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Chip map

Figure 1: Full chip map
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Figure 2: GDS render
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Figure 3: Logic density (local interconnect layer)
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Projects

Chip ROM [0]

• Author: Uri Shaked
• Description: ROM with information about the chip
• GitHub repository
• HDL project
• Mux address: 0
• Extra docs
• Clock: 0 Hz

How it works

ROM memory that contains information about the Tiny Tapeout chip. The ROM is
8-bit wide and 128 bytes long.

The ROM layout The ROM layout is as follows:

Address Length Encoding Description
0 8 7-segment Shuttle name (e.g. “tt06”), null-padded
8 8 7-segment Git commit hash
32 96 ASCII Chip descriptor (see below)

The chip descriptor The chip descriptor is a simple null-terminated string that
describes the chip. Each line is a key-value pair, separated by an equals sign. It
contains the following keys:

Key Description Example value
shuttle The identifier of the shuttle tt06
repo The name of the repository TinyTapeout/tinytapeout-06
commit The commit hash * a1b2c3d4

• The commit hash is only included for Tiny Tapeout 5 and later.

Here is a complete example of a chip descriptor:
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shuttle=tt06
repo=TinyTapeout/tinytapeout-06
commit=a1b2c3d4

How the ROM is generated The ROM is automatically generated by tt-support-
tools while building the final GDS file of the chip. Look at the rom.py file in the
repository for more details.

How to test

Read the ROM contents by setting the address pins and reading the data pins. The
first 16 bytes of the ROM are 7-segment encoded and contain the shuttle name and
commit hash. You can read them by toggling the first four DIP switches and observing
the on-board 7-segment display.

Pinout

# Input Output Bidirectional
0 addr[0] data[0]
1 addr[1] data[1]
2 addr[2] data[2]
3 addr[3] data[3]
4 addr[4] data[4]
5 addr[5] data[5]
6 addr[6] data[6]
7 addr[7] data[7]
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TinyTapeout 06 Factory Test [1]

• Author: Sylvain Munaut
• Description: Factory test module
• GitHub repository
• HDL project
• Mux address: 1
• Extra docs
• Clock: 0 Hz

How it works

If sel is high, then a counter is output on the output pins and the bidirectional
pins (data_o = counter_o = counter). If sel is low, the bidirectional pins are
mirrored to the output pins (data_o = data_i).

How to test

Set sel high and observe that the counter is output on the output pins (data_o) and
the bidirectional pins (counter_o).
Set sel low and observe that the bidirectional pins are mirrored to the output pins
(data_o = data_i).

Pinout

# Input Output Bidirectional
0 sel data_o[0] data_i[0] / counter_o[0]
1 data_o[1] data_i[1] / counter_o[1]
2 data_o[2] data_i[2] / counter_o[2]
3 data_o[3] data_i[3] / counter_o[3]
4 data_o[4] data_i[4] / counter_o[4]
5 data_o[5] data_i[5] / counter_o[5]
6 data_o[6] data_i[6] / counter_o[6]
7 data_o[7] data_i[7] / counter_o[7]
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UCSC HW Systems Collective, TDC [2]

• Author: Tyler Sheaves, Phillip Marlowe, & Dustin Richmond
• Description: A tiny TDC constructed entirely of standard cells. Skywater130

FA-2 delay element
• GitHub repository
• HDL project
• Mux address: 2
• Extra docs
• Clock: 17241379 Hz

How it works

A tiny TDC

How to test

Setup VCS on you local machine, cd to test run: make SIM=vcs GATES=yes

External hardware

Just pins

Pinout

# Input Output Bidirectional
0 lanuch clock hw[0]
1 capture clock hw[1]
2 pg_src hw[2]
3 pg_bypass hw[3]
4 pg_in hw[4]
5 pg_tog hw[5]
6 valid_in hw[6]
7 valid_out
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Most minimal extension of friend’s ‘CPU In a Week’ in a day
[4]

• Author: Gregory Kollmer
• Description: 8-bit Single-Cycle CPU
• GitHub repository
• HDL project
• Mux address: 4
• Extra docs
• Clock: 0 Hz

How it works

This project is the most minimal extension (add CLR & MUL to ISA) of Ramyad
Hadidi’s 8-bit CPU that details the design and implementation of an 8-bit single-cycle
microprocessor. The processor includes a register file and an Arithmetic Logic Unit
(ALU). The design was crafted to handle a simple instruction set architecture (ISA)
that supports basic ALU operations, load/store operations, and status checks for the
ALU carry – all within less than a week. While the current version lacks a program
counter and external memory, thus omitting any form of jump operations, it provides
a solid foundation for understanding basic computational operations within a custom
CPU architecture.

ISCA Overview The ISA is straightforward and is primarily focused on register oper-
ations and basic arithmetic/logic functions. Below is the breakdown of the instruction
set:

// ISA --------------------------------------------------------------
//-- R level
`define MVR 4'b0000 // Move Register
`define LDB 4'b0001 // Load Byte into Regsiter
`define STB 4'b0010 // Store Byte from Regsiter
`define RDS 4'b0011 // Read (store) processor status
// 1'b0100 NOP
// 1'b0101 NOP
// 1'b0110 NOP
// 1'b0111 NOP
//-- Arithmatics
`define NOT {1'b1, `ALU_NOT}
`define AND {1'b1, `ALU_AND}
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`define ORA {1'b1, `ALU_ORA}
`define ADD {1'b1, `ALU_ADD}
`define SUB {1'b1, `ALU_SUB}
`define XOR {1'b1, `ALU_XOR}
`define INC {1'b1, `ALU_INC}
`define MUL {1'b1, `ALU_MUL}
// 1'b1111 NOP

How to test

The processor has been tested through a suite of 12 testbenches, each designed to
validate a specific functionality or operation. These testbenches cover basic ALU oper-
ations, data movement between registers, and the load/store functionalities. Although
basic operational tests are passing, timing interactions between instructions have not
been exhaustively verified, and it is anticipated that a sophisticated compiler would han-
dle these timing considerations effectively, reminiscent of approaches taken in historical
computing systems. [ADD TESTS FOR MUL EXTENSION]

External hardware

Currently, the processor does not interface with any external hardware components.
It operates entirely within a simulated environment where all inputs and outputs are
managed through testbenches. This setup is ideal for educational purposes or for
foundational experimentation in CPU design.

Pinout

# Input Output Bidirectional
0 Register 1

(R1) Address
bit 0

Data out bit
0 (either
register data
/ Processor
stat)

Data in bit 0 / Register 3
(R3) Address bit 0

1 Register 1
(R1) Address
bit 1

Data out bit
1 (either
register data
/ 0)

Data in bit 1 / Register 3
(R3) Address bit 1
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# Input Output Bidirectional
2 Register 1

(R1) Address
bit 2

Data out bit
2 (either
register data
/ 0)

Data in bit 2 / Register 3
(R3) Address bit 2

3 Register 1
(R1) Address
bit 3

Data out bit
3 (either
register data
/ 0)

Data in bit 3 / Register 3
(R3) Address bit 3

4 Instruction
ISA Opcode
bit 0

Data out bit
4 (either
register data
/ 0)

Data in bit 4 / Register 2
(R2) Address bit 0

5 Instruction
ISA Opcode
bit 1

Data out bit
5 (either
register data
/ 0)

Data in bit 5 / Register 2
(R2) Address bit 1

6 Instruction
ISA Opcode
bit 2

Data out bit
6 (either
register data
/ 0)

Data in bit 6 / Register 2
(R2) Address bit 2

7 Instruction
ISA Opcode
bit 3

Data out bit
7 (either
register data
/ 0)

Data in bit 7 / Register 2
(R2) Address bit 3
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SPDIF to I2S decoder [6]

• Author: Jørgen Kragh Jakobsen
• Description: Convert audio from SPDIF to I2S format for ClassD amp MA12070p
• GitHub repository
• HDL project
• Mux address: 6
• Extra docs
• Clock: 48000000 Hz

How it works

SPDIF audio is a well known and commonly used industry standard for audio distibution
on a single optical or electical interface. It signal both audio data and the clock in
the same signal. I2S is a well known and commenly used industry standard for audio
distibution on a 3 wire interface. It has clock(BCK), left/right sync(WS) and data
signal(D0).
Digial audio amplifiers and DAC’s often use I2S as input interface.
I have coded up a spdif converter that oversample the spdif using a 27Mhz system clock.
One process regenerates the i2c_bck clock signal by counting number of system clock
between spdif input data edges. The spdif singal is a phase mark kind of encoding
with a couple of sync words. This decoder only looks for Left and right sync word that
indecate when to toggle the i2c_ws signal.
The audio PCM samples will get decode by looking for phase/mark changes and the
pcm bits are shifted in to a left and right pcm_sample fifo. From here the i2s_d0
signal is generate by shifting out of the non active fifo in reversed order.

Code base The system consist of 3 major block:

• A register bank
• I2C interface to read/write to the register bank
• The audio interface

The register back is written in Golang and generates HDL systemVerilog to support
packed structs and packages. All systemVerilog sources are converted to verilog using
sv2v during the FPGA build script used for testing.
The register map has a seciton for the audio interface - and holds 8 registers for write
operation through a dedicated I2C interface to the amplifier. Default it will set amplifer

18

https://github.com/jorgenkraghjakobsen/tt06-toi2s


volume on address 0x40 and amplifer audioformat to std i2s. More commands can be
added by software through the system I2C interface.

Figure 4: FPGA test implementation

How to test

If no smoke coming out after supply has been applied all good :-)
Apply optical audio from a spdif source - if sounds good - it works :-)

External hardware

Amplifier module MA12070p and ftdi usb to i2c module :-)

Pinout
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# Input Output Bidirectional
0 rx_in amp_i2s_bck i2c_scl
1 debug_in amp_i2s_ws i2c_sda
2 amp_i2s_d0 amp_i2c_scl
3 amp_nenable amp_i2c_sda
4 amp_nmute
5
6
7 pwm_out
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Chisel Pong [8]

• Author: Tjark Petersen
• Description: A basic Pong game using VGA implemented in Chisel.
• GitHub repository
• HDL project
• Mux address: 8
• Extra docs
• Clock: 50000000 Hz

How it works

This is a Chisel template

How to test

Currently we use cocotb, this shall change to ChiselTest

External hardware

non by default

Pinout

# Input Output Bidirectional
0 left player up r[1] state[0]
1 left player down g[1] state[1]
2 right player up b[1] state[2]
3 right player down v-sync v-sync
4 engage left player autopilot r[0] h-sync
5 engage right player autopilot g[0] left player lost
6 not used b[0] right player lost
7 not used h-sync game tick
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8080 CPU [12]

• Author: Emily Schmidt
• Description: It’s an Intel 8080-compatible CPU core that can hopefully run

Microsoft BASIC, CP/M, etc.
• GitHub repository
• HDL project
• Mux address: 12
• Extra docs
• Clock: 1000000 Hz

How it works

It’s a 8080-compatible CPU. It needs the RP2040 to simulate RAM and I/O.

How to test

TBD

External hardware

RP2040.

Pinout

# Input Output Bidirectional
0 bus_handshake_ack bus_handshake_req data_bus[0]
1 debug_req bus_state[0] data_bus[1]
2 int_req bus_state[1] data_bus[2]
3 bus_io data_bus[3]
4 cpu_fetch data_bus[4]
5 cpu_in_debug data_bus[5]
6 cpu_halted data_bus[6]
7 cpu_int_ack data_bus[7]
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Tiny Zuse [14]

• Author: Florian Stolz
• Description: Minimal Implementation of a Zuse Z3-style FPU for Addi-

tion/Subtraction
• GitHub repository
• HDL project
• Mux address: 14
• Extra docs
• Clock: 10000000 Hz

Quick Overview

This is a partial recreation of the original Zuse Z3 ALU. In Germany the Zuse Z3 is
generally regarded as the first computer, however, unlike the ENIAC it is not turing-
complete. Even though it may not be the first turing-complete computer, to the best of
my knowledge, it and its predecessor the Zuse Z1 contains the first implementation of
a floating point unit. It works purely on floating point numbers and only understands a
few commands: loading/storing, reading in data and performing addition/subtraction,
multiplication/division and lastly computing the square root. It only employs two
registers and 64 memory locations.
This is not a faithful recreation, because I did not want to convert the relay-based logic
1:1 to verilog. The memory is missing as well. However, it retains the original floating
point format as well as algorithms.

Number Representation

This project uses the Zuse Z3 floating point format, but without using hidden digits.
All floats must be normalized, meaning the mantissa must be within 1.0 to 1.99999.
The mantissa is 15 bits long, the msb must always be 1 to comply with the previously
mentioned normalization (normally, this digit is hidden and used implicitly, but not in
this design).
A number is represented via: +/- x * 2 ^ e. The sign is represented by a single bit
(1 = positive, 0 = negative). X is the mantissa. E is the exponent: A signed 7 bit
number!
In order to convert a decimal number, for example, 42.24 to the Z3 format perform
the following steps:

1. The number is positive, so the sign bit is 1. s = 1
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2. Convert the integer part to binary. 42 = 101010
3. The highest bit is in position 5 (counting from 0). Thus, e = 5
4. Now convert the fractional part to binary:

0.24 * 2 = 0.48 (0)
0.48 * 2 = 0.96 (0)
0.96 * 2 = 1.92 (1)
0.92 * 2 = 1.84 (1)
0.84 * 2 = 1.64 (1)
0.64 * 2 = 1.28 (1)
0.28 * 2 = 0.56 (0)
0.56 * 2 = 1.12 (1)
(this would continue, but we have enough digits to fill our mantissa)
Our number is thus: 101010.00111101

6. Take the number above and remove the dot. Now you got your mantissa
7. Thus in general the Z3 number will be 1 (sign) | 0000101 (exponent) |

10101000111101 (mantissa)
8. You can verify this by computing: 2^5 *( 2^0 + 2^-2 + 2^-4 + 2^-8 +

2^-9 + 2^-10 + 2^-11 + 2^-13) = 42.23828125

This is not exactly 42.24, which is to be expected, because some decimal numbers are
not representible in binary, thus inducing a rounding error.
Here are some example bit strings in Python format, which you can send to the FPU:
b'\x85\xab\x00' = 42.75

b'\x82\xe0\x00' = 7.0

The number 0 is represented by any value, which has the exponent -64.
Infinity is represented by any value, which has the exponent 63.
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How to test

The design was created for a 10 MHz clock and uses a 9600 baud UART connection
for communication. It lets you load values into the FPU and perform addition or
subtraction.
The commands require a single byte and are defined as follows:
0x82: Set the R1 register
0x83: Set the R2 register
0x84: Set the status register (e.g., overflow, underflow)
0x85: Read the R1 register
0x86: Read the R2 register
0x87: Read the result register
0x88: Perform R1 + R2
0x89: Perform R1 - R2
0x8A: Perform R1 * R2
0x8B: Perform R1 / R2
0x8C: Perform sqrt(R1)
After sending the command to write a register you need to send 3 additional bytes
where the first byte contains the sign bit (7) and the exponent (6:0), the following
byte defines the mantissa bits 15 to 7. Remember that bit 15 must be 1. The last
byte defines the lower mantissa bits. Notice how we transmit 16 bits but only use 15
bits of information. The lowest bit of the last byte is thus ignored. You do not get an
ack from the board! Simply read the register back if you are unsure if the transmission
worked.
If you send a read command, you will receive 3 bytes in the exact same format as
above. First the sign and exponent in the first byte followed by the mantissa bytes.
If you send a command to compute a result, you will receive no answer. You will have
to manually read the result register. Do not worry, the FSM should wait until the FPU
is done, so no reading of undefined data will happen!
Using the example values from above, here is a complete command sequence:
b'\x82\x85\xab\x00' sends the number 42.75
b'\x83\x82\xe0\x00' send the number 7.0
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b'\x88' sends the ADD command
b'\x87' reads the result register
The result should be b'\x85\xc7\x00'
The status register can signify the following events:
The result was zero bit position 0
The computation overflowed bit position 1
The computation underflowed bit position 2

External hardware

Use the on board RPi 2400 for uart connections. It uses the default uart ports suggested
by tiny tapeout.

Pinout

# Input Output Bidirectional
0
1
2
3 rx
4 tx
5
6
7
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7-segment-FUN [32]

• Author: Armin Hartl
• Description: Many different Animations on an 7-Segment-Display
• GitHub repository
• HDL project
• Mux address: 32
• Extra docs
• Clock: 10000000 Hz

How it works

Simplified is this project just a counter, which speed can be changed, combined with
animations for a 7-segment display, which also can be switched trough.

How to test

The default setting should display the numbers 0 to 9, which should change every
second. The design can be tested by pressing the different input buttons and seeing if
the speed respectively the animation changes.

External hardware

You might need a breadboard and buttons for the controls, as well as a 7-segment
display if not available.

Pinout

# Input Output Bidirectional
0 btn1_incAni segment a1
1 btn2_decAni segment b2
2 btn3_incSpeed segment c3
3 btn4_decSpeed segment d4
4 segment e5
5 segment f6
6 segment g7
7
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Asynchronous Down Counter [33]

• Author: Alen Music
• Description: Counter
• GitHub repository
• Wokwi project
• Mux address: 33
• Extra docs
• Clock: 0 Hz

How it works

The Project is a Asynchronous 3 Bit Down Counter.In the asynchronous counter, an
external clock pulse is provided for only the first Flip-Flop, thereafter the output of the
1st Flip-Flop acts as a clock pulse for the second Flip-Flop and so on. In the case of
synchronous Flip-Flops, all the Flip-Flops are triggered simultaneously by an external
clock pulse.

How to test

Pressing the button in succession will make the counter count.

External hardware

7SEG-Display

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7
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Synthesized Time-to-Digital Converter (TDC) [35]

• Author: Harald Pretl
• Description: Synthesized TDC based on an interleaved delay line
• GitHub repository
• HDL project
• Mux address: 35
• Extra docs
• Clock: 50000000 Hz

How it works

This is a simple synthesized time-to-digital converter (TDC), consisting of a delay line
and parallel capture FF. Depending on __TDC_INTERLEAVED__ either a simple or an
interleaved delay line is implemented.
In the TT 1x1 block size a 192-stage interleaved delay can be fitted.

How to test

Apply two signals to ui_in[0] and clk.
After capturing (rising edge of clk) the result (i.e., the time delay between rising edge
of ui_in[0] and clk) can be muxed-out to uo_out[7:0] using ui_in[7:3] as
byte-wise selector. ui_in[7:3]=0000 gives result byte 0, ui_in[7:3]=0001 gives
result byte 1, etc.

External hardware

Two signal generators generating logical signals with a programmable delay.

Pinout

# Input Output Bidirectional
0 Start signal of TDC (stop signal is clk) Result LSB
1 Result
2 Result
3 Result
4 output select Result
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# Input Output Bidirectional
5 output select Result
6 output select Result
7 output select Result MSB
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luckyCube [37]

• Author: Lejla Rahmanovic-Abdic
• Description: Lucky Number 6
• GitHub repository
• Wokwi project
• Mux address: 37
• Extra docs
• Clock: 0 Hz

How it works

In this project, goal was to create an engaging digital dice experience. The primary
goal is to display the word “roll” on the LED display, accompanied by the illumination
of the number “6” – a universally recognized lucky number in dice games.

How to test

Play with switch

External hardware

•

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7

31

https://github.com/leyla224/jku-tt06-luckyCube
https://wokwi.com/projects/384711264596377601


playwithnumbers [39]

• Author: Rukija Hafizovic
• Description: Even/Odd Numbers
• GitHub repository
• Wokwi project
• Mux address: 39
• Extra docs
• Clock: 0 Hz

How it works

The function of this project is to enable the user to determine accurate even or odd
numbers. No matter which number (1-8) the user turns on, the LED bulbs will not light
evenly. Using dip switch 8 user can choose which number will be used and according
to logicgates(AND, OR, XOR, NAND, NOT) LED and 7seg dipslay will work.

How to test

To get even/odd numbers you have to switch on 2,4,6 and 8 (2,4,6,8 ->„1“ and 1,3,5,7
->„0“ ). All blue led bulbs should light and 8 have to be displayed.

External hardware

List external hardware used in your project: seven segment display

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7
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2 Player Game [41]

• Author: Gabriel Silva, Tristan Peterson, Conner F
• Description: Count down timer game
• GitHub repository
• HDL project
• Mux address: 41
• Extra docs
• Clock: 20000000 Hz

How it works

Counting timer game! 4 buttons, start, reset, p1, p2. The goal time is seen on the
screen after reset, once start is selected the timer will begin at 0.0 and go to 9.9. After
3.0 seconds the display is hidden, guess the answer!

How to test

If you select the Player button and Start button you can see the time the player selected.
THis only works after both players have answered

External hardware

You need a PMOD 7 segment disp 1286-1065-ND, 4 button PMOD 1286-1145-ND

Pinout

# Input Output Bidirectional
0 Start
1 Reset
2 Player 1
3 Player 2
4
5
6
7
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Oscillating Bones [42]

• Author: Uri Shaked
• Description: A stylish ring oscillator built from SkullFET transistors
• GitHub repository
• HDL project
• Mux address: 42
• Extra docs
• Clock: 0 Hz

How it works

A simple yet stylish ring oscillator that uses a chain of 21 SkullFET inverters to generate
a square wave output. Based on simulation, the oscillator should have a frequency of
around 90 MHz.

How to test

Connect an oscilloscope to the osc_out (ou_out pin 0) pin and enjoy the show.
You can also observe the divided frequency outputs on osc_div_2, osc_div_4, and
osc_div_8.

Simulation results

The following graph shows the output of the oscillator and the divided outputs. It
was generated by running make -C sim and patiently waiting for the simulation to
finish:
The outputs are shifted by 2 volts to make them easier to see in the graph. “uo_out[0]”
is the main output of the oscillator, and “uo_out[1]”, “uo_out[2]”, and “uo_out[3]”
are the divided outputs.
Note that the simulation results do not include all the parasitics, only the main ones.
The actual frequency of the oscillator will probably be lower than the simulated one.
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# Input Output Bidirectional

Pinout

# Input Output Bidirectional
0 osc_out
1 osc_div_2
2 osc_div_4
3 osc_div_8
4
5
6
7
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Figure 5: Simulation results
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drops [43]

• Author: Philipp Ploeckinger
• Description: Arcade Style game, which lets you collect vertical droplets on an

8x8 pixel display
• GitHub repository
• HDL project
• Mux address: 43
• Extra docs
• Clock: 0 Hz

How it works

This project uses two mechanical buttons and an 8x8 display to plan arcade style game
called drops. The goal is to move a bar horicontal in order to catch the vertical falling
drops. The player starts with a fixed numer of lifes. Each time the drop is missed, the
lifes are deducted by one. When all lifes are used, the game is over an can be restarted
with the reset button.

How to test

After plugging everything in as specified in the info.yaml file, the display should light
up. If this is not the case, change row and colum pins
There are two things that need to be tested and eventually corrected:

• Drop moving upwards: change the column pins (7 to 0, 0 to 7 etc)
• Bar mowing in wrong direction: either change left and right button or siwcht

row pins (7 to 0, 0 to 7 etc)

External hardware

In addition to the Tiny Tapeout board there are two buttons, and an 8x8 display
necessary. Base on your desired connection of the buttons you might need an additional
power source.

Pinout
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# Input Output Bidirectional
0 push button - right display column 0 display row 0
1 push button - left display column 1 display row 1
2 display column 2 display row 2
3 display column 3 display row 3
4 display column 4 display row 4
5 display column 5 display row 5
6 display column 6 display row 6
7 display column 7 display row 7
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Flappy Bird [45]

• Author: Robin Hohensinn
• Description: Flappy Bird
• GitHub repository
• HDL project
• Mux address: 45
• Extra docs
• Clock: 0 Hz

How it works

The design of the chip allows playing a simplified version of Flappy Bird on an 8x8 LED
matrix. For peripheral hardware, only two buttons for controlling the bird’s position and
an 8x8 LED matrix are required. After successful software testing using Waveform, the
design was synthesized in a Github repository. Following successful Waveform testing,
the circuit was verified for functionality using an FPGA chip.
The 8-bit outputs act as the “High” signals for the LED matrix, while another set of
8-bit outputs serve as the “LOW” signals, forming a grid pattern conceptually. This
setup enables individual LEDs to be lit up through precise control of one row and one
colomn. Ensuring correct installation of the LED matrix and using appropriately sized
resistors for protection is essential.

How to test

To test this version use waveform tests or an oscilloscop.

External hardware

two buttons and a 8x8 Led Matrix https://de.aliexpress.com/item/32857281704.html?gatewayAdapt=glo2deu

Pinout

# Input Output Bidirectional
0 up-Button row of display-Matrix col of display-Matrix
1 down-Button row of display-Matrix col of display-Matrix
2 not used row of display-Matrix col of display-Matrix
3 not used row of display-Matrix col of display-Matrix
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# Input Output Bidirectional
4 not used row of display-Matrix col of display-Matrix
5 not used row of display-Matrix col of display-Matrix
6 not used row of display-Matrix col of display-Matrix
7 not used row of display-Matrix col of display-Matrix
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4-Bit CPU mit FSM [47]

• Author: Jacqueline Gislai
• Description: Mini CPU, that can do simple calculations and logic operations as

well as storing and loading values and execute shifting operations
• GitHub repository
• HDL project
• Mux address: 47
• Extra docs
• Clock: 0 Hz

How it works

Based on the input information, a few operations can be used to process the input
values. If there should be operations done with two or more values, store- and loading-
operations have to be executed in between before going to the next calculation step.

How to test

For example giving the CPU a value to store and next to load into the accumulator
by giving the correct operation codes and the storage address. Next giving the CPU
the next value and the operation that should be processes onto those to values, for
example a AND function. The result will be given to the output converted to a 8-Bit
signal.

Pinout

# Input Output Bidirectional
0 storage address Bit 0 output data Bit 0 input write-access in storage
1 storage address Bit 1 output data Bit 1
2 storage address Bit 2 output data Bit 2
3 storage address Bit 3 output data Bit 3
4 value of input data Bit 0 output data Bit 4 input Operation Code Bit 0
5 value of input data Bit 1 output data Bit 5 input Operation Code Bit 1
6 value of input data Bit 2 output data Bit 6 input Operation Code Bit 2
7 value of input data Bit 3 output data Bit 7 input Operation Code Bit 3
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FP4 x 8-bit matrix multiplier [64]

• Author: ReJ aka Renaldas Zioma
• Description: 4-bit floating point (E3M0) x 8-bit matrix multiplier block
• GitHub repository
• HDL project
• Mux address: 64
• Extra docs
• Clock: 48000000 Hz

How it works

Matrix multiplication is implemented using a systolic array architecture.

How to test

Every cycle feed packed weight data to Input pins and input data to Bidirectional pins.
Strobe Enable pin to start receiving results of the matrix multiplication on the Output
pins.

External hardware

MCU is necessary to feed weights and input data into the accelerator and fetch the
results.

Pinout

# Input Output Bidirectional
0 2nd FP4 weight LSB result LSB (in) activations LSB
1 2nd FP4 weight result (in) activations
2 2nd FP4 weight result (in) activations
3 2nd FP4 weight MSB result (in) activations
4 1st FP4 weight LSB result (in) activations
5 1st FP4 weight result (in) activations
6 1st FP4 weight result (in) activations
7 1st FP4 weight MSB result MSB (in) activations MSB
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CORA-16 [66]

• Author: Andrew Dona-Couch
• Description: Simple 16-bit CPU
• GitHub repository
• HDL project
• Mux address: 66
• Extra docs
• Clock: 0 Hz

Couch’s One-Register Accumulator machine, 16-bit width.

How it works

One register should be enough for anybody. Well, there’s also the program counter,
status flags, stack pointer, data pointer, but who’s counting?
External SPI memory is used for a simple instruction fetch/execute cycle. High-
bandwidth I/O is provided through a full byte-width input and output bus. The machine
allows single-stepping through execution to aid debugging.

Pin Function
step Set high for a clock cycle to step, hold high to run.
busy When high, the machine is currently working on an

instruction.
halt When high, the machine has halted execution.
trap When halt is low and trap is high, the machine has

trapped. Step once to attempt recovery (success
depends significantly on context).

Note: when both halt
and trap are high, the
machine has experienced
an irrecoverable fault,
please reset.
in[7:0] General-purpose byte input. Use as data source IN for

any one-argument instruction.
out[7:0] General-purpose byte output. Set with the OUT

instruction.
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How to test

1. Load the program to run into the external SPI RAM.
2. Reset the CPU.
3. Raise step high for a clock for each instruction to step.
4. Hold step high to run free (you are advised to handle trap).
5. Observe busy, halt and trap for the module status.

External hardware

The module expects an SPI RAM attached to the relevant SPI pins. The onboard
Raspberry Pi emulation should work just fine.

Instruction set

Status byte 7 6 5 4 3 2 1 0
x x Else x x Carry Neg Zero

Impact on the status flags is documented as:

• -: No effect
• 0: The flag is cleared to zero
• 1: The flag is set to one
• #: The flag is affected by the operation

One-byte instructions

Name Bit Pattern Description Status
Nop 0000 0000 No operation ---- ----
Halt 0000 0001 Halt machine ---- ----
Trap 0000 0010 Trap execution ---- ----
Drop 0000 0011 Drop a word from the

stack
---- ----

Push 0000 0100 Push a word to the stack ---- ----
Pop 0000 0101 Pop a word from the

stack to the accumulator
---- ----

Return 0000 0110 Return to the address on
top of the stack

---- ----
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Name Bit Pattern Description Status
Not 0000 0111 One’s complement of the

accumulator
---- -1##

Out Lo 0000 1000 Output the low byte of
the accumulator

---- ----

Out Hi 0000 1001 Output the high byte of
the accumulator

---- ----

Set DP 0000 1010 Set the data pointer
value to the accumulator
value

---- ----

Test 0000 1011 Set the status flags based
on the accumulator value

---- --##

Branch
Indirect

0000 1100 Add the accumulator to
the program counter

---- ----

Call
Indirect

0000 1101 Call the subroutine
address in the
accumulator

---- ----

Status 0001 0000 Load the status flags into
the accumulator

---- ----

Load
Indirect

0100 01mm Load a word from the
address in the
accumulator, using
addressing mode m (bug:
modes not supported)

---- ----

Two-byte instructions

Name Bit Pattern Description Status
Load 1000 0sss vvvv vvvv Load a value into the

accumulator
---- ----

Store 1001 0sss vvvv vvvv Store a value to memory ---- ----
Add 1000 1sss vvvv vvvv Add a value to the

accumulator
---- -###

Sub 1001 1sss vvvv vvvv Subtract a value from the
accumulator

---- -###

And 1010 0sss vvvv vvvv Bitwise and a value with
the accumulator

---- --##

Or 1010 1sss vvvv vvvv Bitwise or a value with
the accumulator

---- --##

45



Name Bit Pattern Description Status
Xor 1011 0sss vvvv vvvv Bitwise exclusive or a

value with the
accumulator

---- --##

Shift 1011 1sss vvvv vvvv Shift the accumulator
(see note below on
direction)

---- -###

Branch 1100 0pp pppp pppp Add the offset p to the
program counter

---- ----

Call 1101 0pp pppp pppp Call the subroutine at
address p

---- ----

If 1111 000 0000 cccc Skip the following
instruction if the
condition doesn’t hold

---- ----

Many of these instructions specify a source type s and value v. These are the options:

Source Type Bit Pattern Interpretation
Const Lo 000 Take the value v as the low

byte of a constant
Const Hi 001 Take the value v as the high

byte of a constant
Input Lo 010 Input the low byte, ignore

the value v
Input Hi 011 Input the high byte, ignore

the value v
Data Direct 100 Read a value from the

address v (relative to the
data pointer)

Data Indirect 101 Read a pointer from the
address v (relative to the
data pointer), and load a
value from that address

Stack Direct 110 Read a value from the
address v (relative to the
stack pointer)

Stack Indirect 111 Read a pointer from the
address v (relative to the
stack pointer), and load a
value from that address
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Note: the SHIFT instruction stashes the shift direction within this source field.

Source Type Shift Bit Source Limitation
Constant Lo/Hi Only 8-bit constants supported
Input Lo/Hi Only 8-bit inputs supported
Memory Addr[0] Only aligned addresses supported

(TODO: maybe require that
everywhere??)

The following table lists the condition codes for the IF instruction.

Condition Bit Pattern Description
Zero 0000 Skip the next instruction if the Z bit is cleared
Not Zero 0001 Skip the next instruction if the Z bit is set
Else 0010 Skip the next instruction if the E bit is cleared
Not Else 0011 Skip the next instruction if the E bit is set
Neg 0100 Skip the next instruction if the N bit is cleared
Not Neg 0101 Skip the next instruction if the N bit is set
Carry 0110 Skip the next instruction if the C bit is cleared
Not Carry 0111 Skip the next instruction if the C bit is set

Three-byte instructions

Name Bit Pattern Description Status
Call Word 0011 1110 wwww wwww

wwww wwww
Call the subroutine at
address w

---- ----

Load Im-
mediate
Word

0011 1111 wwww wwww
wwww wwww

Set the accumulator to w ---- ----

Pinout

# Input Output Bidirectional
0 Data In 0 Data Out 0 SPI MOSI
1 Data In 1 Data Out 1 SPI CS
2 Data In 2 Data Out 2 SPI CLK
3 Data In 3 Data Out 3 SPI MISO
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# Input Output Bidirectional
4 Data In 4 Data Out 4 Step
5 Data In 5 Data Out 5 Busy
6 Data In 6 Data Out 6 Halt
7 Data In 7 Data Out 7 Trap
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kstep [68]

• Author: Kevin OConnor
• Description: Generate step/dir pulses for stepper motor drivers
• GitHub repository
• HDL project
• Mux address: 68
• Extra docs
• Clock: 50000000 Hz

How it works

This project can produce timed pulses suitable for controlling stepper motor drivers. It
is similar to a PWM controller, but has additional control over the number of pulses
generated and an ability to gradually change the timing between each pulse.
Commands are sent via SPI. Each SPI message should have 40 bits and
be in the following format: &amp;lt;1-bit rw&amp;gt;&amp;lt;7-bit
address&amp;gt;&amp;lt;32-bit data&amp;gt;

The rw bit should be 1 to indicate a write.
The following commands are available:

W 0x10 <pin polarity>: This controls default state of all uo_out pins.
W 0x11 <any>: Clear shutdown state.
W 0x12 <step_duration>: Set the duration of step pulses (in clock ticks).
W 0x20 <count/add>: Set count (upper 16 bits), add (lower 16 bits), and submit.
W 0x21 <interval>: Set interval between pulses (ticks). Submit with addr 0x20.
W 0x22 <direction>: Set stepper direction (pin uo_out[1]) during step pulses.
W 0x30 <any>: Reset last step time to zero.
W 0x70 <clock>: Set the current clock counter.
R 0x70: Read the current clock counter.

There are also two control pins separate from the SPI interface: signal_irq and
signal_shutdown. The signal_irq signal is raised high to indicate that there
is space to submit a new schedule entry (via writes to address 0x21 and 0x20). If
the signal_shutdown reads a high value that the device will return all uo_out pins
to their configured polarity (that is it will stop pulsing the step pin). To clear the
shutdown state, return the signal_shutdown to a low state and issue a write to
address 0x11.
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How to test

Configure an SPI device. Ensure that the signal_shutdown line is held low. Issue
an SPI set pin polarity command. Issue a set pulse duration command. Issue a set
clock command. Issue a set interval command. Isuse a set count/add command.
Optionally issue additional interval,count,add commands. Observe the step pulses on
the uo_out[0] (step) pin.

Pinout

# Input Output Bidirectional
0 step spi_cs
1 dir spi_mosi
2 other2 spi_miso
3 other3 spi_sclk
4 other4 signal_irq
5 other5 signal_shutdown
6 other6
7 other7
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UCSC HW Systems Collective, TDC - BUF2x1 [70]

• Author: Phillip Marlowe, Tyler Sheaves, & Dustin Richmond
• Description: A tiny TDC constructed entirely of standard cells. Skywater130

AND-2 delay element
• GitHub repository
• HDL project
• Mux address: 70
• Extra docs
• Clock: 17241379 Hz

How it works

A tiny TDC

How to test

Setup VCS on you local machine, cd to test run: make SIM=vcs GATES=yes

External hardware

Just pins

Pinout

# Input Output Bidirectional
0 lanuch clock hw[0]
1 capture clock hw[1]
2 pg_src hw[2]
3 pg_bypass hw[3]
4 pg_in hw[4]
5 pg_tog hw[5]
6 valid_in hw[6]
7 valid_out
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UCSC HW Systems Collective, TDC - MUX2x1 [72]

• Author: Phillip Marlowe, Tyler Sheaves, & Dustin Richmond
• Description: A tiny TDC constructed entirely of standard cells. Skywater130

MUX2x1 delay element
• GitHub repository
• HDL project
• Mux address: 72
• Extra docs
• Clock: 40000000 Hz

How it works

A tiny TDC

How to test

Setup VCS on you local machine, cd to test run: make SIM=vcs GATES=yes

External hardware

Just pins

Pinout

# Input Output Bidirectional
0 lanuch clock hw[0]
1 capture clock hw[1]
2 pg_src hw[2]
3 pg_bypass hw[3]
4 pg_in hw[4]
5 pg_tog hw[5]
6 valid_in hw[6]
7 valid_out
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Gray scale and Sobel filter [74]

• Author: Diana Natali Maldonado Ramirez
• Description: This project performs grayscale conversion and Sobel filtering with

the aim of detecting edges in an image.
• GitHub repository
• HDL project
• Mux address: 74
• Extra docs
• Clock: 10000000 Hz

How it works

This project performs grayscale conversion and Sobel filtering with the aim of detecting
edges in an image.
Below is a block diagram of the implementation:

Figure 6: arc

How to test

It is necessary for the pixels to be sent via an SPI protocol; for this purpose, the input
ui_in[2:0] is designated as follows:

• ui_in[0] → SPI Clock

53

https://github.com/DianaNatali/tt06_grayscale_sobel


• ui_in[1] → Chip Select
• ui_in[2] → Input Pixel

As shown in the previous image, there are some processing options:

1. Bypass → Returns the input pixel unprocessed.
2. Grayscale → Returns the pixel converted to grayscale, so it is recommended that

the input pixel be RGB.
3. Sobel → Returns the edge detection corresponding to the input pixel, so it is

recommended that the input pixel be grayscale.
4. Grayscale + Sobel → Returns the edge detection of the input pixel by performing

both grayscale processing and the Sobel filter, so it is recommended that the
input pixel be RGB.

To select one of the processing options, the input ui_in[4:3] is designated as fol-
lows:

• ui_in[4:3] = 00 → Grayscale + Sobel
• ui_in[4:3] = 01 → Sobel
• ui_in[4:3] = 10 → Grayscale
• ui_in[4:3] = 11 → Bypass

To perform the Sobel filter processing, it must be enabled according to the selected
processing. This can be enabled or disabled as needed through the input ui_in[5],
where 1 enables and 0 disables.
The result of the processing corresponds to the output uo_out[0].
There is also a functionality for the input to the different processing options to come
from an internal LFSR block; for this purpose, the pins uio_in[3:2] are dedicated
for input.

External hardware

Any device that allows sending data via an SPI protocol, like a Raspberry Pi.

Pinout

# Input Output Bidirectional
0 spi_sck_i spi_sdo_o LFSR_enable_i
1 spi_cs_i lfsr_done seed_stop_i
2 spi_sdi_i ena lfsr_en_i
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# Input Output Bidirectional
3 select_process_i[0] output_px[0]
4 select_process_i[1] output_px[1]
5 start_sobel_i output_px[2]
6 output_px[3]
7 output_px[4]
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RGB Mixer demo [76]

• Author: Matt Venn
• Description: Zero to ASIC demo project
• GitHub repository
• HDL project
• Mux address: 76
• Extra docs
• Clock: 10000000 Hz

How it works

Debounce the inputs, drive an encoder module, and output a PWM signal for each
encoder.

How to test

Twist each encoder and the LEDs attached to the outputs should change in bright-
ness.
By setting the debug port to 0, 1 or 2, the internal value of each encoder is output on
the bidirectional outputs.

External hardware

Use 3 digital encoders attached to the first 6 inputs.

Pinout

# Input Output Bidirectional
0 enc0 a pwm0 encoder bit 0
1 enc0 b pwm1 encoder bit 1
2 enc1 a pwm2 encoder bit 2
3 enc1 b encoder bit 3
4 enc2 a encoder bit 4
5 enc2 b encoder bit 5
6 debug bit 0 encoder bit 6
7 debug bit 1 encoder bit 7
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Projekt KEIS Hadner Thomas [78]

• Author: Thomas Hadner
• Description: Demodulator for RC Receiver with different Outputs
• GitHub repository
• HDL project
• Mux address: 78
• Extra docs
• Clock: 1000000 Hz

How it works

Decodes PWM-Signal from RC Receiver with counter and threshold values to decide
wether to set the output to HIGH or LOW.

How to test

The program can be tested by applying a PWM-Signal to the input with a longer pulse
time than 1.9ms, then the output will go to HIGH. If then you apply a PWM-Signal
with a pulse time lower than 1.1 the output will go to LOW.
Additionally the 7-Segment-Display will always show how many outputs are currently
active (HIGH).

Pinout

# Input Output Bidirectional
0 input PWM of channel 0 segment a output of channel 0
1 input PWM of channel 1 segment b output of channel 1
2 input PWM of channel 2 segment c output of channel 2
3 input PWM of channel 3 segment d output of channel 3
4 input PWM of channel 4 segment e output of channel 4
5 input PWM of channel 5 segment f output of channel 5
6 input PWM of channel 6 segment g output of channel 6
7 input PWM of channel 7 UART Transmit Wire output of channel 7
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spi_pwm [97]

• Author: djuara
• Description: This is a PWM generator and 8-bit width IO, spi controlled (2

different interfaces, just for testing).
• GitHub repository
• HDL project
• Mux address: 97
• Extra docs
• Clock: 0 Hz

How it works

This design is an SPI controlled PWM generator and 8-pin IO controller. IOs can
be configure as output or input. Through registers we can configure number of ticks
the PWM signal is ON and the cycle. Ticks are related to the system clk provided
externally.

Figure 7: alt text

The design contain 8 registers that can be accessed by the two SPI interfaces. With
these registers user can control PWM generator, allowing control of time on and cycle
time. Also there are 8 IOs that can be set as inputs or outputs.
If two SPI writes occurs at the same time, SPI_CLK prevails over SPI_SAMPLED.

Configuration example
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PWM Configuration of PWM is based on system clk. Registers to be configured
are TICKS_ON and TICKS_CYCLE, which is basically the number of ticks of system
clk the pwm signal is on and the period.
So assuming a system clk of 50 MHz, if we want to obtain a PWM signal with period
1 ms and duty cycle of 33%:
We need to calculate the number of clk ticks that are in 1 ms:
cycle_ticks = T / T_clk = 1 ms / (1 / 50 MHz) = 50 MHz * 1 ms = 50000 ticks
And now calculate the number of clk ticks the signal is on:
on_ticks = cycle_ticks * duty_cycle = 50000 * 0.33 = 16500 ticks
So configuring the registers with these values, and activating PWM (through external
signal or register)

IOs In order to use the IOs, we just need to configure the IO_DIR register in order
to set the pin as input or output.
Then, if it is an input, just read the IO_VALUE register, and if it is an output, just
write the desired value to the IO_VALUE register.

