side of each line, the beam is inside the triangle. Among the visible triangles, the

248

https://github.com/tommythorn/no-time-for-squares

highest priority triangle sets the color, else we default to a grey color. Twelve dots are
also marked, to make it easier to read the clock.
The algorithm might be easily understood by examining the software model in Rust, in
the sw directory.

How to test

Hook up the Tiny VGA interface and connect a VGA monitor. Hope it works.

Pinout

Input Output Bidirectional
0 clock R1 debug[7]
1 reset G1 debug[6]
2 hour, advance hour B1 debug[5]
3 minute, advance minute vsync debug[4]
4 unused R0 debug[3]
5 unused G0 debug[2]
6 debugsel[1] B0 debug[1]
7 debugsel[0] hsync debug[0]

249

Game of Life 8x32 (siLife) [396]

• Author: Uri Shaked
• Description: Silicon implementation of Conway’s Game of Life with LED Dot

Matrix Output
• GitHub repository
• HDL project
• Mux address: 396
• Extra docs
• Clock: 10000000 Hz
• External hardware: MAX7219 LED Matrix (FC-16 module)

How it works

It is a silicon implementation of Conway’s Game of Life. The game is played on a 8x32
grid, and the rules are as follows:

• Any live cell with fewer than two live neighbours dies, as if by underpopulation.
• Any live cell with two or three live neighbours lives on to the next generation.
• Any live cell with more than three live neighbours dies, as if by overpopulation.
• Any dead cell with exactly three live neighbours becomes a live cell, as if by

reproduction.

250

https://github.com/urish/tt05-silife-max

How to test

Demo mode: The demo mode loads a pre-defined game into the grid and advances it
automatically. To enter the demo mode, wr_en high while reseting the design (rst_n
low). Use the pattern_sel inputs to select the desired demo pattern. Set en to 1
to automatically advance one generation every 0.4 seconds (assuming a 10MHz clock).
To pause the game, set en to 0.
Manual mode: Load the initial grid row by row. Each row is loaded by selecting the
row number (using the row_sel[4:0] inputs), setting the cell_in[7:0] inputs to
the desired state, and pulsing the wr_en input.
Once the grid is loaded, set the en input to 1 to start the game. The game will advance
one step in each clock cycle. To pause the game, set the en input to 0.
To view the current state of the grid, set the row_sel[4:0] inputs to the desired row
number, max7219_en to 0, and read the cell_out[7:0] outputs.
Alternatively, set max7129_en to 1 to display the grid on a MAX7219 LED Matrix
(FC-16 module).

Pinout

Input Output Bidirectional
0 row_sel[0] / pattern_sel cell_out[0] / max7129_cs cell_in[0]
1 row_sel1 cell_out1 / max7129_clk cell_in1
2 rol_sel2 cell_out2 / max7129_din cell_in2
3 rol_sel[3] cell_out[3] cell_in[3]
4 rol_sel[4] cell_out[4] cell_in[4]
5 max7129_en cell_out[5] cell_in[5]
6 en cell_out[6] cell_in[6]
7 wr_en cell_out[7] cell_in[7]

251

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

TROS [398]

• Author: Gerrit Grutzeck
• Description: Three different ring oscillator, with different temperature depen-

dence
• GitHub repository
• HDL project
• Mux address: 398
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

This design implements three different ring oscillators. The first one is a basic NAND
based oscillator. The second one adds additional NAND gates to the outputs of the
stages of the oscillator to increase the capacitve loading. The last one uses the tri-state
inverts with a sub-threshold tri-state enable.
For measuring the frequencies each oscillator is driving a counter. This counters are
latched with the latch counter input. With the input transfer counter the currently
selected counter (counter select bits) is transfered via the serial data stream. The
transfer is driven by the clock of the design. As encoding a manchester encoding is
used.
Furthermore, a divided version of the clock of each oscillator is outputted. The divisior
can be configured with the frequency selection bits.

How to test

TODO

Pinout

Input Output Bidirectional
0 latch counter not used not used
1 counter reset not used not used
2 transfer counter not used not used
3 counter select bit 0 not used not used
4 counter select bit 1 serial data stream not used

252

https://github.com/gfg-development/tt05-tros

Input Output Bidirectional
5 select latch counter (sync/async) divided clock of oscillator 0 not used
6 frequency divider select bit 0 divided clock of oscillator 1 not used
7 frequency divider select bit 1 divided clock of oscillator 2 not used

253

ChatGPT designed Spiking Neural Network [450]

• Author: Michael Tomlinson, Joe Lie, ChatGPT-4, Andreas Andreou - mtom-
lin5@jh.edu

• Description: SPI Programmable spiking neural network with 6 LIF neurons (3
input - 3 output) with fully programmable weights (8-bit)

• GitHub repository
• HDL project
• Mux address: 450
• Extra docs
• Clock: 50000000 Hz
• External hardware: fpga

How it works

This project implements 6 programmable digital LIF neurons. The neurons are arranged
in 2 layers (3 in each). Spikes_in directly maps to the inputs of the first layer neurons.
When an input spike is received, it is first multiplied by an 8 bit weight, programmable
from the spi interface, 1 per input neuron. This 8 bit value is then added to the
membrane potential of the respective neuron.
When the first layer neurons activate, its pulse is routed to each of the 3 neurons in
the next layer. There are 9 programmable weights describing the connectivity between
the first and second layers. Output spikes from the 2nd layer drive spikes_out.

How to test

After reset, program the neuron threshold, leak rate, and refractory period. Additionally
program the first and 2nd layer weights (all programming is done over spi). Once
programmed activate spikes_in to represent input data, track spikes_out synchronously
(1 clock cycle pulses).

Pinout

Input Output Bidirectional
0 ui_in[7] - unused uo_out[7] - unused GPIO pins are wired to

outputs and driven high
(unused by the design).

1 ui_in[6] - unused uo_out[6] - unused unused

254

https://github.com/AndreouLab/tinytapeout_05_chatgpt_snn

Input Output Bidirectional
2 ui_in[5] - spikes_in2 uo_out[5] - unused unused
3 ui_in[4] - spikes_in1 uo_out[4] - unused unused
4 ui_in[3] -

spikes_in[0]
uo_out[3] - cipo unused

5 ui_in2 - copi uo_out2 -
spikes_out2

unused

6 ui_in1 - cs_n uo_out1 -
spikes_out1

unused

7 ui_in[0] - sclk uo_out[0] -
spikes_out[0]

unused

255

http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Karplus-Strong String Synthesis [454]

• Author: Chinmay Patil
• Description: Plucked string sound synthesizer
• GitHub repository
• HDL project
• Mux address: 454
• Extra docs
• Clock: 256000 Hz
• External hardware:

How it works

This is simplified implementation of Karplus-Strong (KS) string synthesis based on
papers, Digital Synthesis of Plucked-String and Drum Timbres and Extensions of the
Karplus-Strong Plucked-String Algorithm.
A register map controls and configures the KS synthesis module. This register map is
accessed through a SPI interface. Synthesized sound samples can be accessed through
the I2S transmitter interface.
SPI Frame
SPI Mode: CPOL = 0, CPHA = 1
The 16-bit SPI frame is defined as,

Read=1/Write=0 Address[6:0] Data[7:0]

Register Map
The Register Map has 16 Registers of 8-bits each.
Complete register map is described in the repository at https://github.com/pyamnih
c/tt04-um-ks-pyamnihc.
I2S Transmitter
The 8-bit signed sound samples can be read out at f_sck = 256 kHz through this
interface.

256

https://github.com/pyamnihc/tt05-um-ks-pyamnihc
https://doi.org/10.2307/3680062
https://doi.org/10.2307/3680063
https://doi.org/10.2307/3680063
https://github.com/pyamnihc/tt04-um-ks-pyamnihc
https://github.com/pyamnihc/tt04-um-ks-pyamnihc

How to test

Connect a clock with frequency f_clk = 256 kHz and apply a reset cycle to initialize
the design, this sets the audio sample rate at fs = 16 kHz. Use the spi register map or
the ui_in to futher configure the design. The synthesized samples are sent continuously
on the I2S transmitter interface.

Pinout

Input Output Bidirectional
0 ~rst_n_prbs_15, ~rst_n_prbs_7 segment a sck_i
1 load_prbs_15, load_prbs_7 segment b sdi_i
2 freeze_prbs_15 segment c sdo_o
3 freeze_prbs_7 segment d cs_ni
4 i2s_noise_sel segment e i2s_sck_o
5 ~rst_n_ks_string segment f i2s_ws_o
6 pluck segment g i2s_sd_o
7 NOT CONNECTED dot prbs_15

257

VGA Dino Game [458]

• Author: Anish Singhani
• Description: An endless-runner game implemented on a VGA monitor
• GitHub repository
• HDL project
• Mux address: 458
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

Connect to VGA and some buttons and play!

How to test

Connect to a VGA monitor

Pinout

Input Output Bidirectional
0 jump btn VGA R0 none
1 halt btn VGA G0 none
2 debug btn VGA B0 none
3 mode btn VGA vsync none
4 none VGA R1 none
5 none VGA G1 none
6 none VGA B1 none
7 none VGA hsync none

258

https://github.com/asinghani/dinogame-tt05

Dual Compute Unit [460]

• Author: Himanshu Yadav
• Description: ComputeUnit implementation
• GitHub repository
• HDL project
• Mux address: 460
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

The project has two compute unit which perform some ALU operations based on input
instructions and the final output is xor of compute unit output.