Ports

Port in/out Description
ui_in[7] in Input and’ed with ena and reported in bit 7 of reg 0x01
ui_in[6] in Control start of PWM externally
ui_in[5] in CS signal of SPI_SAMPLED
ui_in[4] in MOSI signal of SPI_SAMPLED
ui_in[3] in SCLK signal of SPI_SAMPLED
ui_in[2] in CS signal of SPI_CLK
ui_in[1] in MOSI signal of SPI_CLK
ui_in[0] in SCLK signal of SPI_CLK
uo_out[7:3] out Always 0
uo_out[2] out PWM output
uo_out[1] out MISO signal of SPI_SAMPLED
uio_in[7:0] in Input signals of IOs
uio_out[7:0] out Output signals of IOs
uio_oe[7:0] out OE signals of IOs
ena in Design selected signal
clk in System clk
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Port in/out Description
rst_n in Active low reset

Registers

Reg Addr Addr Description Default
ID 0x00 R Identification register 0x96
PWM_CTRL 0x01 R/W Control register 0x00
TICKS_ON_LSB 0x02 R/W Ticks PWM signal is on LSB 0x14
TICKS_ON_MSB 0x03 R/W Ticks PWM signal is on MSB 0x82
TICKS_CYCLES_LSB 0x04 R/W PWM period in ticks LSB 0x50
TICKS_CYCLES_MSB 0x05 R/W PWM period in ticks MSB 0xC3
IO_DIR 0x06 R/W Set the dir of each IO pin 0x00
IO_VALUE 0x07 R/W Set the IO_output value 0x00

Only 3 bits of address are taken into account for addressing.
When PWM is active, registers cannot be written.

ID This register is read only, it’s value is 0x96.

PWM_CTRL This register controls the PWM. Bit 0 control if it’s on (Bit 0 set)
or off (Bit 0 clear). This register also contain the AND value of inputs ui_in[7] & ena
in bit 7.

TICKS_ON LSB and MSB This two registers contains the number of ticks of
the system clk that the PWM signal is high. It’s a 16 bit wide value, separate in LSB
and MSB.

TICKS_CYCLES LSB and MSB This two registers contains the period of the
PWM signal in number of ticks of the system clk. It’s a 16 bit wide value, separate in
LSB and MSB.

IO_DIR In this register each bits configure the direction of each io pin. Value 0
indicates input and value 1 indicate output
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IO_VALUE This register contain the value of the io pin. When read it reports the
values of uio_in, when writes it sets the values of uio_out (depending on values set in
IO_DIR).

SPI Interfaces Registers are accesed through one of the two SPI interfaces. Both
interfaces share the access to the registers, so just one interface can be accessed at
the same time.

SPI CLK This interface is clocked with the sclk clock of the SPI.
To write a register, 16 bits must be written.

• Bit 15 (MSB, first sent) is the R/W bit, for writes, must be 0
• Bits 14 to 11 are ignored
• Bit 10 to 8 is address
• Bit 7 to 0 is data to be written

Figure 8: alt text

To read a register, 24 bits must be sent

• Bit 23 (MSB, first sent) is the R/W bit, for reads, must be 1
• Bits 22 to 19 are ignored
• Bit 18 to 16 is address
• Bit 15 to 8 is dummy bits
• Bit 7 to 0 is data read in MISO line

Figure 9: alt text
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SPI SAMPLED This interface is sampled with the system clk. Theoretical maxi-
mum frequency is 25e10^6
To write a register, 16 bits must be written.

• Bit 15 (MSB, first sent) is the R/W bit, for writes, must be 0
• Bits 14 to 11 are ignored
• Bit 10 to 8 is address
• Bit 7 to 0 is data to be written

Figure 10: alt text

To read a register, 16 bits must be sent

• Bit 15 (MSB, first sent) is the R/W bit, for reads, must be 1
• Bits 14 to 11 are ignored
• Bit 10 to 8 is address
• Bit 7 to 0 is data read in MISO line

Figure 11: alt text

How to test

In order to test reads, you can read the ID register (0x00) and the byte received should
be 0x96.
In order to test writes, you can write a register different than ID register, and then
read it back an check you read the value previously written.
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External hardware

Some devices to peform SPI transactions

Pinout

# Input Output Bidirectional
0 clk_sclk clk_miso IO0
1 clk_mosi sampled_miso IO1
2 clk_cs pwm IO2
3 sampled_sclk IO3
4 sampled_mosi IO4
5 sampled_cs IO5
6 IO6
7 IO7
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PiMAC [99]

• Author: Steffen Reith
• Description: A simple pipelined multiply and accumulate unit to compute a*b+c
• GitHub repository
• HDL project
• Mux address: 99
• Extra docs
• Clock: 0 Hz

How it works

This circuit is a simple pipelined multiply and accumulate unit to compute a*b+c using
SpinalHDL as a generator.
It uses the classic textbook method of multiplication with base 2. So if the numbers a
and b are multiplied, the sum of the version of argument a shifted to the left by i bits
must be summed up if and only if the ith bit of b is 1.
These bit products, i.e. (a « i) * b(i), are determined in the individual stages of the
pipeline and the result is calculated step by step.
The full code can be found at https://github.com/SteffenReith/PiMAC

How to test

Simply feed a, b, and c as 4 bit unsigned integer into the unit. The latency is 3 clocks,
hence the (hopefully correct) answer can be found at the result output after 3 cycles.

External hardware

No external hardware it needed.

Pinout

# Input Output Bidirectional
0 a[0] result[0] c[0]
1 a[1] result[1] c[1]
2 a[2] result[2] c[2]
3 a[3] result[3] c[3]
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# Input Output Bidirectional
4 b[0] result[4]
5 b[1] result[5]
6 b[2] result[6]
7 b[3] result[7]
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PILIPINAS [101]

• Author: Alexander Co Abad and Dino Dominic Ligutan
• Description: 7-seg Display for PILIPINASLASALLE
• GitHub repository
• Wokwi project
• Mux address: 101
• Extra docs
• Clock: 1 Hz

How it works

Based from https://wokwi.com/projects/341279123277087315
On power-up, the 7-segment display should display the text PILIPINASLASALLE one
at a time per clock cycle. The “dp” output toggles every clock cycle.
Setting the input pin 7 to HIGH allows for manual override of the BCD value. In this
mode, input pins 0-3 controls the BCD value. The text displayed for each BCD value
are tabulated below: | in0 | in1 | in2 | in3 | Character | |:——-:|:——-:|:——-:|:—
—-:|:————-:| | LOW | LOW | LOW | LOW | P | | LOW | LOW | LOW | HIGH | I |
| LOW | LOW | HIGH | LOW | L | | LOW | LOW | HIGH | HIGH | I | | LOW | HIGH
| LOW | LOW | P | | LOW | HIGH | LOW | HIGH | I | | LOW | HIGH | HIGH | LOW
| N | | LOW | HIGH | HIGH | HIGH | A | | HIGH | LOW | LOW | LOW | S | | HIGH |
LOW | LOW | HIGH | L | | HIGH | LOW | HIGH | LOW | A | | HIGH | LOW | HIGH
| HIGH | S | | HIGH | HIGH | LOW | LOW | A | | HIGH | HIGH | LOW | HIGH | L | |
HIGH | HIGH | HIGH | LOW | L | | HIGH | HIGH | HIGH | HIGH | E |

How to test

Default mode: Set the clock input to a low frequency such as 1 Hz to see the text
transition per clock cycle.
Manual mode: Set the input pin 7 to HIGH and toggle input pins 0-3. The character
displayed for each input combination should be according to the table above.

External hardware

7-segment display
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Pinout

# Input Output Bidirectional
0 BCD Bit 3 (A) segment a
1 BCD Bit 2 (A) segment b
2 BCD Bit 1 (A) segment c
3 BCD Bit 0 (A) segment d
4 segment e
5 segment f
6 segment g
7 Manual Input Mode segment dp
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GOA - grogu on ASIC [103]

• Author: Simone Corbetta
• Description: Single neuron w/ fixed-point arithmetic
• GitHub repository
• HDL project
• Mux address: 103
• Extra docs
• Clock: 25 Hz

GOA - grogu on ASIC

GOA stands for grogu on ASIC. It is a reduced version of the CORTEZ chip targeting
the Tiny Tapeout 6 run. The grogu part comes from the register file design utilities
grogu.
The GOA design is made of a single neuron with 2 (two) inputs. The register file
contains a number of registers for control and observation. The neuron core works on
8 (eight) bits fixed-point arithmetic with 5 (five) reserved for the fraction.

Neuron internals

The next figure shows the simplified block diagram of the Neuron.

Figure 12: Neuron architecture

The arithmetic pipeline is composed of a number of fixed-point units: multiplier, adder
for accumulator and bias, activation function. These primitives are shared, so that a
centralized control engine (NCE) dispatches one value at a time to the proper block.
WEIGHTS matrix is externally stored in a local register file, an instance of grogu.
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The NCE expects exactly NUM_INPUTS input values. For each of them, the following
process is executed through the pipeline:

1. Multiply current value by its respective weight;
2. Accumulate the value.

Once all values have been received, bias is added and the non-linear activation function
is used to determine the output solution.

Fixed-point The entire pipeline works with fixed-point arithmetic. This reduces the
complexity of the design. For the Tiny Tapeout run, the fixed-point configuration is:
8 (eight) bits word with 5 (five) bits reserved to the fractional part. All fixed-point
operations wrap.

Non-linear activation function tanh() is the chosen non-linear activation func-
tion. Thanks to its mathematical properties, it is interesting designing a fully digital
filter that implements a piecewise approximation.
Linear interpolation between successive points is carefully chosen to minimize the error.
The points where the tanh() function is split are chosen by looking at up to the 4-th
derivative. Since the tanh() function is odd symmetric, the digital implementation
focuses on half of the problem in the 1st quadrant. The other half of the problem on
the 3rd quadrant is derived. The output is shown.

Scalable Configuration Interface The SCI interface has been designed for the
CORTEZ chip to address dense register files with a fairly large amount of registers. The
SCI is designed to reduce wires and congestion. It consists of an half-duplex com-
munication mechanism with request/ack pairs, useful for low-speed peripheral register
access. Is is also latency insensitive. The SCI is inspired by the SPI protocol, with
tri-state bus and active-low chip select.
For the single neuron case, the SCI bus is not tri-stated, since there is one single
peripheral. This simplfies the implementation.
In general, the SCI interface for one Master and N Slaves is composed of 4 (four) signals
(mapping to the tt_um_scorbetta_goa pins is reported in the Pinout section).

SIGNAL WIDTH DIRECTION ROLE
SCI_CSN N Master-to-Slave Active-low peripheral select
SCI_REQ 1 Master-to-Slave Request
SCI_RESP 1 Slave-to-Master Response
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SIGNAL WIDTH DIRECTION ROLE
SCI_ACK 1 Slave-to-Master Ack

For detailed information on the SCI protocol please refer to this page.
Examples of Write and Read accesses are shown.

Network emulation A twisted use of the single-neuron design can emulate an entire
network made of a number of layers, each with a number of neuron. This is doable
thanks to the way the neuron is designed. Basically, the 2-inputs neuron is repeadetely
fed with iterative data, coming from either the external world (i.e., input values) or
intermediate results (i.e., from the inner core). Mathematically, the MAC operation is
distributed in time.

Pinout

PIN DIRECTION ROLE
ui_in[0] input FPGA clock
ui_in[1] input Active-low FPGA reset
ui_in[2] input Loopback data
ui_in[3] input Unused
ui_in[4] input Unused
ui_in[5] input Unused
ui_in[6] input Debug select [0]
ui_in[7] input Debug select [1]
uo_out[0] output Shared debug output dbug_out[0]
uo_out[1] output Shared debug output dbug_out[1]
uo_out[2] output Shared debug output dbug_out[2]
uo_out[3] output Shared debug output dbug_out[3]
uo_out[4] output Shared debug output dbug_out[4]
uo_out[5] output Shared debug output dbug_out[5]
uo_out[6] output Shared debug output dbug_out[6]
uo_out[7] output Shared debug output dbug_out[7]
uio_in[0] input SCI_CSN
uio_in[1] input SCI_REQ
uio_out[2] output SCI_RESP
uio_out[3] output SCI_ACK
uio_out[4] input Unused, configured as input
uio_out[5] input Unused, configured as input
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PIN DIRECTION ROLE
uio_out[6] input Unused, configured as input
uio_out[7] input Unused, configured as input

Debug signals are mapped to output pins uo_out. In total, 32 (thirty-two) signals are
exposed to the debug interface. Inputs ui_in[7:6] are used to control which ones,
according to the following table.

Configuration

The configuration of the neuron is implemented by means of local registers that hold
the values for the weights and the bias. In addition, control registers are used to trigger
the neuron operations. All resigsters are 8 (eight) bits wide

REGISTER OFFSET TYPE CONTENTS
WEIGHT_0 0x0 R/W Weight of input #0
WEIGHT_1 0x1 R/W Weight of input #1
BIAS 0x2 R/W Bias
VALUE_IN 0x3 R/W Input value
CTRL 0x4 R/W Control register
STATUS 0x5 R Status register
RESULT 0x6 R Neuron solution
MULT_RESULT 0x7 R Intermediate multiplie result
ADD_RESULT 0x8 R Intermediate adder result w/o bias
BIAS_ADD_RESULT 0x9 R Intermediate adder result w/ bias

External hardware

The main clock clk is generated by the on-board RP2040 chip. It is used solely for
debug purposes. It is mirrored to uo_out[1].
The core clock is instead drawn from ui_in[0]. This is generated by an FPGA
residing on an external board. ui_in[0] and clk are mesochronous, and they never
interact.
The use of an external clock is required, since the SCI interface (also driven by the
FPGA) needs proper synchronization. The FPGA also drives the active-low core reset
through ui_in[1]. All control and status information is sent to and retrieved from
the ASIC through the SCI interface.
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Figure 13: Derivatives
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Figure 14: Write access

Figure 15: Read access
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Figure 16: Network emulation

Figure 17: Debug signals mux
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Pinout

# Input Output Bidirectional
0 FPGA clock Shared debug output dbug_out[0] SCI_CSN
1 Active-low FPGA reset Shared debug output dbug_out[1] SCI_REQ
2 Loopback data Shared debug output dbug_out[2] SCI_RESP
3 Shared debug output dbug_out[3] SCI_ACK
4 Shared debug output dbug_out[4]
5 Shared debug output dbug_out[5]
6 Debug select [0] Shared debug output dbug_out[6]
7 Debug select [1] Shared debug output dbug_out[7]
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TTRPG Dice + simple I2C peripheral [105]

• Author: Jonas Nilsson
• Description: TTRPG dice roller
• GitHub repository
• HDL project
• Mux address: 105
• Extra docs
• Clock: 32768 Hz

How it works

Press buttons to roll various types of TTRPG dice Playing table top role
playing games (TTRPGs) often involves rolling dice of various types. This design is a
combination of the most common types of dice used.
It has six button inputs, each corresponding to a certain type of die, and a two-digit
seven segment display that shows the result of the roll when the button is released.
While a button is pressed, a counter is decremented every clock cycle. When the
counter reaches 1, it is reloaded with the largest value of the corresponding die. When
the button is released, the counter stops and the result is displayed on the seven
segment display. Around 8 seconds later, the display is turned off.
The design outputs seven segment signals and ‘common’ drivers for two digit displays.
It has configuration pins that set the active level of segment and common signals
independently of each other, to allow the connection of either common-cathode or
common-anode diplays, or displays with inverting or non-inverting drive buffers for
segments and/or common signals. Similarly, the button inputs can be configured as
active low or high.
Dice up to d10 can use a single seven segment display without a common driver like
the one on the demo board. If such a display is used, it will toggle between showing
the 1s digit and the blanked 10s digit. When the result is 10, it will show a 1 and 0
superimposed, which will look like a slightly wonky 0.
The design uses clock timing to debounce the buttons and is optimized to run at
32768 Hz, but it should work well at frequencies from 10kHz to 100kHz. At higher
frequencies, the button debouncer may be unreliable and display muxing may not work
properly. At lower frequencies, the higher valued dice will have a low cycle rate and it
could be possible to cheat by using well-timed key presses. The clock frequency will
also affect the timer that turns off the display.
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The ‘polarity’ config pins sets the active level for the corresponding I/O signals. For
instance: uio[7]=0 causes the digit mux signals to be active low, suitable for directly
driving common cathode pins. When uio[6]=1, lit segments are high, suitable for direct
segment drive of common cathode displays. Similarly, when uio[5]=0 button inputs
are expected to be high when idle and low when pressed.

How to test

Set clock frequency to 32768 Hz (10-100 kHz). Configure uio[7:5] for the appropriate
signal polarity:

Seven segment uio[7:6]
Common cathode, direct segment drive (demo board) 01
Common anode, direct segment drive 10
Inverting common anode drive, direct segment drive 00

For the demo board, set uio[7:5] to 010
Press one of the buttons ui[6:0] (according to the selected button polarity) and release
it. The dice roll is shown on the LED display for about 8 seconds.

• ui[0] rolls a d4 (four sided die).
• ui[1] rolls a d6
• ui[2] rolls a d8
• ui[3] rolls a d10
• ui[4] rolls a d12
• ui[5] rolls a d20
• ui[6] rolls a d100

External hardware

Pullups on ui[6:0] with pushbuttons closing to GND.
A two-digit LED display. Common anode and/or cathode are supported using the
configuraiton pins. Segments are connected to uo[7:0] (DP, G, F, E, D, C, B, A in
that order) Left cathode connected to uio[1] Right cathode to uio[0]
Static configuration inputs on uio[7:5] should be connected to VDD or GND.
The chip may struggle to supply common anode displays with enough current. If so,
drive the common anode pin with an inverting transistor driver and change the active
level of the ‘common’ output by setting uio[7] to 0.
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But wait: There’s more!

The die roller only used 1/3 of the available area, and I had a few spare pins, so I also
added a simple I2C slave to experiment with. It contains an 8 byte memory and a
GPIO unit that can read the ui pins, and a GPIO pin uio[0] that can be used as input
or output, and also has PWM capabilities.
The slave has a 7-bit I2C address 0x70. Communicate with it as if it were an I2C
memory with a one byte address: Make a write transaction where the first byte is the
sub-adress, followed by any number of data bytes. The data bytes will be stored in
successive locations. Make a read transaction by first making a dummy write without
data bytes to set the sub-address, followed by a restart and a read transaction to read
any number of consecutive bytes back.

Address Map The 7-bit I2C slave address is 0x70.
The address map of the peripheral is as follows:

Address Function
0x0 - 0x7 Memory cells
0x8 IOCtrl
0x9 IO_oe
0xA uio_in (r/o)
0xB ui_in (r/o)

IOCtrl Write 0 to set uio[0] to 0
Write 0 to 128 to output a PWM waveform with duty cycle IOCtrl/128
Write >128 to output 1

IO_oe Bit 0 = 0 configures uio[0] as an input
Bit 0 = 1 configures uio[0] as an output

uio_in, ui_in Reads the current values of the uio and ui pins.
Remember that the dice roller is still active, so you will see things happening on the
uio[4:3] pins, as well as the state of the I2C pins.
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Testing the I2C slave Set the clock frequency to 10 MHz or above. It should be
possible to access the I2C slave from the I2C1 interface of the RP2040 or from an I2C
master connected to the PMOD interface J12, where you can also access he PWM
output.

Pinout

# Input Output Bidirectional
0 Btn4 segA PWM capable GPIO pin (bidir)
1 Btn6 segB SDA (bidir)
2 Btn8 segC SCL (input)
3 Btn10 segD 1s digit common (output)
4 Btn12 segE 10s digit common (output)
5 Btn20 segF Button polarity (input)
6 Btn100 segG Segment polarity (input)
7 GPIO input DP Common polarity (input)
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i4004 for TinyTapeout [107]

• Author: ISHI-KAI
• Description: i4004 for TinyTapeout by ISHI-KAI.
• GitHub repository
• HDL project
• Mux address: 107
• Extra docs
• Clock: 741000 Hz

How it works

This is i4004 Chip.

How to test

No Test.

External hardware

-MCS4 Memory System

Pinout

# Input Output Bidirectional
0 data0_pad cmrom_pad
1 data1_pad cmram0_pad
2 data2_pad cmram1_pad
3 data3_pad cmram2_pad
4 clk1_pad cmram3_pad
5 clk2_pad sync_pad
6 poc_pad
7 test_pad
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Moving average filter [108]

• Author: Alexander Hofer
• Description: 10-bit moving average filter designed to smooth input data streams.
• GitHub repository
• HDL project
• Mux address: 108
• Extra docs
• Clock: 0 Hz

How it works

The design implements a moving average filter using a series of registers and a finite
state machine (FSM). The filter calculates the average of a set of recent values in a data
stream, determined by the FILTER_POWER parameter. This smooths out short-term
fluctuations and highlights longer-term trends or cycles. The master module handles
input and output processing, including bidirectional IO handling and filter selection
based on input control signals.

How to test

To test the moving average filter, provide a series of digital input values to the ‘ui_in’
port and observe the smoothed output on ‘uo_out’. The ‘uio_in’ can be used to
control the filter’s width and operational parameters. Test with varying input patterns
and filter widths to evaluate the filter’s response.

External hardware

There is no external Hardware

Pinout

# Input Output Bidirectional
0 Input for filter Output for filter Strobe input
1 Input for filter Output for filter Strobe output
2 Input for filter Output for filter Additional input bit
3 Input for filter Output for filter Additional input bit
4 Input for filter Output for filter Additional output bit
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# Input Output Bidirectional
5 Input for filter Output for filter Additional output bit
6 Input for filter Output for filter Filter width input
7 Input for filter Output for filter Filter width input
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Synthesized Time-to-Digital Converter (TDC) v2 [109]

• Author: Harald Pretl
• Description: Synthesized TDC based on two Vernier delay rings
• GitHub repository
• HDL project
• Mux address: 109
• Extra docs
• Clock: 50000000 Hz

How it works

This is a synthesized time-to-digital converter (TDC), consisting of two wavefront delay
rings with a slightly different delay forming a Vernier TDC.
The time between the rising edge of start=ui_in[0] and the rising edge of
stop=ui_in[1] is measured by both rings and the output in 8b chunks. Based on
analog simulation, the time resolution (typical process, room temperature) is on the
order of 6ps.

How to test

Apply two signals to ui_in[0] and ui_in[1].
After capturing (rising edge of ui_in[1]) the result (i.e., the time delay between
rising edge of ui_in[0] and ui_in[2]) can be muxed-out to uo_out[7:0]
using ui_in[7:3] as byte-wise selector. ui_in[7:3]=0000 gives result byte 0,
ui_in[7:3]=0001 gives result byte 1, etc.
The input ui_in[2] selects the output of ring 0 or ring 1.

External hardware

Two signal generators generating the logical signals with a programmable delay (impor-
tant is ns resolution).

Pinout
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# Input Output Bidirectional
0 Start signal of TDC Result (LSB)
1 Stop signal of the TDC Result
2 Select result of ring for output Result
3 output select (LSB) Result
4 output select Result
5 output select Result
6 output select Result
7 output select (MSB) Result (MSB)
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SPI to RGBLED Decoder/Driver [110]

• Author: Andreas Scharnreitner
• Description: Control multiple RGB LEDs (WS2812B) via SPI
• GitHub repository
• HDL project
• Mux address: 110
• Extra docs
• Clock: 25000000 Hz

How it works

When nCS is pulled low, each clock pulse on SCLK shifts a bit from MOSI into an
internal register. The internal register length is 240 bits long (10 LEDs with 3 colors
and 8 bit per color). The contents of this register are then used to generate output
pulses. The output pulses encode bits of the color data. They are 1.25us in length.
A pulse representing a 1 has a high-time of 800ns and an low-time of 450ns. A pulse
representing a 0 has a high-time of 400ns and a low-time of 850ns. Each LED consumes
24 bits. Subsequent bits are transmitted to LEDs further on the chain. When a full
transmission (Every LED has received its 24 bits of color data) has occured, a reset
occurs (output goes low for >= 50 us).

How to test

Connect the LED_DATA pin to the DIN pin of a string of WS2812B LEDs. Use a
microcontroller to shift in color data via the SPI Interface.

External hardware

Any SPI Master (RPi, Arduino, MCU, etc.), and a String of 10 WS2812B LEDs.

Pinout

# Input Output Bidirectional
0 MOSI LED_DATA
1 SCLK
2 nCS
3
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# Input Output Bidirectional
4
5
6
7
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8-bit CPU with Debugger (Lite) [111]

• Author: Sean Patrick O’Brien
• Description: 8-bit CPU with debugger accessible via I2C
• GitHub repository
• HDL project
• Mux address: 111
• Extra docs
• Clock: 0 Hz

How it works

The CPU is based on Ben Eater’s 8-bit breadboard CPU. A built-in debugger allows
pausing the CPU, loading programs, inspecting/modifying registers, etc.

How to test

The debugger is accessible over I2C at address 0x2A (0x54 write, 0x55 read). The
provided dbg program can be used to load programs, inspect registers, etc.

External hardware

Optionally, data can be provided on the input pins and consumed on the output pins.
They are accessible to the CPU as the IN and OUT registers.

Pinout

# Input Output Bidirectional
0 Input Port Output Port
1 Input Port Output Port
2 Input Port Output Port SCL
3 Input Port Output Port SDA
4 Input Port Output Port HALTED
5 Input Port Output Port
6 Input Port Output Port
7 Input Port Output Port
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FIR Filter with adaptable coefficients [128]

• Author: Markus Häusler
• Description: FIR Filter with configurable coefficients via serial interface
• GitHub repository
• HDL project
• Mux address: 128
• Extra docs
• Clock: 0 Hz

How it works

The FIR FILTER ADAPT is a project that performs a FIR Filter behaviour.
The Input of the filter is provided by the 8 input pins. These represent an signed
integer. The Chip performs than a multiplikation with the filter-tap values and adds
them up. The Filter needs as many clock cycles as taps to calculate the Filter output.
After that the filtered signal is set to the output by using the output pins.
To optimize calculation and memory requirements, the symmetric step response prop-
erty of a FIR Filter is used. That means only one half of the step response is stored
and to calculate the whole filter characteristic, the first half of the step response is
flipped.
In addition to the basic FIR Filter functionality, it is also possible to adapt the filter
coefficients by enabling the configuration bit, then the input pins are interpreted as tap
value and are shifted into the FIR tap memory

How to test

The Testbench consists of three testcases which can be compared to a real life mea-
surement to ensure correct functionality. These Tests are:

• Impulse Response with the Initial FIR Coefficents.
• Configuration of new Filter Coefficients and testing them by performing another

impulse response.
• Perfoming a step response with the new filter coefficients.

For more detailed information check out the test.py file.
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External hardware

This can be done by any microcontroller or if one is interested in the functionlity of an
FIR Filter, even using buttons as input and leds as output is sufficent. But i recommend
using at least an arduino microcontroller because timing and reproducibility is much
more easily using automated testing. Have fun!

Pinout

# Input Output Bidirectional
0 FIR Input data Bit 0 FIR Output data Bit 0 FIR Output data Bit 8
1 FIR Input data Bit 1 FIR Output data Bit 1 FIR Output data Bit 9
2 FIR Input data Bit 2 FIR Output data Bit 2 FIR Output data Bit 10
3 FIR Input data Bit 3 FIR Output data Bit 3 not used
4 FIR Input data Bit 4 FIR Output data Bit 4 not used
5 FIR Input data Bit 5 FIR Output data Bit 5 not used
6 FIR Input data Bit 6 FIR Output data Bit 6 FIR CONFIG ENABLE
7 FIR Input data Bit 7 FIR Output data Bit 7 FIR TVALID Input
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Karplus-Strong String Synthesis [132]

• Author: Chinmay Patil
• Description: A KS String Audio Synthesizer
• GitHub repository
• HDL project
• Mux address: 132
• Extra docs
• Clock: 256000 Hz

How it works

This is simplified implementation of Karplus-Strong (KS) string synthesis based on
papers, Digital Synthesis of Plucked-String and Drum Timbres and Extensions of the
Karplus-Strong Plucked-String Algorithm.
A register map controls and configures the KS synthesis module. This register map is
accessed through a SPI interface. Synthesized sound samples are sent out through the
I2S transmitter interface.

How to test

Connect a clock with frequency f_clk = 256 kHz and apply a reset cycle to initialize
the design, this sets the audio sample rate at fs = 16 kHz. Use the spi register
map or the ui_in to futher configure the design. The synthesized samples are sent
continuously through the I2S transmitter interface.

External hardware

An I2S DAC The 8-bit signed sound samples are sent out at f_sck = 256 kHz
through this interface.

Pinout

# Input Output Bidirectional
0 ~rst_n_prbs_15, ~rst_n_prbs_7 sck_i
1 load_prbs_15, load_prbs_7 sdi_i
2 freeze_prbs_15 sdo_o
3 freeze_prbs_7 cs_ni
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# Input Output Bidirectional
4 i2s_noise_sel i2s_sck_o
5 ~rst_n_ks_string i2s_ws_o
6 pluck i2s_sd_o
7 prbs_15
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ADPCM Encoder Audio Compressor [136]

• Author: Charlie Hess, Emil Ivanov
• Description: Accepts a microphone PDM input and returns an ADPCM en-

coded/compressed ouput
• GitHub repository
• HDL project
• Mux address: 136
• Extra docs
• Clock: 0 Hz

How it works

This HDL block accepts a pulse density modulated (PDM) microphone signal and
produces an encoded output at a lower sampling frequency while maintaining audio
intelligibility.
Expected Inputs: clk (clk) slow_clk (ui_in[1]) for the ADPCM block at 1/8 fre-
quency of clk Pulse Density Modulated input pdm_in (ui_in[2]) at clocked with clk
block_enable (ui_in[3]) (active high): single bit enable for the entire block
Outputs: encPcm (uo_out[4:1]): the final 4 bit ADPCM encoded output outValid
(uo_out[0]): Output Valid flag for the ADPCM block, goes high for one cycle of
slow_clk each time a new valid adpcm value is output

How to test

Provide two synchronized external clocks, clk and slow_clk, slow_clk a frequency 8x
slower than clk (e.g. clk = 512 kHz, slow_clk = 64 khz) Connect the data pin of a pdm
microphone clocked with clk to pdm_in. Intially set block_enable to low, then when
recording/compression should begin, set block_enable to high. Now, a CIC decimated
and ADPCM encoded output of the microphone data will stream from encPcm, which
can be stored to memory, or decoded for writing to an audio file or playback.

Pinout

# Input Output Bidirectional
0 clk outValid
1 slow_clk
2 block_enable
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# Input Output Bidirectional
3 pdm_in
4 encPcm[0]
5 encPcm[1]
6 encPcm[2]
7 encPcm[3]
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Ternary 1.58-bit x 8-bit matrix multiplier [142]

• Author: ReJ aka Renaldas Zioma
• Description: Matrix multiplication block for 1.58 bit aka TERNARY weight

LLMs
• GitHub repository
• HDL project
• Mux address: 142
• Extra docs
• Clock: 48000000 Hz

How it works

Matrix multiplication is implemented using a systolic array architecture.

How to test

Every cycle feed packed weight data to Input pins and input data to Bidirectional pins.
Strobe Enable pin to start receiving results of the matrix multiplication on the Output
pins.

External hardware

MCU is necessary to feed weights and input data into the accelerator and fetch the
results.

Pinout

# Input Output Bidirectional
0 packed weights LSB result LSB (in) activations LSB
1 packed weights result (in) activations
2 packed weights result (in) activations
3 packed weights result (in) activations
4 packed weights result (in) activations
5 packed weights result (in) activations
6 packed weights result (in) activations
7 packed weights MSB result MSB (in) activations MSB
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32-Bit Fibonacci Linear Feedback Shift Register [160]

• Author: icaris lab
• Description: 32-bit Fibonacci libear feedback shift register with taps at (32, 30,

26, 25).
• GitHub repository
• Wokwi project
• Mux address: 160
• Extra docs
• Clock: 50000000 Hz

How it works

The project is a hardware implementation of a maximum-cycle 32-bit Fibonacci linear
feedback shift register (LFSR) with taps at registers (R32, R30, R26, R25). The LFSR
is defined with the least-significant bit (LSB) at the left-most register R1 and the most-
significant bit (MSB) at the right-most register R32. The LFSR shifts bits from left
to right (R_n -> R_n+1), with the LSB populated by XORing bits from the tapped
registers (R1 = R32 ^ R30 & R26 ^ R25). The LFSR contains an initialization/fail-
safe feedback that prevents the LFSR from entering an all-zero state. If the LFSR is
ever in an all-zero state, a “1” value is inserted into R1.
A schematic of the circuit may be found at:
https://wokwi.com/projects/394704587372210177
The circuit has 10 inputs:

Input Setting
CLK Clock
RST_N Not Used
01 Not Used
02 Manual R0 Input Value
03 Input Select
04 Not Used
05 Not Used
06 Not Used
07 Not Used
08 Not Used

The CLK sets the clocking for the flip-flop registers for latching the LFSR values. In
the schematic shown in the Wokwi project, a switch is used to select either the system
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clock or an externally provided or manual clock that allows the user to manually step
through each latching event.
An 8-input DIP switch provides some flexibility to initalizing the LFSR. DIP03 (IN2)
allows the user to toggle the Input Select function, which is a multiplexer that select
whether the left-most register (R1) takes in as the input the LFSR feedback output
(i.e., (R1 = R32 ^ R30 & R26 ^ R25) or a value that is manually selected by the
user.
DIP02 (IN1) allows a the user to manually enter a 0 or a 1 value into the leftmost
register.
The cicuit has 8 outputs. They output the values of the 8 right-most registers (R25,
R26, R27, R28, R29, R30, R31, R32).

Output Value in
01 R25
02 R26
03 R27
04 R28
05 R29
06 R30
07 R31
08 R32

How to test

The circuit can be tested by powering on the circuit, and first setting the Input Select
switch (DIP03) to “1” to reset/initialize the entire LFSR to all-zeros. The Input Select
switch can then be switched to “0” to allow the LFSR to run from its all-zero initialized
value. The first 100 8-bit output values of the LFSR from this zeroized state may be
observed using a logic analyzer, and should be:
[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0], [0 0 0 0 0 0 0
0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0], [0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0
0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0], [0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0
0],[0 0 0 0 0 0 0 0], [0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0
0], [0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0], [0 0 0 0 0 0 0
0],[0 0 0 0 0 0 0 0],[1 0 0 0 0 0 0 0],[0 1 0 0 0 0 0 0], [0 0 1 0 0 0 0 0],[0 0 0 1 0 0 0
0],[0 0 0 0 1 0 0 0],[0 0 0 0 0 1 0 0], [0 0 0 0 0 0 1 0],[0 0 0 0 0 0 0 1],[0 0 0 0 0 0 0
0],[0 0 0 0 0 0 0 0], [0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0
0], [0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0], [0 0 0 0 0 0 0

96



0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0], [0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0
0],[0 0 0 0 0 0 0 0],[1 0 0 0 0 0 0 0], [1 1 0 0 0 0 0 0],[0 1 1 0 0 0 0 0],[0 0 1 1 0 0 0
0],[0 0 0 1 1 0 0 0], [1 0 0 0 1 1 0 0],[0 1 0 0 0 1 1 0],[1 0 1 0 0 0 1 1],[0 1 0 1 0 0 0
1], [0 0 1 0 1 0 0 0],[0 0 0 1 0 1 0 0],[0 0 0 0 1 0 1 0],[0 0 0 0 0 1 0 1], [0 0 0 0 0 0 1
0],[0 0 0 0 0 0 0 1],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0], [0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0
0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0], [0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0
0],[0 0 0 0 0 0 0 0], [1 0 0 0 0 0 0 0],[0 1 0 0 0 0 0 0],[1 0 1 0 0 0 0 0],[0 1 0 1 0 0 0
0], [0 0 1 0 1 0 0 0],[0 0 0 1 0 1 0 0],[0 0 0 0 1 0 1 0],[0 0 0 0 0 1 0 1], [0 0 0 0 0 0 1
0],[0 0 0 0 0 0 0 1],[1 0 0 0 0 0 0 0],[0 1 0 0 0 0 0 0], [0 0 1 0 0 0 0 0],[0 0 0 1 0 0 0
0],[1 0 0 0 1 0 0 0],[0 1 0 0 0 1 0 0], [0 0 1 0 0 0 1 0],[0 0 0 1 0 0 0 1],[0 0 0 0 1 0 0
0],[0 0 0 0 0 1 0 0], [0 0 0 0 0 0 1 0],[0 0 0 0 0 0 0 1],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0
0], [0 0 0 0 0 0 0 0],[1 0 0 0 0 0 0 0]
A python implementation of the 32-bit Fibonacci LFSR can be found at the link below.
It may be used for testing the hardware for sequences longer than the initial 100
values.
https://github.com/icarislab/tt06_32bit-fibonacci-prng_cu/main/docs/32-bit-
fibonacci-prng_pythong_simulation.py

External hardware

No external hardware is required.

Pinout

# Input Output Bidirectional
0 r25_val
1 data_in r26_val
2 load_en r27_val
3 r28_val
4 r29_val
5 r30_val
6 r31_val
7 r32_val_LSFR_out
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Some_LEDs [161]

• Author: marsPRE
• Description: Nothing special
• GitHub repository
• Wokwi project
• Mux address: 161
• Extra docs
• Clock: 0 Hz

How it works

I don’t know how it works, yet.

How to test

connect the right things

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7
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RGB Mixer [162]

• Author: Zhe Wang
• Description: Zero to ASIC demo project
• GitHub repository
• HDL project
• Mux address: 162
• Extra docs
• Clock: 10000000 Hz

How it works

Debounce the inputs, drive an encoder module, and output a PWM signal for each
encoder.

How to test

Twist each encoder and the LEDs attached to the outputs should change in bright-
ness.

External hardware

Use 3 digital encoders attached to the first 6 inputs.

Pinout

# Input Output Bidirectional
0 enc0 a pwm0
1 enc0 b pwm1
2 enc1 a pwm2
3 enc1 b
4 enc2 a
5 enc2 b
6
7
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Workshop Hackaday Juli [163]

• Author: Juli
• Description: TinyTapeOut Workshop Hackaday project
• GitHub repository
• Wokwi project
• Mux address: 163
• Extra docs
• Clock: 0 Hz

How it works

I simply refuse to do this now

How to test

I simply refuse to do this now

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7
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Animated 7-segment character display [164]

• Author: Aron Dennen
• Description: Displays 7-segment characters with animation
• GitHub repository
• HDL project
• Mux address: 164
• Extra docs
• Clock: 12500000 Hz

How it works

Animates the 7-segment display by reading in the input switches to create a custom
7-segment character. Nothing will be displayed until you toggle input 7 to start the
character animation sequence.
Inputs 0 through 6 map to outputs 0 though 6 (display segments a through g). Output
7 becomes active while input 7 is active.
The uio inputs are used for an experimental pwm dimming feature, to enable pwm
display dimming, set uio pin 7 active. uio inputs 0 through 6 set a 7-bit pwm dimming
value on an 8-bit pwm unit. The pwm lsb input is tied to 0.
The circuit works by iterating over the character bit pattern, enabling segments sequen-
tially at a speed of about 0.12 seconds per segment.

How to test

Toggle the input switches to create a character with inputs 0-6, toggle input 7 to start
the character animation sequence.
Optionally dim the display by enabling the pwm feature described above.

External hardware

none

Pinout
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# Input Output Bidirectional
0 input0 seg0 pwm_bit1
1 input1 seg1 pwm_bit2
2 input2 seg2 pwm_bit3
3 input3 seg3 pwm_bit4
4 input4 seg4 pwm_bit5
5 input5 seg5 pwm_bit6
6 input6 seg6 pwm_bit7
7 enable display seg7 usePwm
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Keypad Decoder [165]

• Author: Slobodan Vrkacevic
• Description: A simple controller that detects a pressed key in 4x4 keypad matrix,

and displays it on 7-seg. display
• GitHub repository
• Wokwi project
• Mux address: 165
• Extra docs
• Clock: 1000 Hz

How it works

The keypad rows are scanned one by one, and their state is stored into a local 16-bit
register. Each bit in the register corresponds to one key on the keypad.
The output of the 16-bit register is then converted to the 7-segment display with some
simple combinatorial logic.
There are no debouncing, latching or some other advanced features.

Figure 18: Block Diagram

How to test

Connect a keypad (take a look at the pinout table below), reset the hardware, and
start pressing the keypad keys. The corresponding numbers, and characters, should be
shown on the 7-segment display.
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External hardware

Keypad matrix 4x4. For example:

Figure 19: Keypad matrix 4x4

Pinout

# Input Output Bidirectional
0 segment a col 4 (input)
1 segment b col 3 (input)
2 segment c col 2 (input)
3 segment d col 1 (input)
4 segment e row 4 (output)
5 segment f row 3 (output)
6 segment g row 2 (output)
7 dot row 1 (output)
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Tiny 8-bit CPU [166]

• Author: Ryota Suzuki
• Description: Tiny 8-bit CPU with SPI Flash/PSRAM controller
• GitHub repository
• HDL project
• Mux address: 166
• Extra docs
• Clock: 50000000 Hz

How it works

This design consists of these blocks:

• CPU
• Memory controller for SPI Flash (for instruction memory) / PSRAM (for data

memory)
• GPIO (Output only x4, In/Out x4)
• SPI Tx (mode 0 only)

Dedicated macro assembler is also available at tt06-tmasm.

CPU This design has an 8-bit CPU that has a simple instruction set.
This CPU employs a Harvard architecture. So, it has an instruction bus and a data
bus internally. Both buses have 16-bit address space.
External SPI Flash is mapped to 0x0000-0xFFFF on the instruction memory space.
CPU will read an instruction from 0x0000 after reset.
PSRAM and some peripherals are mapped to the data memory space. Address map is
below:

Address Description
0x0000-0xEFFF Mapped to SPI PSRAM
0xF000 GPIO Direction Set Register
0xF001 GPIO Output Data Register
0xF002 GPIO Input Data Register
0xF003 Reserved
0xF004 SPI Divider Value Register
0xF005 SPI CS Control Register
0xF006 SPI Status Register

105

https://github.com/JA1TYE/tt06-TYE-tiny-cpu
https://github.com/JA1TYE/tt06-tmasm


Address Description
0xF007 SPI Data Register
0xF008-0xFFFF 0xF000-0xF007 are mirrored in every 8 bytes

Peripherals This design has GPIO and SPI peripherals.

GPIO GPIO has 4x Output-only pins and 4x I/O pins. These pins are mapped 8-bit
registers. Upper 4-bits represent output-only pins.

Address Name Description
0xF000 GPIO Direction If bit is set,

corresponding pin is
configured as output,
otherwise configured as
input (Lower 4-bit only)

0xF001 GPIO Output Data Output data value
0xF002 GPIO Input Data Current pin status

SPI Tx SPI Tx only supports 8-bit data, mode 0. CS signal is not controlled auto-
matically.

Address Name Description
0xF004 SPI Clock Divider Value SPI SCLK frequency[Hz]

= (Main Clock / 2) /
(Value[3:0] + 1)

0xF005 SPI CS Value CS pin output value
(Valid lowest bit only)

0xF006 SPI Status If bit[0] is set,
transmission is ongoing

0xF007 SPI Tx Data When write data to this
register, SPI transmission
will be started

How to test

Write program to SPI Flash (by using ROM Writer etc.) and connect it to the board
(Please also see the Pinout section). SPI PSRAM is also needed if you need data
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storage other than general-purpose regsiters.
When you negate rst_n, then CPU will load instruction from 0x0000 on SPI Flash.

External hardware

• SPI Flash Memory (W25Q128 etc.)
• SPI PSRAM (IPS6404 etc.) if you want to use external memory

Pinout

# Input Output Bidirectional
0 MISO input

from SPI
Flash/PSRAM

SCLK output
to SPI
Flash/PSRAM

General purpose I/O

1 CS output to
SPI Flash

General purpose I/O

2 CS output to
PSRAM

General purpose I/O

3 MOSI output
to SPI
Flash/PSRAM

General purpose I/O

4 SCLK output
for debugging

General purpose output

5 MOSI output
for debugging

General purpose output

6 CS output for
debugging

General purpose output

7 Fetch cycle
indicator
pulse for
debbuging

General purpose output

107



NOT WORKING HP 5082-7500 Decoder [167]

• Author: Per Jensen
• Description: Trying to recreate the decoding logic in the HP 5082-7500-display.

At this moment project is not finished.
• GitHub repository
• Wokwi project
• Mux address: 167
• Extra docs
• Clock: 0 Hz

How it works

This design should be able to recreate the old HP 5082-7500 display logic. This is a
custom HP ASIC from the 70s, made on new silicon.

How to test

Connect inputs to 4-bit BCD input and LEDs to output x—y

External hardware

BCD switch or counter LED dot-matrix-display.

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7
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LED PWM controller [168]

• Author: Mikkel Holm Olsen
• Description: Exponential LED PWM controller
• GitHub repository
• HDL project
• Mux address: 168
• Extra docs
• Clock: 32768000 Hz

How it works

This is an 8-channel PWM controller for LED brightness.
The PWM duty cycle is generated according to an X3 curve, so the “percieved bright-
ness” changes linearly with the register setting. This design means we get the dynamic
range of a 16-bit PWM but use only 8 bits to specify the desired output. With an
input clock of 32.7 MHz, the PWM frequency is 500 Hz.
After reset, the controller is in UI mode, where the ui[7:0] set the 8 PWM value registers.
The first PWM value register is set to ui[7:0], for the remaining PWM value registers
they are set to 0 when ui[7:0] == 0, but in other cases their value is ui[7:0] XOR X,
where X is 0x10 times the register number.
The individual registers can be accessed by I2C; SCL=UIO2, SDA=UIO1, which should
allow accessing it from the Rpi2040 on the demo board. The slave address is 0x6C,
and the 8 PWM channels are controlled by register addresses 0 thru 7. As soon as the
first I2C write occurs, the controller is set to I2C mode, and the ui inputs no longer
affect the registers.

How to test

Play with the DIP-switches to see different segments of the 7-segment LED display
show different brightnesses.

External hardware

Currently no external hardware is supported.
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Pinout

# Input Output Bidirectional
0 duty[0] PWM channel 0
1 duty[1] PWM channel 1 SDA
2 duty[2] PWM channel 2 SCL
3 duty[3] PWM channel 3
4 duty[4] PWM channel 4
5 duty[5] PWM channel 5
6 duty[6] PWM channel 6
7 duty[7] PWM channel 7
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8-Bit CPU In a Week [169]

• Author: Ramyad Hadidi
• Description: 8-bit Single-Cycle CPU
• GitHub repository
• HDL project
• Mux address: 169
• Extra docs
• Clock: 0 Hz

How it works

This project details the design and implementation of an 8-bit single-cycle micropro-
cessor. The processor includes a register file and an Arithmetic Logic Unit (ALU). The
design was crafted to handle a simple instruction set architecture (ISA) that supports
basic ALU operations, load/store operations, and status checks for the ALU carry – all
within less than a week. While the current version lacks a program counter and external
memory, thus omitting any form of jump operations, it provides a solid foundation for
understanding basic computational operations within a custom CPU architecture.

ISCA Overview The ISA is straightforward and is primarily focused on register oper-
ations and basic arithmetic/logic functions. Below is the breakdown of the instruction
set:

// ISA --------------------------------------------------------------
//-- R level
`define MVR 4'b0000 // Move Register
`define LDB 4'b0001 // Load Byte into Regsiter
`define STB 4'b0010 // Store Byte from Regsiter
`define RDS 4'b0011 // Read (store) processor status
// 1'b0100 NOP
// 1'b0101 NOP
// 1'b0110 NOP
// 1'b0111 NOP

//-- Arithmatics
`define NOT {1'b1, `ALU_NOT}
`define AND {1'b1, `ALU_AND}
`define ORA {1'b1, `ALU_ORA}
`define ADD {1'b1, `ALU_ADD}
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`define SUB {1'b1, `ALU_SUB}
`define XOR {1'b1, `ALU_XOR}
`define INC {1'b1, `ALU_INC}
// 1'b1111 NOP

How to test

The processor has been tested through a suite of 12 testbenches, each designed to
validate a specific functionality or operation. These testbenches cover basic ALU oper-
ations, data movement between registers, and the load/store functionalities. Although
basic operational tests are passing, timing interactions between instructions have not
been exhaustively verified, and it is anticipated that a sophisticated compiler would han-
dle these timing considerations effectively, reminiscent of approaches taken in historical
computing systems.

External hardware

Currently, the processor does not interface with any external hardware components.
It operates entirely within a simulated environment where all inputs and outputs are
managed through testbenches. This setup is ideal for educational purposes or for
foundational experimentation in CPU design.

Pinout

# Input Output Bidirectional
0 Register 1

(R1) Address
bit 0

Data out bit
0 (either
register data
/ Processor
stat)

Data in bit 0 / Register 3
(R3) Address bit 0

1 Register 1
(R1) Address
bit 1

Data out bit
1 (either
register data
/ 0)

Data in bit 1 / Register 3
(R3) Address bit 1

2 Register 1
(R1) Address
bit 2

Data out bit
2 (either
register data
/ 0)

Data in bit 2 / Register 3
(R3) Address bit 2
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# Input Output Bidirectional
3 Register 1

(R1) Address
bit 3

Data out bit
3 (either
register data
/ 0)

Data in bit 3 / Register 3
(R3) Address bit 3

4 Instruction
ISA Opcode
bit 0

Data out bit
4 (either
register data
/ 0)

Data in bit 4 / Register 2
(R2) Address bit 0

5 Instruction
ISA Opcode
bit 1

Data out bit
5 (either
register data
/ 0)

Data in bit 5 / Register 2
(R2) Address bit 1

6 Instruction
ISA Opcode
bit 2

Data out bit
6 (either
register data
/ 0)

Data in bit 6 / Register 2
(R2) Address bit 2

7 Instruction
ISA Opcode
bit 3

Data out bit
7 (either
register data
/ 0)

Data in bit 7 / Register 2
(R2) Address bit 3
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Clock Domain Crossing FIFO [170]

• Author: Kenneth Wilke
• Description: This FIFO buffers 4-bits data asynchronously across clock domains
• GitHub repository
• HDL project
• Mux address: 170
• Extra docs
• Clock: 0 Hz

How it works

This is a FIFO that can pass data asynchronously across clock domains. This was a
project I created when I was first learning logic design, and it took me a couple weeks
to settle on a design that I felt was clean and reusable.
The FIFO can hold 32 4-bit values, or 16 bytes. So use them wisely and greatly!
The original design can be found at https://github.com/KennethWilke/sv-cdc-fifo
The architecture of this design was influenced by this paper written by Clifford E.
Cummings of Sunburst Design by the implementation was fully written by me.

How to test

Hold write_reset and read_reset LOW while running the clock for a bit to reset,
then raise to initialize the module.

Writing to the FIFO Prepare your data on the 4-bit write_data bus, ensure the
full state is low and then raise write_increment for 1 cycle of write_clock to
write data into the FIFO memory.

Reading from the FIFO The FIFO will present the current output on the
read_data bus. If empty is low, this output should be valid and you can
acknowledge receive of this vallue by raising read_increment for 1 cycle of
read_clock.

Pinout
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# Input Output Bidirectional
0 write_clock empty write_reset
1 write_increment full read_reset
2 read_clock
3 read_increment
4 write_data0 read_data0
5 write_data1 read_data1
6 write_data2 read_data2
7 write_data3 read_data3
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Frequency to digital converters (asynchronous and
synchronous) [171]

• Author: Eduardo Holguin
• Description: This chip combines asynchronous and synchronous frequency-to-

digital converters, offering two options in a single package.
• GitHub repository
• HDL project
• Mux address: 171
• Extra docs
• Clock: 0 Hz

How it works

The system incorporates two Frequency-to-Digital Converters (FDCs), one synchronous
and one asynchronous. A selector controls a multiplexer, which chooses between these
two FDCs. Both frequency signals are sent to the inputs of the chip. Depending on the
selected mode, either the asynchronous or synchronous FDC processes the input signal.
The chosen FDC then converts the frequency signal into a digital value, representing
the frequency, which can be further processed or transmitted as needed.

How to test

To test this chip, connect the inputs as follows: ui[0] (selec) controls the multiplexer
selector, ui[1] (clk_ref) receives the reference clock signal or frequency, ui[2] (VCO) is
the frequency beig measured, and ui[3] (reset) is the reset input. Ensure all connections
are secure and provide appropriate signals to these inputs. Monitor the outputs uo[0]
to uo[4], which represent the digital values of the frequency measurements. Apply
power to the chip, vary input signals, and toggle the selector pin to observe the chip’s
behavior under different conditions. Analyze the digital output values to verify the
accuracy and performance of the chip, comparing them against expected frequency
measurements to ensure compliance with specifications and requirements.

External hardware

Waveform Generator and Logic Analyzer.
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Pinout

# Input Output Bidirectional
0 selec out[0]
1 clk_ref out[1]
2 VCO out[2]
3 reset out[3]
4 out[4]
5
6
7
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Die Roller [172]

• Author: Nathan Gross
• Description: Generates a random number when rolled with input 1-99
• GitHub repository
• HDL project
• Mux address: 172
• Extra docs
• Clock: 0 Hz

How it works

Takes binary input die size from user and generates a random number from 1-die_size
when input to roll is received. Uses clock counter for random number.

How to test

Select die size with inputs 0-6, see that die size is displaying. roll die with input 7
repeatedly, noting random numbers from 1 to die size.

External hardware

PMOD output splitter PMOD dual 7-segment display

Pinout

# Input Output Bidirectional
0 Die Size bit 0 Dual 7 segment data 0
1 Die Size bit 1 Dual 7 segment data 1
2 Die Size bit 2 Dual 7 segment data 2
3 Die Size bit 3 Dual 7 segment data 3
4 Die Size bit 4 Dual 7 segment data 4
5 Die Size bit 5 Dual 7 segment data 5
6 Die Size bit 6 Dual 7 segment data 6
7 Die Roll Source selection
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4-bit Stochastic Multiplier Compact with Stochastic
Resonator [173]

• Author: Spandan Kottakota and David Parent
• Description: This is a 4-bit stochastic multiplier with a more compact architec-

ture. Also the Schmitt trigger on the input pins is used as a stochastic reonator.
• GitHub repository
• Wokwi project
• Mux address: 173
• Extra docs
• Clock: 0 Hz

How it works

two four-bit || binary weighted vectors are read in and converted to two 1-bit serial
stochastic streams with a PRBS and a comparator. These signals are then fed into an
AND gate, which multiplies the signal.
https://en.wikipedia.org/wiki/Stochastic_computing B. R. Gaines, “Origins of
Stochastic Computing,” in Stochastic Computing: Techniques and Applications,
W. J. Gross and V. C. Gaudet, Eds., Cham: Springer International Publishing,
2019, pp. 13–37. doi: 10.1007/978-3-030-03730-7_2. C. F. Frasser et al., “Using
Stochastic Computing for Virtual Screening Acceleration,” Electronics, vol. 10, no. 23,
p. 2981, Nov. 2021, doi: 10.3390/electronics10232981. M. Nobari and H. Jahanirad,
“FPGA-based implementation of deep neural network using stochastic computing,”
Appl. Soft Comput., vol. 137, p. 110166, Apr. 2023, doi: 10.1016/j.asoc.2023.110166.
P. K. Gupta and R. Kumaresan, “Binary multiplication with PN sequences,” IEEE
Trans. Acoust., vol. 36, no. 4, pp. 603–606, Apr. 1988, doi: 10.1109/29.1564.
A. Alaghi and J. P. Hayes, “Survey of Stochastic Computing,” ACM Trans. Embed.
Comput. Syst., vol. 12, no. 2s, pp. 1–19, May 2013, doi: 10.1145/2465787.2465794.

How to test

Use an ADLAM2000 and Python to control the reset and the clock. Hold A and B
contents and watch the multiplier output. Use the DALM200 and Python to convert
the signal back to binary weight signals. The number of ones at any given time is the
number

External hardware

ADLAM2000
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Pinout

# Input Output Bidirectional
0 A0 CK
1 A1 RST
2 A2 PRBS0
3 A3 SM
4 B0 SS0
5 B1 SS1
6 B2 SR0
7 B3
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ASG [174]

• Author: Steffen Reith
• Description: An Alternating Step Generator to generate (pseudo)random bit

with huge period length
• GitHub repository
• HDL project
• Mux address: 174
• Extra docs
• Clock: 0 Hz

How it works

This is a naive implementation of an “Alternating Step Generator” (ASG) to produce bit
sequences with a very long period. ASGs are characterized by their easy implementabil-
ity in hardware, which is why they are a nice example for the use of SpinalHDL (the
provided Verilog is generated by using SpinalHDL).
An ASG consists of three different “Linear Shift Feedback Registers” (LSFR), which
must be coupled appropriately. The provided configuration is expected to have a period
length of 226156424186320902518104893031800133178333732395566208938371914392362024959
cycles. If the chip could be operated by 1GHz this would be reached after 3.89 10^38
years (approximately 2.78 10^28 times the age of the universe)!
The SpinalHDL based version (including more info about ASGs) can be found at
https://github.com/SteffenReith/ASG
Used connection polynoms:
private val connPolyStrR1 = “x31+x3+1” private val connPolyStrR2 = “x^63+x+1”
private val connPolyStrR3 = “x89+x38+1”

How to test

Simply load the registers R1 (loadit==1), R2 (loadit == 2) and R3 (loadit == 3)
with non-null seed data. Set loadit to 0 and enable to 1. A new bit is generated every
clock.

External hardware

No external hardware is used
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Pinout

# Input Output Bidirectional
0 loadIt[0] newBit
1 loadIt[1]
2 enable
3
4
5
6
7
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Silly 4b CPU v2 [175]

• Author: Tommy Thorn
• Description: A trivial little 4b CPU in the style of the PDP-8, 2nd try
• GitHub repository
• HDL project
• Mux address: 175
• Extra docs
• Clock: 50 Hz

How it works

With ~ 200 gates and 8-inputs, 8-outputs, can we make a full CPU? If we depend
on external memory, we can do like the Intel 4004 and multiplex nibbles in and out.
However for this submission, we keep the memory on-chip which puts some severe
constaints on the size of everything. The only architeture that I could managed in that
space is one that relies heavily on self-modifying code, like the beloved DEC PDP-8.
Features:

• Updatable code and data storage
• Instructions include load, store, alu, and conditional branches
• Can execute Fibonacci

CPU state

• 8 words of 6-bit memory, split into 2-bit of instruction and 4-bit of operand.
• 3-bit PC
• 4-bit Accumulator (ACC)

The Instruction Set All instructions have an opcode and an argument.

• load value (loads value to the accumulator)
• store address (stores the accumulator at the address, top bit ignored)
• add value (adds value to the accumulator)
• brzero address (branches to address if the accumulator is zero)

Obviously this is very limiting, but it does show the basic structure and could probably
be tweaked to be more general with more time (but space is limited).
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Example Fibonacci Program
int a = 1, b = 1;
for (;;) {
int t = a;
a += b;
b = t;
if (b == 8) for (;;)

}

0: load 1 // a is here
1: store 4 // store to t at address 4

2: add 1 // b is here
3: store 0 // Update a at address 0

4: load _ // t is here, value overwritten
5: store 2 // update b

6: add 8 // -8 == 8
7: brzero 7 // if acc - 8 == 0 we stop
// otherwise roll over to 0

Execution trace:

$ make -C src -f test.mk | tail -50 | head -17
Running 0 (insn 0, 8)

00500 pc 1 acc 8
Running 1 (insn 1, 4)

00510 pc 2 acc 8
Running 2 (insn 2, 5)

00520 pc 3 acc 13
Running 3 (insn 1, 0)

00530 pc 4 acc 13
Running 4 (insn 0, 8)

00540 pc 5 acc 8
Running 5 (insn 1, 2)

00550 pc 6 acc 8
Running 6 (insn 2, 8)

00560 pc 7 acc 0
Running 7 (insn 3, 7)
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Running 7 (insn 3, 7)
Running 7 (insn 3, 7)

We actually computed fib all the way to 13 (largest that will fit in 4-bits). Explain how
your project works

How to test

Use ui_in[7:4] and cmdarg and ui_in[3:2] as cmd. Inputs are only registered on posedge
of clock. Keep rst_n high. Then issue the sequence of commands as follows: (XXX
please see tb in tt_um_tommythorn_4b_cpu_v2.v for now)

External hardware

Nothing required but without observing outputs it’s a bit boring.

Pinout

# Input Output Bidirectional
0 clock acc[0]
1 cmd[0] acc[1]
2 cmd[1] acc[2]
3 acc[3]
4 cmdarg[0] pc[0]
5 cmdarg[1] pc[1]
6 cmdarg[2] pc[2]
7 cmdarg[3]
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ANS Encoder/Decoder [194]

• Author: Davide Asnaghi & Lenny Khazan
• Description: Asymmetric Numeral Systems Encoder/Decoder
• GitHub repository
• HDL project
• Mux address: 194
• Extra docs
• Clock: 25000000 Hz

How it works

Big data goes in, small data comes out

How to test

TBD

External hardware

None

Pinout

# Input Output Bidirectional
0 input output cmd
1 input output cmd
2 input output in_vld
3 input output out_rdy
4 in_rdy
5 out_vld
6
7
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Two ports USB CDC device [198]

• Author: Maximo Balestrini
• Description: USB CDC device with two ports each with a different application
• GitHub repository
• HDL project
• Mux address: 198
• Extra docs
• Clock: 48000000 Hz

How it works

The design works as Full Speed (12Mbit/s) USB communications device class (or USB
CDC class). It implements the Abstract Control Model (ACM) subclass.
Most of the code is based on this repo: https://github.com/ulixxe/usb_cdc
When connected to a pc the device should appear as two virtual serial ports. (COMX
on Windows, /dev/ttyACMx on Linux and /dev/cu.usbmodemxxxx on OSX)
(Linux requires that the user account belongs to the dialout group to grant permissions
for virtual COM access)
Each port/channel has a different application:

USB CDC Channel 0 Application: Input to serial
Description: When the value from one of the inputs change from 0 to 1 or 1 to 0 it
sends a character to the port.
USB Interfaces: 0 and 1
USB Endpoints: EP2 (IN, INTERRUPT), EP1 (IN, BULK), EP1 (OUT, BULK)
pin/character relation: | pin | rise | fall | | — | —- | —- | |input[0] | A | a | |input[1] |
B | b | |input[2] | C | c | |input[3] | D | d | |input[4] | E | e | |input[5] | F | f | |input[6]
| G | g | |input[7] | H | h |

USB CDC Channel 1 Application: Loopback
Description: Simple loopback application to test the port. Every character sent shall
return.
USB Interfaces: 2 and 3
USB Endpoints: EP4 (IN, INTERRUPT), EP3 (IN, BULK), EP3 (OUT, BULK)
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Port identification There’s no warranty that the ports are going to be named in
that order (not sure on Linux, on Windows they definitely can have the order reversed).
Without any extra OS functions, the simple way to identify them is to open one of the
ports and write something to it. If you are connected to the Channel 1 loopback you
should receive the same char as response.

External hardware

USB cable with internal cables exposed or USB connector + USB cable
1.5k resistor
Computer
Optional:
Buttons for the inputs or use the TT demo board switches

How to test

TT board clock needs to be set to 48MHz
Basic schematic:

Cut output[0] LED display jumper on TT board? I haven’t been able to test if this is
necessary or not.
Once the USB cable is connected to the PC two virtual serial ports should be
available to communicate: COMX on Windows, /dev/ttyACMx on Linux and
/dev/cu.usbmodemxxxx on OSX
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Linux requires that the user account belongs to the dialout group to grant permissions
for virtual COM access. You can change udev rules to fix that or add the user to the
group by running: sudo usermod -a -G dialout $USER and restart
Example connection on Linux using picocom:
picocom /dev/ttyACM0 or picocom /dev/ttyACM1

Extra information

USB Interfaces/Endpoints:
The device has USB vendor ID and product ID = 0000

Useful scripts On the project repo there are some Linux scripts to get information
about the USB devices:

• list_usb_devices.sh

– list all USB devices connected. Look for ID 0000:0000

• list_device_0000_0000.sh

– detailed USB descriptors configuration of device 0000:0000

This is how the device should look with the lsusb -tv or list_usb_devices.sh
command:

|__ Port 1: Dev 42, If 2, Class=Communications, Driver=cdc_acm, 12M
ID 0000:0000

|__ Port 1: Dev 42, If 0, Class=Communications, Driver=cdc_acm, 12M
ID 0000:0000

|__ Port 1: Dev 42, If 3, Class=CDC Data, Driver=cdc_acm, 12M
ID 0000:0000
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|__ Port 1: Dev 42, If 1, Class=CDC Data, Driver=cdc_acm, 12M
ID 0000:0000

For deeper debugging and understanding of the USB protocol exchange between the
device and the PC Wireshark app can be used

Debug pins: These are the extra pins used for development debugging: | port |
name | description | | — | —- | —- | |output[1] | “debug_led” | once configured lights
aprox. once per second| |output[2] | “debug_usb_configured” | USB configured on
PC| |output[3] | “debug_usb_tx_en” | inout[0] and inout[1] as outputs| |output[4] |
“debug_frame[0]” | USB frame number binary digit 0| |output[5] | “debug_frame[1]” |
USB frame number binary digit 1| |output[6] | “debug_frame[2]” | USB frame number
binary digit 2| |output[7] | “debug_frame[3]” | USB frame number binary digit 3|

Some USB information resources:
• USB in a NutShell:

– https://www.beyondlogic.org/usbnutshell/usb1.shtml

• USB Made Simple

– https://www.usbmadesimple.co.uk/index.html

• Understanding the Universal Serial Bus (USB)

– https://github.com/DCC-Lab/PyHardwareLibrary/blob/939ffca7c8b3b214b77acadae2d76d5029dd0660/README-
1-USB.md

• USB Device CDC ACM Class

– https://docs.silabs.com/protocol-usb/1.2.0/protocol-usb-cdc/

Pinout

# Input Output Bidirectional
0 input_0 usb_pu usp_p
1 input_1 debug_led usb_n
2 input_2 debug_usb_configured
3 input_3 debug_usb_tx_en
4 input_4 debug_frame[0]
5 input_5 debug_frame[1]
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# Input Output Bidirectional
6 input_6 debug_frame[2]
7 input_7 debug_frame[3]
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Snake Game [200]

• Author: Stefan Hirschböck
• Description: Simple implementation of the game Snake with VGA Output
• GitHub repository
• HDL project
• Mux address: 200
• Extra docs
• Clock: 25179000 Hz

How it works

Simple implementation of the game "Snake" with VGA Output.
Due to size limitations snake can only grow to 9 body parts.
Game resets when snake touches border or any of its body parts
Vga output is compatible with tiny vga pmod.

How to test

After reset snake can be controlled though inputs. When collecting an apple snake grows by 1 body part.
clock has to be set to 25.179 Mhz for vga sync signal generation to work.
inputs should be done with push buttons. Not pressed is logic 0, pressed is logic 1
So an external circuit with pull down resistors should be used for input.
If no tiny VGA pmod is available a vga dac like in this project:https://tinytapeout.com/runs/tt04/178/
could probably also be used.

External hardware

VGA Display, external buttons for input

Pinout

# Input Output Bidirectional
0 none R1 none
1 none G1 none
2 none B1 none
3 none vsync none
4 Right R0 none

132

https://github.com/histefan/jku-tt06-snake_game


# Input Output Bidirectional
5 Left G0 none
6 Down B0 none
7 Up hsync none
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8-bit CPU with Debugger [202]

• Author: Sean Patrick O’Brien
• Description: 8-bit CPU with debugger accessible via I2C
• GitHub repository
• HDL project
• Mux address: 202
• Extra docs
• Clock: 0 Hz

How it works

The CPU is based on Ben Eater’s 8-bit breadboard CPU. A built-in debugger allows
pausing the CPU, loading programs, inspecting/modifying registers, etc.

How to test

The debugger is accessible over I2C at address 0x2A (0x54 write, 0x55 read). The
provided dbg program can be used to load programs, inspect registers, etc.

External hardware

Optionally, data can be provided on the input pins and consumed on the output pins.
They are accessible to the CPU as the IN and OUT registers.

Pinout

# Input Output Bidirectional
0 Input Port Output Port
1 Input Port Output Port
2 Input Port Output Port SCL
3 Input Port Output Port SDA
4 Input Port Output Port HALTED
5 Input Port Output Port
6 Input Port Output Port
7 Input Port Output Port
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The James Retro Byte 8 computer [204]

• Author: James Ridey
• Description: A 8bit microprocessor built from the ground up (nand2tetris)
• GitHub repository
• HDL project
• Mux address: 204
• Extra docs
• Clock: 0 Hz

Overview

This project is an 8-bit computer I originally designed in Logisim Evolution, which I
am now porting to TinyTapeout for manufacturing. Below is the computer’s general
architecture as shown in Logisim Evolution; however, certain modifications were made
to ensure compatibility with VHDL and TinyTapeout.
The primary change includes the addition of a B register, alongside adjustments to
enable ROM and RAM communication via SPI. Detailed information on these modifi-
cations is provided below.
The computer supports the following operations:

Register Operations The computer features four main registers: a, b, c, and d.
It supports:

• Moving (mov) data between all registers.
• Comparing (cmp) values between registers, or between a register and a constant

(0, 1, -1, or 255).
• Jumping (jmp) to labels and performing conditional jumps (=, !=, &amp;lt;,

&amp;lt;=, &amp;gt;, &amp;gt;=) and relative jumps.

ALU Operations The ALU (Arithmetic Logic Unit) offers the following opera-
tions:

• Bitwise NOT (~) and negation (-).
• Increment (+1) and decrement (-1).
• Addition (+) and subtraction (-).
• Multiplication (*) and division (/).
• Bitwise AND (&amp;amp;) and OR (|).
• Signed mode operations and a carry flag for extended 8-bit addition/subtraction.
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Figure 20: architecture
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Memory and I/O
• Load data from ROM into a register.
• Load data from RAM into a register.
• Save data from a register to RAM.
• Read from the input (in) port.
• Write to the output (out) port.

Testing the Computer

The computer doesn’t have any start signal and will begin read from the SPI ROM as
soon as the clock signal (clk) starts ticking.
For examples of programs and a basic assembler, please see this repository
(https://github.com/AeroX2/tt06-jrb8-computer/).
Clone the repository and use the assembler with the following command:

python3 ./example_programs/assembler.py

A file dialog will open, allowing you to select a *.j file.

Sample Program: 8-bit Fibonacci Sequence Below is a simple 8-bit Fibonacci
program in the custom J format (fibonacci.j):

:start
load rom a 1
load rom b 0
:repeat
// Store the previous in c register
mov a c
// a = a + b
opp a+b
// This also corresponds to the carry flag being set
// So jump to start if a+b has overflowed
jmp < start
// Output the value to the output pins
out a
// Restore the previous value in b register
mov c b
jmp repeat

This program, when assembled, translates to the following hexadecimal format:
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d0 01 d1 00 02 6c 33 00 00 f4 08 36 00 04

For a comprehensive guide on assembler instructions and their corresponding hex
codes, refer to this document (https://docs.google.com/document/d/1ZVZw_Kt-
KQHER0Wr5ty7JpUEeox_284Mih4rwE16FVM/edit?usp=sharing).
You can also look at roms/cu_flags.csv in the tt06-jrb8-computer repository
The input register or the i register is mapped to ui_in
The output register or the o register is mapped to uo_out

Memory Mapping To load data into the ROM, place it at offset 0. The address
space is divided as follows:

• ROM (Program Data): 0x0000 to 0xFFFF
• RAM: 0x10000 to 0x1FFFF

RAM Addressing
RAM addressing is handled through two registers:

• mpage Register: Controls 0x1**00
• mar Register: Controls 0x100**

External Hardware Requirements

External SPI storage is required for this computer, with mappings compatible with spi-
ram-emu (https://github.com/MichaelBell/spi-ram-emu/). The following uio map-
pings are used:

uio[0]: "cs rom"
uio[1]: "mosi"
uio[2]: "miso"
uio[3]: "sck"
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# Input Output Bidirectional

Pinout

# Input Output Bidirectional
0 input bit 0 output bit 0 cs rom
1 input bit 1 output bit 1 mosi
2 input bit 2 output bit 2 miso
3 input bit 3 output bit 3 sck
4 input bit 4 output bit 4 cs ram
5 input bit 5 output bit 5
6 input bit 6 output bit 6
7 input bit 7 output bit 7 24 addressing bit mode
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co processor for precision farming [206]

• Author: MITS ECE
• Description: The processor will detect the deviation in sensor data and the sensor

fault
• GitHub repository
• HDL project
• Mux address: 206
• Extra docs
• Clock: 0 Hz

How it works

The processor will read the datas from the four sensors sequentially and analyse whether
any deviation has been occoured with respect to the previous data and provide a
warning signal also it continuously checks the senor datas and identify any fault has
been occured and provides another warning signal with a signal providing the sensor
identification.

How to test

If the sensor identifier data is 00 which means it is sensor1 and input data is 10000001
and this compared with the previously stored data which may be 10000100 for example
,then there is a deviation and the processor will provide output as 1 and the bidirectional
as 00.

External hardware

8 bit ADC is needed to convert the sensor data

Pinout

# Input Output Bidirectional
0 Input data from the sensors Deviation detector Sensor identifier
1 Input data from the sensors Falut warning Sensor identifier
2 Input data from the sensors Falut warning
3 Input data from the sensors Falut warning
4 Input data from the sensors Sensor identifier
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# Input Output Bidirectional
5 Input data from the sensors Sensor identifier
6 Input data from the sensors
7 Input data from the sensors
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Keypad controller [224]

• Author: Ian Tawileh
• Description: Reads a keypad and displays the number on the 7 segment
• GitHub repository
• HDL project
• Mux address: 224
• Extra docs
• Clock: 1000 Hz

How it works

This Project works by driving power to the Cols Columns one by one, then waits for
any changes on the Rows (triggered by Human Input) and scans a case to find the
combination between the row and col columns before finding the right combination
and recording the corresponding key.
This key is passed on to a decode module that finds the correct Seven Segment combina-
tion and then passes it on to the 1 digit seven Segment Display where it is displayed.

How to test

Connect your keypad to the PMOD pins and experiment by clicking some buttons and
seeing their outputs!

External hardware

Keypad PMOD: https://t.ly/lTZF0

Pinout

# Input Output Bidirectional
0 row0 7 segment display outputs col0
1 row1 col1
2 row2 col2
3 row3 col3
4 col counter 0
5 col counter 1
6
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# Input Output Bidirectional
7

143



multimac [226]

• Author: Jonny Edwards
• Description: a multi use multi-hit dot product accelerator
• GitHub repository
• HDL project
• Mux address: 226
• Extra docs
• Clock: 0 Hz

How it works

This is a simple circuit to calculate:

• a vector dot product ie the sum of w_i*x_i where i can be anything up to
about 40 (insn=2)

• Minimum of a list of data (insn=0)
• Maximum of a list of data (insn=1)

It has been designed as a coprocessor. The data is first added by setting load=1
and then supplying the data for the dot product the index and data. Each set is a
w,x pair. Its a 4 bit system and runs when run=1 and needs at least 16 clock cycles
produce the answer. The answer is 12 bit value.

How to test

I’ve tested this using a verilator simulation included below - I like the cpp workbench
for this. The testing has been mainly for numerical stability.

External hardware

I intend for this to be driven by the RP2040 and to work as a “coprocessor” for vector
calculations Other.
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# Input Output Bidirectional

Pinout

# Input Output Bidirectional
0 index[0] out[0] out[8]
1 index[1] out[1] out[9]
2 index[2] out[2] out[10]
3 index[3] out[3] out[11]
4 data[0] out[4] instruction [0]
5 data[1] out[5] instruction [1]
6 data[2] out[6] load
7 data[3] out[7] run
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TinyQV Risc-V SoC [227]

• Author: Michael Bell
• Description: A Risc-V SoC for Tiny Tapeout
• GitHub repository
• HDL project
• Mux address: 227
• Extra docs
• Clock: 64000000 Hz

How it works

TinyQV is a small Risc-V SoC, implementing the RV32EC instruction set, with a couple
of caveats:

• Addresses are 28-bits
• Program addresses are 24-bits
• gp is hardcoded to 0x1000400, tp is hardcoded to 0x8000000.

Instructions are read using QSPI from Flash, and a QSPI PSRAM is used for memory.
The QSPI clock and data lines are shared between the flash and the RAM, so only one
can be accessed simultaneously.
Code can only be executed from flash. Data can be read from flash and RAM, and
written to RAM.
The SoC includes a UART and an SPI controller.

Address map

Address range Device
0x0000000 - 0x0FFFFFF Flash
0x1000000 - 0x17FFFFF RAM A
0x1800000 - 0x1FFFFFF RAM B
0x8000000 - 0x8000007 GPIO
0x8000010 - 0x800001F UART
0x8000020 - 0x8000027 SPI

GPIO
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Register Address Description
OUT 0x8000000 (W) Control out0-7, if the

corresponding bit in SEL is high
OUT 0x8000000 (R) Reads the current state of out0-7
IN 0x8000004 (R) Reads the current state of in0-7
SEL 0x800000C (R/W) Enables general purpose output

on the corresponding bit on
out0-7

UART

Register Address Description
DATA 0x8000010 (W) Transmits the byte
DATA 0x8000010 (R) Reads any received byte
STATUS 0x8000014 (R) Bit 0 indicates whether the

UART TX is busy, bytes should
not be written to the data
register while this bit is set. Bit 1
indicates whether a received byte
is available to be read.

Debug UART (Transmit only)

Register Address Description
DATA 0x8000018 (W) Transmits the byte
STATUS 0x800001C (R) Bit 0 indicates whether the

UART TX is busy, bytes should
not be written to the data
register while this bit is set.

SPI

Register Address Description
DATA 0x8000020 (W) Transmits the byte in bits 7-0,

bit 8 is set if this is the last byte
of the transaction, bit 9 controls
Data/Command on out3
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Register Address Description
DATA 0x8000020 (R) Reads the last received byte
CONFIG 0x8000024 (W) The low 2 bits set the clock

divisor for the SPI clock to
2*(value + 1), bit 2 adds half a
cycle to the read latency when
set

STATUS 0x8000024 (R) Bit 0 indicates whether the SPI
is busy, bytes should not be
written or read from the data
register while this bit is set.

How to test

Load an image into flash and then select the design.
Reset the design as follows:

• Set rst_n high and then low to ensure the design sees a falling edge of rst_n. The
bidirectional IOs are all set to inputs while rst_n is low.

• Program the flash and leave flash in continuous read mode, and the PSRAMs
in QPI mode

• Drive all the QSPI CS high and set SD2:SD0 to the read latency of the QSPI
flash and PSRAM in cycles.

• Clock at least 8 times and stop with clock high
• Release all the QSPI lines
• Set rst_n high
• Set clock low
• Start clocking normally

Based on the observed latencies from tt3p5 testing, at the target 64MHz clock a read
latency of 2 or 3 is likely required. The maximum supported latency is currently 3, but
should get up to 5 to have a chance at running at faster clock speeds.
The above should all be handled by some MicroPython scripts for the RP2040 on the
TT demo PC.
Build programs using the riscv32-unknown-elf toolchain and the tinyQV-sdk, some
examples are here.
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External hardware

The design is intended to be used with this QSPI PMOD on the bidirectional PMOD.
This has a 16MB flash and 2 8MB RAMs.
The UART is on the correct pins to be used with the hardware UART on the RP2040
on the demo board.
The SPI controller is intended to make it easy to drive an ST7789 LCD display (more
details to be added).
It may be useful to have buttons to use on the GPIO inputs.

Pinout

# Input Output Bidirectional
0 Interrupt 0 UART TX Flash CS
1 Interrupt 1 UART RTS SD0
2 SPI MISO SPI DC SD1
3 GP in3 SPI MOSI SCK
4 GP in4 SPI CS SD2
5 GP in5 SPI SCK SD3
6 GP in6 Debug UART TX RAM A CS
7 UART RX Debug signal RAM B CS
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10-bit Linear feedback shift register [228]

• Author: Shivam Bhardwaj, Sachin Sharma, Pankaj Lodhi and Ambika Prasad
Shah

• Description: This Verilog module implements a 10-bit Linear Feedback Shift
Register (LFSR) for generating pseudo-random sequences with clock and reset
inputs.

• GitHub repository
• HDL project
• Mux address: 228
• Extra docs
• Clock: 50000000 Hz

How it works

This Verilog module defines a 10-bit Linear Feedback Shift Register (LFSR). It features
clock (clk) and reset (rst) input pins. The output pin (out) delivers a pseudo-
random sequence based on clock edges and reset conditions. It’s designed for digital
applications requiring pseudo-random sequence generation and pattern generation.

How to test

We test it on Vivado and open sources (OpenROAD and OpenLane).

External hardware

defaults

Pinout

# Input Output Bidirectional
0 clk out
1 rst
2
3
4
5
6
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# Input Output Bidirectional
7

151



Analog 8bit R2R DAC [229]

• Author: Matt Venn
• Description: A simple 8 bit DAC with a sawtooth waveform driver
• GitHub repository
• Analog project
• Mux address: 229
• Extra docs
• Clock: 0 Hz

How it works

A simple 8 bit R2R DAC. Driven externally or by an OpenLane generated sawtooth
waveform generator.

How to test

Drive externally Set the external data input high to provide the DAC with
external data. Then drive the 8 inputs and observe the analog output.

Drive with internal sawtooth wave generator Set the external data input
low to enable the sawtooth generator. A sawtooth wave should be seen on the analog
output.
To change the frequency, set the inputs and then raise the ‘load divider’ input.

External hardware

A multimeter to measure the output voltage on analog pin 0.

Pinout

# Input Output Bidirectional
0 bit 0 external data
1 bit 1 load divider
2 bit 2
3 bit 3
4 bit 4
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# Input Output Bidirectional
5 bit 5
6 bit 6
7 bit 7

Analog pins

ua# analog# Description
0 4 DAC output

153



Pulse Width Modulation [230]

• Author: Shivam Bhardwaj, Sachin Sharma and Ambika Prasad Shah
• Description: This Verilog module generates a Pulse Width Modulation (PWM)

signal with adjustable duty cycle. It utilizes a 50MHz clock input and debounced
buttons to increase or decrease the duty cycle, producing a 5MHz PWM output
for various applications like motor speed control or LED brightness adjustment.

• GitHub repository
• HDL project
• Mux address: 230
• Extra docs
• Clock: 50000000 Hz

How it works

We want to design Pulse width Modulation (PWM) with 50MHz input Frequency.
The Verilog code defines a module named tt_um_shivam responsible for generating
a Pulse Width Modulation (PWM) signal. It takes a 50MHz clock input (clk) and
provides inputs for increasing the assigned pin (ui_in[0]) and decreasing the assigned
pin (ui_in[0]) in the duty cycle. The PWM signal is output through the assigned
pin PWM_OUT at a frequency of 5MHz.
The code implements debouncing logic for the increase and decrease duty cycle buttons
using D flip-flops (DFF_PWM modules) to prevent rapid fluctuations due to button
bouncing. It also includes counters for generating slow clock enable signals to facilitate
debouncing.
The duty cycle can be adjusted by pressing the increase or decrease buttons, which are
debounced to ensure reliable operation. The duty cycle can vary from 0% to 90% (in
10% increments), and the PWM signal is generated based on this duty cycle.
Overall, the code provides a flexible and robust PWM signal generator with adjustable
duty cycle control.

How to test

We check our design with the help of OpenROAD flow script (ORFS).

External hardware

default
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Pinout

# Input Output Bidirectional
0 clk PWM_OUT
1 ui_in[0]
2 ui_in[1]
3
4
5
6
7
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TT06 8-bit SAR ADC [231]

• Author: Carsten Wulff
• Description: 8-bit Successive Approximation Register ADC
• GitHub repository
• Analog project
• Mux address: 231
• Extra docs
• Clock: 4000000 Hz

Who

Carsten Wulff carsten@wulff.no

Why

Many years ago I made a compiler, and a state-of-the-art compiled ADC in 28 nm
FDSOI, described in A Compiled 9-bit 20-MS/s 3.5-fJ/conv.step SAR ADC in 28-nm
FDSOI for Bluetooth Low Energy Receivers.
Since then, I’ve ported the ADC to multiple closed PDKs (22 nm FDSOI, 22 nm, 28
nm, 55 nm, 65 nm and 130nm). A while ago I ported the SAR ADC to Skywater
130nm SUN_SAR9B_SKY130NM.
The fact that Tiny Tapeout now includes analog possibility inspired me to try and see
if I could fit the SAR into the Tiny Tapeout area. The original 9-bit ADC did not fit,
so I had to reduce it to 8-bit.

How to test

Apply a differential voltage with a common mode of around VDD/2 to ua[1] and ua[0].
If you want to measure the offset and noise of the ADC then connect ua[1] to ua[0]
and provide 0.9 V to both.
A common mode of 0 V will not work. The comparator will not make a decision in
time, and the asynchronous clock generation loop will be to slow.
Apply a 4 MHz clock to clk. Typical corner should be able to run faster.
Set ui_in[0] high to enable the ADC
The uo_out[7:0] is two’s complement digital output. The MSB is [7].
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The ADC will open the input switches to start sampling on the rising edge of the clock.
The ADC will sample on the falling edge of the clock. When clock is low, then the
asynchronous binary search algorithm tries to find the sampled analog input voltage,
and convert the analog value to digital.
The uio_out[0] is the “done” signal from the asynchronous binary search algorithm.
The digital outputs are sampled on the rising edge of this “done” signal.
If you want to capture the output of the ADC with a logic analyzer then I’d recommend
you sample the digital outputs on the falling edge of the “done” signal.
Alternatively, you could sample on the rising edge of the clk, however, any insertion
delay between the clk source and the ADC clk has to be taken into account.
If there is no “done” signal, then the clock is too fast, or the input common mode too
low.