How to test

Reset needs to be 0 to make design go to reset mode and then set reset to 1 and ena
to 1 to shift the design to functional mode. I tested my design on EDA playground by
creating testbench there. Testbench and design files are there in test/ directory.

Pinout

Input Output Bidirectional
0 none segment a none
1 none segment b none
2 none segment c none
3 none segment d none
4 none segment e none
5 none segment f none
6 none segment g none
7 none dot none

259

https://github.com/himanshu5-prog/tt_um_myChip

Collatz conjecture brute-forcer [462]

• Author: Vytautas Šaltenis
• Description: Runs a Collatz sequence calculation for a given number, outputs

the number of steps it took to reach 1 (a.k.a. orbit length) and the upper 16
bits of the highest number of the sequence.

• GitHub repository
• HDL project
• Mux address: 462
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

The module takes a (large) integer number N as an input and computes the Collatz
sequence until it reaches 1. When it does, it allows reading back two numbers:

1) The orbit length (i.e. the number of steps it took to reach 1)
2) The highest recorded value of the upper 16 bits of the 144-bit internal iterator

The latter number is an indicator for good candidates for computing path records. The
non-zero upper bits indicate that the highest iterator value Mx(N) is in the range of
the previous path records and should be recomputed in the full offline. (Holding on to
the entire 144 bits of Mx(N) number would be more obvious, but this almost doubles
the footprint of the design, hence, this optimisation).

How to test

The module can be in 2 states: IO and COMPUTE. After reset, the chip will be in IO
mode. Since the input is intended to be much larger that the available pins, the input
number is uploaded one byte at a time, increasing the address of where in the internal
144-bit-wide register that byte should be stored.
Same for reading the output, except that the output numbers are limited to 16-bits
each, so it takes much fewer operations to read them.
The full loop of computations works like this:

260

https://github.com/rtfb/tt05-collatz
https://github.com/rtfb/tt05-collatz/blob/main/README.md
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

1) Set input (see below)
2) Pull start compute pin to high. The chip will start computations and will pull

compute busy indicator pin to high
3) Keep reading compute busy indicator pin until it gets low again
4) Read the output (see below)

Writing input:

1) Set write enable pin to low
2) Wait at least one cycle
3) Expose your input byte to input0-7
4) Expose the target address for that byte to address0-4
5) Wait at least one cycle
6) Set write enable pin to high

Reading output:

1) Set orbit/max select pin to low
2) Set address0-4 to 0
3) Read low byte of orbit length from output0-7
4) Set address0-4 to 1
5) Read high byte of orbit length from output0-7
6) Set orbit/max select pin to high
7) Repeat steps 2-5 to read the upper Mx(N) bits

Pinout

Input Output Bidirectional
0 input0 output0 address0
1 input1 output1 address1
2 input2 output2 address2
3 input3 output3 address3
4 input4 output4 address4
5 input5 output5 orbit/max select
6 input6 output6 start compute
7 input7 output7 write enable or compute busy indicator

261

262

Field Programmable Neural Array [518]

263

• Author: Reto Stamm
• Description: A collection of 50 interconnected simulated leaky neurons that can

be programmed to do cognitive tasks.
• GitHub repository
• HDL project
• Mux address: 518
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Neuromorphic neural nets are more power efficient than traditional machine learning.
It replicates an array of leaky neurons, a simple structure that exists in the brain. This
design defines a Field Programmable Neural Array (FPNA). (1)
A mental model for a leaky neuron is a capacitor that drains at some rate. It gets
charged up by some amount (its weight) whenever an input (a dendrite) receives a
pulse from somewhere else. It sends a pulse (fire) its output (axon) when it reaches a
specified level.
This circuit contains an array of 5*10 interconnected, heavily simplified configurable
neuron blocks (CNBs). Instead of continuous weights, we have three bits per weight.
Instead of a continuous decay of the charge in the capacitor, it halves at a somewhat
configurable interval. Each CNB has its own set of weights, and a somewhat config-
urable rate of decay. In this design, each CNB had 4 inputs (dendrites), each with its
own weight, one output (axon), and a choice of 8 different time decays.
An array of neuromorphic CNBs (Configurable Neuron Blocks). Each CNB has a 4
inputs, and each input has an associated weight that gets added to the CNBs membrane
potential whenever the relevant input fires. When a CNB reaches a treshhold (rolls
over, in this case), it fires and sends a pulse to 3 of its neighbours. Each CNB is
subscribed to one of 8 decay clock tools.
The configuration data (Bitstream, or BS), including all the weights, the desired timing
divisions, and the weights for each CNB are shifted in through the bs_in pin when the
config_en pin is high. The BS can be read back from the bs_out pin.
The naxon tool is an example that shows how to train a neural network, generate all
the relevant data and the BS that is needed to configure that model into this design
https://github.com/retospect/naxon. More up-to-date design documents may also be
found there.

264

https://github.com/retospect/tt05-fpna-rs
https://github.com/retospect/naxon

References (1) Eshraghian, Jason K., Max Ward, Emre Neftci, Xinxin Wang, Gregor
Lenz, Girish Dwivedi, Mohammed Bennamoun, Doo Seok Jeong, and Wei D. Lu. 2023.
“Training Spiking Neural Networks Using Lessons From Deep Learning.”

How to test

After reset, clock in the bitstream to configure all the weights and stuff. Then clock
in the test data from the generated test bench from naxon, and see the appropriate
answer come out!

Pinout

Input Output Bidirectional
0 dendritic input 0 output axon 0 reset_nn reset neural

network (active high)
1 dendritic input 1 output axon 1 bs_in bitstream readout
2 dendritic input 2 output axon 2 bs_out bitstream input
3 dendritic input 3 output axon 3 config_en - shift bitstream
4 dendritic input 4 output axon 4 output axon 8
5 dendritic input 5 output axon 5 output axon 9
6 dendritic input 6 output axon 6 dendritic input 9
7 dendritic input 7 output axon 7 dendritic input 8

265

http://arxiv.org/abs/2109.12894
http://arxiv.org/abs/2109.12894
http://arxiv.org/abs/2109.12894

DFFRAM Example (128 bytes) [526]

• Author: Uri Shaked
• Description: 128 bytes DFFRAM module
• GitHub repository
• HDL project
• Mux address: 526
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

It uses a 32x32 1RW DFFRAM macro to implement a 128 bytes (1 kilobit) RAM
module.
Reseting the project does not reset the RAM contents.

How to test

Set the addr pins to the desired address, and set the in pins to the desired value.
Then, set the wen pin to 1 to write the value to the RAM, or set it to 0 to read the
value from the RAM, and pulse clk.
The out pins will contain the value read from the RAM.

Pinout

Input Output Bidirectional
0 addr[0] out[0] in[0]
1 addr1 out1 in1
2 addr2 out2 in2
3 addr[3] out[3] in[3]
4 addr[4] out[4] in[4]
5 addr[5] out[5] in[5]
6 addr[6] out[6] in[6]
7 wen out[7] in[7]

266

https://github.com/TinyTapeout/tt05-dffram-example
https://github.com/AUCOHL/DFFRAM
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Chonky Spiking Neural Net [582]

• Author: ReJ aka Renaldas Zioma, Paola Vitolo, Andrew Wabnitz. Big thanks
to Jason Eshraghian!

• Description: 3 layer Spiking Neural Net with on-chip weights
• GitHub repository
• HDL project
• Mux address: 582
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

3 layer Spiking Neural Net with on-chip weights

How to test

After reset…

Pinout

Input Output Bidirectional
0 input bus LSB last layer neuron 0 (in) EXEC
1 input bus last layer neuron 1 (in) SYNC
2 input bus last layer neuron 2 (in) SETUP_CONTROL 0 bit
3 input bus last layer neuron 3 (in) SETUP_CONTROL 1 bit
4 input bus last layer neuron 4 (in) SETUP_CONTROL 2 bit
5 input bus last layer neuron 5 (out) debug neuron layer 1
6 input bus last layer neuron 6 (out) debug neuron layer 2
7 input bus MSB last layer neuron 7 (out) debug neuron layer 2

267

https://github.com/rejunity/tt05-spiking-neural-net

Hodgkin-Huxley Neuron [590]

• Author: Jason Eshraghian
• Description: Implement a Hodgkin-Huxley neuron in silicon.
• GitHub repository
• HDL project
• Mux address: 590
• Extra docs
• Clock: 20000000 Hz
• External hardware:

How it works

Apply an input current injection to the LIF neuron. This will modify a neuron membrane
potential, and with sufficient current injection, will cause periodic action potentials.

How to test

After reset, all state variables will be initialized. A minimum of 2 clock cycles of reset
is needed.
An 8-bit input current is then applied to uio_in. The current is treated as the LSB
of a 16-bit signal by concatenating 8x0’s to the front. The first bit is a sign bit, the
following 8-bits are treated as the whole number while the final 7-bits are the fraction.
The current is interpreted in dimensions of uA/cm^2. This means the maximum value
that can be represented is 1.992 uA/cm^2.
The membrane potential of the neuron will respond accordingly. Larger currents will
elicit more firing. Simulations show that the neuron will start firing, reach a steady

268

https://github.com/jeshraghian/tt05-hodgkin-huxley

state where it stops firing in absence of input stimulus, and start firing again if the
current exceeds approximately 8’b00001100 = 8’d12.

Pinout

Input Output Bidirectional
0 current bit 11 membrane potential

bit a
membrane potential output
bit i

1 current bit 12 membrane potential
bit b

membrane potential
fractional output bit j

2 current bit 13 membrane potential
bit c

membrane potential
fractional output bit k

3 current bit 14 membrane potential
bit d

membrane potential
fractional output bit l

4 current bit 15 membrane potential
bit e

membrane potential
fractional output bit m

5 current bit 16 membrane potential
bit f

membrane potential
fractional output bit n

6 current bit 17 membrane potential
bit g

membrane potential
fractional output bit o

7 current bit 18 membrane potential
bit h

membrane potential
fractional output bit p

269

PRBS Generator [641]

• Author: Ivan M Bow
• Description: Generates a PRBS that is configureable up to 8-bits.
• GitHub repository
• Wokwi project
• Mux address: 641
• Extra docs
• Clock: The input drives the output frequency. Hz
• External hardware: Connection to SPI port, clock input, and analyzer to observe.

How it works

Pseudo Random Binary Sequence (PRBS) Generator Author: Ivan M Bow
This project was created using Wokwi and submitted to Tiny Tapeout for fabrica-
tion. The goal is to create a fully configurable, burst PRBS output. See Wiki for
implementation details of PRBS and details on the operations of and polynomials for
Linear-Feedback-Shift-Registers (LFSR).

Features
• Implements a Galois LFSR with XOR taps for PRN generation.
• Estimated 500kHz Max output PRBS rate, at PRBS2.

– With 8-bit polynomial, 30 MHz should be achievable.
– Max frequency reduces as PRBS size is reduced.

∗ Estimated Max = (30 MHz / 2 ^ (8 - Nbits))

• Fail safe all 0’s check to ensure no lock up.
• Clock Divider
• SPI Interface

– CLK, MOSI, CS
– SPI Mode 0, CS Active Low, MSB First

• Register access for configuration
• Differential Output
• Look-ahead Outputs

– For each of the differential outputs, the next bit coming is output.
– Useful for waveshaping or other information.

• Logic added in so a bit cannot be XOR’ed if the previous bit is disabled.

270

https://github.com/wulfhednar02/tt05_prbs_generator
https://wokwi.com/projects/377426511818305537
https://www.wokwi.com
https://www.tinytapeout.com
https://en.wikipedia.org/wiki/Linear-feedback_shift_register

– The highest order bit is not XOR’ed with the output bit, despite being in
the poly.

• Enable pin for starting and resetting the output.
• Data pin for inverting the output.

Description The 8-bit PRBS generator has several 8-bit registers that are used to
configure the output. Using the Tiny Tapeout board that is supplied with each project,
the PRBS generator will take in a clock of any frequency output by the RP2040. The
input clock is divided by the configured factor of 2, then this frequency is used to run
the generator. The bit length and the polynomial of the output are configured in the
registers. The output of the PRBS generator starts when the enable pin is set high.
There are 2 counters that control the output of the PRBS generator. The binary
sequence will run for a configured number of times, with an output “clock” indicating
this “rate”. For Example, if the register is set to 20, the PRBS will be repeated 10
times, the output clock goes low, then another 10 times, and the output clock goes
high. The idea behind this clock output is to signal to an external device for sending
data. When the output clock goes low, the data needs to be set. When the output
clock goes high, the data on the input pin is clocked in for the remainder of the output
clock period.
The data bit is XOR’ed with the PRBS output to create a non-inverted or inverted
sequence. Another register is configured to have the number of data bits that will be
clocked into the PRBS generator. This number of data bits is the number of clock
periods that are given from the output clock. Once the number of data bits has been
completed, the PRBS generator automatically stops running. The generator remains
off until the enable pin goes low, which resets the generator, and then high again to
start another “data bits” cycles of the PRBS.
Registers are configured using SPI. For setting up each 8-bit register, the first byte sent
is the command byte and must be hexadecimal 0x80 plus the address of the register to
be configured. The second byte sent is the data that will be placed in the register and
stored until changed or reset. The address field is the last 3-bits of the command byte
and valid range is 1-5. Chip select high resets the command byte, and only 1 register
may be written to per cycle of chip select.
A debug setup has been included for easy setup and testing. The debug mode sets the
generator to divide the input clock by 16, the sequences per data bit to 7, the data
bits count to 7, enables bits 0x0F (4 bits), and the polynomial to 0x0C (x^4 + x^3
+ 1). To use the debug feature, start by placing all inputs low (including RST_N) to
reset all registers and counters. Then:

1) Set the RST_N line high.

271

https://www.tinytapeout.com

2) Set DEBUG high.
3) Set ENABLE high.

The PRBS generator is now running, and the data line can be toggled to invert the
output. Once the PRBS has repeated 49 times, the generator will stop. To start the
sequence again, toggle the enable line.
Note: While the DEBUG line is high, all registers will be non-configureable. To use
the SPI and configure the PRBS generator, set the DEBUG line low.

Registers
• 5 registers control the PRBS generator

– Register 0: Command and Address of register to configure *
– Register 1: Clock Divider **
– Register 2: PRBS count per data bit ***
– Register 3: Count of data bits ***
– Register 4: Bits to enable ****
– Register 5: Polynomial XOR taps to enable *****

• Addressing and commands happen in a single CS session.

– CS low -> 0x80 + 3-bit address -> 8-bit data -> CS high

• Reset_N clears all registers

Inputs
• CLK (RP2040 Clock)
• RST_N (Reset Low)
• IN0: SPI CS (Active Low)
• IN1: SPI CLK (Active High)
• IN2: SPI MOSI
• IN3: ENABLE (PRBS Generator Enable - Active High)
• IN4: DATA Bit Input
• IN5: No Connect
• IN6: No Connect
• IN7: DEBUG (Debug mode - Active high)

272

Outputs
• OUT0: PRBS_OUT_1 (PRBS Positive Look-ahead)
• OUT1: PRBS_OUT (PRBS Positive)
• OUT2: PRBS_OUT_N (PRBS Negative)
• OUT3: PRBS_OUT_N_1 (PRBS Negative Look-ahead)
• OUT4: DATA_CLK (Data Clock Output)
• OUT5: BUSY (PRBS Running)
• OUT6: CLK_OUT (RP2040 Clock)
• OUT7: CLK_PRBS_OUT (PRBS Generator Clock)

Bidirectional (All DIO are set to output and used for debug purposes.)

• D0: REG_SEL_0
• D1: REG_SEL_1
• D2: REG_SEL_2
• D3: PRBS_CLK_BYPASS
• D4: DATA_COUNT_CLK
• D5: DATA_COUNT_COMB_OUT
• D6: SEQ_COUNT_COMB_OUT
• D7: No Connect

Register Contents Register 0: Command & Address

7 6 5 4 3 2 1 0
C0 X X X X A2 A1 A0

• bits [7] - 0: Nothing occurs. 1: Writes the following word into the register
• bits [6:3] - Do Not Care
• bits [1:2] - 3-bit address of register to place the following data in.

– (Address 0 is this register.)

Register 1: Clock Divider

7 6 5 4 3 2 1 0
X X X X X D2 D1 D0

• bits [7:3] - Do Not Care
• bits [2:0] - Clock Divider

– 0: /1

273

– 1: /2
– 2: /4
– 3: /8
– 4: /16
– 5: /32
– 6: /64
– 7: /128

Register 2: Sequence Repeat Count

7 6 5 4 3 2 1 0
C7 C6 C5 C4 C3 C2 C1 C0

• bits [7:0] - Count of times PRBS sequence is repeated per bit.

Register 3: Data Bit Count

7 6 5 4 3 2 1 0
E8 E7 E6 E5 E4 E3 E2 E1

• bits [7:0] - Count of bits of data for which the generator runs.

Register 4: Polynomial Enable Bits

7 6 5 4 3 2 1 0
E8 E7 E6 E5 E4 E3 E2 E1

• bits [7:0] - E(n+1) is the enable bit for the polynomial size.

– E() is 1 indexed to match the polynomial exponents.
∗ 3-bit polynomial is b’111 or h’7.
∗ 8-bit polynomial is b’11111111 or h’FF.

– Bits must be sequential from bit 0. Other values are undefined.

Register 5: Polynomial Tap Bits

7 6 5 4 3 2 1 0
x^8 x^7 x^6 x^5 x^4 x^3 x^2 x^1

• bits [7:0] - E(n+1) is the enable bit for the polynomial taps.

– E() is 1 indexed to match the polynomial exponents.

274

∗ x^4 + x^2 + 1 is b’1010 or h’A.
∗ x^5 + x^4 + x^3 + 1 is b’11100 or h’1C.

* Do not address the command byte register, address 0. If the command byte is written to as
data, then the data could trigger the command byte to transfer to another register,
whose address is based on the contents of bits 0-2 when bit 7 is triggered.

** Clock divider bits 3-7 are unused and have no effect.
*** How the counters operate, a count of "0" is considered to be 65,536. Additionally, a count

of "1" does not work as expected, and is equivalent to a count of "0".
**** Bits must be enabled sequentially, starting with bit 0. Any bit enable value that is not

sequential is an undefined state. I do not believe it will break anything, but I have not
looked into what this will do to the output.

***** Enabling an XOR tap bypasses the bit enable register setting. For example, if bits 0-4 are
enabled but bit 6 has the XOR tap set, then the output polynomial will be x^6 + the rest
of the polynomial settings.