How it works

The differential input (ua[1:0]) is sampled onto a capacitor array. When the clk is high,
the input switch is low resistance and the input voltage stabilizes on the capacitor array.
When the clock goes low, the input switch will be high resistive, and the voltage on
the capacitor array is sampled.
A strong arm comparator decides whether the differential voltage on the capacitor array
is larger or smaller than zero.
Based on the comparator decision, parts of the capacitor array is switched from VPWR
to VGND, or visa versa. A charge re-distribution will occur, which changes the differ-
ential voltage on the capacitor array.
A asynchronous custom digital logic performs a binary search to find the digital value.
The comparator input has the net name SARP and SARN. Observe those in a simulation
to see how the SAR operates.
I would also recommend reading A Compiled 9-bit 20-MS/s 3.5-fJ/conv.step SAR ADC
in 28-nm FDSOI for Bluetooth Low Energy Receivers, which explains the operation in
detail. I’ve also added docs to sun_sar9b_sky130nm

157

https://ieeexplore.ieee.org/document/7906479
https://ieeexplore.ieee.org/document/7906479
https://analogicus.com/sun_sar9b_sky130nm/


Parameter Min Typ Max Unit

Key parameters

Parameter Min Typ Max Unit
Technology SKY130A
AVDD 1.7 1.8 1.9 V
Temperature -40 27 125 C
Sampling frequency (CLK) 4 MHz
Average current VPWR 48 uA
SNDR_FS 47.7 dBFS
SFDR 49.7 dBc
ENOB_FS 7.63 bit

Implementation

If you just want to see the layout, then go to http://analogicus.com/tt06-sar/
To have a look locally, do the commands below. I assume you have xschem, magic
and the Skywater 130 nm PDK installed.

git clone --recursive git@github.com:wulffern/tt06-sar.git
cd tt06-sar/ip/tt06_sar_sky130nm/work/
xschem -b ../design/TT06_SAR_SKY130NM/tt_um_TT06_SAR_wulffern.sch &
magic ../design/TT06_SAR_SKY130NM/tt_um_TT06_SAR_wulffern.mag &

How to simulate Install cicsim

python3 -m pip install cicsim

Navigate to the testbench and run a typical simulation (requires cicsim)

cd ip/tt06_sar_sky130nm/sim/TT06_SAR
make typical OPT="Debug"

The main testbench is ip/tt06_sar_sky130nm/sim/TT6_06/tran.spi
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How to compile The SAR ADC is made with ciccreator and cicpy.
The sources for the ADC are

ip/sun_sar9b_sky130nm/cic
��� ip.json # Object file, describes the object hierarchy of the circuits in the SAR
��� ip.spi # Spice file, describes the connectivity
��� capacitor.json # Object file for capacitors
��� dmos_sky130nm_core.json # Object file for transistors
��� sky130.tech # Technology file for Skywater 130 nm

The SAR is pre-compiled, so you don’t really need to compile it. The compiled files
are in the ip/sun_sar9b_sky130nm/design/ directory.
If you want to try the compilation, then compile ip/ciccreator and install
ip/cicpy, next

cd ip/sun_sar9b_sky130nm/work
make ip

Verification plan Testbench folder ip/TT06_SAR_SKY130NM/sim/TT06_SAR/

Purpose Testbenchcorner Status Notes
SNDR, SFDR, ENOB, active
current

tran tfs +
C

OK python3 tran.py to plot
FFT

tran typ +
RC

Not
OK

RC extraction does not
work yet

Check power down after 2
sample, clock running

pwrdwn typ OK

Results at TT06_SAR
Below is a Power Spectrum of a sinusoidal input signal

Known issues

Nr Issue Solution Discovery Resolved
1 RC extraction removes coupling caps 2024-04-13
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Figure 21: typical fast slow FFT

1: RC extraction removes coupling caps Extracting R and C seems to remove
coupling caps, which removes both the cap in the bootstrapped switch, and the SAR.
As a result, simulations don’t work.
I make the RC extracted netlist with

cd ip/tt06_sar_sky130nm/work
make lper

In that command, I try to match the RC extracted netlist to the schematic netlist.
First I remove all the parasitic Cs, the parasitic Rs and remove the R nets ( (t|n)+̣ ).
The resulting RC extracted netlist is not LVS clean. The m3 resistors in BSSW have
been removed.
I’ve also tried to change all parasitic resistors to 0.1 Ohm (make lowres), but the
simulation still does not work.
After a bit of digging it’s clear that the cap between XCAP.B and XCAP.A in the
BSSW is gone (it should be 0.3ish pF). There are almost no coupling caps, only caps
to ground.
So I’m resonably sure it’s not a real issue. It’s a tool issue. Let’s see when the IC
comes back.
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Pinout

# Input Output Bidirectional
0 Enable ADC ADC LSB Conversion Done
1 ADC MSB-6
2 ADC MSB-5
3 ADC MSB-4
4 ADC MSB-3
5 ADC MSB-2
6 ADC MSB-1
7 ADC MSB (two’s complement)

Analog pins

ua# analog# Description
0 5 Negative ADC input
1 0 Positive ADC input
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4-bit stochastic multiplier traditional [232]

• Author: Vedika Sharma and David PArent
• Description: Two 4-bit || vectors are converted into 1-bit serial stochastic signals

and then multiplied with a two input and gate.
• GitHub repository
• Wokwi project
• Mux address: 232
• Extra docs
• Clock: 10000 Hz

How it works

two four-bit || binary weighted vectors are read in and converted to two 1-bit serial
stochastic streams with a PRBS and a comparator. These signals are then fed into an
AND gate, which multiplies the signal.
https://en.wikipedia.org/wiki/Stochastic_computing B. R. Gaines, “Origins of
Stochastic Computing,” in Stochastic Computing: Techniques and Applications,
W. J. Gross and V. C. Gaudet, Eds., Cham: Springer International Publishing,
2019, pp. 13–37. doi: 10.1007/978-3-030-03730-7_2. C. F. Frasser et al., “Using
Stochastic Computing for Virtual Screening Acceleration,” Electronics, vol. 10, no. 23,
p. 2981, Nov. 2021, doi: 10.3390/electronics10232981. M. Nobari and H. Jahanirad,
“FPGA-based implementation of deep neural network using stochastic computing,”
Appl. Soft Comput., vol. 137, p. 110166, Apr. 2023, doi: 10.1016/j.asoc.2023.110166.
P. K. Gupta and R. Kumaresan, “Binary multiplication with PN sequences,” IEEE
Trans. Acoust., vol. 36, no. 4, pp. 603–606, Apr. 1988, doi: 10.1109/29.1564.
A. Alaghi and J. P. Hayes, “Survey of Stochastic Computing,” ACM Trans. Embed.
Comput. Syst., vol. 12, no. 2s, pp. 1–19, May 2013, doi: 10.1145/2465787.2465794.

How to test

Use an ADLAM2000 and Python to control the reset and the clock. Hold A and B
contents and watch the multiplier output. Use the DALM200 and Python to convert
the signal back to binary weight signals. The number of ones at any given time is the
number

External hardware

ADLAM2000
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Pinout

# Input Output Bidirectional
0 A0 SSA
1 A1 SSB
2 A2 PRBS0
3 A3 PRBS1
4 B0 PRBS2
5 B1 PRBS3
6 B2 S_M
7 B3
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VCII [233]

• Author: Alfiero Leoni
• Description: Simple Voltage Conveyor
• GitHub repository
• Analog project
• Mux address: 233
• Extra docs
• Clock: 0 Hz

How it works

The VCII (second generation Voltage Conveyor) is an analog block that has a low
impedance current input pin (y), a high-impedance current output pin (x) and a low
impedance output voltage pin (z) plus a reference voltage input pin (Ref) to provide
the virtual ground reference for the circuit, behing used in single supply (for this design,
ref is 0.9 V to be provided with a power supply). The VCII presents to main parameters:
alpha and beta. Beta is the current gain, so placing a resisntance between x and ref and
injecting a current in y, we should have that I(x) = betaI(Y). Aplha is the voltage gain,
i.e. the voltage produced at the node x due to the current flowing will be amplified in
z. The relationship is V(z)=alphaV(x). In this design, aplha and beta should be equal
to 1, more or less.

How to test

The VCII could be tested in TIA (transimpedance amplifier) configuration. A current
should be injected into the y pin (if a current source is not available, a big resistor
can be used in serias to a voltage supply) of few uA. Then an external resistor should
be connected between x and Vref. The resistor will set the TIA gain e.g. a resistor of
10K with an input sine current of 2uA pp should produce an output sine voltage of 20
mVpp to the z pin.

External hardware

The transipedance gain resistor, oscilloscope, power supplies

Pinout
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# Input Output Bidirectional
0
1
2
3
4
5
6
7

Analog pins

ua# analog# Description
0 4 output
1 1 output
2 3 input
3 2 input
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8 Bit Digital QIF [234]

• Author: David Parent
• Description: The circuit will spike when the input is positive. It will reset when

the signal exceeds a predetermined value
• GitHub repository
• HDL project
• Mux address: 234
• Extra docs
• Clock: 0 Hz

How it works

QIF

How to test

QIF

External hardware

ADALM2000

Pinout

# Input Output Bidirectional
0 B0 AS0
1 B1 S1
2 B2 S2
3 B3 S3
4 B4 S4
5 B5 S5
6 B6 S6
7 B7 S7

166

https://github.com/davidparent/tt_um_tt6_verilog_davidparent


Programmable Thing [235]

• Author: James Meech
• Description: One inverter and a programmable resistor with one terminal con-

nected to ground
• GitHub repository
• Analog project
• Mux address: 235
• Extra docs
• Clock: 0 Hz

How it works

The project is a programmable resistor controlled by setting ui[0] to ui[7] and
ui[0] to ui[7] high to connect a set of 58.218 k ohm resistors between pin
ua[0] and ground in parallel using programmable analog switches. There
is also an inverter with analog pin ua[5] as an input and analog pin ua[4]
as an output. Try using the inverter as an amplifier as explained here:
https://www.youtube.com/watch?v=03Ds1TnoMbA&ab_channel=MSMTUE and
see if you get the same results when trying to use the inverters in my digital tile as an
amplifier: https://github.com/JamesTimothyMeech/TT06/blob/main/info.yaml

How to test

Apply inputs to the inverters with a square wave or other signal generator and measure
the output. To test the programmable resistor connect the supply voltage in series
with an ammeter to pin ua[0]. Set ui[0] to ui[7] and ui[0] to ui[7] high to connect a
set of 58.218 k ohm resistors to ground internally inside the chip. You should be able
to measure differences in current as you connect each resistor to ground by setting the
corresponding digital input pin high.

External hardware

TT06 printed circuit board, signal generator, an oscilliscope or similar to measure the
input and output.

Pinout
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# Input Output Bidirectional
0 Control pin

to connect
one of the 16
resistors
between
ua[0] and
ground using
an analog
switch

Not used,
grounded
internally

Control pin to connect
one of the 16 resistors
between ua[0] and
ground using an analog
switch

1 Control pin
to connect
one of the 16
resistors
between
ua[0] and
ground using
an analog
switch

Not used,
grounded
internally

Control pin to connect
one of the 16 resistors
between ua[0] and
ground using an analog
switch

2 Control pin
to connect
one of the 16
resistors
between
ua[0] and
ground using
an analog
switch

Not used,
grounded
internally

Control pin to connect
one of the 16 resistors
between ua[0] and
ground using an analog
switch

3 Control pin
to connect
one of the 16
resistors
between
ua[0] and
ground using
an analog
switch

Not used,
grounded
internally

Control pin to connect
one of the 16 resistors
between ua[0] and
ground using an analog
switch
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# Input Output Bidirectional
4 Control pin

to connect
one of the 16
resistors
between
ua[0] and
ground using
an analog
switch

Not used,
grounded
internally

Control pin to connect
one of the 16 resistors
between ua[0] and
ground using an analog
switch

5 Control pin
to connect
one of the 16
resistors
between
ua[0] and
ground using
an analog
switch

Not used,
grounded
internally

Control pin to connect
one of the 16 resistors
between ua[0] and
ground using an analog
switch

6 Control pin
to connect
one of the 16
resistors
between
ua[0] and
ground using
an analog
switch

Not used,
grounded
internally

Control pin to connect
one of the 16 resistors
between ua[0] and
ground using an analog
switch

7 Control pin
to connect
one of the 16
resistors
between
ua[0] and
ground using
an analog
switch

Not used,
grounded
internally

Control pin to connect
one of the 16 resistors
between ua[0] and
ground using an analog
switch

Analog pins
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ua# analog# Description
0 5 Internal programmable resistor connected to this pin
1 0 Analog pin not used
2 4 Analog pin not used
3 1 Analog pin not used
4 3 Analog inverter output
5 2 Analog inverter input
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easy PAL [236]

• Author: Matthias Musch
• Description: This is a simple PAL device with shift-register based

(re)configuration
• GitHub repository
• HDL project
• Mux address: 236
• Extra docs
• Clock: 0 Hz

How it works

This project is a PAL (programmable array logic device). It is programmed with a shift
register.

Taped-out configuration and pin assignment Because I do not want to update
the text below too often I write the configuration of the physical PAL device in terms
of:

• Number of inputs
• Number of itermediatory stages
• Number of outputs …only once. In the following this will be refered to however

the exact number is only mentioned here. The numbers are:
• 8 inputs
• 11 intermediatory stages
• 4 outputs

There was a really convenient picture that unfortunatly I cannot include in the gen-
erated documentation. However if you check out the github repo of this project you
can study it. It shows how the inputs, intermediate stages and output stages corre-
late to each other. Basically there is a matrix of inputs (N) and intermediate stages
(P) with the size N*P. In the picture you can see numbers at the intersections of in-
puts/intermediate/output wires, which denote the indices of the shift register chain at
this postion. The generated bitstream has a ‘1’ at this positions if a connection is set
and a ‘0’ if no connection is set.
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Pin assignment
• The eight inputs are connected to the eight uio_in wires.
• The enable pin to put the logic function on the outputs is connected to the

uio_in[1] pin.
• The clock for the shift register is connected to uio_in[2]
• The configuration bit pin, which holds the data that is next shifted in is connected

to the uio_in[0]. Aka here the bitstream is fed into - bit by bit!
• The outputs are displayed on the first four uo_out[3:0] bits.
• The rising edges are (clock for the shift register) are supplied via the uio_in[2]

pin.

Programming At every rising edge of the programming-clock the shift register takes
in a value from the config_bit pin. When the configuration is done the PAL implements
the programmed combinatorial function(s). However in order to get the programmed
function(s) to generate outputs the enable pin has to be asserted.

Generate bitstreams To generate bitstreams for the shift register a Python script
is provided in this repository. It is important to set the right number of inputs, inter-
mediate stages and outputs. This has to be exactly like the physical PAL-device you
have at hand. A boolean logic function is denoted in the following way: O0 = ~I0 |
I1 &amp;amp; ~(I2 &amp;amp; I3) It is important to declare the used variables
before. See the Python script as it was done for O0, I1, I2, I3. You can add or remove
variables. However keep in mind that the physical number of variables is limited. You
can check the physical number that will be on the device in the project.v file.
At this point in time the bitstream generation in the Python script has some of limita-
tions.

Using the PAL Okay now that you have transmitted the bitstream onto the PALs
shift register you can set the enable pin (uio-pin) to output the programmed logic
functions on the outputs.

How to test

By first shifting in a bitstream configuration into the device the AND/OR matrix of
the device can be programmed to implement boolean functions with a set of inputs
and outputs. You can test the design by clocking in a bitstream with a microcontroller
(I will provide some example code for that) and by connecting buttons to the inputs
and maybe LEDs to the outputs.
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External hardware

No external HW is needed. However to see your glorious boolean functions come to life
you might want to connect some switches to the inputs and LEDs to the outputs.

Pinout

# Input Output Bidirectional
0 Combinatorial

input 0
Combinatorial
output 0

Config pin: This pin is
used to apply the config
bit that will be shifted in
on a rising clock edge.

1 Combinatorial
input 1

Combinatorial
output 1

Enable pin: If HIGH (1)
the result of the logic
function is applied to all
outputs.

2 Combinatorial
input 2

Combinatorial
output 2

Clock pin: Used for the
shift register to sample in
the [config pin] data (see
uio[0]).

3 Combinatorial
input 3

Combinatorial
output 3

unused

4 Combinatorial
input 4

Combinatorial
output 3

unused

5 Combinatorial
input 5

unused - tied
to 0

unused

6 Combinatorial
input 6

unused - tied
to 0

unused

7 Combinatorial
input 7

unused - tied
to 0

unused
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PLL blocks [237]

• Author: Vipul Sharma
• Description: This design contains blocks used in PLL circuit
• GitHub repository
• Analog project
• Mux address: 237
• Extra docs
• Clock: 0 Hz

How it works

This design contains individual blocks used to realize a PLL circuit. These blocks are
designed by participants under SSP (Saudi Semicondcutor Program) using open-source
analog EDA tools. There are 4 blocks designed by multiple individuals and teams:
Phase Frequency Detector (PFD): D flip-flop-based phase frequency detector
(PFD) with inputs A and B, and outputs QA and QB compares the phases of two
input signals, A and B, and generates output pulses to indicate the phase difference
between them. When A leads B, the output QA transitions high, while QB transitions
low. Conversely, when B leads A, QA transitions low and QB transitions high. If
both signals are in phase, neither QA nor QB transitions. PFD’s output signals can
be used to control the frequency and phase of a voltage-controlled oscillator (VCO)
in a PLL system, thereby locking the output frequency and phase to the reference
input. This is essential in applications such as clock synchronization, frequency
synthesis, and communication systems, ensuring precise timing and synchronization.
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Charge Pump (CP): Charge pump circuit converts the output signals from
the PFD into a control voltage for Voltage-Controlled Oscillator(VCO). Charge
pump circuit consists of a pair of switches and a capacitor. When the PFD
generates a positive pulse, one switch connects the capacitor to a reference
voltage, charging it. Conversely, when the PFD generates a negative pulse, the
other switch connects the capacitor to ground, discharging it. This creates a con-
trol voltage proportional to the phase difference between the input and reference signals.

175



Voltage Controlled Oscillator(VCO): A ring oscillator Voltage-Controlled
Oscillator (VCO) consists of odd number of inverting stages connected in
a ring configuration, generating an oscillating waveform. By controlling the
bias voltage of the transistors within the stages, the oscillation frequency
can be adjusted. This VCO serves as the controlled oscillator in the PLL,
with its frequency locked to the reference signal through the feedback loop.

176



Frequency Divider(FD): A D flip-flop frequency divider divides the frequency
of VCO output signal by a fixed integer ratio. This division process creates
a feedback mechanism that compares the divided output frequency with the
reference frequency. The D flip-flop’s toggling action divides the frequency
by 2/4/8, allowing for frequency multiplication or division within PLL loop.

Designer Name Block Name
1 Abdulrahman Alghamdi Frequency Divider (FD-1)
2 Abdulrahman Alghamdi PFD (PFD-1)
3 Baraa Musa Abdullah PFD (PFD-2)
4 Faisal Tareq Charge Pump (CP-1)
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Designer Name Block Name
5 Khalid Abdulaziz Frequency Divider (FD-2)
6 Khowla Alkhulayfi Frequency Divider (FD-3)
7 Nawaf VCO
8 Nawaf Frequency Divider (FD-4)

How to test

PFD: Apply input pulses with phase difference between them and A and B pins at
PFD input. Observe the output at QA and QB pins with output pulses based on +ve
or -ve phase difference between signal applied at input pins of PFD.
CP: Apply input pulses at QA and QB input pins of charge pump replicating the
output of PFD circuit. Based on whether QA or QB pulses are high, the output of
charge pump circuit will demonstrate charging and discharging behaviour respectively.
Charging and discharging rate can be controlled by changing bias voltage cp_bias to
either increase of decrease current.
VCO: Apply a control voltage, vctrl=0.9V to VCO’s input and measure the resulting
output frequency. Verify that the output frequency varies with the applied control
voltage within the specified range i.e. 0.75V to 1V. Check VCO frequency tuning range
by sweeping the control voltage across and observing the output frequency response.
FD: Input a signal with a frequency (40 to 80MHz range) to input of frequency divider.
Measure the output frequency using a oscilloscope. Verify that the output frequency
is one-eighth of the input frequency.

External hardware

2-channel function/waveform generator with varying frequency and pulse time genera-
tion. 2-channel Oscilloscope to measure output signal waveforms.

Pinout

# Input Output Bidirectional
0 CP-1:QA PFD-2:QA FD-1:fo
1 CP-1:QB PFD-2:QB FD-1:fo_by_8
2 FD-2:Clk FD-2:fo_4 PFD-1:A
3 FD-3:fo FD-2:fo_8 PFD-1:B

178



# Input Output Bidirectional
4 FD-3:fo_4 PFD-1:QA
5 FD-3:fo_8 PFD-1:QB
6 ref FD-4:Out_4 PFD-2:A
7 FD-4:Out_8 PFD-2:B

Analog pins

ua# analog# Description
0 5 CP_bias
1 0 vout
2 4 vctrl
3 1 Osc_out
4 3 cp_bias
5 2 out
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Rule 30 Engine! [238]

• Author: andrewtron3000
• Description: Iterate Rule 30 Cellular Automaton
• GitHub repository
• HDL project
• Mux address: 238
• Extra docs
• Clock: 50000000 Hz

How it works

This project is designed to run the Rule 30 cellular automata with initial starting value
defined on the input bus. Each iteration is output to the UART, which is operating as
an 8N1 UART at 115,200 baud.
The Rule 30 field is 56 bits wide with a boundary condition of 0 surrounding these 56
bits.

How to build

The Rule 30 driver and logic are written in Bluespec. Install the Bluespec compiler to
compile these sources into Verilog. The generated Verilog is also included in this repo
as well in case you don’t have the Bluespec compiler.
The Bluespec compiler can be found here: https://github.com/B-Lang-org/bsc.
Several Bluespec generated Verilog files need to be copied from the Bluespec library
directory:

Counter.v
FIFO1.v
SizedFIFO.v

To compile the Bluespec, do the following:

cd src
make verilog

At this point all necessary Verilog files have been created.
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External hardware

The initial condition used for the Rule 30 iteration is defined on the input bus. The
output in uo_out[4] is used as the TX side of the UART.

Pinout

# Input Output Bidirectional
0 Initial Value LSB
1 Initial Value
2 Initial Value
3 Initial Value
4 Initial Value UART TX
5 Initial Value
6 Initial Value
7 Initial Value MSB

181



TT06 Analog Factory Test [239]

• Author: Sylvain Munaut
• Description: Test structures for TT06 analog support
• GitHub repository
• Analog project
• Mux address: 239
• Extra docs
• Clock: 0 Hz

How it works

FIXME

How to test

FIXME

External hardware

FIXME

Pinout

# Input Output Bidirectional
0 ena0_n
1 ena1
2
3
4
5
6
7

Analog pins
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ua# analog# Description
0 5 ibias
1 0 vgnd_sense
2 4 vpwr_sense
3 1 loopback[0]
4 3 loopback[1]
5 2 loopback[2]
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tt06-RV32E_MinMCU [258]

• Author: Weihao Liu
• Description: Microcontroller RV32E implementation. Supports inputs, outputs,

GPIOs, UART and SPI.
• GitHub repository
• HDL project
• Mux address: 258
• Extra docs
• Clock: 24000000 Hz

How it works

RV32E implementation for a minimum microcontroller that is designed for small HW
projects. The microcontroller interfaces with an external NOR flash for program mem-
ory and a external PSRAM for RAM over SPI.
The MCU has the following peripherals:

• 7 x input/output pins
• Up to 5 input only pins
• Up to 4 output only pins
• 1 x UART (flow control can be enabled)
• 1 x SPI bus
• Debug interface over SPI to read out registers and program counter

There is only 1 SPI controller in the design and this controller is used to interface with
program memory and RAM. This SPI controller can be configured to interface with
other SPI peripherals too.
Tested with Lattice ice40-HX8K breakout board at 24MHz clock.

Pin allocation

PIN UI_IN UO_OUT UIO
0 IN0/UART-CTS UART-RX SPI-CS2
1 IN1 OUT0/UART-RTS IO0
2 SPI-MISO OUT1 IO1
3 IN2 SPI-MOSI IO2
4 IN3 SPI-CS1 IO3
5 IN4 SPI-SCLK IO4

184

https://github.com/liu3hao/tt06-rv32e_minmcu


PIN UI_IN UO_OUT UIO
6 EN_DEBUG OUT2 IO5
7 UART-TX OUT3 IO6

Memory space

Memory address Description
0x00000 - 0x0FFFF Program memory, read-only (external memory)
0x10000 - 0x1FFFF RAM (external PSRAM)
0x20000 - 0x2FFFF Peripheral registers

Peripheral registers

Pin control registers

Address Description
0x20000 Output values for the output pins

(OUT0 to OUT3).
0x20001 Input values for the input pins (IN0 -

IN4), read-only.
0x20002 Direction bits for the IO pins. Set to 1

for output, 0 for input.
0x20003 Input values for IO pins. The

corresponding bit in the IO direction
register has to be set to 0, for the input
values to be set.

0x20004 Output values for IO pins. The
corresponding bit in the IO direction
register has to be set to 1, for the
output value to be set.

SPI peripheral registers The SPI controller interfaces with program memory and
RAM. It can additionally be configured to interface with other SPI devices by config-
uring the output pins (OUT0-OUT3) as CS pins.
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0x20005 - SPI control register As the SPI controller is shared for program mem-
ory and RAM access, the entire CPU is blocked until the SPI transaction is com-
pleted.

Bit Description
0 Set to 1 to start SPI transaction
1 Set to 1 to use OUT0 as CS pin
2 Set to 1 to use OUT1 as CS pin
3 Set to 1 to use OUT2 as CS pin
4 Set to 1 to use OUT3 as CS pin

Note: Only 1 CS pin can be configured each time. When the OUTn pin are is as CS,
that pin in the output bits register (0x20000) will be ignored.

Address Description
0x20006 SPI status register. Bit 0 is set to 1

when the SPI transaction is completed.
This bit is cleared when an SPI
transaction is started (by writing 1 to
bit 0 of the SPI control register
0x20005).

0x20008 SPI TX byte. Byte to transmit to SPI
peripheral

0x2000C SPI RX byte. Byte received from SPI
peripheral

UART peripheral registers

0x20010 - UART control register

Bit Description
0 Set to 1 to start TX
1 Set to 1 to clear RX byte availabe bit in

the UART status register
2 Set to 1 to enable flow control. OUT0

is used as CTS and IN0 is used as RTS.
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0x20011 - UART status register

Bit Description
0 When 1, the TX operation is completed
1 RX byte available bit, is set to 1 when

there is a byte available in the RX buffer

Address Description
0x20014 UART Tx byte. Set byte to be written to external UART device
0x20015 Stores byte that is received from external UART device

Debug mode To set the CPU into debug mode, set the EN_DEBUG pin to HIGH.
In this mode, the CPU will continuosly output the program counter and all registers
(excluding x0 register) over the SPI interface. OUT3 is used as the DEBUG_CS pin.

How to test

1. Load a program into the program memory
2. Assert and deassert rst_n pin
3. Interact with the program

External hardware

This project requires at minimum the following:

• PMOD for SPI flash (example, digilent PMOD SF3)
• PMOD for SPI PSRAM chip

Pinout

# Input Output Bidirectional
0 IN0/UART-CTS UART-RX SPI-CS2
1 IN1 OUT0/UART-RTS IO0
2 SPI-MISO OUT1 IO1
3 IN2 SPI-MOSI IO2
4 IN3 SPI-CS1 IO3
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# Input Output Bidirectional
5 IN4 SPI-SCLK IO4
6 EN_DEBUG OUT2 IO5
7 UART-TX OUT3 IO6
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Crossbar Array [263]

• Author: Kevin Guan
• Description: Analog Matrix Multiplication with 64x64 array
• GitHub repository
• Analog project
• Mux address: 263
• Extra docs
• Clock: 0 Hz

How it works

This is an analog crossbar array used as a placeholder for future ReRAM projects. Poly
Resistors are used instead of ReRAM between Met1 and Met2. Thus, this project has
a fixed weight matrix. This project performs 4x4 matrix multiplication in one run.

How to test

6 analog pins and 8-bit digital input bus are used. First 4 analog pins (i.e. ua[3:0])
are used as inputs to the crossbar. The ua[4] is the supply voltage 0-1.8V (default:
keep at 1.8V). The ua[5] is the output analog pin used for observing the output current
(summing junction). First 4 digital input pins (i.e. ui_in[3:0]) control the 4 4-bit muxes
on the input side. The ui_in[4:7] is used to control the column selection.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any
This project will need external off-the-shelf DACs and ADCs including a TIA or ADC
that can convert output current into a readable voltage.

Pinout

# Input Output Bidirectional
0 bit control 1
1 bit control 2
2 bit control 3
3 bit control 4
4 write/select control 1
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# Input Output Bidirectional
5 write/select control 2
6 write/select control 3
7 write/select control 4

Analog pins

ua# analog# Description
0 11 bit 1
1 6 bit 2
2 10 bit 3
3 7 bit 4
4 9 write 1
5 8 select 1
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TinyRV1 CPU [264]

• Author: Prof. Dr. Matthias Jung, Jonathan Hager, Philipp Wetzstein
• Description: TinyRV1 compliant CPU that has to be attached to an external

SPI memory. The ISA is described in the documentation
• GitHub repository
• HDL project
• Mux address: 264
• Extra docs
• Clock: 12000000 Hz

How it works

The project consist of a RISC-V VHDL Model and supports the Tiny RV1 ISA without
MUL. In addition AND and XOR are supported.

How to test To test our design you will need to use external hardware.

External hardware To use our design you will need to use the provided
spi_slave_tt06_with_memory and synthesize it for an 12 MHz FPGA.

Pinout

# Input Output Bidirectional
0 SPI MISO SPI MOSI Register_1(5)
1 unused SPI SCLK Register_1(6)
2 unused SPI CS Register_1(7)
3 unused Register_1(0) Register_1(8)
4 unused Register_1(1) Register_1(9)
5 unused Register_1(2) Register_1(10)
6 unused Register_1(3) Register_1(11)
7 unused Register_1(4) Register_1(12)
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WoWA [265]

• Author: Pat Deegan
• Description: Is it really the World Worst ADC? Maybe it’ll be a wow-ADC

instead… we’ll see!
• GitHub repository
• Analog project
• Mux address: 265
• Extra docs
• Clock: 0 Hz

How it works

This project is a mixed signal design that glues together a few bits to create a simple
ADC. It uses

• An analog comparator, based on the design done by Stefan Schippers in Ana-
log schematic capture and simulation, re-captured in xschem and laid out with
magic;

• The analog blob from the R2R DAC in Matt Venn’s R2R DAC TT06 submission;
• A digital signal processor and front end, created using Amaranth; and
• A few analog switches and a 2:1 analog mux, created and laid out for the project.

While at it, I also laid out a version of the p3 opamp from this project and embedded
it in for testing purposes.
The ADC uses the DAC to set the threshold on the comparator and see what it says
about the input signal–is it higher or lower–to perform a search and hone in on a digital
value to output. Doing it in this way, it manages to determine a value in about 60
clock cycles ).
The analog output of the comparator, R2R DAC and p3 opamp are all provided through
analog pins for testing and experimentation.
A few options are available:

• The system can perform a comparator calibration before each reading (which
increases the processing time but should make things more reliable). Enable this
by holding the enable calibrations pin high;

• Rather than feed the R2R DAC output to the comparator, it can receive input
from an analog pin instead. Set “use external threshold” input pin HIGH for
this, and feed into appropriate analog pin.
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Figure 22: wowa ADC
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Internals Some details about how it’s built…

Digital With no calibration enabled, it takes about 60 clock cycles to get a valid re-

sult
In the above, there is a simulated analog comparator output (in red). The DAC is
setting each bit, starting with the high bit, in turn. If the comparator says HIGH
when the output is checked, it means that the input voltage is higher than what we’re
comparing to so that bit is preserved. Each bit is set, if the comparator is low when we
check, that bit is cleared from the eventual result. When we reach the LSB, the result
ready signal goes high–it’s held that way for 3 clocks. Then the process repeats.
This all works with an FSM that goes through multiple steps, zoomed in here:

For simplicity, we alway pass through the calibrating state, though it only lasts a
single clock cycle when the use_calibration pin is low.
For things to work, the comparator does need some calibration, at least sometimes.
How often? I don’t know yet. When use_calibration is high, the cycle has a period at
the start where:

• the DAC is set mid-range
• the comparator receives the same input on both inputs and is put into calibrate

mode

Figure 23: With calib readings
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This actually charges up a capacitor internally which is used to adjust the comparator
output. Because this takes a finite amount of time, which was found to be around
400ns for reliable operation in simulation, I gave it 28 clock cycles of calib time to
support a theoretical clock of up to 70MHz.
Using a conservative 50MHz clock, this means that readings can be done in about 1.75
microseconds with calibration, and 1.2 us without. Assuming we need to cal every 3
samples, this gives the ADC a throughput of around 720k samples per second, or more
than 560ksps if you want to keep it simple and calibrate before every measurement, on
a 50MHz clock.
These are theoretical maxima, of course. I haven’t even tried to drive things this fast
in sim, though that is planned.
And this is for the digital side only. From the analog side, a lot depends on the
comparator (more below). Short version is that it can react quite quickly.
Here’s a sim of the full analog side, looking at the comparator (a number of runs,
gaussian distribution of temperatures):

Figure 24: comparator sim 1

Green is the threshold we’re comparing to (DAC output), yellow is the input signal (so
clean), and red is the comparator output. On the left, you can see the whole sequence
including a calibration step at the beginning.
Things get a little fuzzy when the input is very close to the threshold, but otherwise
you can see the comparator does a good job comparing, and reacts quickly too. About
40 nanoseconds after the input goes above the threshold: bam, comparator is logic
HIGH, even in the worst cases.
So we’re talking being able to deal in the tens of MHz for this wonderful circuit.
However I did find some instances, like here where I suddenly set the DAC above the
input (so comparator should go low):
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Figure 25: comparator slow reactions
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That’s not pretty. Suddenly we’re looking at 200-400ns sometimes. Ok, so let’s
revise that down to the low single digit MHz. Say we always want to leave 400ns
before sampling the comparator output, well it’ll take us 3.2us To get a full byte of
comparisons, so we’re down to 312ksps. I’d be ok with that.
A final however on this front: if we really want 400ns for things to settle after the DAC
is set, the digital side has 4 clock cycles between setting the DAC value, and the cycle
when it actually captures the compator output. I think that means we’d have to clock
at 10MHz, thereby reducing our best effective max sample rate to 144ksps – booo. Ok,
not that bad if it actually works and I am being quite conservative (hopefully) with
that 400ns settle time.

Analog The analog side of things is at the service of the digital. The main ADC
block is

Figure 26: WoWA Analog

The r2r DAC is simply controlled using 8 bits, the end. Its output goes to a 2:1 analog
mux–called one-hot here because I intended to make 4:1 and maybe other versions
that’d just be one-hot but that’s for later.
External input goes to one side of the comparator, and the output of this mux goes to
the other – that lets us send either the DAC output or whatever’s coming in from an
external pin to the other side for comparison.
That calibrated comparator has a CAL input. That’s because, inside of that symbol is
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this:
Another mux and and analog switch, in addition to the comparator. That lets us
choose between sending the input or the threshold to the plus side of the comparator.
Sending the threshold to both inputs of the comparator seems useless, but that only
happens when CALIB is HIGH, which also trips the analog switch and pipes the output
of the comparator to the capacitor and the adjust pin on said comparator. This is why
it’s a calibrated comparator: Hold CALIB high for a little bit, and the results come out
looking a lot better.
Finally, inside that triangle is the actual comparator circuit, which I re-did watching a
video of Stefan Schippers teaching some xschem design.
It’s a bunch of FETs doing FET things.

TODO Well, I should probably have put a sample-and-hold system in there–would’ve
been easy with the analog switch and a cap… c’est la vie.
Also, I didn’t know how big the digital side would turn out, so I went the route of
premature optimization (the “route” of all evil), and just used the output result bits as
my scratch for the DAC twiddling. The upside is that we get to have a good look at
what the DAC is actually doing. The downside is that it’s a bit noisy, you only get a
valid result during the result_ready blip (which I actually stretched with an additional
FSM state).
The analog and digital together are all LVS clean and the digital side is tested in sim
and with formal verification methods (a bit), but I never got a full simulation at the
gate level because I couldn’t coax verilator into handling my python-generated verilog…
caused a weird bug, close to deadline. Too bad: fingers crossed.
Would be nice to have a mode to control the DAC manually.
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Figure 27: wowa stefan comparator
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I wasn’t exactly certain how the digital reset side would behave–I got scared that I’d
wind up with reversed logic and the demoboard holding everything in reset forever. So
I left it unconnected and sacrificed a digital in to be the new reset pin. Sadness. But
safe. Just remember it needs to be connected, “right” (probably low to go but, yeah,
not sure, hah).
More grounding, and try to get in some bypass/bulk (for tiny values of bulk) capaci-
tance. We don’t get filler, so it’s DIY I did not D.
Before all that: build up testbench, get full simulation working, see if it’ll even be
worth the wait and have something to compare to when it does come back in physical
form.

How to test

Bring enable comparator, and reset pin low (?), feed a target voltage (less than 1v8)
into appropriate analog input pin, clock the device and watch the output bits on the
digital side.
When result ready output pin pulses high, the output bits are a calculated result.
Seems like it will be safe to clock at 10MHz, maybe more, uncertain as of yet.
For your testing pleasure, there are addition inspection and manipulation ports through
the analog pins. These are

• ua[0]: The raw output from the comparator at the core of the design
• ua[1]: p3 opamp out
• ua[2]: p3 opamp plus side
• ua[3]: p3 opamp minus/ext threshold for comp
• ua[4]: Analog input to ADC
• ua[5]: A probe into Matt’s R2R DAC output (internal threshold for comparator

while running the ADC

So the ADC basically only needs you to feed a signal into ua4. You can see it in
operation through ua0 and ua5. You can use the comparator ignoring the ADC function,
by setting ui[3] (use external threshold, digital input) HIGH and feeding a threshold
voltage to the comparator on ua3.
Finally, there’s a whole opamp in there, designed by Sai, which I laid out and included
as a second test of this design. We’ll be able to see if there’s any measurable difference
and play with opamps, which is fun.
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External hardware

Voltage source for analog input. Some way to look at outputs, nominally through the
RP2040 on the demoboard–will be writing a script for that.

Pinout

# Input Output Bidirectional
0 reset result bit 0 result ready
1 enable calibrations result bit 1 0
2 enable comparator result bit 2 0
3 use external threshold result bit 3 0
4 result bit 4 1
5 result bit 5 1
6 result bit 6 1
7 result bit 7 1

Analog pins

ua# analog# Description
0 11 Comparator out
1 6 p3 opamp out
2 10 p3 opamp plus
3 7 p3 opamp minus/ext threshold for comp
4 9 Analog input to ADC
5 8 Matt’s DAC output
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A 555-Timer Clone for Tiny Tapeout 6 [267]

• Author: Vincent Fusco
• Description: Blinks an LED the hard way
• GitHub repository
• Analog project
• Mux address: 267
• Extra docs
• Clock: 0 Hz

How it works

It duplicates the functionality of a 555 timer. Try configuring it in the “astable”
configuration using external resistors and capacitors.

How to test

Find a 555 timer datasheet and attempt some of the suggested circuits.
Connect pins to a breadboard with jumper wire.
Construct circuit shown in Figure 7-5 at: https://www.ti.com/lit/ds/symlink/lmc555.pdf?ts=1711738020668.
Test 2:
Duplicate circuit in Figure 6-2 at: https://www.ti.com/lit/ds/symlink/lmc555.pdf?ts=1711738020668.
Compare resulting maximum frequency. The CMOS-based TI 555-Timer has a maxi-
mum frequency of 3.0MHz. Compare.

External hardware

1. Wires for breadboard.
2. Through-hole resistors and capacitors of various values, LEDs, etc.
3. Breadboard.
4. Oscilloscope (for maximum frequency test)

202

https://github.com/vincentfusco/tt06_555


# Input Output Bidirectional

Pinout

# Input Output Bidirectional
0 DI_RESET_N DO_OUT
1
2
3
4
5
6
7

Analog pins

ua# analog# Description
0 7 V_THRESH_I
1 9 V_TRIG_B_I
2 8 V_DISCH_O
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Dickson Charge Pump [269]

• Author: Uri Shaked
• Description: Pumps the input voltage up to ~5.4V
• GitHub repository
• Analog project
• Mux address: 269
• Extra docs
• Clock: 0 Hz

How it works

A 3-stage dickson charge pump. The output voltage is Vout = 4*(VPWR - Vths)
= ~5.44 V where VPWR is the digital input voltage (1.8 V), and Vths is the threshold
voltage of the LVS NMOS (nominal 0.44 V when width=7, length=8).

How to test

Apply a clock signal of 2 MHz to the clk input. In TT06, the analog pin voltage
is limited to 1.8 V, so the output voltage will be divided by 6. You can measure the
divided output voltage at the ua[0] (vout_div) pin.

Simulation results

Post layout simulation showing the output voltage x1.vout and the divided output
voltage on ta ua[0] pin, with ~16.8 mega ohms load (the internal voltage divider).
The output voltage stabilizes at ~5.07 V, and the divided output voltage at ~0.85 V.
The current draw is about 355 nA.
The following graph shows the input clock, the intermediate voltages at the output of
each stage, the output voltage, and the divided voltage as they rise during the first 10
us of operation.

Silicon measurements

The output voltage on ua[0] was measured with multimeter that has a 7.8MΩ input
impedance, at various clock frequencies. The following table summarizes the results:
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Figure 28: output voltage and divided voltage

Figure 29: output voltage and intermediate voltages
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Input Frequency (KHz) ua[0] Voltage Charge Pump Voltage *
0 0.090 0.540
10 0.107 0.642
50 0.171 1.026
100 0.267 1.602
250 0.462 2.772
500 0.604 3.624
1000 0.673 4.038
2000 0.704 4.224
5000 0.716 4.296
7500 0.716 4.296
10000 0.716 4.296
15000 0.714 4.284
20000 0.712 4.272
40000 0.698 4.188
62000 0.676 4.056

• The charge pump voltage is the ua[0] voltage measurement multiplied by 6. This
is because the analog pin voltage is limited to 1.8 V, so the output voltage will
be divided by 6.

The following graph shows the output voltage as a function of the input frequency:
Overall, it seems that the charge pump works as expected, with the output voltage
peaking at around 4.3 V when the input frequency is in the 5-10 MHz range.

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7
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Figure 30: output voltage vs frequency

Analog pins

ua# analog# Description
0 8 vout_div
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Neurocore [270]

• Author: Kyrylo Kalashnikov
• Description: 2x2 systolic array multiplier using 16bit floats
• GitHub repository
• HDL project
• Mux address: 270
• Extra docs
• Clock: 20000000 Hz

How it works

This is a an implementation of a classic systolic array multiplier with uart interface.
This implimention can multiply 2x2 matrix by another 2x2 matrix. The calculations
are done in float16.