How to test

1) Clear inputs and reset to ensure known states.
2) Configure the registers using SPI or using the debug_setup pin.
3) Set “output_en” high and observe “prbs_out”.
4) Toggle “data_in” to invert “prbs_out” on next rising edge of “data_clk”.
5) To restart PRBS after “busy” goes low, clear “output_en” and set “output_en”

again.

Pinout

Input Output Bidirectional
0 spi_cs prbs_out_1 debug_out_reg_sel_0
1 spi_clk prbs_out debug_out_reg_sel_1
2 spi_mosi prbs_out_n debug_out_reg_sel_2
3 output_en prbs_out_n_1 debug_out_prbs_clk_bypass
4 data_in data_clk debug_out_data_count_clk
5 none busy debug_out_data_count_comb_out
6 none debug_out_system_clk debug_out_seq_count_comb_out
7 debug_setup debug_out_prbs_clk none

275

Stop Watch [643]

• Author: Devin Atkin
• Description: Stop Watch System
• GitHub repository
• HDL project
• Mux address: 643
• Extra docs
• Clock: 25 000 000 Hz
• External hardware: 7 Segement Display (Common Anode Segments), Active Low

top and Bottom

How it works

This creates a stop watch type of behavior. It was originally written and verified on the
Basys 3 board. The Inc Switch controls whether the timer increments or decrements
when the increment buttons are pressed. When the timer is running it can be paused by
pressing the stop button. The timer can be reset by pressing the soft reset button.

How to test

Provide a 7 segment display, some buttons, and a switch to control the behavior and
see the output

Pinout

276

https://github.com/devinatkin/tt05-stopwatch

Input Output Bidirectional
0 start button segment a anode 1
1 stop button segment b anode 2
2 soft reset button segment c anode 3
3 inc minute button segment d anode 4
4 inc second button segment e none
5 inc switch segment f none
6 mode switch segment g none
7 none none none

277

vga_spi_rom [645]

• Author: algofoogle (Anton Maurovic)
• Description: Test reading/buffering/displaying SPI flash ROM data on VGA

display
• GitHub repository
• HDL project
• Mux address: 645
• Extra docs
• Clock: 25.0MHz, 25.175MHz, or 26.6175MHz Hz
• External hardware: VGA DAC (RGB111 or 222 depth) and SPI flash memory

How it works

TBC.
Reads data from an SPI flash ROM (or any memory compatible with, say, W25Q10 or
above) and displays it on a VGA display.
Drives a display at one of two resolutions (selectable by vga_mode):

• 0: 640x480 60Hz, from 25.1750MHz clock (though 25.0000MHz should do OK).
• 1: 1440x900 60Hz, from 26.6175MHz (or as close as you can get to it).

278

https://github.com/algofoogle/tt05-vga-spi-rom
https://github.com/algofoogle/tt05-vga-spi-rom

NOTE: Some monitors will also sync 640x480 using the 26.6175MHz clock that’s
otherwise used for vga_mode 1… they’ll get ~63Hz instead of 60Hz. That means if
you can get near this frequency, you might find it to be a good middle ground that
allows you to switch live between 640x480 and 1440x900. My HP L1908wm monitor
works fine this way for clocks in the range of 26.3MHz to 27.0MHz, and might even
work slightly beyond that.
The flash memory contents are displayed using two alternating line modes (4 lines
each):

1. As VGA scans near the middle of each line, read up to 136 bits (17 bytes) and
store in local register memory, then display on the next scanline. NOTE: Because
it buffers to memory on one line and displays the buffer on the next line, the
first line is blanked out automatically by the design to avoid confusion. Hence
you only actually see 3 lines for this line mode, before it switches to the next
line mode.

2. Just send unregistered SPI data output (MISO) directly to the VGA display. In
this line mode, you should see 4 identical lines before it switches back to line
mode above.

These two line modes are timed to line up, so we can check for consistency between
them, but note that there is actually expected to be a slight delay in the ‘MISO direct’
mode because the MISO output data appears on the falling SCLK edge. At 1440x900,
this should be apparent.
The reg_outs signal, if HIGH, specifies that the VGA output signals should be regis-
tered. If LOW, the raw outputs go directly to the VGA display (inc. directly from the
SPI memory when not in a buffered line).
NOTE: This tries to use !CLK (main clock, inverted) to drive the SPI SCLK directly,
so that we don’t need a faster system CLK in order to manage extra states. It keeps
this SCLK output running constantly, relying on /CS.
NOTE: Besides the main design, I’ve got simple loopback test:

• Test_in[2:0] feeds a 3-input logical AND which outputs to Test_out

It could be interesting, when we get the actual chip back, to compare inputs to outputs
on an oscilloscope.
NOTE: The sync polarity of hsync and vsync will be determined by vga_mode.

279

How to test

TBC.
Attach an SPI memory chip with some data in it, e.g. SPI flash ROM like W25Q10.
Anything that accepts a 24-bit address and supports at least 27MHz reads should be
fine. I used a generic 25Q80 (8Mbit) that I pulled off an ESP-01.
Attach a VGA display:

• For simplicity, I suggest starting with 640x480@60Hz mode. To do that, strap
vga_mode to GND, and use a 25.000MHz (or ideally 25.175MHz) clock source.
If you want to try 1440x900@60Hz mode instead, strap vga_mode high and use
~26.6175MHz as your clock source.

• NOTE: VGA modes 0 and 1 output different VSYNC polarity, as recommended
by the spec.

• NOTE: I don’t yet know what current a VGA display will sink per each
input, nor what current the TT05 chip can safely supply per pin (or
in total), so for now I recommend using some bigger resistors in se-
ries with each signal, even if it means an impedance mismatch. Either
that, or just properly buffer each TT05 chip output with something
like a 74ALVC245 (https://www.digikey.com.au/en/products/detail/texas-
instruments/SN74ALVC245DWR/374035). Supposedly the Caravel IOs we’re
using might sink/source a max of 4mA, so assuming they’re at 3.3V we could
use 1kΩ resistors (which would hit 3.3mA per pin)…?

• hsync, vsync must be connected to the display; I recommend buffering them
(as above) and then a 100Ω resistor then in series with their respective VGA
pins (for safe current limiting) even though 100Ω is more often done.

• For a minimum display up and running quickly, attach the high bit (bit 2) of
each of red, green, and blue, each via a 1kΩ resistor, to their respective VGA
colour channel input pins. It might be pretty dark, but should be safe on Caravel
IO pins if you don’t otherwise buffer them.

• For a much better display, use an RGB222 (upper 2 bits per channel), ensur-
ing it buffers each of those digital outputs. A good option is Tiny VGA (see:
https://tinytapeout.com/specs/pinouts/)

Pinout

Input Output Bidirectional
0 In: vga_mode Out: red1 Out: SPI /CS
1 In: rst_mode Out: green1 Out: SPI io[0] / MOSI
2 In: reg_outs Out: blue1 Out: SPI io1 / MISO

280

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Input Output Bidirectional
3 In: N/C Out: vsync Out: SPI SCLK
4 In: N/C Out: red[0] Out: Test_out
5 In: Test_in[0] Out: green[0] Out: SPI /RST
6 In: Test_in1 Out: blue[0] Out: SPI io2 (/WP)
7 In: Test_in2 Out: hsync Out: SPI io[3] (/HLD)

281

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

RO and counter [647]

• Author: akita11
• Description: 8 inv and counter.
• GitHub repository
• HDL project
• Mux address: 647
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

This is a blink.

How to test

Check reset, ena, counter function.

Pinout

Input Output Bidirectional
0 inv1 counter[15] output of inv1
1 inv2 counter[14] output of inv2
2 inv3 counter[13] output of inv3
3 inv4 counter[12] output of inv4
4 inv5 counter[11] output of inv5
5 inv6 counter[10] output of inv6
6 inv7 counter[9] output of inv7
7 inv8 counter[8] output of inv8

282

https://github.com/akita11/tt05-verilog-demo

8-Bit Shift Register with Output Latches 74HC595 [649]

• Author: Hirosh Dabui
• Description: The 74HC595 shift register
• GitHub repository
• HDL project
• Mux address: 649
• Extra docs
• Clock: Hz
• External hardware: You should connect 8 LEDs; perhaps a Pmod might also

work.

How it works

https://www.onsemi.com/pdf/datasheet/mm74hc595-d.pdf

How to test

https://www.onsemi.com/pdf/datasheet/mm74hc595-d.pdf

Pinout

Input Output Bidirectional
0 sclrn none q[0]
1 ser none q1
2 rck none q2
3 srck none q[3]
4 G none q[4]
5 n/a none q[5]
6 n/a none q[6]
7 n/a none q[7]

283

https://github.com/splinedrive/74hc595
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Neptune guitar tuner (proportional window, version b, debug
output on bidir pins, larger set of frequencies) [651]

• Author: Pat Deegan
• Description: It’s a guitar tuner! and so much more…
• GitHub repository
• HDL project
• Mux address: 651
• Extra docs
• Clock: 1000 Hz
• External hardware: Digital input required: may need massaging if looking at

actual guitar signals… see documentation

How it works

The rising edge of the input is counted over a set period of time and attempt is made
to tell if this count is at, or near, a frequency of interest–namely the E,A,D,G,B notes
of guitar standard tuning. In this version, the system should be capable of detecting:
E2,A2,A3,B3,D3,E3,G3,D4,E4 and G4 so from about ~80 to 400 Hz. Clock config
settings (using 3 input bits) 0: 1kHz 1: 2kHz 2: 4kHz 3: 3.277kHz 4: 10 kHz 5:
32.768kHz 6: 40kHz 7: 60kHz

How to test

Set the clocking bits to 0b000 for a 1kHz clock input (input bits 2,3 and 4). Input
pulses are fed to input bit 5. The raw count of pulses over the sampling period (hard-
coded here to 0.5 seconds) is output on the bidir pins. The output is setup to drive a
dual 7-segment display, or a single 7-segment (by using the output_display bits on the
input). In single mode, the 7-seg dot marks exact match.

Pinout

Input Output Bidirectional
0 n/a segment a raw input pulse count bit 0
1 n/a segment b raw input pulse count bit 1
2 clk config 0 segment c raw input pulse count bit 2
3 clk config 1 segment d raw input pulse count bit 3
4 clk config 2 segment e raw input pulse count bit 4
5 input pulse segment f raw input pulse count bit 5

284

https://github.com/psychogenic/tt04-neptune
https://inductive-kickback.com/projects/neptune/

Input Output Bidirectional
6 output display single

enable (LOW ==
dual)

segment g raw input pulse count bit 6

7 output display select dot or select (for
dual)

raw input pulse count bit 7

285

Simon Says game [653]

• Author: Uri Shaked
• Description: A simple memory game
• GitHub repository
• HDL project
• Mux address: 653
• Extra docs
• Clock: 50000 Hz
• External hardware: Four push buttons (with pull-down resistors), four LEDs, and

optionally a speaker/buzzer and two digit 7-segment display

How it works

Simon says is a simple electronic memory game: the user has to repeat a growing
sequence of colors. The sequence is displayed by lighting up the LEDs. Each color also
has a corresponding tone.

286

https://github.com/urish/tt05-simon-game-openlane2
https://wokwi.com/projects/371755521090136065

In each turn, the game will play the sequence, and then wait for the user to repeat the
sequence by pressing the buttons according to the color sequence. If the user repeated
the sequence correctly, the game will play a “leveling-up” sound, add a new color at
the end of the sequence, and move to the next turn.
The game continues until the user has made a mistake. Then a game over sound is
played, and the game restarts.
Check out the online simulation at https://wokwi.com/projects/371755521090136065
(including wiring diagram).

How to test

You need four buttons, four LEDs, resistors, and optionally a speaker/buzzer and a
two digit 7-segment display for the score.
Ideally, you want to use 4 different colors for the buttons/LEDs (red, green, blue,
yellow).

1. Connect the buttons to pins btn1, btn2, btn3, and btn4, and also connect
each button to a pull down resistor.

2. Connect the LEDs to pins led1, led2, led3, and led4, matching the colors
of the buttons (so led1 and btn1 have the same color, etc.)

3. Connect the speaker to the speaker pin.
4. Connect the seven segment display as follows: seg_a through sev_g to individ-

ual segments, dig1 to the common pin of the tens digit, dig2 to the common
pin of the ones digit.
Set seginv according to the type of 7 segment display you have: high for
common anode, low for common cathode.

5. Reset the game, and then press any button to start it. Enjoy!

Note: the game requires 50KHz clock input.

Pinout

Input Output Bidirectional
0 btn1 led1 seg_a
1 btn2 led2 seg_b
2 btn3 led3 seg_c
3 btn4 led4 seg_d
4 seginv speaker seg_e
5 none dig1 seg_f

287

Input Output Bidirectional
6 none dig2 seg_g
7 none none none

288

KianV uLinux SoC [654]

• Author: Hirosh Dabui
• Description: A RISC-V ASIC that can boot �Linux.
• GitHub repository
• HDL project
• Mux address: 654
• Extra docs
• Clock: 50MHz Hz
• External hardware:

How it works

Here is an RV32IMA RISC-V processor that can boot and run uLinux.

How to test

You need to flash the bootloader, dtb, and the Linux image onto the NOR flash. It
was tested on the ICE40 with the same design at 35MHz. There is a divider register
located at 0x10_000_010. With the upper 16 bits, the CLINT can be configured, and
with the lower 16 bits, the UART can be configured.

Pinout

Input Output Bidirectional
0 none led[0] ce0
1 none led1 sio0_si_mosi_i
2 none led2 sio1_so_miso_o
3 uart_rx led[3] sio2_o
4 none uart_tx sio3_o
5 none led[4] sclk_ram
6 none led[5] ce1
7 none led[6] sclk_nor

289

https://github.com/splinedrive/KianV_rv32ia_uLinux_SoC
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Ring oscillator with counter [655]

• Author: Uri Shaked
• Description: Test module for the TT05 power switching FET
• GitHub repository
• HDL project
• Mux address: 655
• Extra docs
• Clock: 0 Hz
• External hardware:

How it works

A ring oscillator with a 64-bit counter that counts the number of oscillations. The
counter is connected to pins ou_out, and is shifted by the cnt_shift input. The counter
is reset when cnt_reset is high, and stops when cnt_stop is high.

How to test

Set inputs 0 to 5 to the desired counter shift value, and observe the counter on outputs
0 to 7.

Pinout

290

https://github.com/TinyTapeout/tt05-ringosc-counter

Input Output Bidirectional
0 cnt_shift[0] cnt[0] none
1 cnt_shift1 cnt1 none
2 cnt_shift2 cnt2 none
3 cnt_shift[3] cnt[3] none
4 cnt_shift[4] cnt[4] none
5 cnt_shift[5] cnt[5] none
6 cnt_stop cnt[6] none
7 cnt_reset cnt[7] none

291

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

cpu_8bit [705]

• Author: Sunao Furukawa
• Description: This Verilog code is geenrated by Bing AI
• GitHub repository
• HDL project
• Mux address: 705
• Extra docs
• Clock: 50000000 Hz
• External hardware:

How it works

Explain how your project works

How to test

Explain how to test your project

Pinout

Input Output Bidirectional
0 instruction register [0] segment a none
1 instruction register 1 segment b none
2 instruction register 2 segment c none
3 instruction register [3] segment d none
4 formula right side [4] segment e none
5 formula right side [5] segment f none
6 formula right side [6] segment g none
7 formula right side [7] dot none

292

https://github.com/Sunao-Furukawa/tt_um_sunaofurukawa_cpu_8bit
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

VGA clock [707]

• Author: Matt Venn
• Description: Shows the time on a VGA screen
• GitHub repository
• HDL project
• Mux address: 707
• Extra docs
• Clock: 31500000 Hz
• External hardware: R2R dac for the VGA signals

How it works

Races the beam! Font is pre generated and loaded into registers. 6 bit colour keeps
register count low.

293

https://github.com/mattvenn/tt04-vga-clock

How to test

Hook up a VGA monitor to the outputs and provide a clock at 31.5 MHz. Connect
the 6 bit colour output up with resistors to make a R2R DAC. See the circuit here:
https://github.com/mattvenn/6bit-pmod-vga

Pinout

Input Output Bidirectional
0 clock hsync none
1 reset vsync none
2 adjust hours r0 none
3 adjust minutes r1 none
4 adjust seconds g0 none
5 none g1 none
6 none b0 none
7 none b1 none

294

7 segment seconds (Verilog Demo) [709]

• Author: Matt Venn
• Description: Count up to 10, one second at a time.
• GitHub repository
• HDL project
• Mux address: 709
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Uses a set of registers to divide the clock, and then some combinational logic to convert
from binary to decimal for the display.
Puts the bottom 8 bits of the counter on the bidirectional outputs.
With all the inputs set to 0, the internal 24 bit compare is set to 10,000,000. This
means the counter will increment by one each second.
If any inputs are non zero, then the input will be used as an bits 11 to 18 of the 24 bit
compare register. Example: setting the inputs to 00010000 will program 16384 into
the compare register. With a 10MHz clock the counter will increment ~610 times per
second.

How to test

After reset, the counter should increase by one every second with a 10MHz input clock.
Experiment by changing the inputs to change the counting speed.

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5

295

https://github.com/TinyTapeout/tt05-verilog-demo

Input Output Bidirectional
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

296

Frequency counter [711]

• Author: Matt Venn
• Description: measured frequency of a signal on pin 0 and displays on the 7

segment display
• GitHub repository
• HDL project
• Mux address: 711
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

Debounces the input signal and counts how many transistions occur in a given period.
A state machine then divides the count by ten by repeatedly subtracting ten and then
displays the tens and units on the seven segment display.

How to test

Apply a signal to the signal input and the frequency will be measured and displayed on
the seven segment. The dot is used to select between display tens and units.

297

https://github.com/mattvenn/tt-frequency-counter

To change the count period (to get accurate counts), set it to match the clock fre-
quency: clock_mhz * 100 - 1. So for a 10MHz clock, set to 999. Set the desired
period (top 4 bits ui_in and all of uio_in) on the bidirectional inputs and toggle load
input.
To debug, enable debug mode and check the bidirectional outputs for state machine,
clock count and edge count information.