How to test

Your “How to Test” section outlines a clear testing protocol for your systolic array
multiplier with a UART interface, designed to multiply 2x2 matrices using float16
representations. To make it more structured and clear, I’ve refined your instructions
below:

How to Test

1. Initialization Sequence: Begin by sending the initialization sequence
11111110 to the device. This sequence prepares the device to start receiving
data for matrix multiplication.

2. Sending Matrix Data:

• You will need to send the elements of the two matrices you wish to multiply.
Each matrix element is a float16 number, which must be transmitted as
two separate 8-bit frames (high byte first).

• Since you are multiplying 2x2 matrices, you must send a total of 8 float16
numbers, equating to 16 data frames of 8 bits each.
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• For clarity, send the matrix elements in row-major order. For example, if
your matrices are A and B, with elements a11, a12, a21, a22 for A
and similarly for B, send them in the order a11, a12, a21, a22, b11,
b12, b21, b22.

3. Receiving the Result:

• Upon completion of the data processing, the device will first send back an
acknowledgment sequence 11111110, indicating that the multiplication
process is complete and the device is about to send the result.

• Following this, expect to receive the result of the matrix multiplication
in a similar format to the input. The device will send 4 float16 numbers
(representing the resulting matrix elements) as 8-bit frames (high byte
first), which you will need to interpret accordingly.

4. Interpreting the Results:

• Collect the 8-bit frames received from the device and reconstruct them
into float16 numbers to obtain the resulting matrix elements.

• These elements represent the resultant matrix from the multiplication of
the two input matrices.

External hardware

No external hardware is used for this project.

Pinout

# Input Output Bidirectional
0 RX input RX output Block multiply done status
1 Calculation start signal
2 Send State bit 0
3 Send State bit 1
4 Send State bit 2
5 Send State bit 3
6 Done send signal
7 Send data signal
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Tiny Opamp [271]

• Author: argunda
• Description: Super simple two stage opamp without miller compensation
• GitHub repository
• Analog project
• Mux address: 271
• Extra docs
• Clock: 0 Hz

How it works

This opamp has VDD=1.8V and VSS=0V. It’s input common mode range is not
very good so make sure your AC input signal is centered around 0.9V. The opamp is
internally biased so you just need to apply a differential input.
It should be able to hit 60dB gain at low frequencies. Please do not connects loads
requiring more than a few mA.

How to test

Power up the chip, test opamp in closed loop configuration only. VOUT is analog pin
0. PLUS is a differential input on analog pin 1. MINUS is a differential input on analog
pin 2.

External hardware

At the bare minimum a resistor at the output is needed to test the opamp as a source-
follower. Use multimeter or oscilloscope to probe the output.

Pinout

# Input Output Bidirectional
0 pause blue
1 new_game green
2 down_key red
3 up_key hsync
4 vsync
5 speaker
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# Input Output Bidirectional
6 col0
7 row0

Analog pins

ua# analog# Description
0 11 VOUT1
1 6 PLUS1
2 10 MINUS1
3 7 VOUT2
4 9 PLUS2
5 8 MINUS2
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test for tiny tapeout hackaday [288]

• Author: ivo-tt
• Description: a useless test
• GitHub repository
• Wokwi project
• Mux address: 288
• Extra docs
• Clock: 0 Hz

How it works

It does not. Don’t use it.

How to test

If you are disappointed, it’s your own fault.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

# Input Output Bidirectional
0 a 0
1 b 1
2 2
3 3
4 4
5 5
6 6
7 7
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Triple Watchdog [289]

• Author: Ignacio Chechile
• Description: A redundant watchdog to be part of a larger fault-tolerant supervi-

sor/failover manager later on
• GitHub repository
• HDL project
• Mux address: 289
• Extra docs
• Clock: 0 Hz

How it works

The circuit is composed of three watchdog modules working in lockstep. They share
a common clock, a common reset line (active low) and a common 8-bit input word.
An external system must write a value in ui_in in order to kick the watchdog, and the
value must be different than the previous one each time. The timeout is fixed and set
in 1ms. Once the timeout happens, the WD module goes to IDLE mode until a reset
is issued and each internal watchdog will set an output pin high.

Pinout

Pin Direction Comment
clk input
rst_n reset Active low
ui_in[8] input System must write a new value to kick the watchdog
watchdog_expired1 output 1: wd has expired; 0: wd has not expired
watchdog_expired2 output 1: wd has expired; 0: wd has not expired
watchdog_expired3 output 1: wd has expired; 0: wd has not expired

How to test

• Provide a 10ns period clock in its clk input
• Set rst_n to low
• Write a value in ui_in before 1ms after reset is released
• Write a different value in ui_in to prevent the watchdog expiring
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External hardware

None

Pinout

# Input Output Bidirectional
0 ui_in[0] watchdog_expired1
1 ui_in[1] watchdog_expired2
2 ui_in[2] watchdog_expired3
3 ui_in[3]
4 ui_in[4]
5 ui_in[5]
6 ui_in[6]
7 ui_in[7]
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1-Bit ALU 2 [290]

• Author: FW
• Description: Test Tapeout
• GitHub repository
• Wokwi project
• Mux address: 290
• Extra docs
• Clock: 0 Hz

How it works

1-Bit ALU

How to test

1-Bit ALU

External hardware

None List external hardware used in your project (e.g. PMOD, LED display, etc), if
any

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7
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Minibyte CPU [291]

• Author: Zach Frazee
• Description: A super simple 8-bit CPU
• GitHub repository
• HDL project
• Mux address: 291
• Extra docs
• Clock: 50000000 Hz

How it works

The Minibyte CPU is a simple “toy” 8-bit CPU that uses a custom RISC instruction
set
The CPU also has some built in DFT (Design For Test) features and a Demo ROM
that can be enabled for easy testing (some external hardware required)
This was created mostly as a learning/reference project to get more familiar with
Verilog

Specs

Max CLK Frequency: 50Mhz (untested)

Data Buss Width: 8 bits
Address Buss Width: 8 bits (only 7 bits usable due to limited IO)

Registers:
A - 8 bits wide - Accumulator
M - 8 bits wide - Memory Address Pointer
PC - 8 bits wide - Program Counter
IR - 8 bits wide - Instruction Register
CCR - 2 bits wide - Condition Code Register

Memory Mapped Registers:
R0 - 8 bits wide - Gen Purpose Reg 0
R1 - 8 bits wide - Gen Purpose Reg 1
R2 - 8 bits wide - Gen Purpose Reg 2
R3 - 8 bits wide - Gen Purpose Reg 3
R4 - 8 bits wide - Gen Purpose Reg 4
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R5 - 8 bits wide - Gen Purpose Reg 5
R6 - 8 bits wide - Gen Purpose Reg 6
R7 - 8 bits wide - Gen Purpose Reg 7

Number of Instructions: 37

ALU:
Data Inputs: 2x 8 bit inputs
Data Output: 8 bits (result) + 2 bits (flags)

Operations Supported:
PASSA - Passthrough input A
PASSB - Passthrough input B
ADD - Add A and B
SUB - Subtract B from A
AND - Logical and of A, B
OR - Logical or of A, B
XOR - Logical xor of A, B
LSL - Logical shift A left by B
LSR - Logical shift A right by B
ASL - Arithmetic shift A left by B
ASR - Arithmetic shift A right by B
RSL - Rotary shift A left by B
RSR - Rotary shift A right by B

Flags:
Z - Set if result is 0, otherwise clear
N - Set if result is a negative signed int, otherwise clear

Pinout

uio[7:0] - DATA IN/OUT BUSS
ui_in[7:0] - DFT Test and Configuration Select
uo_out[7] - WE (Write Enable Signal)
uo_out[6:0] - ADDR OUT BUSS

Architecture The Minibyte CPU uses a very traditional architecture where most
data is manipulated via a single accumulator (A Register)
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The ALU operates on data from the A Register and either direct data (from memory
indexed by the M register), or immediate data (from the current instruction’s operand
indexed by the PC register)

Figure 31: Minibyte Block Diagram

*Note that DFT and testing features are not represented in the above block diagram

Power Up State Upon reset, the device will be initialized with all registers cleared
to 0x00. This includes the program counter (PC register). It is expected that the
program memory will start at address 0x00 to begin execution.

Instruction Set The Minibyte CPU has 4 instruction format types. The program
memory is chunked into bytes. Some instructions only occupy a single byte, while
others occupy 2 bytes for an opcode and a following operand

Type Length Desc
Inherent 8 - bits IR with no

operand
Immediate 16 - bits IR with an

operand
containing DATA
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Type Length Desc
Direct 16 - bits IR with an

operand
containing an
ADDRESS

Indirect 16 - bits IR with an
operand
containing an
ADDRESS that
points to another
ADDRESS

As a visual reference, here is how we would expect a basic program to be structured in
memory. Please note that all programs start execution from address 0x00 as shown.

Figure 32: Example Program Memory

The above program adds the numbers 0x05 and 0x03 together, and then loops back
to the starting IP of 0x00

Inherent IR:

Type OP[7:0]
Inherent IR OPCODE

Immediate/Direct IR:

Type OP[15:8] OP[7:0]
Immediate IR OPCODE OPERAND DATA
Direct IR OPCODE OPERAND ADDRESS
Indirect IR OPCODE OPERAND ADDRESS

Opcode Table:
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OPCODE HEX Operand CCR
NOP 0x00 N/A N/A
LDA_IMM 0x01 Immediate N/A
LDA_DIR 0x02 Direct N/A
STA_DIR 0x03 Direct N/A
STA_IND 0x04 Indirect N/A
ADD_IMM 0x05 Immediate N/A
ADD_DIR 0x06 Direct N/A
SUB_IMM 0x07 Immediate N/A
SUB_DIR 0x08 Direct N/A
AND_IMM 0x09 Immediate N/A
AND_DIR 0x0A Direct N/A
OR_IMM 0x0B Immediate N/A
OR_DIR 0x0C Direct N/A
XOR_IMM 0x0D Immediate N/A
XOR_DIR 0x0E Direct N/A
LSL_IMM 0x0F Immediate N/A
LSL_DIR 0x10 Direct N/A
LSR_IMM 0x11 Immediate N/A
LSR_DIR 0x12 Direct N/A
ASL_IMM 0x13 Immediate N/A
ASL_DIR 0x14 Direct N/A
ASR_IMM 0x15 Immediate N/A
ASR_DIR 0x16 Direct N/A
RSL_IMM 0x17 Immediate N/A
RSL_DIR 0x18 Direct N/A
RSR_IMM 0x19 Immediate N/A
RSR_DIR 0x1A Direct N/A
JMP_DIR 0x1B Direct N/A
JMP_IND 0x1C Indirect N/A
BNE_DIR 0x1D Direct Z==CLEAR
BNE_IND 0x1E Indirect Z==CLEAR
BEQ_DIR 0x1F Direct Z==SET
BEQ_IND 0x20 Indirect Z==SET
BPL_DIR 0x21 Direct N==CLEAR
BPL_IND 0x22 Indirect N==CLEAR
BMI_DIR 0x23 Direct N==SET
BMI_IND 0x24 Indirect N==SET
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OPCODE Desc
NOP No Operation
LDA_IMM Load A with immediate operand data
LDA_DIR Load A with the data stored at the operand addr
STA_DIR Store A at the operand addr
STA_IND Store A at the addr contained at the operand addr
ADD_IMM Add the immediate operand data to A
ADD_DIR Add the data stored at the operand addr to A
SUB_IMM Subtract the immediate operand data from A
SUB_DIR Subtract the data stored at the operand addr from A
AND_IMM And the immediate operand data with A
AND_DIR And the data stored at the operand addr with A
OR_IMM Or the immediate operand data with A
OR_DIR Or the data stored at the operand addr with A
XOR_IMM Xor the immediate operand data with A
XOR_DIR Xor the data stored at the operand addr with A
LSL_IMM Logical shift A left by the immediate operand data
LSL_DIR Logical shift A left by the data at the operand addr
LSR_IMM Logical shift A right by the immediate operand data
LSR_DIR Logical shift A right by the data at the operand addr
ASL_IMM Arithmetic shift A left by the immediate operand data
ASL_DIR Arithmetic shift A left by the data at the operand addr
ASR_IMM Arithmetic shift A right by the immediate operand data
ASR_DIR Arithmetic shift A right by the data at the operand addr
RSL_IMM Rotate A left by the immediate operand
RSL_DIR Rotate A left by the data stored at the operand addr
RSR_IMM Rotate A right by the immediate operand data
RSR_DIR Rotate A right by the data stored at the operand addr
JMP_DIR Jump PC to the operand addr
JMP_IND Jump PC to the addr stored at the operand addr
BNE_DIR Jump PC (if Z is clear) to the operand addr
BNE_IND Jump PC (if Z is clear) to the addr stored at the operand addr
BEQ_DIR Jump PC (if Z is set) to the operand addr
BEQ_IND Jump PC (if Z is set) to the addr stored at the operand addr
BPL_DIR Jump PC (if N is clear) to the operand addr
BPL_IND Jump PC (if N is clear) to the addr stored at the operand addr
BMI_DIR Jump PC (if N is set) to the operand addr
BMI_IND Jump PC (if N is set) to the addr stored at the operand addr
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DFT and Extra Features The Minibyte CPU has a few DFT features that might
be useful on live silicon for debug/testing. All DFT functions are enabled by an active
high signal on one of the ui_in[7:0] pins (ui_in[7:0] should be tied to zero during
normal operation)

ui_in Bit Feature
ui_in [7] Enable Memory Mapped Gen Purpose Registers
ui_in [6:5] Unused
ui_in [4] Enable Demo ROM
ui_in [3] Halt Control Unit on Next Fetch
ui_in [2:0] Debug Output Signal Select

Gen Purpose Registers: The Gen Purpose Registers are a set of 8 memory mapped
general purpose registers that can be accessed at the following addresses as long as
ui_in[7] is held high

Reg Name Mem Address
Register R0 0x78
Register R1 0x79
Register R2 0x7A
Register R3 0x7B
Register R4 0x7C
Register R5 0x7D
Register R6 0x7E
Register R7 0x7F

Debug Out Select: The CPU has an extra mux between the normal addr out mux
and the uo_out pins. To leverage this ui_in[2:0] can be used to select a debug signal
to output on the uo_out[6:0] pins in place of the normal address buss

Debug Out Select Function
ui_in[2:0] = 0b000 Normal Operation
ui_in[2:0] = 0b001 Output A[6:0] to uo_out[6:0]
ui_in[2:0] = 0b010 Output A[7] to uo_out[0]
ui_in[2:0] = 0b011 Output M[6:0] to uo_out[6:0]
ui_in[2:0] = 0b011 Output PC[6:0] to uo_out[6:0]
ui_in[2:0] = 0b011 Output IR[6:0] to uo_out[6:0]
ui_in[2:0] = 0b011 Output CCR[1:0] to uo_out[1:0]
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Debug Out Select Function
ui_in[2:0] = 0b011 Output CU_STATE[6:0] to uo_out[6:0]

How to test

Simulation The Minibyte CPU has fairly exhaustive cocotb test suite that is able
to test and verify most of the device’s intended functionality.
To run the test suite, cd into the ./test directory of the project and run “make”

Figure 33: Simulation Results

On Live Silicon The easiest way to test the Minibyte CPU on live silicon is to use
the built-in Demo ROM
To enable the Demo ROM, make sure that ui_in[4] and ui_in[7] are held high on reset,
and remain high while the program runs
Holding ui_in[4] high will enable the Demo Rom
Holding ui_in[7] high will enable the General Purpose Registers, which are re-
quired/utilized by the Demo ROM program
The Demo ROM will run the following program

PSEUDOCODE:
WHILE FOREVER{

//Part 1: Binary Count
SET A to 0
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WHILE A <= 255 {
INCREMENT A

WRITE A to ADDRESS 0x40
}

//Part 2: Walking 1
SET A to 1

WHILE A > 0 {
LEFT SHIFT A by 1

WRITE A to ADDRESS 0x40
}

//Part 3: Deadbeef to RAM/Gen Purpose Registers and back out
LOAD 0xDEADBEEF into R0->R3

WRITE R0 to ADDRESS 0x40
WRITE R1 to ADDRESS 0x40
WRITE R2 to ADDRESS 0x40
WRITE R3 to ADDRESS 0x40

}

To capture the output of the program with LEDs, it is recommended to add a D-Flip
Flop (such as a 74x273 series chip) on the output of the data buss (uio[7:0]). See
External Hardware section below for more details

External hardware

Demo Setup Something similar to the above schematic is recommended when run-
ning the Demo ROM. Note that an inverter (such as a 74x04 series chip) should be
used as shown on the CLK input of the DFF. We want data to be latched when WE falls
to 0 (after the data has had time to set up and make its way out of the chip). Please
also note that you will probably need to run the CPU at a fairly low CLK frequency in
order to see any LED activity with the naked eye.

Other Setups The sky is the limit as far as as what devices you attach to the CPU.
If you are writing your own programs, you probably are going to want to attach some
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Figure 34: Demo Schematic

sort of external ROM to the main address and data buss. Here is a recommended
setup adding an external EEPROM.

Figure 35: External EEPROM Schematic

Beyond this, you will hopefully find that the Minibyte CPU can be paired with a wide
variety 3.3V compatible parallel ROM/EPROM/EEPROM, SRAM, and IO expander
modules.

Pinout
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# Input Output Bidirectional
0 DEBUG_OUT_SELECT_0 ADDR_OUT_0 DATA_0
1 DEBUG_OUT_SELECT_1 ADDR_OUT_1 DATA_1
2 DEBUG_OUT_SELECT_2 ADDR_OUT_2 DATA_2
3 HALT_CU ADDR_OUT_3 DATA_3
4 DEMO_ROM_ENABLE ADDR_OUT_4 DATA_4
5 ADDR_OUT_5 DATA_5
6 ADDR_OUT_6 DATA_6
7 ENABLE_GEN_REGS WE_OUT DATA_7
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Bestagon LED matrix driver [292]

• Author: Marijn
• Description: Driver for a hexagonal charlieplexed LED matrix
• GitHub repository
• Wokwi project
• Mux address: 292
• Extra docs
• Clock: 1000 Hz

We all know the hexagon is the bestagon. If the cells in your eyes that catch light are
hexagonal, it doesn’t make sense that all displays use a square grid. This has to end
now. That is why the Bestagon LED matrix driver is born.

How it works

This circuit can drive a charlieplexed hexagonal LED matrix. This matrix has columns
with 3-4-5-4-3 pixels.

How to test

• Connect the display shown under “External hardware” (or if you want to see if
the circuit is functioning: connect a few LEDs between the display output pins
randomly)

• Set the Display Enable pin low.
• The Data pin is now sampled on each rising clock edge. The data shall be

entered column wise, bottom to top, right to left (in the schematic below,
“1” represents the first bit entered). The following data may make you smile:
1001010100001010100

• Now set the Display Enable pin high.
• Keep pulsing the clock pin (at least 100Hz is recommended)

External hardware

Charlieplexed hexagonal display:
(Maybe add some resistors depending on what LEDs you chose. I recommend blue
LEDs because they look cool.
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Figure 36: Schematic with LED numbering
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Pinout

# Input Output Bidirectional
0 Data Display pin 0
1 Display Enable Display pin 1
2 Display pin 2
3 Display pin 3
4 Display pin 4
5
6
7
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My Chip [293]

• Author: Ani Hakobyan
• Description: Design of my chip
• GitHub repository
• Wokwi project
• Mux address: 293
• Extra docs
• Clock: 0 Hz

How it works

It is a microchip that lights up an LED digital number and an LED light.

How to test

Test the project by starting the simulation in Wokwi then flicking switches.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7
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8-bit PRNG [294]

• Author: Jakub Duchniewicz
• Description: Pure Random Noise Generator using Linear Feedback Shift Register

with 2 halves of the 16-bit internal states shifted in different directions and xor’ed
• GitHub repository
• HDL project
• Mux address: 294
• Extra docs
• Clock: 0 Hz

How it works

The project is based on 16-bit Linear Feedback Shift Register but with a small twist -
at each clock cycle the LFSR combines it’s output from 2 halves, upper half (bits 15
to 8) is rotated left and the lower (bits 7 to 0) are rotated right and XOR’ed at the
end.
Inspired by this StackOverflow post.

How to test

You can experiment with different initialization seeds and see how it changes the gen-
erated sequence - all 0 initialization does not work, the PRNG always returns 0s from
such seed. The proposed usage of this project is as a noise generator that could be fed
to e.g. musical synthesizer or be used as a non-cryptographic randomness generator.

Pinout

# Input Output Bidirectional
0 Bit 0 initial PRNG seed Bit 0 output noise
1 Bit 1 initial PRNG seed Bit 1 output noise
2 Bit 2 initial PRNG seed Bit 2 output noise
3 Bit 3 initial PRNG seed Bit 3 output noise
4 Bit 4 initial PRNG seed Bit 4 output noise
5 Bit 5 initial PRNG seed Bit 5 output noise
6 Bit 6 initial PRNG seed Bit 6 output noise
7 Bit 7 initial PRNG seed Bit 7 output noise
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Tiny Shader [295]

• Author: Leo Moser
• Description: With Tiny Shader you can write a small program to create different

images and even animations.
• GitHub repository
• HDL project
• Mux address: 295
• Extra docs
• Clock: 25175000 Hz

How it works

Modern GPUs use fragment shaders to determine the final color for each pixel. Thou-
sands of shading units run in parallel to speed up this process and ensure that a high
FPS ratio can be achieved.
Tiny Shader mimics such a shading unit and executes a shader with 10 instructions
for each pixel. No framebuffer is used, the color values are generated on the fly. Tiny
Shader also offers an SPI interface via which a new shader can be loaded. The final
result can be viewed via the VGA output at 640x480 @ 60 Hz, although at an internal
resolution of 64x48 pixel.

Examples These images and many more can be generated with Tiny Shader. Note,
that shaders can even be animated by acessing the user or time register.

The shader for the last image is shown here:

# Shader to display a rainbow colored sine wave

# Clear R3
CLEAR R3

# Get the sine value for x and add the user value
GETX R0
GETUSER R1
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ADD R0 R1

# Set default color to R0
SETRGB R0

# Get the sine value for R0
SINE R0
HALF R0

# Get y coord
GETY R1

# If the sine value is greater
# or equal y, set color to black
IFGE R1
SETRGB R3

Architecture Tiny Shader has four (mostly) general purpose registers, REG0 to
REG3. REG0 is special in a way as it is the target or destination register for some
instructions. All registers are 6 bit wide.

Input The shader has four sources to get input from:

• X - X position of the current pixel
• Y - Y position of the current pixel
• TIME - Increments at 7.5 Hz, before it overflow it counts down again.
• USER - Register that can be set via the SPI interface.

Output The goal of the shader is to determine the final output color:

• RGB - The output color for the current pixel. Channel R, G and B can be set
individually. If not set, the color of the previous pixel is used.

Sine Look Up Table Tiny Shader contains a LUT with 16 6-bit sine values for a
quarter of a sine wave. When accesing the LUT, the entries are automatically mirrored
to form one half of a sine wave with a total of 32 6-bit values.
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Instructions The following instructions are supported by Tiny Shader. A program
consists of 10 instructions and is executed for each pixel individually. The actual
resolution is therefore one tenth of the VGA resolution (64x48 pixel).

Output

Instruction Operation Description
SETRGB RA RGB <= RA Set the output color to the

value of the specified
register.

SETR RA R <= RA[1:0] Set the red channel of the
output color to the lower
two bits of the specified
register.

SETG RA G <= RA[1:0] Set the green channel of
the output color to the
lower two bits of the
specified register.

SETB RA B <= RA[1:0] Set the blue channel of the
output color to the lower
two bits of the specified
register.

Input

Instruction Operation Description
GETX RA RA <= X Set the specified register to

the x position of the
current pixel.

GETY RA RA <= Y Set the specified register to
the y position of the
current pixel.

GETTIME RA RA <= TIME Set the specified register to
the current time value,
increases with each frame.

GETUSER RA RA <= USER Set the specified register to
the user value, can be set
via the SPI interface.
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Branches

Instruction Operation Description
IFEQ RA TAKE <= RA == R0 Execute the next

instruction if RA equals R0.
IFNE RA TAKE <= RA != R0 Execute the next

instruction if RA does not
equal R0.

IFGE RA TAKE <= RA >=
R0

Execute the next
instruction if RA is greater
then or equal R0.

IFLT RA TAKE <= RA < R0 Execute the next
instruction if RA is less
than R0.

Arithmetic

Instruction Operation Description
DOUBLE RA RA <= RA * 2 Double the value of RA.
HALF RA RA <= RA / 2 Half the value of RA.
ADD RA RB RA <= RA + RB Add RA and RB, result written into RA.

Load

Instruction Operation Description
CLEAR RA RA <= 0 Clear RA by writing 0.
LDI IMMEDIATE RA <= IMMEDIATE Load an immediate value into RA.

Special

Instruction Operation Description
SINE RA RA <= SINE[R0[4:0]] Get the sine value for R0

and write into RA. The
sine value LUT has 32
entries.
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Boolean
Instruction Operation Description
AND RA RB RA <= RA & RB Boolean AND of RA and RB, result written into RA.
OR RA RB RA <= RA RB
NOT RA RB RA <= ~RB Invert all bits of RB, result written into RA.
XOR RA RB RA <= RA ^ RB XOR of RA and RB, result written into RA.

Move
Instruction Operation Description
MOV RA RB RA <= RB Move value of RB into RA.

Shift

Instruction Operation Description
SHIFTL RA RB RA <= RA « RB Shift RA with RB to the

left, result written into RA.
SHIFTR RA RB RA <= RA » RB Shift RA with RB to the

right, result written into
RA.

Pseudo
Instruction Operation Description
NOP R0 <= R0 & R0 No operation.

How to test

First set the clock to 25.175 MHz and reset the design. For a simple test, simply
connect a Tiny VGA to the output Pmod. A shader is loaded by default and an image
should be displayed via VGA.
For advanced features, connect an SPI controller to the bidir pmod. If ui[0], the mode
signal, is set to 0, you can write to the user register via SPI. Note that only the last 6
bit are used.
If the mode signal is 1, all bytes transmitted via SPI are shifted into the shader memory.
This way you can load a new shader program. Have fun!
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External hardware

• Tiny VGA or similar VGA Pmod
• Optional: SPI controller to write the user register and new shaders

Pinout

# Input Output Bidirectional
0 mode R[1] CS
1 debug_i[0] G[1] MOSI
2 debug_i[1] B[1] MISO
3 vsync SCK
4 R[0] next_vertical
5 G[0] next_frame
6 B[0] debug_o[0]
7 hsync debug_o[1]
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Workshop_chip [296]

• Author: Inne Lemstra
• Description: My first chip design, to be honest I’m not sure how far I will get.
• GitHub repository
• Wokwi project
• Mux address: 296
• Extra docs
• Clock: 0 Hz

How it works

This is the example project in Wokwi, used in the Hackaday Europe workshop. It does
not have any changes in it at this point.

How to test

Flip switches 0-7 to changes to switch on the segments on the display

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7
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PCKY´s Successive Approximation Game [297]

• Author: pcky
• Description: Try to retrieve a pseudo-random 8-bit number by successive approx-

imation.
• GitHub repository
• HDL project
• Mux address: 297
• Extra docs
• Clock: 10000 Hz

How it works

In this little game the player guesses a 8-bit unsigned number by setting a binary
number on digital input port ‘ui_in’. The player can manually follow the ‘successive
approximation’ algorithm like its implemented in SAR ADCs to find the value. A 7-
segment LED connected to ‘uo_out’ tells the player if his provided value is above,
below or matching the wanted number.

How to test

Put the ‘reset’ port low (press the reset button on the demo board) and hold it for
about a second in order to generate a secret number. Then set the DIP switches of the
demo board in order to input a 8-bit value to the ‘ui-in’ port. The 7-segment LED will
give immediate feedback if the player’s number is above, below or exactly machting
the ‘secret’ number. The player can continuously adjust the DIP switches until the
wanted number is found.
To play another game just press the reset button again.

External hardware

This game utilizes the DIP switch and the 7-segment LED of the demo board.
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# Input Output Bidirectional

Pinout

# Input Output Bidirectional
0 Binary Number Input 0 (LSB) 7-segment-LED 0
1 Binary Number Input 1 7-segment-LED 1
2 Binary Number Input 2 7-segment-LED 2
3 Binary Number Input 3 7-segment-LED 3
4 Binary Number Input 4 7-segment-LED 4
5 Binary Number Input 5 7-segment-LED 5
6 Binary Number Input 6 7-segment-LED 6
7 Binary Number Input 7 (MSB) 7-segment-LED 7

240



Dice [298]

• Author: Mastro Gippo
• Description: Roll a dice
• GitHub repository
• Wokwi project
• Mux address: 298
• Extra docs
• Clock: 10000 Hz

How it works

Pull IN0 high, dice will roll. Release and it will stop.

How to test

Please don’t

External hardware

7seg display mapped a-g to OUT0-6, a button to VCC on IN0

Pinout

# Input Output Bidirectional
0 btn_r da
1 db
2 dc
3 dd
4 de
5 df
6 dg
7
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Display test 1 [299]

• Author: Mastro Gippo
• Description: just a test
• GitHub repository
• HDL project
• Mux address: 299
• Extra docs
• Clock: 10000 Hz

How it works

I just copied Uri’s project and messed around with its verilog

How to test

Connect 0-7 outputd to LCD pins: D4 D5 D6 D7 E

External hardware

Character LCD

Pinout

# Input Output Bidirectional
0 s1 D4
1 s2 D5
2 e1 D6
3 e2 D7
4 e3 RS
5 e4 E
6 e5
7 e6
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First TT Project [300]

• Author: t4m
• Description: First TinyTakeout Project at Hackaday
• GitHub repository
• Wokwi project
• Mux address: 300
• Extra docs
• Clock: 0 Hz

How it works

The default project just displays three segments lighting up.

How to test

You can use the project as a template to build more complicated 7 segment project.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7
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Tiny_Tapeout_6_Frank [301]

• Author: Frank Hellmann
• Description: 7Seg Around the Clock / FH display
• GitHub repository
• Wokwi project
• Mux address: 301
• Extra docs
• Clock: 0 Hz

How it works

This project was created during the Hackaday Conference 2024 and shows two simple
animations on the 7seg display. It takes the clock input (10kHz) and divides it down
depending on the input 7. The mode input 0 either shows the letters F and H or is
switched to the rotation animation.
Inputs
SW1 - IN0 = Mode (FH or Rotation Animation)
SW2 - IN1 = Blinking (turns dot on/off)
SW3 - IN2 = unused
SW4 - IN3 = unused
SW5 - IN4 = unused
SW6 - IN5 = Pause (if switched on, animation will freeze)
SW7 - IN6 = Debug (if switched on, divider will stop)
SW8 - IN7 = Divider (fast an slow)

How to test

Apply clock (10khz) and watch the 7seg display
If all inputs are off the 7seg display will show alternating letters F and H
If switch SW1 is on the 7seg display will show the rotation animation
Toggle SW2 to disable the dot blinking
Toggle SW6 to pause
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Toggle SW8 to change speed
SW7 is for debugging divider

External hardware

The 7Seg LED display is used on outputs

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7
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Hack a day Tiny Tapeout project [302]

• Author: Manuel
• Description: Circuit designed during the Hack a day workshop
• GitHub repository
• Wokwi project
• Mux address: 302
• Extra docs
• Clock: 0 Hz

How it works

TODO

How to test

TODO

External hardware

TODO

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7
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Simple NCO [303]

• Author: s1Pu11i
• Description: Simple NCO which can also output sine, square or sawtooth.
• GitHub repository
• HDL project
• Mux address: 303
• Extra docs
• Clock: 0 Hz

How it works

Simple NCO to generate a sine, square or sawtooth output. Sine wave is generated
from a table and square and sawtooth from the phase accumulator. Note: Output is
unsigned 8bit.

How to test

Modeselection is done with the uio[1:0]: 0: NONE, output is 0 1: SINE 2: SQUARE
3: SAWTOOTH Frequency word is 16bit and is given as split into upper and lower
part. Lower part is given with by uio[2]=‘1’ and ui[7:0]=word and the upper part by
uio[3]=‘1’ and ui[7:0]=word.

External hardware

None.

Pinout

# Input Output Bidirectional
0 ModeSelectionBit0
1 ModeSelectionBit1
2 FrequencyWordLower8BitUpdateEnable
3 FrequencyWordUpper8BitUpdateEnable
4
5
6
7
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SiliconJackets_Systolic_Array [324]

• Author: SiliconJackets
• Description: a tiny systolic array capable of row stationary operation
• GitHub repository
• HDL project
• Mux address: 324
• Extra docs
• Clock: 25000000 Hz

How it works

This is a systolic array capable of matrix multiplication and 2D convolution using 9
processing elements

How to test

this project needs to be connected to an external FPGA to feed in the data to compute
on

External hardware

FPGA connected to all 24 IO

Pinout

# Input Output Bidirectional
0 readA[0] write[0] readB[0]
1 readA[1] write[1] readB[1]
2 readA[2] write[2] readB[2]
3 readA[3] write[3] readB[3]
4 readA[4] write[4] readB[4]
5 readA[5] write[5] readB[5]
6 readA[6] write[6] readB[6]
7 readA[7] write[7] readB[7]
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ChatGPT designed Recurrent Spiking Neural Network
[330]

• Author: Paola Vitolo, Michael Tomlinson, ChatGPT-4, Gian Domenico Licciardo,
Andreas Andreou - pvitolo1@jh.edu

• Description: Programmable recurrent spiking neural network with 9 recurrent
LIF neurons ( 3 input - 3 output ) with fully programmable weights (8-bit)

• GitHub repository
• HDL project
• Mux address: 330
• Extra docs
• Clock: 0 Hz

How it works

This project implements 9 programmable digital recurrent LIF neurons. The neurons
are arranged in 3 layers (3 in each). Spikes_in directly maps to the inputs of the
first layer neurons. When an input spike is received, it is first multiplied by an 8 bit
weight, programmable from a custom interface, 1 per input neuron. This 8 bit value
is then added to the membrane potential of the respective neuron. When the first
layer neurons activate, its pulse is routed to each of the 3 neurons in the next layer.
There are 9x3 programmable weights describing the connectivity between the input
spikes and the first layer (9 weights=3x3), the first and second layers (9 weights=3x3),
and second and third layers (9 weights=3x3). Output spikes from the 3nd layer drive
spikes_out.

How to test

After reset, program the neuron threshold, leak rate, feedback_scale and refractory
period. Additionally program the first, 2nd, 3rd layer weights. Once programmed
activate spikes_in to represent input data, track spikes_out synchronously (1 clock
cycle pulses).

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any
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Memory

The memory block stores 39 words of 8 bits. The first 12 words represent Feedback
scale, Refractory Period, Decay rate, Membrane Threshold of each layer ( 4 parameters
x 3 layers ). The last 27 words represent the network weights ( 3 ins x 3 neurons x 3
layers ).

Address Address Data Index Data Index Data Description Data Description
dec hex MSB LSB Description LYR #
0 0 7 0 Feedback scale 1
1 1 15 8 Refractory Period 1
2 2 23 16 Decay rate 1
3 3 31 24 Membrane Threshold 1
4 4 39 32 Feedback scale 2
5 5 47 40 Refractory Period 2
6 6 55 48 Decay rate 2
7 7 63 56 Membrane Threshold 2
8 8 71 64 Feedback scale 3
9 9 79 72 Refractory Period 3
10 A 87 80 Decay rate 3
11 B 95 88 Membrane Threshold 3
12 C 103 96 weight1_0 3
13 D 111 104 weight1_1 3
14 E 119 112 weight1_2 3
15 F 127 120 weight2_0 3
16 10 135 128 weight2_1 3
17 11 143 136 weight2_2 3
18 12 151 144 weight3_0 3
19 13 159 152 weight3_1 3
20 14 167 160 weight3_2 3
21 15 175 168 weight1_0 2
22 16 183 176 weight1_1 2
23 17 191 184 weight1_2 2
24 18 199 192 weight2_0 2
25 19 207 200 weight2_1 2
26 1A 215 208 weight2_2 2
27 1B 223 216 weight3_0 2
28 1C 231 224 weight3_1 2
29 1D 239 232 weight3_2 2
30 1E 247 240 weight1_0 1
31 1F 255 248 weight1_1 1
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Address Address Data Index Data Index Data Description Data Description
32 20 263 256 weight1_2 1
33 21 271 264 weight2_0 1
34 22 279 272 weight2_1 1
35 23 287 280 weight2_2 1
36 24 295 288 weight3_0 1
37 25 303 296 weight3_1 1
38 26 311 304 weight3_2 1

ChatGPT Transcripts:

• TT6 - LIF Neuron
• TT6 - LIF Neuron: overflow managing
• TT6- LIF Neuron Test Bench
• TT6 - RLIF Neuron
• TT6 - RLIF Neuron Test bench
• TT6-RLIF Layer
• TT6-RLIF Layer overflow managing
• TT6-RLIF Layer Test Bench
• TT-6 RSNN
• TT-6 RSNN Test Bench
• TT-6 FIPO Memory
• TT-6 FIFO Memory Test bench
• TT-6 RegN
• TT-6 Control Memory
• TT-6 Control Memory Test bench
• TT-6 Top Module
• TT-6 Top Module Test Bench

Pinout

# Input Output Bidirectional
0 Input Spike 0 Output Spike

0
out_test 0

1 Input Spike 1 Output Spike
1

out_test 1

2 Input Spike 2 Output Spike
2

out_test 2
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# Input Output Bidirectional
3 Spike Input

Register
Enable

End of
Writing
Parameters
into Memory

out_test 3

4 RSNN enable Parameter
Data Written

out_test 4

5 Serial Data
IN

out_test 5

6 Parameter
Load

out_test 6

7 Test selection out_test 7
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Izhikevich Neuron [334]

• Author: ExAI Dmitri Lyalikov
• Description: ASIC Digital Implementation of Izhikevich Neuron Model with con-

figurable A, B Parameters
• GitHub repository
• HDL project
• Mux address: 334
• Extra docs
• Clock: 50000000 Hz

How it works

This is a simple Izhikevich model of a neuron. The Izhikevich model is a spiking neuron
that is able to replicate the behavior of many different types of neurons. The model
is described by the following equations: v’ = 0.04v^2 + 5v + 140 - u + I u’ = a(bv -
u) if v >= 30 then v = c, u = u + d
The model has four parameters: a, b, c, and d. These parameters can be adjusted
to replicate the behavior of different types of neurons. The model also has an input
current I that can be used to stimulate the neuron. The model is implemented in the
izhikevich_neuron module.
The izhikevich_neuron module has the following ports:

• clk: The clock signal
• reset: The reset signal
• uo_out: The output voltage of the neuron
• ui_in: Configuration input for the neuron
• uio_in: Configuration input for the neuron

The followiing parameters and IO are exposed through these module pins: | Name |
Bits | Direction | Pins | Description | | ———————|——| ———-| —————-
|—————————–| | Input Current | 5 | Input | ui[0-4] | Input current (mA)
| | Neuron Mode | 3 | Input | uio[0-2] | See Table Below | | A Param | 4 | Input |
ui[5-7], uio[3] | 4-bit custom A-parameter | | B Param | 4 | Input | uio[4:7] | 4-bit
custom B-parameter | | Membrane Potential | 8 | Output | uo[0:7] | Signed 8-bit
voltage (mV) |

Neuron Mode Behavior A B C D
0 RS (Regular Spiking) .02 .02 -65 8
1 IB (Intrinsically Bursting) .02 .02 -55 4
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Neuron Mode Behavior A B C D
2 CH (Chattering) .02 .02 -50 2
3 FS (Fast Spiking) 0.1 0.2 -65 2
4 TC (Thalamo-Cortical) .02 0.25 -65 .05
5 RZ (Resonator) 0.1 0.25 -65 2
6 LTS (Low Threshold Spiking) .02 0.25 -65 2
7 Custom A B MRU MRU

MRU: Most Recently Used Value. For example in custom mode, if the user was
previously in RS mode, the C and D values will be set to -65 and 8 respectively, but
A-B will be set to the custom values.
Default state: RS mode

How to test

The cocotb test bench provides a sweep across all neuron modes and a sweep across
all A and B parameters. The test bench also provides a sweep across all input currents.
The test bench checks that the output voltage of the neuron is within the expected
range for each configuration. This can be used to plot the output voltage of the neuron
for different configurations.

External hardware

This module requires a driver to interface with the neuron. The driver should be able
to set the input current and the neuron mode, and read the output voltage. The driver
should also be able to reset the neuron and provide a clock signal.

Pinout

# Input Output Bidirectional
0 Input Current [0] Membrane Potential [0] Neuron Select [0]
1 Input Current [1] Membrane Potential [1] Neuron Select [1]
2 Input Current [2] Membrane Potential [2] Neuron Select [2]
3 Input Current [3] Membrane Potential [3] A Parameter [3]
4 Input Current [4] Membrane Potential [4] B Parameter [0]
5 A Parameter [0] Membrane Potential [5] B Parameter [1]
6 A Parameter [1] Membrane Potential [6] B Parameter [3]
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# Input Output Bidirectional
7 A Parameter [2] Membrane Potential [7] B Parameter [4]
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X/Y Controller [416]

• Author: Charles Pope
• Description: Two-Axis position Controller (4 bits of range per axis)
• GitHub repository
• HDL project
• Mux address: 416
• Extra docs
• Clock: 50000000 Hz

How it works

This design is a simple two-dimensional axis controller. It uses 4-bit wide counter, 4-bit
Magnitude Comparator and a 4-bit wide target co-ordinate register for each dimension.
A simple State Machine is used to acquire the target value for each dimension and then
control the movement to the target co-ordinate value for each dimension in parallel
operation. Comparisons of the current position and the target value for each dimension
along the way and when the Traget is reached, the controller sits in a “AT-REST”
state and waits for another motion directive. The Target values can change at any
time after the Motion begins. New Target values will not be captured until the NEXT
MOTION request. The controller can be RESET at any time with the rst_n input.
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Inputs: Target X co-ordinate value (4 bits) on ui_in[7:4] Target Y co-ordinate value
(4 bits) on ui_in[3:0] Motion Input (1 bit) on uio_in[0]; This signal is input after the
target values are set. The movement begins after the signal is deactivated.
TT Infrastructure Signals: ena : to enable the design operation rst_n : to reset the
design clk : to operate the pipelines of the design (up to 50 MHz). uio_oe[7:0] : are
all configure for Input mode only uio_out[7:0]: are not used
Outputs: Current X position value (4 bits) on uo_out[7:4] Current Y position value (4
bits) on uo_out[3:0]

How to test

Set the X/Y Target values on ui_in[7:4] for X and ui_in3:0] for Y. Press the Motion
button and release. The Controller will advance the X and Y potions towards the target
values by one increment for each clock. If one dimension’s target value is reached before
the other, the controller will hold the current position for that one while the other one
continues to its destination. You may update the Target values at anytime after the
motion has started. The controller will move towards the NEW target values onlyif the
Motion button is pressed again.

External hardware

Connect input switches to the ui_in[7:0] pins for the target X/Y co-ordiate inputs.
Connect a push-button to the uio_in[0] pin for the Motion button. Each input should
have a resistor pull-down of about 10 KOhms to GND of the TT06 chip. Each switch
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or push-button must connect the TT06Chip VDD to the input when closed. Con-
nect either low-current (5-10 ma) LEDS or a LED Driver device a Logic Analyzer to
the uo_out[7:0] pins for X and Y position values (4-bit binary for each axis) to be
displayed.

Pinout

# Input Output Bidirectional
0 y_target0 y_pos0 motion_inp
1 y_target1 y_pos1
2 y_target2 y_pos2
3 y_target3 y_pos3
4 x_target0 x_pos0
5 x_target1 x_pos1
6 x_target2 x_pos2
7 x_target3 x_pos3
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Digital Temperature Monitor [417]

• Author: Priyansu Sahoo and Saroj Rout
• Description: This projects reads 8-bit temperature data using SPI from a LM70

sensor.
• GitHub repository
• HDL project
• Mux address: 417
• Extra docs
• Clock: 10000 Hz

Objective

This is an educational project for undergraduate engineering students with the objective
of exposing them to real-world product design. In the process, the students learn a
wide variety of engineering principles including product design, digital system design,
mixed-signal modeling, digital design using Verilog, design verification, ASIC design
flow, FPGA design flow, and documentation using gitHub.

Project Brief

This project implements a digital temperature monitor by connecting a temperature
sensor (LM70 [docs/datasheet-LM70-TI-tempSensor.pdf]) and a three-segment
display to measure and display a range of 0 − 99∘𝐶 or 0 − 99∘𝐹 with an accuracy of
±2∘𝐶.

How it Works

Mode of Operation

MODE ui_in[0] ui_in[1] ui_in[2] DESCRIPTION
1 0 X 0 External Display in deg-C
2 0 X 1 External Display in deg-F
3 1 0 X MSB Onboard Display in deg-C
4 1 1 X LSB Onboard Display in deg-C

Figure 1 shows the general block diagram of the complete system. The temperature
sensor (Texas Instrument LM70) has a dynamic range of 11 bits with a resolution of
±0.25∘𝐶. In this project, we will only use MSB 8 bits with a resolution of ±2∘𝐶.

259

https://github.com/silicon-efabless/tt06-silicon-tinytapeout-lm07


Figure 37: Block diagram of the complete system.

As shown in the timing diagram in the top right corner of the Figure 1, the LM 70
is configured as an SPI peripheral, with communication initiated by choosing the chip
(CS) low. While CS is low, the data is clocked out of the sensor every negative edge
of the SPI clock (SCK) and the design reads those data at the following positive edge.
The design provides eight SCK clock pulses, and then the CS is pulled high to stop the
communication.
The serial 8-bit data are captured in a shift register, and the data is latched after 8
SCK clock pulses. Before the data are latched, it is multiplied by 2 (left shift by 1).
This multiplication captures the fact that the LSB of the data is 2∘ 𝐶.
he exact equation to convert temperature in centigrade to Fahrenheit is 𝑇𝐹 = 𝑇𝐶9/5+
32 . To keep the hardware simple, the implemented equation is approximated to
𝑇𝐹 = 𝑇𝐶2 + 32. By approximating 9/5 by 2, the hardware is simply a left shift by 1.
But this approximation results in an error in the output that is a function of temperature:
0.62 error at 0∘𝐶 and 9.43 error at 100∘𝐶. Based on the input ui_in[2], a MUX
selects the temperature in Celsius or Fahrenheit.
The data are then converted to binary coded decimal (BCD) decimal for the two
temperature digits to be displayed. The BCD data are then converted to 8-bit 7-
segment display format to drive an external display. To save output pins, the 7-segment
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for all three displays are connected to the ports uo_out[7:0] and the displays are
time multiplexed using the select lines uio_out[5:3]. If the displays are switched
fast enough (but not too fast), all three displays appear steady without any appearance
of flicker.
Since the demo PCB board has one 7-segment display, a provision in the design is
made for test purpose where the temperature can be displayed on the onboard display,
LSB and MSB one at a time. Kindly refer to the aforementioned ‘Mode of Operation’
table for further elucidation.

How to test

This project is designed with testability in mind so it can be tested with barebone
PCB without any external hardware. The table below suggests different test modes for
testing the design without any external hardware.

TestNo. Mode uio_in[2] Ext. H/W RP2040 7-seg Ouput
1 3 0 None clk~10kHz 0
2 4 0 None clk~10kHz 0
3 3 SIO from RP2040 None clk~10kHz and SIO MSB of data sent by RP2040
4 4 SIO from RP2040 None clk~10kHz and SIO LSB of data sent by RP2040

For the first two tests, the uio_in[2] port is grounded and a clock frequency of
approximately 10 kHz is provided to the design from the RP2040 as shown in Figure 1.
And when the inputs (ui_in[2:0]) are configure in Mode 3 or 4, the single 7-segment
display should display 0 in both modes.
Test 3 and 4 in the table above will use the RP2040 as a SPI peripheral and micro-
python code will be written to emulate the temperature sensor LM70. This will allow
us to test the entire design without connecting the external temperature sensor or
display.

External hardware

Needs a LM07 interfaced on the PCB. Detail hardware plan will be updated when we
get close to receiveing the PCB.

Pinout
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# Input Output Bidirectional
0 Ext/Int 7seg-A CS (O)
1 Int-LSB 7seg-B SCK (O)
2 Ext-CorF 7seg-C SIO (I)
3 7seg-D 7seg-sel0 (O)
4 7seg-E 7seg-sel1 (O)
5 7seg-F 7seg-sel2 (O)
6 7seg-G
7 7seg-DP
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32-Bit Galois Linear Feedback Shift Register [418]

• Author: icaris lab
• Description: 32-bit Galois linear feedback shift register with taps at (32, 30, 26,

25).
• GitHub repository
• Wokwi project
• Mux address: 418
• Extra docs
• Clock: 50000000 Hz

How it works

The project is a hardware implementation of a maximum-cycle 32-bit Galois linear
feedback shift register (LFSR) with taps at registers (R32, R30, R26, R25). The LFSR
is defined with the most-significant bit (MSB) at the left-most register R32 and the
least-significant bit (LSB) at the right-most register R01. The LFSR shifts bits from
left to right (R_n+1 -> R_n), with the R30, R26, and R25 populated by XORing bits
from R_n+1 with R1, the LFSR output. The LFSR contains an initialization/fail-safe
feedback that prevents the LFSR from entering an all-zero state. If the LFSR is ever
in an all-zero state, a “1” value is inserted into R32.
A schematic of the circuit may be found at:
https://wokwi.com/projects/394707429798790145
The circuit has 10 inputs:

Input Setting
CLK Clock
RST_N Not Used
01 Not Used
02 Manual R0 Input Value
03 Input Select
04 Not Used
05 Not Used
06 Not Used
07 Not Used
08 Not Used

The CLK sets the clocking for the flip-flop registers for latching the LFSR values. In
the schematic shown in the Wokwi project, a switch is used to select either the system
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clock or an externally provided or manual clock that allows the user to manually step
through each latching event.
An 8-input DIP switch provides some flexibility to initalizing the LFSR. DIP03 (IN2)
allows the user to toggle the Input Select function, which is a multiplexer that select
whether the left-most register (R32) takes in as the input the LFSR feedback from R01,
or a value that is manually selected by the user. If manual input is selected, the taps
on R30, R26, and R25 are turned off and their inputs are shifted in from R_n+1.
DIP02 (IN1) allows a the user to manually enter a 0 or a 1 value into the leftmost
register.
The cicuit has 8 outputs. They output the values of the 8 right-most registers (R08,
R07, R06, R05, R04, R03, R01, R01).

Output Value in
01 R08
02 R07
03 R06
04 R05
05 R04
06 R03
07 R02
08 R01

How to test

The circuit can be tested by powering on the circuit, and first setting the Input Select
switch (DIP03) to “1” to reset/initialize the entire LFSR to all-zeros. The Input Select
switch can then be switched to “0” to allow the LFSR to run from its all-zero initialized
value. The first 100 8-bit output values of the LFSR from this zeroized state may be
observed using a logic analyzer, and should be:
[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0], [0 0 0 0 0 0 0
0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0], [0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0
0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0], [0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0
0],[0 0 0 0 0 0 0 0], [0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0
0], [0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0], [0 0 0 0 0 0 0
0],[1 0 0 0 0 0 0 0],[0 1 0 0 0 0 0 0],[0 0 1 0 0 0 0 0], [0 0 0 1 0 0 0 0],[0 0 0 0 1 0 0
0],[0 0 0 0 0 1 0 0],[0 0 0 0 0 0 1 0], [0 0 0 0 0 0 0 1],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0
0],[0 0 0 0 0 0 0 0], [0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0
0], [0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0], [0 0 0 0 0 0 0
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0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0], [0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0
0],[1 0 0 0 0 0 0 0],[1 1 0 0 0 0 0 0], [0 1 1 0 0 0 0 0],[0 0 1 1 0 0 0 0],[0 0 0 1 1 0 0
0],[1 0 0 0 1 1 0 0], [0 1 0 0 0 1 1 0],[1 0 1 0 0 0 1 1],[0 1 0 1 0 0 0 1],[0 0 1 0 1 0 0
0], [0 0 0 1 0 1 0 0],[0 0 0 0 1 0 1 0],[0 0 0 0 0 1 0 1],[0 0 0 0 0 0 1 0], [0 0 0 0 0 0 0
1],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0], [0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0
0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0], [0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0
0],[1 0 0 0 0 0 0 0], [0 1 0 0 0 0 0 0],[1 0 1 0 0 0 0 0],[0 1 0 1 0 0 0 0],[0 0 1 0 1 0 0
0], [0 0 0 1 0 1 0 0],[0 0 0 0 1 0 1 0],[0 0 0 0 0 1 0 1],[0 0 0 0 0 0 1 0], [0 0 0 0 0 0 0
1],[1 0 0 0 0 0 0 0],[0 1 0 0 0 0 0 0],[0 0 1 0 0 0 0 0], [0 0 0 1 0 0 0 0],[1 0 0 0 1 0 0
0],[0 1 0 0 0 1 0 0],[0 0 1 0 0 0 1 0], [0 0 0 1 0 0 0 1],[0 0 0 0 1 0 0 0],[0 0 0 0 0 1 0
0],[0 0 0 0 0 0 1 0], [0 0 0 0 0 0 0 1],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0 0],[0 0 0 0 0 0 0
0], [1 0 0 0 0 0 0 0]
A python implementation of the 32-bit Galois LFSR can be found at the link below. It
may be used for testing the hardware for sequences longer than the initial 100 values.
https://github.com/icarislab/tt06_32bit-fibonacci-prng_cu/main/docs/32-bit-
fibonacci-prng_pythong_simulation.py

External hardware

No external hardware is required.

Pinout

# Input Output Bidirectional
0 r08_val
1 data_in r07_val
2 load_en r06_val
3 r05_val
4 r04_val
5 r03_val
6 r02_val
7 r01_val_LSFR_out
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DJ8 8-bit CPU [419]

• Author: DaveX
• Description: DJ8 8-bit CPU with parallel Flash / RAM interface
• GitHub repository
• HDL project
• Mux address: 419
• Extra docs
• Clock: 14000000 Hz

How it works

DJ8 is a 8-bit CPU implemented in VHDL, originally developped for XCS10XL featur-
ing:

• 8 x 8-bit register file
• 3-4 cycles per instruction
• 15-bit address bus
• 8-bit data bus
• Built-in 256-bytes demo ROM with 2 demos

Sample assembly code could be found in test bench and demo ROM.
Other implementations:

• TT07 DJ8 8-bit CPU w/ DAC - Verilog, Mixed-signal, 8-bit DAC
• TTIHP0P2 DJ8 8-bit CPU - Verilog

Memory Map

From To Description
0x0000 0x7fff External memory
0x8000 0xffff Internal Test ROM (256 bytes, mirrored)

External memory map if using the recommended setup (see pinout)

From To Description
0x2000 0x3fff External RAM (32 bytes)
0x4000 0x5fff External Flash ROM (16KB)
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Registers There are 8 general purposes 8-bit registers (A,B,C,D,E,F,G,H), two flag
registers (CF, ZF), and 16-bit PC.
For memory addressing, 16-bit combined registers EF and GH are used.
At reset time, PC is set to 0x4000. All other registers are set to 0x80.

Instruction Set For future compatibility, please set the don’t care bits (?) to 0.

ALU reg, imm8: Immediate ALU operation

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 A A A D D D I I I I I I I I

• A : ALU operation

– 000: ADD: reg = reg + imm8
– 001: ADC: reg = reg + imm8 + CF
– 010: SUBC: reg = reg - (imm8 + CF)
– 011: MOVR: reg = reg
– 100: XOR: reg = reg ^ imm8
– 101: OR: reg = reg | imm8
– 110: AND: reg = reg & imm8
– 111: MOVI: reg = imm8

• D : register
• I : imm8

ALU dest, src, A {,shift}: ALU operation with src register & register A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 A A A D D D S S S ? F F 0 0

• A : ALU operation

– 000: ADD: dest = src + A
– 001: ADC: dest = src + A + CF
– 010: SUBC: dest = src - (A + CF)
– 011: MOVR: dest = src
– 100: XOR: dest = src ^ A
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– 101: OR: dest = src | A
– 110: AND: dest = src & A
– 111: MOVI: dest = A

• D : dest register
• S : src register
• F : final shift operation

– 00: No shift
– 01: Shift right logical (shr)
– 10: Shift right arithmetic (sar)

ALU dest, [mem], A {,shift}: ALU operation with memory & register A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 A A A D D D ? ? ? M F F 1 0

• A : ALU operation

– 000: ADD: dest = [mem] + A
– 001: ADC: dest = [mem] + A + CF
– 010: SUBC: dest = [mem] - (A + CF)
– 011: MOVR: dest = [mem]
– 100: XOR: dest = [mem] ^ A
– 101: OR: dest = [mem] | A
– 110: AND: dest = [mem] & A
– 111: MOVI: dest = A

• D : dest register
• M: memory mode

– 0: [GH]
– 1: [EF]

• F : final shift operation

– 00: No shift
– 01: Shift right logical (shr)
– 10: Shift right arithmetic (sar)

MOVR [mem], reg: Store content of register in memory
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 D D D ? ? ? M ? ? 0 1

• D: register
• M: memory mode

– 0: [GH]
– 1: [EF]

Jxx imm12: Conditional or unconditional jump to absolute address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 J J I I I I I I I I I I I I

• J: jmpcode

– 01: Jump if zero (JZ)
– 10: Jump if not zero (JNZ)
– 11: Unconditional jump (JMP)

• I: imm12

– PC = (PC & 0xe000) | (imm12 « 1)

JMP GH: Unconditional jump to address GH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Pinout Due to TT06 IO constraints, pins are shared between Address bus LSB and
Data bus OUT. It means that during memory write instructions, the address space is
only 128 bytes.

Pins Standard mode During memory write execute+writeback cycles
ui[7..0] Data bus IN Data bus IN
uio[7..0] Address bus LSB (7..0) Data bus OUT
uo[6..0] Address bus MSB (14..8) Address bus MSB (14..8)
uo[7] Write Enable Write Enable
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You can connect a 8KB parallel Flash ROM + 32b SRAM without external logic and
use uo[6] for RAM OE# and uo[5] for Flash ROM OE#.
To get a bidirectional data bus (needed for SRAM), uio bus must be connected to ui
bus with resistors. To be tested!

How to test

An internal test ROM with two demos is included for easy testing. Just select the
corresponding DIP switches at reset time to start the demo (technically, a jmp GH
instruction will be seen on the data bus thanks to the DIP switches values, with
GH=0x8080 at reset).

Demo 1: Rotating LED indicator

SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8
0 0 0 0 0 0 1 0

No external hardware needed. This demo shows a rotating indicator on the 7-segment
display. Its speed can be changed with DIP switches, the internal delay loop is entirely
deactivated when all switches are reset.

Demo 2: Bytebeat Synthetizer

SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8
0 0 0 0 0 1 1 0

Modem handshakes sound like music to your hears? It’s your lucky day! Become a
bit-crunching DJ thanks to 256 lo-fi glitchy settings.
Connect a speaker to uo[4] or use Tiny Tapeout Simon Says PMOD. Play with the
DIP switches to change the loop settings.
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It is highly recommended to add a simple low-pass RC filter on the speaker line to
filter out the buzzing 8kHz carrier. Ideal cut-off frequency between 3kHz and 8kHz,
TBD.
Set SW1 and/or SW2 at reset time to adjust speed in case the design doesn’t run at
14MHz.

External hardware

• No external hardware for Demo 1
• Speaker for Demo 2
• Otherwise: Parallel Flash ROM + optional SRAM

Pinout

# Input Output Bidirectional
0 data in 0 address out 8 address out 0 / data out 0
1 data in 1 address out 9 address out 1 / data out 1
2 data in 2 address out 10 address out 2 / data out 2
3 data in 3 address out 11 address out 3 / data out 3
4 data in 4 address out 12 address out 4 / data out 4
5 data in 5 address out 13 address out 5 / data out 5
6 data in 6 address out 14 address out 6 / data out 6
7 data in 7 write enable address out 7 / data out 7
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Servo Signal Tester [420]

• Author: Holunder
• Description: If you provide a 4kHz Clock and 8 LED’s as Output, the LED’s will

light up according to the Servo Signal on Input 0
• GitHub repository
• Wokwi project
• Mux address: 420
• Extra docs
• Clock: 4000 Hz

How it works

If you apply a Servo Signal it will be processed via Flip-Flops so that the Servo Signal
controls the Pin’s on the Output. If the Servo Pulse is 1ms (0 degree) no LED will
light up and if the Servo Pulse is 2ms (180 degrees) all the LED’s will light up.

How to test

Add 8 LED’s to the Output’s and connect a Servo Signal to Input 0

External hardware

8 LED’s and resistors. (If your LED’s need more Output Power then the Chip can
provide, use a driver) Maybe the resistors can have a low value, because the LED’s are
only ON when the Servo Signal is HIGH. So the maximum is 20% duty cicle.

How to use

Add 8 LED’s to the Output’s and connect a Servo Signal to Input 0

Pinout

# Input Output Bidirectional
0 Servo Signal LED 0
1 LED 1
2 LED 2
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# Input Output Bidirectional
3 LED 3
4 LED 4
5 LED 5
6 LED 6
7 LED 7
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Bivium-B Non-Linear Feedback Shift Register [421]

• Author: icaris lab
• Description: Bivium-B stream cipher used as a non-linear feedback shift register.
• GitHub repository
• Wokwi project
• Mux address: 421
• Extra docs
• Clock: 50000000 Hz

How it works

The project is a hardware implementation of the Bivium-B stream cipher used as a non-
linear feedback shift register (NLFSR). The NLFSR is defined with the least-significant
bit (LSB) at the left-most register R0 and the most-significant bit (MSB) at the right-
most register R176. The LFSR circular shifts bits from left to right (R_n -> R_n+1),
with the two feedback taps:
R93 = (R90 * R91) + (R65 + R92) + R170 R0 = (R174 * R175) + (R161 + R176)
+ R68
The output of the NLFSR is:
z = R65 + R92 + R161 + R176
The NLFSR contains an initialization/fail-safe feedback that prevents the LFSR from
entering an all-zero state. If the LFSR is ever in an all-zero state, a “1” value is inserted
into R0.
A schematic of the circuit may be found at:
https://wokwi.com/projects/395263962779770881
The circuit has 10 inputs:

Input Setting
CLK Clock
RST_N Not Used
01 Not Used
02 Manual R0 Input Value
03 Input Select
04 Not Used
05 Not Used
06 Not Used
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Input Setting
07 Not Used
08 Not Used

The CLK sets the clocking for the flip-flop registers for latching the NLFSR values. In
the schematic shown in the Wokwi project, a switch is used to select either the system
clock or an externally provided or manual clock that allows the user to manually step
through each latching event.
An 8-input DIP switch provides some flexibility to initalizing the NLFSR. DIP03 (IN2)
allows the user to toggle the Input Select function, which is a multiplexer that select
whether the left-most register (R0) takes in as the input the NLFSR feedback value or
a value that is manually selected by the user. The switch also controls whether R93
takes in a NLFSR feedback or a value directly from R91.
DIP02 (IN1) allows a the user to manually enter a 0 or a 1 value into the leftmost
register.
The cicuit has 8 outputs. They output the following values:

Output Value in
01 R0 (NLFSR input)
02 R68
03 (R174 * R175) + (R161 + R176)
04 R65
05 R92
06 R161
07 R176
08 z (NLFSR output)

The output allows for some self-testing, where OUT01 = OUT02 + OUT03 and OUT08
= OUT004 + OUT05 + OUT06 + OUT07.

How to test

The circuit can be tested by powering on the circuit, and first setting the Input Select
switch (DIP03) to “1” to reset/initialize the entire LFSR to all-zeros. The Input
Select switch can then be switched to “0” to allow the LFSR to run from its all-zero
initialized value. The output values of the NLFSR from this zeroized state may be
observed using a logic analyzer, and can be compared with the values obtained for the
python simulation:
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https://github.com/icarislab/tt06_biviumb-prng_cu/blob/main/docs/biviumb-
prng_python_simulation.py

External hardware

No external hardware is required.

Pinout

# Input Output Bidirectional
0 r000_val
1 data_in r068_val
2 load_en INTERM_fb
3 r065_val
4 r092_val
5 r161_val
6 r176_val
7 NLSFR_out
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Servotester [422]

• Author: Jonas Wuehr
• Description: Generate a 50 Hz test signal for RC servos.
• GitHub repository
• HDL project
• Mux address: 422
• Extra docs
• Clock: 10000000 Hz

How it works

It uses a 10 MHz clock to create a counter, which has it’s carry signal every 50Hz.
Then there is a second counter to create the 1 - 2 millisecond high signal according to
the user input.

How to test

Connect a servo PWM signal to biderectional pin 7. According to the user input on
the inputs it’s position will change and be indicated on the 7-segment display.

External hardware

A RC servo is required for testing.

Pinout

# Input Output Bidirectional
0 position bit 0
1 position bit 1
2 position bit 2
3 position bit 3
4 position bit 4
5 position bit 5
6 position bit 6
7 position bit 7 servo pulse
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Cyclic Redundancy Check 8 bit [423]

• Author: EconomIC Engineers
• Description: Error detecting circuit commonly used in digital networks and stor-

age devices to detect accidental changes to digital data.
• GitHub repository
• Wokwi project
• Mux address: 423
• Extra docs
• Clock: 0 Hz

How it works

https://en.wikipedia.org/wiki/Cyclic_redundancy_check Explain how your project
works

How to test

https://quickbirdstudios.com/blog/validate-data-with-crc/ https://thepiandi.blogspot.com/2014/07/cyclic-
redundancy-check-crc-of-ds18b20.html
Explain how to use your project

External hardware

Needed will be LEDs, a clock or button to step clock, a switch for reset and inputs.
List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

# Input Output Bidirectional
0 Data Stream input 8th bit
1 7th bit
2 6th bit
3 5th bit
4 4th bit
5 3rd bit
6 2nd bit
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# Input Output Bidirectional
7 Set for all flip flops 1st bit
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DEFAULT [424]

• Author: Beau Ambur
• Description: Displays ‘dEFAULt123’ on 7-segment LED
• GitHub repository
• HDL project
• Mux address: 424
• Extra docs
• Clock: 10000000 Hz

How it works

You mash buttons until the build doesn’t fail.

How to test

Plug it in and turn on. If there’s now smoke call it a success

External hardware

N/A

Pinout

# Input Output Bidirectional
0 segment a
1 segment b
2 segment c
3 segment d
4 segment e
5 segment f
6 segment g
7 dot
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Anomaly Detection using Isolation trees [425]

• Author: Eleftherios Batzolis
• Description: Uses an isolation tree to check for anomalies during the operation

of a device
• GitHub repository
• HDL project
• Mux address: 425
• Extra docs
• Clock: 10000000 Hz

How it works

This projects is implementing Isolation forest algorithm using ML methods.
The i_tree design encapsulates a Verilog implementation for detecting (infering) anoma-
lies in sensor data, specifically tailored for integration into System on Chips (SoCs) with
a focus on AI accelerators. This design comprises three primary modules: the Input-
Buffer, the IsolationTreeStateMachine, and the i_tree top module that orchestrates
their interaction.
InputBuffer Module: This module collects incoming sensor data bit-by-bit until it accu-
mulates a full byte. It utilizes a double-buffering mechanism to manage data efficiently,
ensuring that data processing by downstream components does not block incoming sen-
sor data collection. The buffer toggles between collecting new data and allowing the
processed data to be consumed, controlled by internal logic that responds to the data
processing status.
IsolationTreeStateMachine Module: Once a complete byte of data is ready, this state
machine takes over. It processes the data to determine if an anomaly is present based
on predefined criteria (currently, a simplistic check against a set byte pattern, but
intended to be expanded to more complex algorithms). It operates in several states:
IDLE, CHECK_ANOMALY, and PROCESS_DONE, transitioning between these states
based on the presence of valid data and completing the processing cycle.
Top Module (i_tree): This module integrates the InputBuffer and Isolation-
TreeStateMachine, routing signals between them. It feeds sensor data into the
InputBuffer, takes the processed output, and directs it into the IsolationTreeStateMa-
chine. It also handles the overall reset and clock signals for synchronization and
system stability.
Together, these modules form a robust system for real-time anomaly detection, de-
signed with scalability and efficiency in mind, making it suitable for embedded applica-
tions where performance and space are critical constraints.
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How to test

1st 8bit value are the data used for the anomaly detection.

External hardware

Binary output sensor used for anomaly detection on workload of devices.

Pinout

# Input Output Bidirectional
0 sensor_data anomaly_detected
1
2
3
4
5
6
7
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Inverters [426]

• Author: James Meech
• Description: A set of inverters
• GitHub repository
• HDL project
• Mux address: 426
• Extra docs
• Clock: 0 Hz

How it works

I made this design with the goal of seeing what different measurements I could perform
on an inverter with an analog Tiny Tapeout tile: https://github.com/JamesTimothyMeech/tt06-
programmable-thing compared to this digital one. This project contains a set of invert-
ers of different sizes connected between the input and output pins. Input and output
zero is a D Flip Flop. All other pins have an inverter connected between them. Please
see the Wokwi circuit diagram: https://wokwi.com/projects/395134712676183041 or
the info.yaml: https://github.com/JamesTimothyMeech/TT06/blob/main/info.yaml
to see which pins are inverter inputs and which are inverter outputs.

How to test

Apply inputs to the inverters with a square wave or other signal generator and mea-
sure the output. Experiment by putting inverters in parallel and see if you can mea-
sure any differences in their speed. Try connecting a large capacitor to the input
and a resistor between the input and the output to use the inverters as an am-
plifier: https://www.youtube.com/watch?v=03Ds1TnoMbA&ab_channel=MSMTUE
does this work in the same way as the inverter on the analog tile? If not, why?

External hardware

TT06 printed circuit board, signal generator, an oscilliscope or similar to measure the
input and output.

Pinout
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# Input Output Bidirectional
0 D Flip Flop

Input
D Flip Flop
output

Bidirectional inverter 1
input

1 Inverter 1
input

Inverter 1
output

Bidirectional inverter 1
output

2 Inverter 2
input

Inverter 2
output

Bidirectional inverter 2
input

3 Inverter 3
input

Inverter 3
output

Bidirectional inverter 2
output

4 Inverter 4
input

Inverter 4
output

Bidirectional inverter 3
input

5 Inverter 5
input

Inverter 5
output

Bidirectional inverter 3
output

6 Inverter 6
input, also
the output
enable for all
bidirectional
pins
connected to
inverter
inputs

Inverter 6
output

Bidirectional inverter 4
input

7 Inverter 7
input, also
the output
enable for all
bidirectional
pins
connected to
inverter
output

Inverter 7
output

Bidirectional inverter 4
output
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Lipsi: Probably the Smallest Processor in the World [427]

• Author: Martin Schoeberl
• Description: A tiny 8-bit accumulator based microprocssor.
• GitHub repository
• HDL project
• Mux address: 427
• Extra docs
• Clock: 50000000 Hz

How it works

This is the Lipsi processor. It executes a hardcoded program counts up at a readable
frequency. That number is displayed on the 7-segment display. Additionally, the DP
blinks (in hhardware).

How to test

ChiselTest is used for waveform generation. Currently, we use cocotb, this shall change
to ChiselTest. But that test is disabled

External hardware

non by default.

Pinout

# Input Output Bidirectional
0 input for Lipsi, also switch of blinking LED segment a
1 input for Lipsi segment b
2 input for Lipsi segment c
3 input for Lipsi segment d
4 input for Lipsi segment e
5 input for Lipsi segment f
6 input for Lipsi segment g
7 input for Lipsi dp (blinking)
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Chisel Hello World [428]

• Author: Martin Schoeberl
• Description: A Chisel Hello World with Counting on the 7-segment display and

showing/playing Morse Code of hello world
• GitHub repository
• HDL project
• Mux address: 428
• Extra docs
• Clock: 50000000 Hz

How it works

This is a simple Hello World project for Chisel. It is a simple counter with 7-segment
display output. And a Morse code generator writing out hello world in Morse
code.
The project displays a counter on the 7-segment display. It also writes out hello
world in Morse code on the DP of the 7-segment display. Furthermore, it also playes
the Morse code with PWM on the BIDIR PMOD, connected to a PmodAMP2.
To better see the Morse code, the counter display can be disabled with switch 0.

How to Test

Currently, we use cocotb, this shall change to ChiselTest.

External Hardware

Audio PMOD (PmodAMP2) for audio output on the lower row of the BIDIR PMOD.

Pinout

# Input Output Bidirectional
0 switch on 7-segment segment a
1 segment b
2 segment c
3 segment d
4 segment e audio
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# Input Output Bidirectional
5 segment f gain
6 segment g
7 dot: morse out nshutdown
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Signed Unsigned multiplyer [429]

• Author: Ole Henrik Moller
• Description: Do a 4x4 multiplication
• GitHub repository
• HDL project
• Mux address: 429
• Extra docs
• Clock: 0 Hz

How it works

The combinational multiplier takes as input a 4-bit multiplicand and a 4-bit multiplier
and produces as output an 8-bit product. The numbers may all be either unsigned
or signed integers as controlled by the signed_mode input. All 4+4+8+1 signals are
active high.
The multiplier in unsigned mode uses an array of 4 x 4 cells that each consists of a full
adder and an AND-gate (NAND-gate for a few cells in signed mode). The columns
and rows of the array distribute the bits of the multiplicand and multiplier, respectively,
to the two inputs of the AND-gate of each cell. The partial sums are fed from cell
to cell diagonally (from upper left to lower right), while the carries are fed from cell
to cell vertically. The sum that emanate at the right edge of the array constitute the
lower half of the product, while the sum and carries at the lower edge of the array
proceed to a ripple carry adder (with a carry-in of 0) that produces the upper part of
the product.
For signed multiplication the multiplier above is modified by employing the Modified
Baugh-Wooley multiplication algoritm, which avoids sign-extension of the multiplicand
by flipping product bits in MSB positions of both operands (cancel out for cell that
combine MSBs of both operands) with NAND-gates, and adding ones at the least and
most significant bit positions of the final ripple-carry adder.
For a more detailed explanation of the Modified Baugh-Wooley algoritm see the book
Computer Arithmetic, Algoritms and Hardware Designs by Behrooz Parhami, Oxford
University Press, 2000, or the original article by C. R. Baugh and B. A. Wooley, A
Two’s Complement Parallel Array Multiplication Algoritm, IEEE Trans. Computers,
Vol 22, pp. 1045-1047, December 1973.
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How to test

The multiplier may be tested using a TinyTapeout demoboard with various combina-
tions of multiplicand and multipliers using the input switches and checking the expected
product with the 7-segment LED display (with decimal point).

External hardware

None beyound the TinyTapeout demoboard.

Pinout

# Input Output Bidirectional
0 multiplier[0] product[0] signed_mode
1 multiplier[1] product[1]
2 multiplier[2] product[2]
3 multiplier[3] product[3]
4 multiplicand[0] product[4]
5 multiplicand[1] product[5]
6 multiplicand[2] product[6]
7 multiplicand[3] product[7]
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EFAB Demo 2 [430]

• Author: Anton Maurovic
• Description: Displays ‘EFAB’ on 7seg display
• GitHub repository
• Wokwi project
• Mux address: 430
• Extra docs
• Clock: 2 Hz

How it works

Wokwi project uses a D flip-flop ring to display “EFAB” on the 7-segment display.

How to test

Works best with a slow clock (say, 2~10Hz) or manually stepping with the demo board’s
“step” button.
Turn off all input switches, then power on the board. Expect to see “F” blinking on
the display with each clock pulse.
Switch on input switch 3, and “E” should start blinking.
Switch on input switch 1, and it should cycle through “EFAb”.
Switch on input switch 8, and letter blinking should be disabled.
These are the inputs:

In Signal Function
SW1 IN0 Run: Off = Reset; On = Run
SW2 IN1 (Unused)
SW3 IN2 state_init[0]; Normally ON
SW4 IN3 state_init[1]; Normally off
SW5 IN4 state_init[2]; Normally off
SW6 IN5 state_init[3]; Normally off
SW7 IN6 (Unused)
SW8 IN7 Blink control: On = no blink
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state_init specifies the initial state for the sequencing flip-flops during reset, and for
normal operation the first (SW3) would be switched ON, and the other three (SW4..6)
would be switched off.

External hardware

None, besides the TT demo board.

Pinout

# Input Output Bidirectional
0 run a
1 b
2 state_init[0] c
3 state_init[1] d
4 state_init[2] e
5 state_init[3] f
6 g
7 no_blink dot
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Dual Deque [431]

• Author: Andrew Dona-Couch
• Description: Dual byte-width double-ended queues
• GitHub repository
• HDL project
• Mux address: 431
• Extra docs
• Clock: 0 Hz

Two independent double-ended queues in one tiny footprint.

How it works

Each deque is an array of flip flops with a pointer to the top. The empty and full status
flags for each are directly available on pins. The push and pop inputs as well as data
bus lines are multiplexed using the deque select line.
Hold end_select low to operate as a stack. Tie end_select to push to operate as
a queue.

How to test

To push (if full is low):

• Put the data byte on data_in
• Select which deque to push to with deque_select
• Select which end to push to with end_select
• Bring push high for one cycle

To pop (if empty is low):

• Select which deque to push to with deque_select
• Select which end to push to with end_select
• Bring pop high for one cycle

To replace the last element of the deque (if empty is low):

• Select which deque to push to with deque_select
• Select which end to push to with end_select
• Put the new data byte on data_in
• Bring both push and pop high for one cycle
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To read the end of the deque:

• Select which deque to push to with deque_select
• Select which end to push to with end_select
• Wait one cycle
• Read end of deque from data_out

External hardware

You would probably want to connect this to other devices that would find it useful.

Pinout

# Input Output Bidirectional
0 Data In 0 Data Out 0 Deque Select
1 Data In 1 Data Out 1 End Select
2 Data In 2 Data Out 2 Push
3 Data In 3 Data Out 3 Pop
4 Data In 4 Data Out 4 Deque 0 Empty
5 Data In 5 Data Out 5 Deque 0 Full
6 Data In 6 Data Out 6 Deque 1 Empty
7 Data In 7 Data Out 7 Deque 1 Full
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DFFRAM Example (128 bytes) [452]

• Author: Uri Shaked
• Description: 128 bytes DFFRAM module
• GitHub repository
• HDL project
• Mux address: 452
• Extra docs
• Clock: 0 Hz

How it works

It uses a 32x32 1RW DFFRAM macro to implement a 128 bytes (1 kilobit) RAM
module.
Reseting the project does not reset the RAM contents.

How to test

Set the addr pins to the desired address, and set the in pins to the desired value.
Then, set the wen pin to 1 to write the value to the RAM, or set it to 0 to read the
value from the RAM, and pulse clk.
The out pins will contain the value read from the RAM.

Pinout

# Input Output Bidirectional
0 addr[0] out[0] in[0]
1 addr[1] out[1] in[1]
2 addr[2] out[2] in[2]
3 addr[3] out[3] in[3]
4 addr[4] out[4] in[4]
5 addr[5] out[5] in[5]
6 addr[6] out[6] in[6]
7 wen out[7] in[7]
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Retro Console [458]

• Author: Toivo Henningsson
• Description: 8½ bit retro console with sprite and tile graphics + synth
• GitHub repository
• HDL project
• Mux address: 458
• Extra docs
• Clock: 50350000 Hz

Overview

AnemoneGrafx-8 is a retro console containing

• a PPU for VGA graphics output
• an analog emulation polysynth for sound output

The console is designed to work together with the RP2040 microcontroller on the Tiny
Tapeout 06 Demo Board, the RP2040 providing

• RAM emulation,
• connections to the outside world for the console (except VGA output),
• the CPU to drive the console.

Features:

• PPU:

– 320x240 @60 fps VGA output (actually 640x480 @60 fps VGA)
∗ Some lower resolutions are also supported, useful if the design can not

be clocked at the target 50.35 MHz
– 16 color palette, choosing from 256 possible colors
– Two independently scrolling tile planes

∗ 8x8 pixel tiles
∗ color mode selectable per tile:

· 2 bits per pixel, using one of 15 subpalettes per tile
· 4 bits per pixel, halved horizontal resolution

– 64 simultaneous sprites (more can be displayed at once with some Copper
tricks)
∗ mode selectable per sprite:

· 16x8, 2 bits per pixel using one of 15 subpalettes per sprite
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· 8x8, 4 bits per pixel
∗ up to 4 sprites can be loaded and overlapping at the same pixel

· more sprites can be visible on same scan line as long as they are
not too cramped together

– Simple Copper-like function for register control synchronized to pixel timing
∗ write PPU registers
∗ wait for x/y coordinate

• AnemoneSynth:

– 16 bit 96 kHz output
– 4 voices, each with

∗ Two oscillators
· sweepable frequency
· noise option

∗ Three waveform generators with 8 waveforms: sawtooth/triangle/2
bit sawtooth/2 bit triangle/square wave/pulse wave with 37.5% /
25% / 12.5% duty cycle

∗ 2nd order low pass filter
· sweepable volume, cutoff frequency, and resonance

The console is designed to be clocked at 50.35 MHz, twice the pixel clock of 25.175
MHz used for VGAmode 640x480 @60 fps. (The frequency does not have to be terribly
precise though, and there are ways to clock the console considerably slower and still
get a useful output.)
Contents:

• Overview
• Design rationale
• How it works
• IO interfaces
• Using the PPU
• Using AnemoneSynth
• How to test
• External interfaces

Design rationale

The design target was

• PPU with 2 bpp graphics, with
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– VGA output at 640x480 @60 fps, doubled from PPU output at 320x240
@60 fps,

– 2 planes of 8x8 pixel tiles,
– at least 8 sprites per scan line.

• Four voice analog emulation synthesizer with each voice in the style of the
monosynth https://github.com/toivoh/tt05-synth.

Design considerations:

• On chip memory takes a lot of area, maybe 1 tile per 64 bytes

– 8 kB of video RAM for the PPU would be infeasible on-chip
– 192+80 bits per voice would need a lot of space

• Solution: Use the RP2040 microcontroller (with 264 kB of RAM) on the Tiny
Tapeout demo board as a RAM emulator

– Store only what is necessary on chip, use higher bandwidth to reduce
needed on-chip storage
∗ Let PPU render the same scan line contents twice to double pixels

vertically, instead of trying to do it once and store the results

• Limited number of pins ==> use serial interface(s) for RAM emulation
• PPU needs predictable memory access latency, but only reading

– I was able to implement a RP2040 solution that uses PIO (programmable
IO) and DMA but not CPU
∗ Gives fixed read latency, RP2040 can add extra latency to reach suit-

able delay
– PPU designed assuming data arrives just in time to calculate address 4

reads later

• Synth uses context switching to keep track of state of only one voice at a time

– Needs some bandwidth, but low/fixed latency is less important
– Use synchronous serial interface with start bit and TX/RX FIFOs to allow

RP2040 CPU to service the interface

• Sizing:

– PPU
∗ 16 bit address ==> might as well read 16 bit data words
∗ 8 bits/pixel read bandwidth needed for two tile planes with (16 bit)

tile map and 2 bpp graphics
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∗ 16 bits/pixel read bandwidth gives space to read in new sprites during
scan line
· keeping track of only 4 sprites at a time to reduce on-chip storage

∗ Overhead to keep track of each sprite means that it might as well use
32 bits of pixel data per scan line

∗ Palette registers take a lot of space; limit to 16 palette colors
– Synth:

∗ Context switching cannot be overlapped with processing
∗ 3x 20 bits of extra on-chip buffers allow producing four voice output

samples between context switches, keeping down context switching
time

How it works

The console consists of two parts:

• The PPU generates a stream of pixels that can be output as a VGA signals

– based on tile graphics, map, and sprite data read from memory, and the
contents of the palette registers.

• The synth generates a stream of samples by

– context switching between voices at a rate of 96 kHz
∗ producing four 96 kHz sample contributions from each voice in one

go and adding to internal buffers
– outputting each 96 kHz sample once it has received contributions from

each voice

PPU

index
depth,

sprite unit --->-\ index rgb rgb222
|| | compose --> palette -> dither----->-

tile map unit -->-/ \
|| | index, depth VGA ->
Copper out
|^ | x, y /
|| +<---------raster scan -> delay ------------->-
V| hsync, vsync, active
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---> read unit --->
data addr

The PPU is composed of a number of components, including:

• The sprite unit reads and buffers sprite data and sprite pixels, outputting color
index and depth for the topmost sprite pixel

• The tile map unit reads and buffers tile map and tile pixel data, outputting color
index and depth for the topmost tile map pixel

• The Copper reads an instruction stream of PPU register write, wait for x/y, and
jump instructions, and updates PPU registers accordingly

• The read unit prioritizes read requests to graphics memory between the sprite
unit, tile map unit, and Copper, and keeps track of the queue of reads that have
been sent but the data has not yet been received

The PPU uses 4 clock cycles to generate each pixel, which is duplicated into two VGA
pixels of two cycles each. (The two VGA pixels can be different due to dithering.)
Many of the registers and memories in the PPU are implemented as shift registers for
compactness.

The read unit The read unit transmits a sequence of 16 bit addresses, and expects
to recieve the corresponding 16 bit data word after a fixed delay. In this way, it can
address a 128 kB address space. The delay is set so that the tile map unit can request
tile map data, and receive it just in time to use it to request pixel data four pixels
later. The read unit transmits 4 address bits per cycle through the addr_out pins,
and recieves 4 data bits per cycle through the data_in pins, completing one 16 bit
read every serial cycle, which corresponds to one pixel or four clock cycles.
The tile map unit has the highest priority, followed by the Copper, and finally the sprite
unit, which is expected to have enough buffering to be able to wait for access. The
tile map unit will only make accesses on every other serial cycle on average, and the
Copper at most once every 6 serial cycles (or every 2 in fast mode), but they can both
be disabled/paused for parts of the frame to give more bandwidth to the sprite unit.