Pinout

Input Output Bidirectional
0 signal segment a count period bit 07 or debug

edge bit 2
1 debug mode (on will

put debug signals on
bidirectional outputs)

segment b count period bit 06 or debug
edge bit 1

2 load new period.
toggle this to register
the value in the
bidirectional inputs

segment c count period bit 05 or debug
edge bit 0

3 none segment d count period bit 04 or debug
clock bit 2

4 count period bit 11 segment e count period bit 03 or debug
clock bit 1

5 count period bit 10 segment f count period bit 02 or debug
clock bit 0

6 count period bit 09 segment g count period bit 01 or debug
state bit 1

7 count period bit 08 digit select count period bit 00 or debug
state bit 0

298

RGB Mixer [713]

• Author: Matt Venn
• Description: Use 3 rotary encoder to control 3 PWM generators
• GitHub repository
• HDL project
• Mux address: 713
• Extra docs
• Clock: 10000000 Hz
• External hardware:

How it works

3 PWM generators are fed by 3 debounced encoder peripherals.

How to test

Connect 3 digital rotary encoders to the first 6 inputs. Changing the encoders will
change the PWM outputs on the first 3 outputs.
Select a channel with the debug enc sel bits and that channel’s encoder internal value
will be output to the bidirectional outputs. The output of the 2 debouncers will also
be output.

Pinout

Input Output Bidirectional
0 encoder 0 pin a pwm 0 debug encoder bit 0
1 encoder 0 pin b pwm 1 debug encoder bit 1
2 encoder 1 pin a pwm 2 debug encoder bit 2
3 encoder 1 pin b debug debounce a debug encoder bit 3
4 encoder 2 pin a debug debounce b debug encoder bit 4
5 encoder 2 pin b n/a debug encoder bit 5
6 debug encoder select bit 0 n/a debug encoder bit 6
7 debug encoder select bit 1 n/a debug encoder bit 7

299

https://github.com/mattvenn/tt04-rgb-mixer

SPI Peripheral [715]

• Author: Mike Bell
• Description: SPI RAM/ROM/Random source
• GitHub repository
• HDL project
• Mux address: 715
• Extra docs
• Clock: 10000000 Hz
• External hardware: A custom RP2040 board to make full use of the ROM

How it works

The project implements an 8 byte RAM, 324 byte ROM and a random source supporting
standard SPI read/write (03h/02h) and SPI quad read/write (6Bh/32h) commands.
The quad read commands have 2 delay cycles.
The address map is:

Address Item
0x000 RP2040 boot stage 2 ROM
0x100 8 byte RAM, wrapped 32 times
0x200 RP2040 program ROM
0x300 Mirror of the RAM
0x400 Random source

See the README for more details.
Note the default project clk is a debug clock only, the project is internally clocked off
SPI CLK, input 0.

How to test

You will need to use an SPI/QSPI master, unfortunately it was not possible to set
up the pinout to support both QSPI and match the native RP2040 SPI block, so
you’ll need a PIO (Q)SPI implementation. I’ll make that available before the chips are
available.
The values in the RAM may be inspected by setting the address on the input toggle
switches 2-5 and pressing the single clock button to latch the data, which is displayed

300

https://github.com/MichaelBell/tt05-spi-peripheral
https://github.com/MichaelBell/tt05-spi-peripheral/blob/main/README.md

on the 7 segment display and presented on uio pins 4-7. The default project clock
should otherwise not be used - the project is clocked from the SPI clock.
The project is also designed to be used as a ROM connected to an RP2040’s QSPI
pins (instead of the more normal flash). You’ll need a custom board for this as the
QSPI pins are generally connected directly to a flash chip, I have a couple which I could
potentially send to interested people in the UK - contact me on Discord.

Pinout

Input Output Bidirectional
0 SPI CLK segment a SPI MOSI / D0
1 SPI CSn segment b SPI MISO / D1
2 Debug nibble select segment c D2
3 Debug addr 0 segment d D3
4 Debug addr 1 segment e Debug bit 0
5 Debug addr 2 segment f Debug bit 1
6 Unused segment g Debug bit 2
7 Unused dot (Set to SPI CSn) Debug bit 3

301

Multiplexed clock [717]

• Author: Gustavo Gomez
• Description: Multiplexed clock with buttons
• GitHub repository
• HDL project
• Mux address: 717
• Extra docs
• Clock: 32728 Hz
• External hardware: 7 segment 4 digits multiplexed

How it works

Basically this is a clock that counts minutes shows the hours in the 24-hour format, it
uses the dot in the 7 segments to indicate 15s 30s 45s and 60s respectibly.

-- 0 -- -- 0 -- -- 0 -- -- 0 --
| | | | | | | |
5 1 5 1 5 1 5 1
| | | | | | | |
-- 6 -- -- 6 -- -- 6 -- -- 6 --
| | | | | | | |
4 2 4 2 4 2 4 2

302

https://github.com/Noteolvides/Noteolvides_clock_TinyTapeout
https://github.com/Noteolvides/Noteolvides_clock_TinyTapeout/blob/main/README.md

| | | | | | | |
-- 3 -- :60s -- 3 -- :45s -- 3 -- :30s -- 3 -- :15s

↑ ↑ ↑ ↑
Hours H Hours L Minutes H Minutes L

uio_out[3] uio_out[2] uio_out[1] uio_out[0]

[6:0] of the seven segments are connected to the uo_out output and the 7 bit is for
the dot of the seven sevements. The digist are multiplexed, each digit is shown 1ms,
those pins are uio_out[3:0] and uio_out[5:4] are used for debuging showing the
clock of the seconds and minutes.
For the test i have used this 7 segment with common Cathode. But you can use which
ever 7 segmnet display of 4 digits common or anode thats to the pins ui_in[3:2] with
are use to negate the 7 segmetents or the multixplexing. Finally, ui_in[1:0] are used
with a button to increase the hours or minutes.

How to test

I have selected a clock 32,768khz because i thought it will be easy to buy a ready
commponent that generates a squera wave with that frecuency, we will see about
that :stuck_out_tongue_closed_eyes:. Just connect the 7 segments to the uo_out
pins and select your configuration anode or catothe with the ui_in[3] pin. For the
multiplexing connected uio_out[3:0] to the digits as show in how to use drawing.
And finally if you want to increase the numbers connect a button pull up to the pins
ui_in[1:0] to increase hours or minutes.
Generate a reset to start to init all the registers.

Pinout

Input Output Bidirectional
0 pull up button that

increases minutes
segment a output multiplex first digit

1 pull up button that
increases hours

segment b output multiplex second digit

2 pin used to negate 7
segment ouputs if
necesary / for catode
or anode
configurations

segment c output multiplex third digit

303

https://www.tme.eu/es/details/kw4-804cgb/7-segment-led-displays/luckylight/?utm_campaign=compare-2019-08&utm_medium=cpc&utm_source=findchips.com

Input Output Bidirectional
3 pin used to negate 4

pins to multiplex if
necesary / for catode
or anode
configurations

segment d output multiplex forth digit

4 not used segment e output clock of seconds /
testing purposes

5 not used segment f output clock of minutes /
testing purposes

6 not used segment g output not used
7 not used dot output not used

304

Shaman: SHA-256 hasher [718]

• Author: Pat Deegan, psychogenic.com
• Description: Generate a SHA256 digest for data of arbitrary length
• GitHub repository
• HDL project
• Mux address: 718
• Extra docs
• Clock: 10000000 Hz
• External hardware: An MCU or something to feed in the bytes and receive the

results

305

https://github.com/psychogenic/tt05-shaman
README.md

How it works

This implements the SHA-256 digest to create hashes of the data you feed in. It is a
naive, mostly unoptimized, implementation of the algorithm (though you can interleave
data input while it’s processing, using parallel mode, if you respect busy).
Data is fed into the system in 64 byte blocks. The hash is available after each 64 byte
block has been input (allowing for some cycles to finish processing).
The process is to:

• toggle start, to reset the digest
• put data byte on the databyte input (the “in” port)
• wait until busy is de-asserted (if required)
• clock the clockin_data pin

After each complete block, the digest will become available after some clocks. In short
if

• busy is not asserted; and
• result_ready goes high

The first hash byte will be available on the out port. To get the next bytes, clock
result_next and read the port.
Parallel mode allows you to start feeding in more input data while the system is still
processing the previous block. You need to pay attention to and respect “busy”, here,
or things will get badly munged.
Also, in parallel mode, you need to hold the clockin_data for an extra cycle when you
bring it high.
Pinout looks a little weird but it is hoped this will be a nice match for the PMOD
arrangement on the demo boards.
NOTES
It does NOT massage the input data into suitable blocks. Messages need to be ap-
pended with an 0x80 byte, padded such that the entire thing, along with an 8 byte
suffix containing the length (big end), is a multiple of 512 bits (64 bytes). You can
see this in action in the message_to_blocks() function, in test.py.
I don’t think it’s super fast but, in parallel mode, I think simulation indicates it takes
on the order of 8.3 microseconds per byte using a 1MHz system clock. So, if we could
feed this say a 50MHz clock, we’d get down to 166 ns/byte.
That’s only on the order of 6 megabytes per second, I dunno maybe 100x slower than
my laptop, but my laptop doesn’t run on a 50MHz clock and whatevs: should do the

306

job if it holds in realy life. All this is when processing longer messages, to swamp out
the minor overhead of setup etc.
When loading input data, if using parallel mode, hold clockin_data for an extra system
clock. So

• data byte on inputs
• clockin_data HIGH
• hold one system clock
• clockin_data LOW
• … loop for next byte

How to test

Might be good to run the cocotb test to get VCDs if you really want to see it in action.
But we want to play with hardware! So… There will be a python script in the repository
to convert any content into the expected 512 bit blocks of bytes padded and everything
to make the system happy.
With that list of bytes in hand, this should work nicely:

1) hold n_reset low for a few clock cycles
2) bring n_reset high, and give it a few cycles
3) start a new message digest my clocking start (bring high for one cycle, then low)
4) for each block in your message

• while “busy” is HIGH, wait a bit and check again
• for each byte in that block

– put the byte on in port (dedicated input pins)
– while “busy” is HIGH, wait a bit and check again
– bring clockin_data HIGH
– if using parallel mode, hold for an extra clock cycle
– bring clockin_data LOW

Check and wait until “busy” is LOW and “result_ready” goes HIGH. Your first result
byte will already be present on the output port. Grab it and stash it. Then, for the next
31 bytes: bring result_next HIGH hold it there for one clock cycle bring result_next
LOW grab and stash the byte on output pins
If the hash is going to be, say “90fc0a268f8b81b…”, they’ll be present in that order
0x90, then 0xfc, then 0x0a etc

307

Pinout

Input Output Bidirectional
0 data_input bit 0 result_byte bit 0 OUTPUT, result_ready
1 data_input bit 1 result_byte bit 1 OUTPUT, begin processing data debug
2 data_input bit 2 result_byte bit 2 INPUT, parallel loading enable
3 data_input bit 3 result_byte bit 3 INPUT, result_next
4 data_input bit 4 result_byte bit 4 OUTPUT, busy
5 data_input bit 5 result_byte bit 5 OUTPUT, processing data block debug
6 data_input bit 6 result_byte bit 6 INPUT, start new digest
7 data_input bit 7 result_byte bit 7 INPUT, clockin_data

308

metastability experiment [719]

• Author: yubex
• Description: The design purpose is to evaluate, if metastability can be used as

a true random number generator source in an ASIC design.
• GitHub repository
• HDL project
• Mux address: 719
• Extra docs
• Clock: try various Hz
• External hardware: none

How it works

Generally a Flip Flop can enter a metastable state if the setup or hold time is violated.
In this design I try to reach this usually unwanted behaviour.
A toggle Flip Flop is used to create edges on the data inputs of the other 2 Flip Flops.
There are 2 modes: Manual and Auto. Manual mode uses the switch on the PCB as
trigger for one edge. Auto mode generates a cyclic trigger within the ASIC. The data
output of the toggle Flip Flop is connected to the next Flip Flop by a programmable
delay line. The delay line is created by pairs of inverters. The verilog keep attribute
is necessary here, to avoid optimization during synthesis. The delay_ctrl input selects
the number of inverters which are used as delay. The number of inverters used is the
delay_ctrl input value times 2. If you set delay_ctrl to 1, 2 inverters are used. The
maximum number of inverters is 128. After each state change of the toggle Flip Flop
(exactly 3 clock cycles after that) the output of all Flip Flops are compared. In case
the states are different, metastability has occured.

How to test

For testing select the mode you want to try out. Set the mode to 0 for auto mode and
to 1 for manual mode. You can experiment with delay_ctrl input an try to produce

309

https://github.com/yubex/tt04-metastability-experiment

metastability. Also try different clock frequency’s. In case of metastability the dot of
the 7 segment display should change its state.

Pinout

Input Output Bidirectional
0 trigger segment a, mode none
1 mode segment b, toggle_dff_en none
2 delay_ctrl[0] segment c, toggle_dff none
3 delay_ctrl1 segment d, delayed_toggle_dff none
4 delay_ctrl2 segment e, meta_dff_0 none
5 delay_ctrl[3] segment f, meta_dff_1 none
6 delay_ctrl[4] segment g, toggle_dff_en_3t none
7 delay_ctrl[5] dot, meta_err_detected none

310

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Pinout

The chip is packaged in a 64-pin QFN package. The pinout is shown below.

Pin 1

1 16

u
io

[1
]

u
io

[2
]

u
io

[3
]

u
io

[4
]

u
io

[5
]

u
io

[6
]

u
io

[7
]

8 17

3233

ct
rl

_e
n
a

11

ct
rl

_s
e
l_

in
c

ct
rl

_s
e
l_

rs
t_

n
48

cl
k

37

rs
t_

n

41

u
i_

in
[0

]
u
i_

in
[1

]
u
i_

in
[2

]
u
i_

in
[3

]
u
i_

in
[4

]

u
i_

in
[5

]

ui_in[6]

49

ui_in[7]

53uo_out[0]
uo_out[1]

64

uo_out[2]

57uo_out[3]
uo_out[4]
uo_out[5]
uo_out[6]
uo_out[7]

uio[0] 62

Bottom View

Figure 4: Pinout

Note: you will receive the chip mounted on a breakout board. The pinout is provided
for advanced users, as most users will not need to solder the chip directly.

311

https://github.com/TinyTapeout/caravel-breakout-pcb/tree/main/breakout-qfn

The Tiny Tapeout Multiplexer

Overview

The Tiny Tapeout Multiplexer distributes a single set of user IOs to multiple user
designs. It is the backbone of the Tiny Tapeout chip.
It has the following features:

• 10 dedicated inputs
• 8 dedicated outputs
• 8 bidirectional IOs
• Supports up to 384 user designs (24 mux units, each with up to 16 designs)
• Designs can have different sizes. The basic unit is a called a tile, and designs

can occupy 1, 2, 4, 6, 8, or 16 tiles.

Operation

The multiplexer consists of three main units:

1. The controller - used to set the address of the active design
2. The spine - a bus that connects the controller with all the mux units
3. Mux units - connect the spine to individual user designs

The Controller

The mux controller has 3 inputs lines:

Input Description
ena Sent as-is (buffered) to the downstream mux units
sel_rst_n Resets the internal address counter to 0 (active low)
sel_inc Increments the internal address counter by 1

It outputs the address of the currently selected design on the si_sel port of the spine
(see below).
For instance, to select the design at address 12, you need to pulse sel_rst_n low,
and then pulse sel_inc 12 times:

312

Figure 5: Mux Diagram

313

Figure 6: Mux Controller Diagram

Figure 7: Mux signals for activating the design at address 12

Internally, the controller is just a chain of 10 D flip-flops. The sel_inc signal is
connected to the clock of the first flip-flop, and the output of each flip-flop is connected
to the clock of the next flip-flop. The sel_rst_n signal is connected to the reset of
all flip-flops.
The following Wokwi projects demonstrates this setup: https://wokwi.com/projects/364347807664031745.
It contains an Arduino Nano that decodes the currently selected mux address and
displays it on a 7-segment display. Click on the button labeled RST_N to reset the
counter, and click on the button labeled INC to increment the counter.

The Spine

The controller and all the muxes are connected together through the spine. The spine
has the following signals going on it:
From controller to mux:

• si_ena - the ena input
• si_sel - selected design address (10 bits)
• ui_in - user clock, user rst_n, user inputs (10 bits)
• uio_in - bidirectional I/O inputs (8 bits)

314

From mux to controller:

• uo_out - User outputs (8 bits)
• uio_oe - Bidirectional I/O output enable (8 bits)
• uio_out - Bidirectional I/O outputs (8 bits)

The only signal which is actually generated by the controller is si_sel (using
sel_rst_n and sel_inc, as explained above). The other signals are just going
through from/to the chip IO pads.

The Multiplexer (The Mux)

Each mux branch is connected to up to 16 designs. It also has 5 bits of hard-coded
address (each unit gets assigned a different address, based on its position on the die).
The mux implements the following logic:
If si_ena is 1, and si_sel matches the mux address, we know the mux is active.
Then, it activates the specific user design port that matches the remaining bits of
si_sel.
For the active design:

• clk, rst_n, ui_in, uio_in are connected to the respective pins coming from
the spine (through a buffer)

• uo_out, uio_oe, uio_out are connected to the respective pins going out to
the spine (through a tristate buffer)

For all others, inactive designs (including all designs in inactive muxes):

• clk, rst_n, ui_in, uio_in are all tied to zero
• uo_out, uio_oe, uio_out are disconnected from the spine (the tristate buffer

output enable is disabled)

Pinout

mprj_io pin Function Signal QFN64 pin
0 (none) 31
1 Housekeeping SPI * SDO 32
2 Housekeeping SPI SDI 33
3 Housekeeping SPI CSB 34
4 Housekeeping SPI SCK 35

315

mprj_io pin Function Signal QFN64 pin
5 Clock output user_clock2 † 36
6 Input clk 37
7 Input rst_n 41
8 Input ui_in[0] ‡ 42
9 Input ui_in1 43
10 Input ui_in2 44
11 Input ui_in[3] 45
12 Input ui_in[4] 46
13 Input ui_in[5] 48
14 Input ui_in[6] 50
15 Input ui_in[7] 51
16 Output uo_out[0] 53
17 Output uo_out1 54
18 Output uo_out2 55
19 Output uo_out[3] 57
20 Output uo_out[4] 58
21 Output uo_out[5] 59
22 Output uo_out[6] 60
23 Output uo_out[7] 61
24 Bidirectional uio[0] 62
25 Bidirectional uio1 2
26 Bidirectional uio2 3
27 Bidirectional uio[3] 4
28 Bidirectional uio[4] 5
29 Bidirectional uio[5] 6
30 Bidirectional uio[6] 7
31 Bidirectional uio[7] 8
32 Mux Control ctrl_ena 11
33 (none) 12
34 Mux Control ctrl_sel_inc 13
35 (none) 14
36 Mux Control ctrl_sel_rst_n 15
37 (none) 16

• The Housekeeping SPI is an SPI interfaces provided by the Caravel harness. You
can use it to change the configuration of the GPIO pins and control the clock for
the internal Caravel RISC-V core. We do not plan to use it in the Tiny Tapeout
Demo board.
† The user_clock2 signal outputs the internal clock signal of caravel. You
could use it to provide a clock to your design by connecting it to the clk input

316

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://caravel-harness.readthedocs.io/en/latest/housekeeping-spi.html

(mprj_io pin 6). We do not plan to use it in the Tiny Tapeout Demo board.
‡ Internally, there’s no difference between clk, rst_n, and ui_in pins. They
are all just bits in the pad_ui_in bus. However, we use different names to
make it easier to understand the purpose of each bit.