The tile map unit The tile map unit handles two independently scrolling tile planes,
each composed of 8x8 pixel tiles. The two planes get read priority on alternating serial
cycles. Each plane sends a read every four serial cycles, alternating between reading tile
map data and the corresponding pixel data for the scan line. The pixel data for each
plane (16 bits) is stored in a shift register and gradually shifted out until the register
can be quickly refilled. The sequencing of the refill operation is adjusted to provide
one extra pixel of delay in case the pixel data arrives one pixel early (as it might have
to do since the plane only gets read priority every other cycle).
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The sprite unit The sprite unit is the most complex part of the PPU. It works with
a list of 64 sprites, and has 4 sprite buffers that can hold sprite data for the current
scan line. Once the final x coordinate of a sprite has passed, the corresponding sprite
buffer can be reused to load a new sprite on the same scan line, as long as there is
time to load the data before it should be displayed.
Sprite data is stored in memory in two structures:

• The sorted buffer
• The object attribute buffer

The sorted buffer must list all sprites to be displayed, sorted from left to right, with
y coordinate and index. (16 bits/sprite) The object attribute buffer contains all other
object attributes: coordinates (only 3 lowest bits of y needed), palette, graphic tile,
etc. (32 bits/sprite)
Sprite processing proceeds in three steps, each with its own buffers and head/tail
pointers:

• Scan the sorted list to find sprites that overlap the current y coordinate (in order
of increasing x value), store them into the id buffer (4 entries)

• Load object attributes for sprites in the id buffer, store in a sprite buffer and free
the id buffer entry (4 sprite buffers)

• Load sprite pixels for sprites in the sprite buffers

Each succeeding step has higher priority to access memory, but will only be activated
when the preceeding step can feed it with input data.
Pixel data for each sprite buffer is stored in a 32 bit shift register, and gradually shifted
out as needed. If sprite pixels are loaded after the sprite should start to be displayed,
the shift register will catch up as fast as it can before starting to provide pixels that
can be displayed. This will cause the leftmost pixels of the sprite to disappear (or all
of them, if too many sprites are crowded too close).

AnemoneSynth

phase phase sample sample sample
main wave-
osc --> linear form state FIR output

combin- ==> gene- ===> variable ---> down- ---> buffer
sub --> ations rators filter sampling
osc filter
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AnemoneSynth does ANalog EMulation ONE voice at a time: it has 4 voices, but there
is only memory for one voice at a time. The synth makes frequent context switches
between the voices to be able to produce an output signal that contains the sum of
the outputs.
Each voice contributes four 96 kHz time steps worth of data to the output buffer before
being switched out for the next. As soon as all voices have contibuted to an output
buffer entry, it is fed to the output, and the space is reused for a new entry. The voices
are processed in a staggered fashion: First voice 0 contributes to output sample 0-3,
finalizing output sample 0, then voice 1 contributes to output sample 1-4, finalizing
output sample 1, etc…
The synth is nominally sampled at 3072 kHz to produce output samples at a rate of 96
kHz. The high sample rate is used so that the main oscillator can always produce an
output that is exactly periodic with a period corresponding to the oscillator frequency,
while maintaing good frequency resolution (< 1.18 cents at up to 3 kHz). The 32x
downsampling is done with a 96 tap FIR filter, so that each input sample contributes
to three output samples. The FIR filter is optimized to minimize aliasing in the 0 -
20 kHz range after the 96 kHz output has been downsampled to 48 kHz with a good
external antialiasing filter, assuming that the input is a sawtooth wave of 3 kHz or
less.
To reduce computations, most of the samples that a voice would feed into the FIR
filter are zeros. Usually, the voice steps eight 3072 kHz samples at a time, adding a
single nonzero sample. Seen from this perspective, each voice is sampled at 384 kHz.
This is just enough so that the state variable filter appears completely open when the
cutoff frequency is set to the maximum.
To maintain frequency resolution, the main oscillator can periodically take a step of
a single 3072 kHz sample, to pad out the period to the correct length. This results
in advancing the state variable filter an eigth of the usual time step, and sending an
output sample with an eigth of the usual amplitude through the FIR filter. The sub-
oscillator does not have the same independent frequency resolution at the 3 highest
octaves since it does not control the small steps, but is often used at a much lower
frequency, and can often sync up harmonically with the main oscillator.
The state variable filter is implemented using the same ideas as described and used in
https://github.com/toivoh/tt05-synth, using a shift-adder for the main computations.
The shift-adder is also time shared with the FIR filter; each FIR coefficient is stored
as a sum / difference of powers of two (the FIR table was optimized to keep down the
number of such terms). The shift-adder saturates the result if it would overflow, which
allows to overdrive the filter.
Each oscillator uses a phase of 10 bits, forming a sawtooth wave. A clock divider is
used to get the desired octave. To get the desired period, the phase sometimes needs
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to stay on the same value for two steps. To choose which steps, the phase value is bit
reversed and compared to the mantissa of the oscillator’s period value (the exponent
controls the clock divider). This way, only a single additional bit is needed to keep
track of the oscillator state beyond the current phase value.
Each time a voice is switched in, five sweep values are read from memory to decide
if the two oscillator periods and 3 control periods for the state variable filters (see
https://github.com/toivoh/tt05-synth) should be incremented or decremented. A sim-
ilar approach is used as for the oscillator update above, with a clock divider for the
exponent part of the sweep rate, and bit reversing the swept value to decide whether
to take a small or a big step when one should be taken.

IO interfaces

AnemoneGrafx-8 has four IO interfaces:

• VGA output uo / (R1, G1, B1, vsync, R0, G0, B0, hsync)
• Read-only memory interface (addr_out[3:0], data_in[3:0]) for the PPU
• TX/RX interface (tx_out[1:0], rx_in[1:0]) for the synth, system control,

and vblank events

– rx_in[1:0] = uio[7:6] can be remapped to rx_in_alt[1:0] =
ui[5:4] to free up uio[7:6] for use as outputs

• Additional video outputs (Gm1_active_out, RBm1_pixelclk_out). Can
output either

– Additional lower RGB bits to avoid having to dither the VGA output
– Active display signal and pixel clock, useful for e g HDMI output

The pins also have additional functions:

• data_in[0] is sampled into cfg[0] as long as rst_n is high, to choose the
pin configuration:

– cfg[0] = 0: uio[7:6] is used to input rx_in[1:0],
– cfg[0] = 1: uio[7:6] is used to output {RBm1_pixelclk_out,

Gm1_active_out}, rx_in_alt[1:0] is used for RX input.

• When the PPU is in reset (due to rst_n=0 or ppu_en=0), the addr_out pins
loop back the values from data_in, delayed by two register stages. This should
be useful to set up the correct latency for the PPU RAM interface.
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VGA output The VGA output follows the Tiny VGA pinout, giving two bits per
channel. The PPU works with 8 bit color:

Bits 2 1 0
Channel
red | R1 | R0 | RBm1 |
green | G1 | G0 | Gm1 |
blue | B1 | B0 | RBm1 |

where the least significant bit it is identical between the red and blue chan-
nel. By default, dithering is used to reduce the output to 6 bit color (two
bits per channel). Dithering can be disabled (using dither_en=0 in the
ppu_ctrl register), and the low order color bits {RBm1, Gm1} can be output
on {RBm1_pixelclk_out, Gm1_active_out} (using rgb332_out=1 in the
ppu_ctrl register and cfg[0]=1).
The other output option for (Gm1_active_out, RBm1_pixelclk_out) is to output
the active and pixelclk signals: (using rgb332_out=0 in the ppu_ctrl register
and cfg[0]=1)

• active is high when the current RGB output pixel is in the active display area.
• pixelclk has one period per VGA pixel (two clock cycles), and is high during

the second clock cycle that the VGA pixel is valid.

Read-only memory interface The PPU uses the read-only memory interface to
read video RAM. The interface handles only reads, but video RAM may be updated by
means external to the console (and needs to, to make the output image change!).
Each read sends a 16 bit word address and receives the 16 bit word at that address
as data, allowing the PPU to access 128 kB of data. A read occurs during one serial
cycle, or 4 clock cycles. As soon as one serial cycle is finished, the next one begins.
The address addr[15:0] for one read is sent during the serial cycle in order of lowest
bits to highest:

addr_out[3:0] = addr[3:0] // cycle 0
addr_out[3:0] = addr[7:4] // cycle 1
addr_out[3:0] = addr[11:8] // cycle 2
addr_out[3:0] = addr[15:12] // cycle 3
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The corresponding data[15:0] should be sent in the same order to data_out[3:0]
with a specific delay that is approximately three serial cycles (TODO: describe the exact
delay needed!). The data_in to addr_out loopback function has been provided to
help calibrate the required data delay.
To respond correctly to reads requests, one must know when a serial cycle starts. This
accomplished by an initial synchronization step:

• After reset, addr_pins start at zero.
• During the first serial cycle, a fixed address of 0x8421 is transmitted, and the

corresponding data is discarded.

TX/RX interface The TX/RX interface is used to send a number of types messages
and responses, mostly for use by the synth. It uses start bits to allow each side to initiate
a message when appropriate; subsequent bits are sent on subsequent clock cycles. The
tx_out and rx_in pins are expected to remain low when no messages are sent.
The tx_out[1:0] pins are used for messages from the console:

• a message is initiated with one cycle of tx_out[1:0] = 1 (low bit set, high
bit clear),

• during the next cycle, tx_out[1:0] contains the 2 bit TX header, specifying
the message type,

• during the following 8 cycles, a 16 bit payload is sent through tx_out[1:0],
from lowest bits to highest.

The rx_in[1:0] pins are used for messages to the console:

• a message is initiated with one cycle when rx_in[1:0] != 0, specifying the
RX header, i e, the message type,

• during the following 8 cycles, a 16 bit payload is sent through rx_in[1:0],
from lowest bits to highest.

TX message types:

• 0: Context switch: Store payload into state vector, return the replaced state
value with RX header=1, increment state pointer.

• 1: Sample out: Payload is the next output sample from the synth, 16 bits signed.
• 2: Read: Payload is address, return corresponding data with RX header=2.
• 3: Vblank event. Payload should be ignored.

RX message types:

• 1: Context switch response with data.
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• 2: Read response with data.
• 3: Write register. Top byte of payload is register address, bottom is data value.

Available registers:

• 0: sample_credits (initial value 1)
• 1: sbio_credits (initial value 1)
• 2: ppu_ctrl (initial value 0b01011)

The function of the registers is documented in the respective sections.

Using the PPU

The PPU is almost completely controlled through the contents of VRAM (video RAM).
The Copper is restarted when a new frame begins, and starts to read instructions at
address 0xfffe. The Copper should be used to set up the PPU registers for the new
frame before the active area starts, and is the only thing that can write PPU registers.
The PPU registers in turn control the display of tile planes and sprites.

PPU registers There are 32 PPU registers, which control different aspects of the
PPU’s operation. Each register contains up to 9 bits. The registers are laid out as
follows:

Address Category Bits
8 7 6 5 4 3 2 1 0

0 - 15 pal0-pal15 | r2 r1 rb0 g2 g1 g0 b2 b1 | X |
16 scroll | scroll_x0 |
17 . | X | scroll_y0 |
18 . | scroll_x1 |
19 . | X | scroll_y1 |
20 copper_ctrl| cmp_x |
21 . | cmp_y |
22 . | jump_low |
23 . | jump_high |
24 base_addr | base_sorted |
25 . | base_oam |
26 . | base_map1 | base_map0 | X |
27 . | X |b_tile_s | b_tile_p | X |
28 gfxmode1 | r_xe_hsync | r_x0_fp |
29 gfxmode2 |vpol|hpol| vsel | r_x0_bp |
30 gfxmode3 | xe_active |
31 displaymask| X |lspr|lpl1|lpl0|dspr|dpl1|dpl0|
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where X means that the bit(s) in question are don’t care.
Initial values:

• The gfxmode registers are initialized to 320x240 output (640x480 VGA output;
pixels are always doubled in both directions before VGA output).

• The displaymask register is initialized to load and display sprites as well as
both tile planes (initial value 0b111111).

• The other registers, except in the copper_ctrl category, need to be initialized
after reset.

Each PPU register is described in the appropriate section:

• Palette (pal0-pal15)
• Tile planes (scroll, base_map0, base_map1, b_tile_p, lpl0, lpl1, dpl0,

dpl1)
• Sprites (base_sorted, base_oam, b_tile_s, lspr, dspr)
• Copper (copper_ctrl)
• Graphics mode gfxmode1-gfxmode3)

Palette The PPU has a palette of 16 colors, each specified by 8 bits, which map to
a 9 bit RGB333 color according to

Bits 2 1 0
Channel
red | r2 | r1 | rb0 |
green | g2 | g1 | g0 |
blue | b2 | b1 | rb0 |

where the least significant bit is shared between the red and blue channels. Each palette
color is set by writing the corresponding palN register. The serial cycle when a palette
color register is written, it will be used as the current output pixel if the raster sweep
is inside the active display area.
Tile and sprite graphics typically can 2 or 4 bits per pixel. They have a 4 bit pal
attribute that specifies the subpalette, or mapping from tile pixels to palette colors:

pal Color 0 Color 1 Color 2 Color 3
value (unless

transparent)
0 0 1 2 3
4 4 5 6 7
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8 8 9 10 11
12 12 13 14 15

2 2 3 4 5
6 6 7 8 9
10 10 11 12 13
14 14 15 0 1

1 0 4 8 12
5 1 5 9 13
9 2 6 10 14
13 3 7 11 15

3 8 12 1 5
7 9 13 2 6
11 10 14 3 7

15 ----------- 16 color mode ------------

Color 0 is always transparent unless the always_opaque bit of the sprite/tile is set.
If no tile or sprite covers a given pixel, palette color 0 is used the background color.
4 color and 16 color mode uses different graphic tile formats (see below). In 16
color mode, each pixel selects a palette directly, but index 0 is still transparent unless
always_opaque=1.

Tile graphic format Tile plane and sprite graphics are both based on 16 byte
graphic tiles, storing 8 rows of pixels with each row as a separate 16 bit word, from
top to bottom:

• 2 bit/pixel tiles are 8x8 pixels
• 4 bit/pixel tiles are 4x8 pixels (strecthed to 8x8 pixels when used in tile planes)

The format of each line is

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
2 bpp | p7 | p6 | p5 | p4 | p3 | p2 | p1 | p0 |
4 bpp | p3 | p2 | p1 | p0 |

where p0 is the leftmost pixel, then comes p1, etc.
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Tile planes The PPU supports two independently scrolling tile planes, where plane
0 is in front of plane 1. Four display_mask bits control the behavior of the tile
planes:

• When dpl0 (dpl1) is cleared, plane 0 (1) is not displayed.
• When lpl0 (lpl1) is cleared, no data for plane 0 (1) is loaded.

If a plane is not to be displayed, its lplN bit can be cleared to free up more read
bandwidth for the sprites and Copper. The plane’s lplN bit should be set at least 16
pixels before it should be displayed, to avoid visual artifacts.
The tile planes are drawn based on three VRAM regions with starting addresses con-
trolled by PPU registers:

plane_tiles_base = b_tile_p << 14
map0_base = base_map0 << 12
map1_base = base_map1 << 12

The scroll_x and scroll_y registers for each plane are added to the raster posi-
tion of the current pixel to find the pixel position in the corresponding tile map to
display. The raster position is x=128, y=255 for the bottom right corner of the screen,
increasing to the right and decreasing going up.
The tile map for each plane is 64x64 tiles, and is stored row by row. Each map entry
is 16 bits:

15 - 12 11 10 - 0
| pal | always_opaque | tile_index |

where the tile is read from word address

tile_addr = plane_tiles_base + (tile_index << 3)

and pal and always_opaque work as described in the Palette section.
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Sprites Each sprite can be 16x8 pixels (4 color) or 8x8 pixels (16 color). The PPU
supports up to 64 simultaneous sprites in OAM, but only 4 can overlap at the same
time. More than 64 sprites can be displayed in a single frame by using the Copper to
change base addresses mid frame.
Once a sprite is done for the scan line, the PPU can load a new sprite into the same
slot, to display later on the same scan line, but it takes a number of pixels (partially
depending on how much memory traffic is used by the tile planes and the Copper.)
Five reads are needed to load a new sprite (1 for the sorted list, 2 for OAM, 2 for the
pixels). More may be needed to skip through the sorted list, but the PPU can scan
ahead to gather the next 4 sprite hits on the scan line. The pixel reads are dependent
on the OAM reads, which are dependent on the sorted list reads. With both tile planes
active (and the Copper inactive), a bandwidth of 8 bits/pixel is available to read in
new sprites. With 5*16 = 80 bits/sprite, a new sprite can be loaded every 10 pixels
on average (5 pixels if the tile planes are inactive).
Two display_mask bits control the behavior of the sprite display:

• When dspr is cleared, no sprites are displayed.
• When lspr is cleared, no data for sprites is loaded.

It will take some time after lspr is set before new sprites are completely loaded and
can be displayed. Sprites start loading for a new scan line as soon as the active display
part of the previous scan line is finished.
Sprites are drawn based on three VRAM regions with starting addresses controlled by
PPU registers:

sprite_tiles_base = b_tile_s << 14
sorted_base = base_sorted << 6
oam_base = base_oam << 7

Sprites are described by two lists, each with 64 entries:

• The sorted list lists sprites sorted horizontally.
• Object Attribute Memory (OAM) defines most properties for the sprites.

To display sprites correctly, they must be listed in the sorted list in order of increasing x
coordinate, starting from sorted_base. Each entry in the sorted list is 16 a bit word
with contents

15 14 13 - 8 7 - 0
| m1 | m0 | index | y |
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where

• m0 (m1) hides the sprite on even (odd) scan lines if it is set, (each output pixel
is displayed on two VGA scan lines)

• index is the sprite’s index in OAM,
• y is the sprite’s y coordinate.

If there are less than 64 sprites to be displayed, the remaining sorted entries should be
masked by setting m0 and m1, or moving the sprite to a y coordinate where it is not
displayed. If there are more sprites than can be displayed in the same area, m0 can be
set to mask some and m1 to mask others, showing them on alternating scan lines.
For each sprite, OAM contains two 16 bit words attr_y and attr_x, which define
most of the sprite’s properties. attr_y for sprite 0 is stored first, followed by attr_x,
then attr_y for sprite 1, etc… The contents are

attr_y: 15 14 13 - 4 3 2 - 0
| X | tile_index | X | ylsb3 |

attr_x: 15 - 12 11 10 - 9 8 - 0
| pal | always_opaque | depth | x |

where

• the sprite’s graphics are fetched from the two consecutive graphic tiles starting
at sprite_tiles_base + (tile_index &amp;lt;&amp;lt; 4),

• ylsb3 is the lowest 3 bits of the sprite’s y coordinate,
• pal and always_opaque work as described in the Palette section,
• depth specifies the sprite’s depth relative to the tile planes,
• x is the sprite’s x coordinate.

If several visible sprites overlap, the lowest numbered sprite with an opaque pixel wins.
The depth value then decides whether the winning sprite is displayed in front of the
tile planes:

• 0: In front of both tile planes.
• 1: Behind plane 0, in front of plane 1.
• 2: Behind both tile planes.
• 3: Not displayed.
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A sprite with a depth value of 3 will block sprites with higher index from being displayed
in the same location. If a sprite should not be displayed but does not need to block
other sprites in this manner, omit it from the sorted list instead.
The sprite x coordinate value starts at 128 at the left side of the screen, and increases
to the right. The sprite y cooridnate value starts at 255 at the bottom of the screen
and decreases going upward.

Copper The Copper executes simple instructions, which can

• write to PPU registers,
• wait until a given raster position is reached,
• jump to continue Copper execution at a different VRAM location, or
• halt the Copper until the beginning of the next frame.

The Copper is restarted each time a new frame begins, just after the last active pixel of
the previous frame has been displayed. It always starts at VRAM location 0xfffe, with
fast_mode = 0. Placing a jump instruction at 0xfffe-0xffff allows to quickly
switch between prepared lists of Copper instructions, and to choose where they should
be placed in VRAM.
Each Copper instruction is 16 bits:

15 - 7 | 6 5 - 0
| data | fast_mode | addr |

where

• data is the data to be written to a PPU register,
• fast_mode enables the Copper to run 3 times as fast, but is incompatible with

waiting and jumping,
• addr specifies the PPU register to be written (see PPU registers).

The Copper halts if it receives an instruction with addr = 0xb111111, otherwise it
writes data to the PPU register given by addr, if one exists.
The copper_ctrl PPU registers have specific effects on the Copper:
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Compare registers Writing a value to cmp_x or cmp_y causes the Copper to delay
the next write until the current raster x/y position is >= the specified compare value.
The raster position for x intially goes from 24 + r_x0_fp to 32 + r_xe_hsync as
the raster scan goes through the front porch and horizontal sync (counted as the first
part of the scan line). Due to a bug, during the back porch and active regions, it is
then calculated as

x_raster = {x[X_BITS-1:7], x[6:5] - 2'd3, x[4:0]}

where x goes from 96 + r_x0_bp to xe_active. This makes x_raster non-
monotonic, making it harder to wait for some x positions. A partial workaround for
waiting for an x_raster value that is lower than a previous value in the scan line is
to start with a write to cmp_x of the highest value expected before reaching the given
position, followed directly with a write to cmp_x of the actual value.
The raster position for y counts as zero until the active region starts in the y direction.
Then, the compare value is 512 + y - 2*screen_height where y is the number of
scan lines since the start of the active region in the y direction.

Jumps Usually, the Copper loads instructions from consecutive addresses. A se-
quence of two instructions is needed to execute a jump:

• First, write the low byte of the jump address to jump_low.
• Then, write the high byte of the jump address to jump_high. The jump is

executed.

There should be no writes to cmp_x or cmp_y between these two instructions, as the
same register is used to store the compare value and the low byte of the jump address
while waiting for the write to jump_high.

Fast mode Whenever an instruction arrives at the Copper, the value of fast_mode
in the instruction overwrites the current value. When fast_mode = 0, the Copper
does not start to read a new instruction until the previous one has finished. This allows
waiting for compare values and jumping to work as intended. When fast_mode = 1,
the Copper can send a new read every other serial cycle (unless blocked by reads
from the tile planes, which have higher priority), queuing up several reads before the
instruction data from the first one arrives. This can allow the Copper to work up to 3
times as fast, and works as intended as long as no writes are done to the copper_ctrl
registers.
The fast_mode bit
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• Should be set to zero
– at least three instructions before a write to any of the copper_ctrl reg-

isters,
– for instructions that follow a write to cmp_x or cmp_y.

• Can be set to one by an instruction that writes to jump_high (but not the other
copper_ctrl registers) unless it needs to be zero due to any of the above.

Graphics mode registers The gfxmode registers control the timing of the VGA
raster scan. The horizontal timing can be changed in fine grained steps, while the
vertical timing supports 3 options.
The intention of the gfxmode registers is to support output in video modes

VGA mode Frame rate PPU output mode at full PPU clock rate
640x480 60 fps 320x240
640x400 70 fps 320x200
640x350 70 fps 320x175

These VGA modes are all based on a pixel clock of 25.175 MHz, which can be achieved
if the console is clocked at twice the pixel clock, or 50.35 MHz. (VGA monitors should
be quite tolerant of deviations around this frequency, 50.4 MHz should be fine and can
be achieved with the RP2040 PLL.)
The intention is also to support reduced horizontal PPU resolution while generating a
VGA signal according to one of the above VGA modes, in case the console has to be
clocked at a lower frequency. This will lower the output frequency that can be achieved
by the synth as well.

Vertical timing The vsel bits select between vertical timing options:

VGA PPU output
vsel lines height recommended polarity

0 480 240 vpol=1, hpol=1
1 64 32 test mode (not VGA) -
2 400 200 vpol=0, hpol=1
3 350 175 vpol=1, hpol=0

The hpol and vpol bits control the horizontal and vertical sync polarity (0=positive,
1=negative). Original VGA monitors may use these to distinguish between modes;
more modern monitors should be able to detect the mode from the timing.
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Horizontal timing Possible horizontal timings include

PPU output VGA pixels
width /PPU pixel PPU clock gfxmode1 gfxmode2 gfxmode3
320 2 50.35 MHz 0x0178 0x0188 0x01bf
212 3 33.57 MHz 0x00f9 0x0190 0x0153
208 3 33.57 MHz 0x00f8 0x018d 0x014f
160 4 25.175 MHz 0x00bc 0x0194 0x011f

where the vsel, hpol, and vpol bits have been set to 480 line mode, but can be
easily changed by updating the gfxmode2 value. The 208 width mode is a tweak on
the 212 width mode to fit a whole number of tiles (26) in the horizontal direction.
These modes have been designed to stretch a PPU pixel horizontally into 2, 3, or 4
VGA pixels; other modes are possible with other settings.
The “PPU clock” column lists the recommended clock frequency to feed the console in
order to achieve the 60 fps (vsel=0) or 70 fps (vsel=2 or vsel=3). In practice, VGA
monitors seem quite tolerant of timing variations, and might, e g, accept a 640x480
BGA signal at down to 2/3 of the expected clock rate.
The gfxmode registers control the horizontal parameters timing according to

active: xe_active - 127 PPU pixels
front porch: 8 - r_x0_fp PPU pixels
hsync: 1 + r_xe_hsync PPU pixels
back porch: 32 - r_x0_bp PPU pixels

where xe_active must be >= 128.

The ppu_ctrl register The ppu_ctrl register controls some additional aspects
of the PPU. It can be written through the TX/RX interface.
The contents are

4 3 2 1 0
| rgb332_out | dither_en | vblank_int | X | ppu_en |

with initial value 0b01011. Functions:

• The PPU is kept in reset as long as ppu_en=0.
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• When vblank_int=1, the PPU sends a vblank message (TX header=3) on the
TX channel whenever a frame is done.

• The dither_en bit controls dithering:

– when dither_en=1, the PPU applies dithering to the output pixels,
– when dither_en=0, {R1, R0}, {G1, G0}, {B1, B0} just contain

the top 2 bits of each color channel.

• The rgb332_out bit controls what is output on the Gm1_active_out and
RBm1_pixelclk_out pins, when they are configured as outputs:

– when rgb332_out=1, the bottom bit of G and RB is output (combine with
dither_en=0 to get the whole RGB332 output)

– when rgb332_out=0, the pixel clock and active signal are output instead.

Using AnemoneSynth

AnemoneSynth has four identical voices, each with

• two oscillators (main and sub-),
• three waveform generators,
• a second order filter.

The synth is designed for an output sample rate of output_freq = 96 kHz (higher
sample rates are used in intermediate steps), which should be achievable if the con-
sole is clocked at close to the target frequency of 50.35 MHz. The user can reduce
output_freq by requesting output samples less frequently.
The hardware processes one voice at a time, and periodically performs a context switch
through the TX/RX interface to write the state of the active voice out to RAM and
read in the state of the next voice to make active. The voice state can be divided into
dynamic state (updated by the synth) and parameters (not updated by the synth).
The periods of the two oscillators, as well as three control periods for the filter, are part
of the dynamic state. These periods are continuously updated according to the voice’s
sweep parameters, which can specify a certain rate of rise or fall, or a replacement value.
Sweep parameters are not stored in the voice state, but are read from RAM as needed
to update the periods. Envelopes can be realized by changing sweep parameters over
time. The behavior of a voice is controlled through its parameters and its sweeps.
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Voice state The voice state consists of twelve 16 bit words, or 192 bits:

bit bit
address width name

0 1 delayed_s
1 2 delayed_p
3 3 fir_offset_low
6 10 phase[0] main oscillator phase

16 10 phase[1] sub-oscillator phase
26 6 running_counter
32 20 y filter state (output)
52 20 v filter state
72 14 float_period[0] main oscillator period
86 14 float_period[1] sub-oscillator period
100 10 mod[0] control period 0
110 10 mod[1] control period 1
120 10 mod[2] control period 2
130 5 lfsr_extra
135 1 ringmod_state

136 13 wf_params[0] waveform 0 parameters
149 13 wf_params[1] waveform 1 parameters
162 13 wf_params[2] waveform 2 parameters
175 13 voice_params voice parameters
188 4 unused

The parameter part of the state begins at wf_params[0]. There are three sets of
waveform parameters wf_params, each consisting of 13 bits:

bit bit
address width name default

0 3 wf
3 2 phase0_shl 0
5 2 phase1_shl 0
7 2 phase_comb 0/1/2 for waveform 0/1/2
9 2 wfvol 0

11 1 wfsign 0
12 1 ringmod 0

The default values should be seen as a suggestion of an initial point to start from when
experimenting with parameters settings. There is no hardware mechanism to set these
values as defaults.

316



The voice parameters voice_params also consist of 13 bits:

bit bit
address width name default

0 1 lfsr_en 0
1 2 filter_mode 0
3 3 bpf_en 0
6 1 hardsync 0
7 4 hardsync_phase 0

11 2 vol 0

Frequency representation Frequencies are represented by periods in a simple float-
ing point format, with 4 bits for the octave and 10 or 6 bits for the mantissa:

{oct[3:0], mantissa[9:0]} = float_period[i] // for oscillator periods
{oct[3:0], mantissa[5:0]} = mod[i] // for control periods

The period value can be calculated as

osc_period[i] = (1024 + mantissa) << oct // for oscillator periods
mod_period[i] = (64 + mantissa) << oct // for control periods

except that oct=15 corresponds to an infinite period, or a frequecy of zero. The
oscillator frequencies are given by

osc_freq[i] = output_freq * 32 / osc_period[i]

so at output_freq = 96 kHz, the highest achievable oscillator frequency is 3 kHz
(and the lowest is a bit below 0.1 Hz). The control frequencies are given by

mod_freq[i] = output_freq * 256 / mod_period[i]

The floating point representation for the periods helps keep the same relative frequency
resolution over all octaves. It also means that a linear sweep of the floating point period
representation will sound very much like an exponential sweep of the frequency, which
is similar to the linear-to-exponential conversion used by most analog synths.
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Signal path

phase phase sample sample
main wave-
osc ---> linear form

combin- ===> gene- ===> filter ---> output
sub ---> ations rators
osc

The signal path starts at the two oscillators, which feed 3 waveform generators. Each
waveform generator can be fed with a different linear combination of oscillator phases.
The waveforms are fed into the filter. Finally, the output of the filter is summed for all
the voices to create the synth’s output signal.

Oscillators The main and sub-oscillators are both sawtooth oscillators. When we
talk about phase, it refers to such a sawtooth value, increasing at a constant rate
over the period, and wrapping once per period. The sub-oscillator can produce noise
instead by setting lfsr_en=1. (TODO: Describe noise frequency dependence on
osc_period[1].)
Each voice is nominally sampled at 32 * output_freq, with 32 subsamples per out-
put sample. Most of the time, it advances by 8 subsamples at a time, but occasionally
by a single subsample, which is used to improve the frequency resolution at the three
highest octaves, and avoid aliasing. The choice of when to step by 8 subsamples and
when to step by 1 is controlled by the main oscillator, which means that the sub-
oscillator has less independent frequency resolution for the 3 highest octaves (1 bit less
when its oct=2, 2 bits less when its oct=1, and 3 bits less when its oct=0). The
sub-oscillator will often be at a much lower frequency than the main oscillator.
It is possible to combine the output of the oscillators in different ways to derive new
frequencies, but if possible, the main oscillator’s frequency should be set to the voice’s
intended pitch, (or the pitch divided by an integer that is as small as possible), to allow
the synth’s supersampling to produce the best results and to avoid aliasing artifacts,
especially at high pitches. If the voice’s output signal is periodic with the main oscilla-
tor’s period, there should be very little aliasing artifacts. If the output waveform varies
slowly when the voice output is chopped up into periods equal to the main oscillator
period, there should still be little aliasing.
The sub-oscillator can be hard-synced to the main oscillator by setting hardsync=1.
When enabled, the (10 bit) phase of the sub-oscillator resets to hardsync_phase
&amp;lt;&amp;lt; 6 whenever the main oscillator completes a period.
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Combining the oscillators The phase_comb, phase0_shl and phase1_shl pa-
rameters of each waveform specify how to calculate the waveform generator’s input
phase from the oscillator phases, with phase_comb selecting between four modes:

phase_comb Waveform generator input phase
0 (main << phase0_shl) + (sub << phase1_shl)
1 (main << phase0_shl) - (sub << phase1_shl)
2 (main << phase0_shl)
3 (sub << phase1_shl)

A good starting point is to set phase_comb to 0 for one waveform, 1 for one, and 2 for
one, leaving the other waveform parameters the same. Combined with a sub-oscillator
at around a 1/1000 of the main oscillator frequency, this creates a detuning effect.
Higher frequency compared to the main oscillator gives more detuning.

Waveform generator The wf parameter selects between 8 waveforms:

wf Waveform
0 sawtooth wave
1 sawtooth wave, 2 bit
2 triangle wave
3 triangle wave, 2 bit
4 square wave
5 pulse wave, 37.5% duty cycle
6 pulse wave, 25% duty cycle
7 pulse wave, 12.5% duty cycle

All waveforms have a zero average level. The peak-to-peak amplitude of the pulse
waves is half that of the other waveforms.
The waveform amplitude is multiplied by 2^-wfvol before feeding into the filter. If
wfsign=1, it is inverted. If wfvol=3, wfsign=1, the waveform is silenced.
If ringmod=1, the waveform is inverted when the output of the previous waveform
generator is negative (before the effects of wfvol, wfsign, and ringmod have been
applied, waveform 2 is previous to waveform 0).
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Filter The output from each waveform generator is fed into the filter. The
filter_mode parameters selects the filter type:

filter_mode Filter type
0 2nd order filter
1 2nd order filter, transposed
2 2nd order filter, two volumes, default damping
3 Two cascaded 1st order low pass filters

The meaning of the mod states depends on the filter mode:

filter_mode mod_freq[0] mod_freq[1] mod_freq[2]
0 cutoff fdamp fvol
1 cutoff fdamp fvol
2 cutoff fvol2 fvol
3 cutoff cutoff2 fvol

(see Frequency representation for the definition of mod_freq).
The transposed filter mode 1 is expected to be a bit noisier than the default mode
0, and have somewhat different overdrive behavior. The bpf_en[i] parameter can
be used in filter modes 1 and 3 to change the point where waveform i feeds into the
filter:

• For filter_mode=1, bpf_en[i]=1 makes the filter behave as a band pass
filter for that waveform.

• For filter_mode=3, bpf_en[i]=1 feeds the waveform straight into the sec-
ond low pass filter.

The volume feeding into the filter is generally given by

gain = fvol / cutoff

but for filter_mode=3,

• fvol2 is used instead of fvol for waveform 1,
• cutoff2 is used instead of cutoff when bpf_en[i]=1.

It is possible to overdrive the filter, which will saturate. This can be a desirable effect.
For filter modes 0-2, the filter cutoff frequency is given by
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cutoff_freq = cutoff / (2*pi)

Filter mode 3 uses two cascaded 1st order low pass filters, the first with cutoff frequency
given by cutoff and the second by cutoff2 (TODO: check).
Filter modes 0 and 1 implement resonant filters, the resonance is given by

Q = cutoff / f_damp

where the resonance can start to be noticeable when Q becomes > 1. The resonance
for filter mode 2 is fixed at Q=1.

Output The filter output from each voice is multiplied by 2^(-vol) and the con-
tributions are added together to from the synth’s output.

Sweeps Each voice has five sweep values, which can be used to sweep the oscillator
and control frequencies gradually up or down, or set them to new values without
interfering with synth’s state updates.
Each sweep value is a 16 bit word. A voice will periodically send read messages (TX
header = 2) to read its sweep values, with

address = (voice_index << 3) + sweep_index

where voice_index goes from 0 to 3 and sweep_index describes the target of the
sweep value:

sweep_index target
0 float_period[0]
1 float_period[1]
2 mod[0]
3 mod[1]
4 mod[2]

The sweep value can have two formats:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| X | 0 | replacement value |
| X | 1 | X |sign| oct | mantissa |
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In the first case, the target value is simply replaced. For mod targets, the lowest four
bits of the replacement value are discarded.
In the second case, the target is incremented (sign=0) or decremented (sign=1) at
a rate that is described by oct and mantissa, which follow the same kind of simple
floating point format as is used for mod values. The maximum rate that the target can
be incremented or decremented by one is output_freq / 2, achieved when oct and
mantissa are zero. In general, the sweep rate is

sweep_rate = 32 * output_freq / ((64 + mantissa) << oct)

Sweeping will never cause the target value to wrap around, but may cause it to stop a
single step short of the extreme value. When oct=15, sweeping is disabled. This can
be accomplished by setting the sweep value to all ones.

Power chords and other frequency combinations A single voice can be set up
to produce power chords, e g, letting the 3 waveform generators produce outputs in
precise or approximate frequency ratio 2 : 3 : 4 or 3 : 4 : 6. It is usually preferable
that the frequency ratios are not exact, to get some detuning.
For the 2 : 3 : 4 case, assume that the sub-oscillator frequency is set to roughly half the
main oscillator frequency, with the sub-oscillator frequency representing one frequency
unit. The desired frequncies can be achieved in different ways, e g:

Frequency Combination Computation
2 main 2 = 2
2 (main<<1) - (sub<<1) 2*2 - 1*2 = 2
3 main + sub 2 + 1 = 3
3 (main<<1) - sub 2*2 - 1 = 3
4 (main<<1) 2*2 = 4
4 main + (sub<<1) 2 + 1*2 = 4

The way that a frequency is achieved matters when the sub-oscillator is not at exactly
half the main oscillator frequency. A mix such as main, main*2 - sub, main +
sub*2 will produce three independent frequencies with some detuned upwards and
some downwards (since different signs for the sub-oscillator are used).
For the 3 : 4 : 6 case, assume that the sub-oscillator frequency is set to roughly one
fourth of the main oscillator frequency, with the sub-oscillator frequency still repre-
senting one frequency unit. In this case, the desired frequncies can, e g, be achieved
as
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Frequency Combination Computation
3 main - sub 4 - 1 = 3
4 main 4 = 4
4 (main<<1) - (sub<<2) 4*2 - 1*4 = 4
6 main + (sub<<1) 4 + 1*2 = 6
6 (main<<1) - (sub<<1) 4*2 - 1*2 = 6

A mix such as main - sub, main, main + 2*sub might be good.
Power chords work well with overdriving the filter. Filter mode 3 might sometimes be
useful, overdriving the first low pass filter but allowing the second to take out some of
the high end.
These are just some examples of how the phase_comb, phase0_shl, and
phase1_shl parameters can be used to produce waveforms with different frequencies
within the same voice.

Context switching To perform a context switch, the synth

• Sends a sequence of 12 context switch messages on the TX channel, with TX
header=0 and payload equal to the each of its twelve 16 bit state words in turn.

• Receives a sequence of 12 context switch responses on the RX channel, with
RX header=1 and payload equal to the replacement value for the corresponding
state word.

These sequences can and should overlap (for time efficiency); as soon as a context
switch message has been sent on the TX channel, a corresponding response can be
sent on the RX channel. The synth can send several context switch messages before re-
ceiving any response, as long as the sbio_credits register has been set appropriately
(see below).
One way to implement the context switch response mechanism is as a swap operation.
A state buffer of 3 x 12 sixteen bit words is needed, and a pointer into it. Each time
a context switch message arrives,

• the old value at buffer[pointer] is sent back in a context switch response
message,

• the new state value is assigned to buffer[pointer],
• pointer is incremented, and wrapped around if it reaches the end of the buffer.

Only 3 x 12 words of state are needed here because the final 12 state words are stored
in the synth at any time. Which buffer entries correspond to the state of which voice
will shift over time.

323



Another way to implement the context switch response is to keep a state buffer of
4 x 12 words, with each 12 word section dedicated to the state of a specific voice.
This is probably easier to work with. Separate read and write pointers are used, with
read_pointer initialized 12 steps (one voice) ahead of write_pointer. Each time
a context switch message arrives,

• the value at buffer[read_pointer] is sent back in a context switch response
message,

• the new state value is assigned to buffer[write_pointer],
• both pointers are incremented, and wrapped around if they reach the end of the

buffer.

In this case, since the same voice state is always kept at the same buffer position, the
parameter part of the state does not need to be written to the buffer when a context
switch message arrives.

Changing voice parameters The sweep parameters can be changed at any time,
since they are just read by the synth. More care is needed to update voice parameters
that are part of the state, since it is periodically being switched in and out.
The easiest way to change voice parameters is probably if the second scheme described
for context switching above is used, and the parameter part of the state received from
the synth during context switching is ignored. Then, the parameters can be changed
at any time in the corresponding position in the state buffer, and will be read into the
synth as needed when context switching into the voice.
Dynamic state can also be changed between the time it is switched out and in again,
but more care is needed.
The synth begins with the state of the first voice in its on-chip state, but the state is
uninitialized. During the first context switch, the write data can be ignored to throw
away this uninitialized state, making the voice read its state from the state buffer the
next time.

Credit mechanisms The sample credits mechanism lets the user limit the rate at
which the synth produces samples. The two bit sample_credits register is initialized
to one at reset, and decremented each time a new sample is finished and sent as a
message (with TX header=1). When sample_credits is zero, the synth pauses at
some point before sending the next sample. When the user is ready to receive more
samples, it should write a nonzero value to the sample_credits register. By writing
a value that is larger than one, the synth can continue processing also after sending a
sample.
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The synth tries to limit the number of outstanding messages that have not received a
reply, so as not to overload the receive FIFO in the RP2040 (or whoever receives the
messages). Each context switch and read message (TX header = 0 or 2) expects a
single reply (RX header = 1 or 2). A counter for outstanding messages is increased
whenever a message of the former type is sent, and decreased whenever a message of the
latter type is received. No credited messages will be sent as long as the outstanding
counter equals the value in the sbio_credits register; the synth will wait for a
credited response first to decrease the number of outstanding messages.
Sample out and vblank messages do not expect a response and do not increase the
outstanding counter, but should be infrequent enough that it is enough to reserve one
extra space for each in the receive FIFO. Write register messages (RX header=3) do
not affect the outstanding message counter and can be sent to the synth at any time.

How to test

A RAM emulator program for RP2040 is needed to test the console (TODO: publish
source code). The RAM emulator code can be modified to update VRAM to test the
PPU, and update synth parameters to test the synth. The RAM emulator could also
receive commands to do these things over the RP2040’s USB-UART.

Testing the PPU A Pmod is needed for VGA output, see below.
Write Copper instructions to VRAM to initialize the PPU registers that don’t have
predefined initial values (see PPU registers). Set up tile planes, sprites, or both, the
displaymask register can be used to disable tile planes or sprites if they are not used.
TODO: example (in the RAM emulator code?)

Testing AnemoneSynth Means of sound output is TBD, see below.
Disable all sweeps (set the sweep parameters to all ones) and set the voice parameters
to the default values described in the Voice state section. Set

• the main oscillator frequency to the desired pitch,
• float_period[1] = float_period[0] + (10 &amp;lt;&amp;lt;

10),
• mod[0] and mod[1] to twice the main oscillator frequency,
• mod[2] = mod[0] + (2 &amp;lt;&amp;lt; 6).