317

Sponsored by

Team

Tiny Tapeout would not be possible without a lot of people helping. We would espe-
cially like to thank:

• Uri Shaked for wokwi development and lots more
• Sylvain Munaut for help with scan chain improvements
• Mike Thompson and Mitch Bailey for verification expertise
• Jix for formal verification support
• Proppy for help with GitHub actions
• Maximo Balestrini for all the amazing renders and the interactive GDS viewer
• James Rosenthal for coming up with digital design examples
• All the people who took part in TinyTapeout 01 and volunteered time to improve

docs and test the flow
• The team at YosysHQ and all the other open source EDA tool makers
• Efabless for running the shuttles and providing OpenLane and sponsorship
• Tim Ansell and Google for supporting the open source silicon movement
• Zero to ASIC course community for all your support
• Jeremy Birch for help with STA
• Aisler for sponsoring PCB development

318

https://efabless.com/
https://wokwi.com/
https://twitter.com/tnt
https://www.linkedin.com/in/michael-thompson-0a581a/
https://www.linkedin.com/in/mitch-bailey-8ba0b45/
https://twitter.com/jix_
https://twitter.com/proppy
https://twitter.com/maxiborga
https://www.yosyshq.com/
https://efabless.com/
https://www.youtube.com/watch?v=EczW2IWdnOM
https://zerotoasiccourse.com/
https://aisler.net/

	Chip map
	Projects
	Chip ROM [0]
	TinyTapeout 05 Factory Test 1
	TinyTapeout 05 Loopback Test Module 2
	Leaky Integrate and Fire Neuron Model [3]
	Time Multiplexed Neuron Ckt [4]
	SAP-1 Computer [5]
	Current Based Leaky Integrate and Fire Model [6]
	TickTockTokens [7]
	Spiking LSTM Network [8]
	Integrate-and-Fire Neuron. [9]
	Neural network on chip [10]
	Simple Leaky Integrate and Fire (LIF) Neuron [11]
	e Spigot [12]
	Continued Fraction Calculator [13]
	Water Pump Controller [14]
	Event Denoising Circuit [15]
	7 segment seconds (Verilog Demo) [32]
	Frequency Encoder/Decoder [33]
	UART Greeter with RNN Module [34]
	WS2812B LED strip driver [35]
	Tiny Tapeout 5 Workshop [36]
	Tiny Tapeout 1 [37]
	Supercon Workshop [38]
	Matrix Multiplier [39]
	Clock Divider [40]
	Binary Counter [41]
	ring osc test [42]
	7 segment clock with 4 digits [43]
	test001 [44]
	Hodgkin-Huxley Chip Design [45]
	Character Selector [46]
	Intructouction to PRBS [47]
	tto5 Supercon Project [64]
	Delta Modulation Spike Encoding [65]
	GameOfLife [66]
	Reflex Game [67]
	Logic Gates Tapeout [68]
	Stream Cipher w/ LSR (8 bit key) [69]
	tt5modifyd [70]
	ALU Chip [71]
	Tapeout Test [72]
	Calculator chip [73]
	Shifty Snakey [74]
	Synth [75]
	Sawtooth Generator [76]
	Blinking A [77]
	Supercon 2023 [78]
	Sparsity Aware Matrix Vector Multiplication [79]
	Ring Oscillator and Clock Source Switch [96]
	Matrix Vector Multiplication (Verilog Demo) [97]
	IDK WHAT TO DO [98]
	7-segment display logic system [99]
	Hardware Trojan Example [100]
	Analog Clock [101]
	7 segment display [102]
	W_Li_10/28 [103]
	Supecon Gate Play [104]
	ECE 183 - Integrate and Fire Network Chip Design [105]
	tto5 [106]
	REBEL-2 Balanced Ternary ALU [107]
	Stochastic Multiplier [108]
	7 segment seconds - count down [109]
	TT05 Submission [110]
	Leaky Integrate-and-Fire Neuron [111]
	Count via LFSR [128]
	I2C BERT [130]
	tt05-loopback tile with input skew measurement [132]
	Flappy VGA [134]
	Asynchronous Parallel Processor Demonstrator [136]
	Hex Countdown [138]
	Matrix multiply coprocessor (8x8 1bit) [140]
	Standard cell generator and tester [142]
	Winner-Take-All Network (Verilog Demo) [160]
	Lion cage [161]
	Brain Inspired Random Dropout Circuit [162]
	Event-Based Denoising Circuit [163]
	RAM cell test [164]
	Classic 8-bit era Programmable Sound Generator AY-3-8913 [165]
	RNN (Demo) [166]
	STDP Neuron [167]
	Basic Spiking Neural Network [168]
	8 bit floating point adder [169]
	Perceptron Hardcoded [170]
	Cheap and quick STDP [171]
	Brain-Inspired Oscillatory Network [172]
	UART uwuifier [173]
	Perceptron and basic binary neural network [174]
	Leaky Integrate-and-Fire Neuron [175]
	7 segment seconds [192]
	UABC-ELECTRONICA [194]
	bytebeat [196]
	Super Mario Tune on A Piezo Speaker [197]
	Byte Computer [198]
	7 segment seconds (VHDL Demo) [199]
	4-Bit ALU [200]
	Classic 8-bit era Programmable Sound Generator SN76489 [201]
	Miniature Programmable Interrupt Timer [202]
	7-segment Name Display [203]
	Tetris [204]
	Simple_Timer-MBA [205]
	UART Transceiver [206]
	AGL CorticoNeuro-1 [207]
	Leaky-Integrated Fire Neuron [224]
	MyUART [225]
	UART test [226]
	Heart Rhythm Analyzer [227]
	Spike-timing dependent plasticity (Verilog Demo) [228]
	Tiny Tapeout 5 TM project1 [229]
	Thermocouple-to-temperature converter (digital backend) [230]
	Naive 8-bit Binary Counter [231]
	tinyscanchain Test Design [232]
	6 digit chronometer. [233]
	Convolutional Network Circuit Chip Design [234]
	Matrix Vector Multiplication Accelerator [235]
	Perceptron (Neuromeme) [236]
	4 Bit ALU [237]
	Binary Neural Network (Verilog Demo) [238]
	SkullFET [239]
	Wavetable Sound Generator [256]
	PWM signal generation with Winner-Take-All selection [258]
	Multimode Modem [260]
	Analog emulation monosynth [262]
	Tiny Game of Life [264]
	Stack Machine [266]
	ChipTune [268]
	Game of Life 8x8 (siLife) [270]
	TT05 Analog Testmacro (Ringo, DAC) [271]
	RBUART [290]
	8-bit Floating-Point Adder [292]
	6 bit Counter and Piano Music created by Chip Inventor [294]
	4 Bit Pipelined Multiplier [296]
	2-Bit ALU + Dice [298]
	TT02 Wokwi 7seg remake [300]
	ping pong asic [302]
	A Boolean function based pseudo random number generator (PRNG) [320]
	Digital Desk Clock [322]
	4-bit FIFO/LIFO [324]
	One Sprite Pony [326]
	4 bit Sync Gray Code Counter [328]
	Clock and Random Number Gen [330]
	TT05 Analog Test [332]
	VGA Experiments [334]
	Rule110 cell automata [384]
	No Time for Squares [390]
	Game of Life 8x32 (siLife) [396]
	TROS [398]
	ChatGPT designed Spiking Neural Network [450]
	Karplus-Strong String Synthesis [454]
	VGA Dino Game [458]
	Dual Compute Unit [460]
	Collatz conjecture brute-forcer [462]
	Field Programmable Neural Array [518]
	DFFRAM Example (128 bytes) [526]
	Chonky Spiking Neural Net [582]
	Hodgkin-Huxley Neuron [590]
	PRBS Generator [641]
	Stop Watch [643]
	vga_spi_rom [645]
	RO and counter [647]
	8-Bit Shift Register with Output Latches 74HC595 [649]
	Neptune guitar tuner (proportional window, version b, debug output on bidir pins, larger set of frequencies) [651]
	Simon Says game [653]
	KianV uLinux SoC [654]
	Ring oscillator with counter [655]
	cpu_8bit [705]
	VGA clock [707]
	7 segment seconds (Verilog Demo) [709]
	Frequency counter [711]
	RGB Mixer [713]
	SPI Peripheral [715]
	Multiplexed clock [717]
	Shaman: SHA-256 hasher [718]
	metastability experiment [719]

	Pinout
	The Tiny Tapeout Multiplexer
	Overview
	Operation
	Pinout

	Sponsored by
	Team