TODO: example (in the RAM emulator code?)
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External hardware

A Pmod for VGA is needed for video output, that can accept VGA output according
to https://tinytapeout.com/specs/pinouts/#vga-output. Means of sound output is
TBD. The RP2040 receives the sound samples and could output them in different
ways depending on programming. The pins ui[7:4] (or at least ui[7:6], depending
on pin configuration) have been left unused in the design so that the RP2040 can drive
them to output sound. Supporting a Pmod for I2S would be one possibility.

Pinout

# Input Output Bidirectional
0 data_in[0] R1 addr_out[0]
1 data_in[1] G1 addr_out[1]
2 data_in[2] B1 addr_out[2]
3 data_in[3] vsync addr_out[3]
4 rx_alt_in[0] R0 tx_out[0]
5 rx_alt_in[1] G0 tx_out[1]
6 B0 rx_in[0] / Gm1_active_out
7 hsync rx_in[1] / RBm1_pixelclk_out
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FazyRV-ExoTiny [462]

• Author: Meinhard Kissich
• Description: A minimal SoC based on FazyRV that uses external QSPI ROM

and RAM.
• GitHub repository
• HDL project
• Mux address: 462
• Extra docs
• Clock: 50000000 Hz

How it works

This TinyTapeout implements a System-on-Chip (SoC) design based on the FazyRV
RISC-V core. Documentation on the SoC can be found in github.com/meiniKi/FazyRV-
ExoTiny. For details on the FazyRV core, please refer to github.com/meiniKi/FazyRV.

Features
• Instantiates FazyRV with a chunk size of 2 bits.
• Uses external instruction memory (QSPI ROM) and external data memory (QSPI

RAM).
• Provides 6 memory-mapped general-purpose outputs and 7 inputs.
• Provides an SPI peripheral with programmable CPOL and a buffer of up to 4

bytes.

Pinout Overview The overview shows the pinout for the TinyTapeout Demo PCB.
A detailed description of the pins is given below.

Block Diagram The block diagram outlines the on-chip peripherals and related
addresses.

How to test

Once the design is enabled and released from reset, it first enables Quad Mode in
the RAM. The Wishbone accesses are converted into QSPI transfers to exchange
data. The first read from ROM (boot address: 0x00000000) enabled Continuous
Mode to reduce the latency. To get started, you can flash the demo firmware in
FazyRV-ExoTiny/demo. See the repo for more information.
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Figure 38: Pinout overview

Figure 39: Block diagram
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Important: rst_n is not synchronized. Make sure it is released sufficient hold time
after the rising clock edge and sufficient setup time before the falling edge. Do not
release reset while clk is low. The design appears to be on the edge of implementability.
An additional dff breaks convergence.

External hardware

• QSPI ROM: W25Q128JV or compatible
• QSPI RAM: APS6404L-3SQR or compatible

The design uses external ROM (Flash) and external RAM. All bus accesses in these
regions are converted to QSPI transfers to read data from the ROM or to read/write
data from/to the RAM, respectively. Alternatively, you can synthesize a model in an
FPGA and attach it to the BIDIR PMOD header.

Pinout

# Input Output Bidirectional
0 General

purpose input
(GPI) 0.

General
purpose
output
(GPO) 0.

QSPI ROM chip select
(low active).

1 General
purpose input
(GPI) 1.

General
purpose
output
(GPO) 1.

QSPI ROM/RAM
SDO[0].

2 General
purpose input
(GPI) 2.

General
purpose
output
(GPO) 2.

QSPI ROM/RAM
SDO[1].

3 General
purpose input
(GPI) 3.

General
purpose
output
(GPO) 3.

QSPI ROM/RAM SCK.

4 General
purpose input
(GPI) 4.

General
purpose
output
(GPO) 4.

QSPI ROM/RAM
SDO[2].
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# Input Output Bidirectional
5 General

purpose input
(GPI) 5.

General
purpose
output
(GPO) 5.

QSPI ROM/RAM
SDO[3].

6 General
purpose input
(GPI) 6.

(User) SPI
SCK.

QSPI RAM chip select
(low active).

7 (User) SPI
SDI.

(User) SPI
SDO.

NC.
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HELP for tinyTapeout [481]

• Author: Ariella Eliassaf
• Description: Use 7segment to show ‘HELP’
• GitHub repository
• Wokwi project
• Mux address: 481
• Extra docs
• Clock: 0 Hz

How it works

Every flipflop is one letter of “HELP” (from top to buttom) the last flip flop darkens
all 7 segments.

How to test

push the reset button and enjoy.

External hardware

none.

Pinout

# Input Output Bidirectional
0 seg_a
1 seg_b
2 seg_c
3 seg_d
4 seg_e
5 seg_f
6 seg_g
7
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1st passive Sigma Delta ADC [482]

• Author: Joerg Vollrath
• Description: External R1 and R2 and C2 realize a ADC
• GitHub repository
• HDL project
• Mux address: 482
• Extra docs
• Clock: 1000 Hz

How it works

A 1st order passive sigma delta modulator can be realized by attaching R1, R2 and
C to a digital input. Further information is found here: https://personalpages.hs-
kempten.de/~vollratj/InEl/SigmaDelta_ADC_real.html
A high level simulator: https://personalpages.hs-kempten.de/~vollratj/InEl/SigmaDelta.html

Figure 40: Tiny Tapeout Tile

How to test

Add the RC network and apply a DC voltage at the input in0 and out5. Select sampling,
oversamplingrate and filter in1..6. The 4 output lines 0..3 should give a 4-Bit value.
The out6,7 give a pwm signal changing with the input voltage.
All subcircuits were tested in one testfile tb_sigdel do be able to observe all signals.
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Figure 41: Figure: Circuit simulation

BASYS3 board measurements

22k resistors were used with 100 and 560 pF capacitances.
The signals at the capacitor and the digital signal inx were measured with an Electronic
Explorer board.
Measurement showed a missing enable signal for inx sampling.
The table shows valid configuration options.
inp[6] inp[5] inp[4] inp[3] inp[2] inp[1] Cint fCLK=50MHz T=20ns OSR Ldmax Bits
0 1 0 0 0 0 100pF SINC1 fsCLK 40ns 256 LD7 8
0 1 0 0 0 1 SINC1 fsCLK 160ns 64 6
0 1 0 1 0 0 100 pF SINC1 fsCLK 40ns 1024 LD9 10
0 1 0 1 0 1 SINC1 fsCLK 160ns 256 8
0 1 0 1 1 0 SINC1 fsCLK 640ns 64 6
0 1 1 0 0 0 SINC1 fsCLK 40ns 4096 12
0 1 1 0 0 1 SINC1 fsCLK 160ns 1024 10
0 1 1 0 1 0 560 pF SINC1 fsCLK 640ns 256 8 ok
0 1 1 0 1 1 560pF SINC1 fsCLK 2560ns 64 LD5 6 ok
0 1 1 1 0 0 SINC1 fsCLK 40ns 16384 14
0 1 1 1 0 1 560 pF SINC1 fsCLK 160ns 4096 12 ok
0 1 1 1 1 0 560 pF SINC1 fsCLK 640ns 1024 10 ok
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0 1 1 1 1 1 560 pF SINC1 fsCLK 2560ns 256 8 ok
1 0 0 0 0 1 SINC2 fsCLK 64 12
1 0 0 0 1 0 SINC2 fsCLK 16 8
1 0 0 1 1 0 SINC2 fsCLK 64 12
1 0 0 1 1 1 560pF SINC2 fsCLK 16 LD7 8
1 0 1 0 1 1 560 pF SINC2 fsCLK 64 LD11 12
1 1 0 0 1 0 SINC3 fsCLK 16 12
1 1 0 0 1 1 560 pF SINC3 fsCLK 4 LD5 6
1 1 0 1 1 1 560 pF SINC3 fsCLK 16 LD11 12
A better configuration scheme should be chosen in the next design. Higher fsCLK have
lower capacitance.
A better multiplexing to the 4 Bit output with a case statement was done at the FPGA
and the routing of out[3:0] done to led[3:0].

Figure 42: Oscilloscope picture BASYS3

Figure: Oscilloscope picture BASYS3 FPGA not(inx)(blue) and inp0
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Summary

It is possible with this circuit to look at the influence of R, C and oversampling on the
accuracy of a 1st order sigma delta ADC.
Bad R,C values can cause non linearities or signal limitation to VDD and ground.
The order of the SINC filter can lead to less resolution (SNR) than expected.
The order of the SINC filter should be at least one more than the sigma delta modula-
tor.
The pwm signal has 10 bits and can be used for more precise output values.

References

Martin Knauer, Jörg Vollrath, ‘Implementation and Testing of a FPGA Based Sigma
Delta Analog to Digital Converter’, 58. MPC Workshop, Reutlingen July 2017

Pinout

# Input Output Bidirectional
0 Input voltage input voltage R1, uo5 R2, C attached ADC 0 LSB
1 Sampling clock conf1 ADC 1
2 Sampling clock conf2 ADC 2
3 OSR conf1 ADC 3 MSB
4 OSR conf2 replicate ui0
5 SINC1,2,3 conf1 invert ui0 R2
6 SINC1,2,3 conf2 pwm upper
7 pwm output enable pwm lower
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Parallel / SPI modulation tester [483]

• Author: Chris Merrill
• Description: PDM/PWM/PFM waveform output based on digital data in
• GitHub repository
• HDL project
• Mux address: 483
• Extra docs
• Clock: 50000000 Hz

How it works

This is an attempt to build a DAC with multiple digital modulation schemes on the
output. It was originally intended to use the analog pins to output the analog waveform
as well, but I ran out of time.
The device will output four types of digital modulation to represent the analog input:

• PDM on uo[0]
• PFM (fixed width pulse, variable spacing) on uo[2]
• PFM (variable frequency, 50% duty cycle) on uo[3]
• PWM on uo[4]

The PDM signal is based on tracking an error accumulator, and has the fastest response
to changing input. The PWM signal has a frequency that is 1/256th of the input clock
frequency (~200kHz at 50MHz input).
The two PFM modes are less useful for actual modulation, but they can effectively do
a frequency sweep of the filter on the output.

How to test

After connecting the external RC filter, you need to set the clock rate and program the
DAC.
The modulation output rate can be divided down from the main clock input by up to
15. The uio[0:3] pins set the clock divisor.
There are two ways to program the DAC, and they can be selected between using the
uio[7] pin.
uio[7] = 0: Parallel data input

• The 8-bit DAC level is input via ui[0:7]
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• The data is latched onto the output on the rising edge of uio[4]

uio[7] = 1: SPI data input

• There is a SPI but with the pinout

– uio[5] -> SCLK
– uio[6] -> SDI
– uio[4] -> CS_L

• The 8-bit DAC level is input as 8 bits of data sent over the SPI bus when CS_L
is low.

• The SCLK signal should be slower than the main CLK signal to the IC.
• Data is latched onto the output on the rising edge of CS_L
• This path is less validated than the parallel path.

External hardware

The modulation outputs are all digital pulses of some sort. In order to get meaningful
analog levels, you’ll need to add an RC filter on the output pin that you are using. The
cuttoff will depend on what your chosen frequency is and the type of modulation.

Pinout

# Input Output Bidirectional
0 DAC Parallel Input, bit 0 PDM Waveform Output CLK_DIV[0]
1 DAC Parallel Input, bit 1 CLK_DIV[1]
2 DAC Parallel Input, bit 2 PFM Output, Single cycle pulse CLK_DIV[2]
3 DAC Parallel Input, bit 3 PFM Output, 50% duty cycle CLK_DIV[3]
4 DAC Parallel Input, bit 4 PWM Waveformn Output SPI CS_L / Parallel Latch
5 DAC Parallel Input, bit 5 SPI SCLK
6 DAC Parallel Input, bit 6 SPI SDI
7 DAC Parallel Input, bit 7 Parallel/SPI Select (0 => Parallel, 1 => SPI)
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Flash ADC [484]

• Author: htfab
• Description: 4-bit flash ADC with binary encoder
• GitHub repository
• Analog project
• Mux address: 484
• Extra docs
• Clock: 0 Hz

How it works

A resistor ladder between power and ground is used to generate 15 reference voltages
at regular intervals. The input signal is compared with each of them in turn to get a
unary ADC output. To avoid loading the input too much, some voltage followers are
added before the comparators. Finally, a digital encoder circuit with error correction
converts the unary output to binary using a tree of majority gates and multiplexers.
The digital circuit also implements some debugging logic.

How to test

For basic operation, set the first two digital inputs to 0 and apply a voltage between
0 and 1.8 V to the analog input pin. The first four output pins should give a binary
readout.
The second set of four output pins samples the unary output at bits 1, 5, 9 and 13 to
indicate if the input voltage is over the reference voltages 0.18 V, 0.66 V, 1.14 V and
1.62 V respectively.
Bidirectional pins are configured as outputs where the first four is an XOR of some
unary pins and the second four multiplexes unary pins using input pins 2 and 3 as
a selector. Both features allow checking when the input signal crosses one of the
intermediate reference thresholds.

Input range Unary Binary Sample XOR Mux00 Mux01 Mux10 Mux11
0 V to 0.06 V 000000000000000 0000 0000 0000 0000 0000 0000 0000
0.06 V to 0.18 V 000000000000001 0001 0000 0001 0001 0000 0000 0000
0.18 V to 0.3 V 000000000000011 0010 0001 0011 0011 0000 0000 0000
0.3 V to 0.42 V 000000000000111 0011 0001 0111 0111 0000 0000 0000
0.42 V to 0.54 V 000000000001111 0100 0001 1111 1111 0000 0000 0000
0.54 V to 0.66 V 000000000011111 0101 0001 1110 1111 0001 0000 0000
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Input range Unary Binary Sample XOR Mux00 Mux01 Mux10 Mux11
0.66 V to 0.78 V 000000000111111 0110 0011 1100 1111 0011 0000 0000
0.78 V to 0.9 V 000000001111111 0111 0011 1000 1111 0111 0000 0000
0.9 V to 1.02 V 000000011111111 1000 0011 0000 1111 1111 0000 0000
1.02 V to 1.14 V 000000111111111 1001 0011 0001 1111 1111 0001 0000
1.14 V to 1.26 V 000001111111111 1010 0111 0011 1111 1111 0011 0000
1.26 V to 1.38 V 000011111111111 1011 0111 0111 1111 1111 0111 0000
1.38 V to 1.5 V 000111111111111 1100 0111 1111 1111 1111 1111 0000
1.5 V to 1.62 V 001111111111111 1101 0111 1110 1111 1111 1111 0001
1.62 V to 1.74 V 011111111111111 1110 1111 1100 1111 1111 1111 0011
1.74 V to 1.8 V 111111111111111 1111 1111 1000 1111 1111 1111 0111

The circuit also provides debug functionality to independently check the ADC and the
encoder.
If the first input pin is set to 1, the circuit is in encoder debug mode where the rest of
the input pins as well as the bidirectional pins (which are now turned into inputs) are
used instead of the ADC. The output pins function as described above, the bidirectional
pins obviously cannot provide output in this case.
Otherwise, if the second input pin is set to 1, the circuit is in ADC debug mode where
the raw unary output from the ADC is directly sent to the output and bidirectional
pins.

External hardware

You can use your favourite microcontroller to generate an analog input by outputting
a PWM signal and adding an external capacitor to ground that together with the
microcontroller’s built-in resistance makes a simple low-pass RC filter.

Pinout

# Input Output Bidirectional
0 debug encoder (skip ADC) binary bit 0 xor of unary bits 0, 4, 8, 12
1 debug ADC (skip encoder) binary bit 1 xor of unary bits 1, 5, 9, 13
2 unary selector bit 0 binary bit 2 xor of unary bits 2, 6, 10, 14
3 unary selector bit 1 binary bit 3 xor of unary bits 3, 7, 11
4 (debug mode only) unary bit 1 unary bit 4*sel
5 (debug mode only) unary bit 5 unary bit 4*sel+1
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# Input Output Bidirectional
6 (debug mode only) unary bit 9 unary bit 4*sel+2
7 (debug mode only) unary bit 13 unary bit 4*sel+3

Analog pins

ua# analog# Description
0 0 ADC input
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CSIT-Luks [485]

• Author: CSIT Team (Jan Furlan, Jurica Gašpar, Marko Marinović, Tin Sorić,
Ivan Štignedec, Dino Terman, Jurica Kundrata)

• Description: Camera lighting settings recommender.
• GitHub repository
• HDL project
• Mux address: 485
• Extra docs
• Clock: 1000 Hz

How it works

This project implements a settings recommender for photography. The ISO, shutter
speed and focal ratio values are inputed using a rotational encoder and a four-digit
seven-segment display. After inputing the values, an external luxmeter is read via SPI
interface and all of the values are used to retrieve the recommended setting from a LUT
in an SPI Flash. The recommended value is displayed on the four-digit seven-segment
display.

How to test

This project uses a user interface consisting of a rotational encoder and four-digit seven-
segment display. After reset or power-up, first the ISO value is selected by rotating
the encoder. The current value is displayed on the four-digit seven-segment display
and it is confirmed by a short press on the rotational encoder. Next, the shutter speed
is selected by rotating and confirmed by a short press of the encoder. Finally, the
focal ratio is selected by rotating the encoder and it is confirmed by a medium press of
the encoder. After reading the luxmeter and the flash-based LUT, the recommended
settings value is shown on the four-digit seven-segment display.

External hardware

External hardware comprises of a rotational encoder, a four-digit seven-segment display,
SPI luxmeter (e.g. Pmod ALS) and SPI flash (e.g. MX25L3233FMI-08G).

Pinout
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# Input Output Bidirectional
0 A (rot_encoder) a (seven_seg) an[0] (seven_seg)
1 B (rot_encoder) b (seven_seg) an[1] (seven_seg)
2 PB (rot_encoder) c (seven_seg) an[2] (seven_seg)
3 MISO (spi_flash) d (seven_seg) an[3] (seven_seg)
4 MISO (spi_sensor) e (seven_seg) SCLK (spi_flash, spi_sensor)
5 f (seven_seg) SS (spi_flash)
6 g (seven_seg) SS (spi_sensor)
7 dp (seven_seg) MOSI (spi_flash)
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Double Inverter [486]

• Author: Matt Venn
• Description: A little inverter followed by a bigger one
• GitHub repository
• Analog project
• Mux address: 486
• Extra docs
• Clock: 0 Hz

How it works

Initially I just wanted to do an inverter, but then I thought I’ll make the inverter much
more powerful. The problem with much bigger output transistors is that their gate
capacitance increases, and so the inverter is slower. My adding a primary, smaller
inverter in front, I get much faster rise times on the big transistors.

How to test

Apply a pulse to analog pin 1 and see it replicated on analog pin 0.

External hardware

Oscilloscope

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7
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Analog pins

ua# analog# Description
0 5 output
1 0 input
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Trivium Non-Linear Feedback Shift Register [487]

• Author: icaris lab
• Description: Trivium stream cipher used as a non-linear feedback shift register.
• GitHub repository
• Wokwi project
• Mux address: 487
• Extra docs
• Clock: 50000000 Hz

How it works

The project is a hardware implementation of the Trivium stream cipher used as a non-
linear feedback shift register (NLFSR). The NLFSR is defined with the least-significant
bit (LSB) at the left-most register R0 and the most-significant bit (MSB) at the right-
most register R287. The LFSR circular shifts bits from left to right (R_n -> R_n+1),
with the three feedback taps:
R177 = (R174 * R175) + (R161 + R176) + R263 R93 = (R90 * R91) + (R65 +
R92) + R170 R0 = (R285 * R286) + (R242 + R287) + R68
The output of the NLFSR is:
z = R65 + R92 + R161 + R176 + R242 + R287
The NLFSR contains an initialization/fail-safe feedback that prevents the LFSR from
entering an all-zero state. If the LFSR is ever in an all-zero state, a “1” value is inserted
into R0.
A schematic of the circuit may be found at:
https://wokwi.com/projects/395357890431011841
The circuit has 10 inputs:

Input Setting
CLK Clock
RST_N Not Used
01 Not Used
02 Manual R0 Input Value
03 Input Select
04 Not Used
05 Not Used
06 Not Used
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Input Setting
07 Not Used
08 Not Used

The CLK sets the clocking for the flip-flop registers for latching the NLFSR values. In
the schematic shown in the Wokwi project, a switch is used to select either the system
clock or an externally provided or manual clock that allows the user to manually step
through each latching event.
An 8-input DIP switch provides some flexibility to initalizing the NLFSR. DIP03 (IN2)
allows the user to toggle the Input Select function, which is a multiplexer that select
whether the left-most register (R0) takes in as the input the NLFSR feedback value or a
value that is manually selected by the user. The switch also controls whether R93 and
R177 takes in a NLFSR feedback or a value directly from R92 or R176, respectively.
DIP02 (IN1) allows a the user to manually enter a 0 or a 1 value into the leftmost
register.
The cicuit has 8 outputs. They output the following values:

Output Value in
01 R0 (NLFSR input)
02 R65
03 R92
04 R161
05 R176
06 R242
07 R287
08 z (NLFSR output)

The output allows for some self-testing, where OUT08 = OUT02 + OUT03 + OUT04
+ OUT05 + OUT06 + OUT07.

How to test

The circuit can be tested by powering on the circuit, and first setting the Input Select
switch (DIP03) to “1” to reset/initialize the entire LFSR to all-zeros. The Input
Select switch can then be switched to “0” to allow the LFSR to run from its all-zero
initialized value. The output values of the NLFSR from this zeroized state may be
observed using a logic analyzer, and can be compared with the values obtained for the
python simulation:
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External hardware

No external hardware is required.

Pinout

# Input Output Bidirectional
0 r000_val
1 data_in INTERM_fb
2 load_en r092_val
3 r093_val
4 r176_val
5 r177_val
6 r287_val
7 NLSFR_out
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Analog Test Circuit ITS: VCO [488]

• Author: Astria Nur Irfansyah
• Description: Voltage controlled ring oscillator.
• GitHub repository
• Analog project
• Mux address: 488
• Extra docs
• Clock: 0 Hz

How it works

The circuit is a voltage-controlled ring oscillator (VCRO) using transmission gates as
the delay control element. It is based on the paper:
Retdian, N., Takagi, S., & Fujii, N. (2002). Voltage controlled ring oscillator with wide
tuning range and fast voltage swing. 2002 IEEE Asia-Pacific Conference on ASIC, AP-
ASIC 2002 - Proceedings, 201–204. https://doi.org/10.1109/APASIC.2002.1031567.

How to test

Pinouts:

• input pins: v_control_n, v_control_p
• output pin: out

External hardware

To test, apply control voltage v_control_n and v_control_p, where the sum of the
two voltages should ideally be equal to the supply voltage of 1.8V.

Pinout

# Input Output Bidirectional
0 out5
1 out4
2 out3
3 out2
4 out1
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# Input Output Bidirectional
5 out0
6
7

Analog pins

ua# analog# Description
0 1 out
1 3 vcon_n
2 2 vcon_p
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SADdiff_v1 [489]

• Author: Daniel Burke
• Description: digital neuron component test
• GitHub repository
• HDL project
• Mux address: 489
• Extra docs
• Clock: 10 Hz

How it works

Takes two 8bit values in and performs addition/subtraction

How to test

Supply two 8bit numbers and get back sum

External hardware

None needed.

Pinout

# Input Output Bidirectional
0 ui_in[0] uo_out[0] uio[0]
1 ui_in[1] uo_out[1] uio[1]
2 ui_in[2] uo_out[2] uio[2]
3 ui_in[3] uo_out[3] uio[3]
4 ui_in[4] uo_out[4] uio[4]
5 ui_in[5] uo_out[5] uio[5]
6 ui_in[6] uo_out[6] uio[6]
7 ui_in[7] uo_out[7] uio[7]
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Simple FET OpAmp with Sky130. [490]

• Author: Diego Satizabal
• Description: A simple FET OpAmp, credits to Fulgor Foundation as I used Die-

gos and Julias design as a base available at https://github.com/diegohernando/caravel_fulgor_opamp/tree/master/xschem
• GitHub repository
• Analog project
• Mux address: 490
• Extra docs
• Clock: 0 Hz

Sky130 FET OpAmp

This is the implementation of a simple Operational Amplifier (OpAmp) buit with FET
from the Sky130 PDK. The design is based on Diego’s and Julia’s design from Fulgor
Foundation.

How it works Basically works as an OpAmp, that is, a high-impedance high-gain
on open-loop amplifier block, without feedback loop acts as a comparator, with feed-
back loop may work as inverting and non-inverting amplifier with gain setteable with
feedback network as with any OpAmp like LM317, not too much more to add here.

Internal schematics The following is a capture of Xschem of the internals of
OpAmp:

A note on the R1/R2 network: This is to generate a virtual ground and provide
a negative voltage as VDD. In TinyTapeout 6 the only available power is 1.8 VDC
referenced to a ground, for the OpAmp we considered convenient to have a negative
voltage, so we implemented this network in a way that the external signal ground
(ZREF) be the reference ground and the actual power ground became a -0.9 Volts
point from the OpAmp point of view.

Magic Layout Next we show a view of the Layout created in Magic for the OpAmp
cell only:
The OpAmp cell integrated with TinyTapeout top cell shows less detail and is shown
as reference:
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Figure 43: OpAmp schematics

Figure 44: Magic layout
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Figure 45: Magic layout

353



How to test Two testbenches are included for the OpAmp: a Non-Inverting ampli-
fier and an Inverting amplifier
To test the Operational Amplifier any of those circuits, that are very easy to setup, can
be utilized and check the corresponding output gains.
/! Beware that the input signal ground (Vin) must not be connected to the same
ground as Chip power, it must be connected to ZREF pin. /!
/! Observe that output signal will have a DC offset due to the use of a virtual ground
inside the OpAmp. /!

External hardware Power source, resistors, signal generator, oscilloscope.

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7

Analog pins

ua# analog# Description
0 4 ZEF
1 1 V-
2 3 V+
3 2 Vout
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BF Processor [491]

• Author: Ivan Pancheniak
• Description: Implementation of a Brainf*ck processor in hardware
• GitHub repository
• HDL project
• Mux address: 491
• Extra docs
• Clock: 10000000 Hz

How it works

This is a 75% implementation (the IO operations of . and , weren’t implemented)
of the esoteric language Brainfuck as small factor processor. It works as any “regular”
microprocessor would, executing the given ASCII values of each character as an opcode,
following this state machine:

Figure 46: fsm

With an internal implementation close to the following one:
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Figure 47: diagram

How to test

This circuit has the following pinout:
To drive it, you need to have an external address register, as it requests reads/writes
data in alternating cycles, some memory organization to support, at the minimum,
256 x 8 of program memory and 256 x 8 of instruction memory (this can be expanded
until 1KB memories by also using the pc_ext pins), and a clock, preferably at 20MHz.
If you don’t want for the program to access instruction memory, the pin instr_addr is
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only set if the address being requested is for instructions, so you can use that to avoid
it.

External hardware

These are some components that you can use for interfacing with the processor:

• 256 x 8 SRAM
• 8 bits to 13 bits Register
• 256 x 8 to 1K x 8 ROM
• LED bars with 8 segments to show the current value exiting the processor on

the data bus (uio_out)

Pinout

# Input Output Bidirectional
0 Write Data_0
1 Addr Data_1
2 Instr_Addr Data_2
3 PC_Ext_8 Data_3
4 PC_Ext_9 Data_4
5 PC_Ext_10 Data_5
6 PC_Ext_11 Data_6
7 PC_Ext_12 Data_7
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TT06 Grab Bag [492]

• Author: algofoogle (Anton Maurovic)
• Description: A few analog/mixed-signal experiments with a 24-bit VGA pattern

generator as the highlight
• GitHub repository
• Analog project
• Mux address: 492
• Extra docs
• Clock: 25000000 Hz

Figure 48: tt06-grab-bag GDS layout showing digital block, 4 DACs, and 1 inverter

What is this thing?

A simple analog/mixed-signal project I created in the 1st round of Matt Venn’s Zero
to ASIC Analog Course beta. This design has been demonstrated to work in
silicon. For silicon test results, see my journal entry: https://algo.org/journal/0226
The design comprises:
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• Simple CMOS inverter. That was my very first custom layout attempt.
• Digital block generating a few basic 24b-colour (RGB888) VGA test patterns.
• Analog RGB out (digital block VGA outputs via 3x 8-bit R2R DACs).
• An extra 4-bit R2R DAC.

VGA test pattern outputs

The design’s main purpose is to generate VGA test patterns that were hoped to look
as good as these simulations:

Figure 49: Simulated VGA outputs, XOR pattern and RAMP pattern

The left-hand pretty pattern is “MODE_XORS” (ui_in==8'b0011_0000) while the
right-hand gradients pattern is “MODE_RAMP” (ui_in==8'b0001_0000).
Notice there is some horizontal smearing (more exaggerated in the right-hand image
of the red/green mixes).

Figure 50: Real silicon, working, driving a VGA monitor

Actual results from silicon testing (seen above) are pleasing.
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CMOS inverter

Figure 51: Xschem simulation of my CMOS inverter

Pretty simple:

• Its input is uio_in[7] (bidir 7).
• Its output goes to two places: ua[3] (analog) and uio_out[2] (digital).
• I’d expect its digital out performance to be better: the TT digital mux has more

buffering & less loading than the TT analog mux.

The graphs accompanying the schematics simulate analog out is expected to be stable
(enough) within 10ns; relatively poor performance characteristic of the TT analog mux
loading. I expect bigger transistors could drive this harder and make it faster.

Extra 4-bit R2R

4th instance of my 8-bit R2R DAC cell grounds the 4 LSB, connecting the 4 MSB to
spare bidir inputs (uio_in[6:4]) with DAC output via ua[4].

How it works

TBC!
The internal R2R DACs for each of the RGB outputs just go directly (unbuffered) to
the analog output pins, where they are subject to the loading of the TT06 analog
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Figure 52: Combined VGA DACs schematics

mux (estimated to be about 500Ω and 5pF). This combination means their slew rate
was expected to be pretty bad (at least by VGA timing standards): On the order of
240~360ns (or 6~9 horizontal pixels) going from 0V to full 1.8V. In the chips I received,
it was a little better than that.
In a future design I plan to implement better internal buffering to help mitigate some
of the TT analog mux load.
Select from a few simple test patterns in the VGA controller by having different ui_in
values asserted while coming out of reset. the VGA controller digital block generates
8-bit digital outputs per each of red, green, and blue channels. These go into 3 basic
RDACs to generate analog voltage outputs on ua[2:0] ({B,G,R}) in the range 0-1.8V
(probably ~10kΩ impedance).

How to test

TBC!

1. Supply a 25MHz clock
2. Set ui_in to 8'b0001_0000
3. Assert reset – NOTE: I didn’t put a synchroniser on it, so it might (?) do a dirty

reset – if that happens, it could be worked around by slowly/manually clocking
around the reset pulse, I guess.

4. With a scope, trigger on the uo_out[3] rising edge (VSYNC) and hopefully see
ua[0] ramp from 0V to 1.8V within 10.24us

5. With this mode (as selected in step 2 above), ua[1] will also ramp, but per line
(instead of per pixel), as will ua[2] (per frame).

6. For the pretty XORs pattern, set ui_in to 8'b0011_0000 and assert reset
again.
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NOTE: For actual VGA output, you need the VSYNC and HSYNC signals (connecting
them each with a 1kΩ resistor in series with their respective VGA cable connection
should do). You will almost certainly need some sort of output buffering between this
design and a VGA display, because the design outputs a high-impedance (~10kΩ but
maybe a little worse) 0~1.8V range, while a VGA display expects 0~0.7V at 75Ω. See
https://algo.org/pcb/tt06i for an example board that covers all this.
Other notes for testing:

• Digital block’s mode selection is asserted via ui_in during reset
• For safety, initial test should be done with no analog output loading, and with

all of ui_in pulled low (which selects pass-thru mode AND ensures all DAC
inputs internally are low, so hopefully no current).

• RGB222 digital outputs compatible with the Tiny VGA PMOD.

External hardware

This is if you want to see an actual analog VGA display:

• 10MHz-capable (or better; preferably 25MHz) opamps on each of the R, G,
B outputs, to both make them into low-impedance (matching 75Ω typical
VGA termination), and also to level-shift from 0~1.8V to 0~0.7V. See
https://algo.org/pcb/tt06i for an example “interposer board” (aka “sandwich
board”) which uses an OPA3355 video op-amp circuit with VGA connector, and
is intended to sit between the TT06 chip’s breakout board (aka “carrier”) and
the TT06 demo board.

• Optionally the Tiny VGA PMOD plugged into the dedicated output port
(uo_out).

Pinout

# Input Output Bidirectional
0 mode[0] / dac_in[0] r7 vblank_out
1 mode[1] / dac_in[1] g7 hblank_out
2 mode[2] / dac_in[2] b7 inv_dout
3 mode[3] / dac_in[3] vsync dac4_in[4]
4 mode[4] / dac_in[4] r6 dac4_in[5]
5 mode[5] / dac_in[5] g6 dac4_in[6]
6 mode[6] / dac_in[6] b6 dac4_in[7]
7 mode[7] / dac_in[7] hsync inv_in
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Analog pins

ua# analog# Description
0 5 r_out
1 0 g_out
2 4 b_out
3 1 inv_aout
4 3 dac4_aout
5 2
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It’s Alive [493]

• Author: Jonathan Anderson, Qubitbytes Ltd
• Description: plays a cool tune
• GitHub repository
• HDL project
• Mux address: 493
• Extra docs
• Clock: 100000 Hz

How it works

Why is it called It’s Alive?
Because it was made within the last few days of the shuttle and only learnt Verilog
within 24 hours.
If it works, it should play a cool tune over a speaker or piezo buzzer

How to test

The clock must be set to 100khz or else the speed and pitch of the song will be
affected.
The reset button will restart the song.
The LED segment number will indicate the current song part, which starts at 4, finishes
at 6, and loops around.
The LED segment dot, indicates song/processor activity.
If the LED segment displays 0 (zero), press the reset button.
Connect a speaker or piezo buzzer to uio[0] bi-directional pin (output)
Clock Speed: 100Khz
Reset Button: restarts tune
LED Segment: song/processor status
LED Segment == 0: press reset button

External hardware

speaker or piezo buzzer
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Pinout

# Input Output Bidirectional
0 led segment a speaker
1 led segment b
2 led segment c
3 led segment d
4 led segment e
5 led segment f
6 led segment g
7 led segment dot
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Analog loopback [494]

• Author: Matt Venn
• Description: Analog loopback test
• GitHub repository
• Analog project
• Mux address: 494
• Extra docs
• Clock: 0 Hz

How it works

Each pair of analog pins are shorted together.

How to test

Measure the resistance, step response through each pair to characterise the analog
mux.

External hardware

n/a

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7

Analog pins
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ua# analog# Description
0 5 connected to 1
1 0 connected to 0
2 4 connected to 3
3 1 connected to 2
4 3 connected to 5
5 2 connected to 4
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BCD to single 7 segment display Converter [495]

• Author: Kelvin Kung
• Description: BCD to single 7 segment display
• GitHub repository
• Wokwi project
• Mux address: 495
• Extra docs
• Clock: 0 Hz

How it works

It uses multiple logic gates to transfrom binary input to a decimal number to display
in a 7 segment display

How to test

Input any binary number between 0-9. 2^3=IN0 (most significant bit) 2^2=IN1
2^1=IN2 2^0=IN3 (least significant bit)

External hardware

For input use a dip switch with at least 4 outputs. For output use a single 7 segment
display with common cathode.

Pinout

# Input Output Bidirectional
0 B3 A
1 B2 B
2 B1 C
3 B0 D
4 E
5 F
6 G
7
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AudioChip_V2 [514]

• Author: Thorsten Knoll
• Description: The AudioChip plays waveforms on PWM outputs. The inputs alter

these waveforms in many ways.
• GitHub repository
• HDL project
• Mux address: 514
• Extra docs
• Clock: 12000000 Hz

How it works

This is an AudioChip that outputs two Audiosignals as PWM. It can be used as a audio
generating device for electronic instruments, namely modular synthesizers. It is planned
to build a Eurorack module for a modular synthesizer around this mikrochip. The inputs
and outputs are designed to fit into the concept of such instruments. The source code
of AudioChip is written in spinalHDL and generates verilog. The SpinalHDL source
resides in this repository: Add link here.

How to test

Attach a lowpass filters to the PWM outputs and you get analog audio signal waveforms.
The inputs alter the waveforms.

External hardware

Lowpass filters for the PWM outputs.

Pinout

# Input Output Bidirectional
0 freq_bit_in_0 pwm_1_out adsr_choice_in_0
1 freq_bit_in_1 pwm_2_out adsr_choice_in_1
2 freq_bit_in_2 adsr_choice_in_2
3 freq_bit_in_3 adsr_switch_in
4 freq_bit_in_4 freq_bit_in_8
5 freq_bit_in_5 freq_bit_in_9
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# Input Output Bidirectional
6 freq_bit_in_6 freq_bit_in_10
7 freq_bit_in_7 freq_bit_in_11
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Relaxation oscillator [516]

• Author: Matt Venn
• Description: A relaxation oscillator
• GitHub repository
• Analog project
• Mux address: 516
• Extra docs
• Clock: 0 Hz

How it works

In electronics a relaxation oscillator is a nonlinear electronic oscillator circuit that pro-
duces a nonsinusoidal repetitive output signal, such as a triangle wave or square wave.
The R&C have been chosen to make a ~2MHz signal. An inverter after the oscillator
makes a full swing square wave.

How to test

Measure the oscillator out on pin 0 (tbc, might cause issues due to the analog mux
parasitics). Measure the square wave out on digital output pin 0.

Pinout

# Input Output Bidirectional
0 inverted output of oscillator
1
2
3
4
5
6
7

Analog pins
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ua# analog# Description
0 10 analog oscillator output
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Integrated Distorion Pedal [518]

• Author: Nanik Adnani
• Description: A simple distortion pedal circuit - taped out! (hopefully)
• GitHub repository
• Analog project
• Mux address: 518
• Extra docs
• Clock: 0 Hz

How it works

The design consists of a simple opamp in a non-inverting configuration. We achieve
distortion simply by overdriving the opamp - because VDD is only 1.8V we very quickly
run out of headroom and the transistors are pushed into the triode region which causes
the output to be distorted, and usually look more square. There are 8 of these amplifiers
in series, you can turn them on or bypass them by toggling inputs 0 through 7 - more
amplifiers on means more distortion! In theory, we will see if it works.

How to test

You need to provide an input signal to UA[0] and an output will come from UA[1] -
this unfortunately requires a little extra hardware. On the input you will need a large
capacitor in series with the signal followed by a voltage divider (two large resistors of
the same value) to bias in the input in the middle of the operating range of the opamp.
On the output we will need to place another large capacitor in series before running it
to an amp - don’t connect directly to a speaker, this circuit can’t drive a speaker on
its own it needs to go through an amp first.

External hardware

• 2 resistors (large, same value - for a voltage divider on the input)
• 2 large capacitors (bigger the better, but around 10uf should be fine)
• 2 1/4 inch jacks (to make plugging a guitar in easy, you could probably figure it

out without these)

Pinout
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# Input Output Bidirectional
0
1
2
3
4
5
6
7

Analog pins

ua# analog# Description
0 11 IN
1 6 OUT
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Leaky Integrate and fire neuron(LIF) [520]

• Author: Vyshnav P Dinesh
• Description: Single node of integrate and fire neuron (LIF)
• GitHub repository
• Analog project
• Mux address: 520
• Extra docs
• Clock: 0 Hz

How it works

This is an analog implementation of rate based encoding technique using leaky integrate
and fire neuron.

How to test

The time varying input is applied to vin terminal, connect a threshold voltage in the
Vth terminal and a rate encoded input single will produced in the Out terminal

External hardware

Function generator, CRO, Multimeter.

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7
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Analog pins

ua# analog# Description
0 7 Out
1 9 Vth
2 8 Vin
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IDAC8 based on divide current by 2 [522]

• Author: Emilian Miron
• Description: IDAC8 based on divide current by 2.
• GitHub repository
• Analog project
• Mux address: 522
• Extra docs
• Clock: 0 Hz

How it works

IDAC8 is a Digital to Analog conversion based on string of basic cells dividing the
current by two repeatedly and optionally sourcing some current into the output pin.
idac1cell takes the following ports:

• VREF_IN - bias voltage for a 4/1 W/L transistor resulting in an InputCurrent
• OE - controls whether the output is enabled.
• IOUT - source current of InputCurrent/2 into here.
• VDD / VSS - power supply 1.8V
• VREF_OUT - output bias voltage for a 4/1 W/L transistor that results in IN-

putCurrent/2.

The circuit uses current mirrors and identical transistors to divide the current by two.
See tb_idac1cell.sch and SVG output for sample outputs and the schematic inside the
xschem directory.
8 cells of idac1cell are chained together into one IDAC8. Essentially the OE pins
correspond to digital inputs and the IOUT

How to test

• UI[7..0] are the digital inputs for currents of I, I/2, I/4, …
• UA0 is the voltage output for the I/256 current (can be ignored.. only present

for chaining or testing).
• UA1 is the current output (can hold a ~10K resistor to ground).
• UA2 is the voltage input (around 0.7V) corresponding to the high bit current.
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Set UI to 0b10000000 and adjust UA0 so that the current through UA1 to the resistor
is around 0.1mA. Then you can modify UI and observe the output changing into UA1
according to the 8 bit DAC output.

External hardware

• Multimeter on the UA1 10K resistor to ground.
• Potentiometer for setting UA0 bias voltage.
• set UI inputs via switches.

Pinout

# Input Output Bidirectional
0 bit0 n/a n/a
1 bit1 n/a n/a
2 bit2 n/a n/a
3 bit3 n/a n/a
4 bit4 n/a n/a
5 bit5 n/a n/a
6 bit6 n/a n/a
7 bit7 n/a n/a

Analog pins

ua# analog# Description
0 11 VREF_OUT for current level/256
1 10 IOUT - output current
2 6 VREF_IN for current level
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Analog Current Comparator [524]

• Author: Renaldas Zioma
• Description: An analog current comparator with Excitatory (+) and Inhibitory

(-) currents formed by summing up digital inputs
• GitHub repository
• Analog project
• Mux address: 524
• Extra docs
• Clock: 0 Hz

How it works

A current comparator that compares 2 currents each formed by a sum of 8 digital
pins.

How to test

Set the 8 inputs to form current A and 8 bi-directional inputs to form current B. The
ouptut analog voltage is the result of the comparison operator (sigmoid).

External hardware

A multimeter to measure the output voltage on analog pin 0.

Pinout

# Input Output Bidirectional
0 Inhibitory current bit Excitatory current bit
1 Inhibitory current bit Excitatory current bit
2 Inhibitory current bit Excitatory current bit
3 Inhibitory current bit Excitatory current bit
4 Inhibitory current bit Excitatory current bit
5 Inhibitory current bit Excitatory current bit
6 Inhibitory current bit Excitatory current bit
7 Inhibitory current bit Excitatory current bit
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Analog pins

ua# analog# Description
0 10 Main comparator output
1 7 Summed currents (debug)
2 9 2nd comparator input (debug)
3 8 2nd comparator output (debug)
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Analog Sigmoid [526]

• Author: aleena
• Description: Activation functions for neuromorphic computing
• GitHub repository
• Analog project
• Mux address: 526
• Extra docs
• Clock: 0 Hz

How it works

ReLu and sigmoid activation functions are included

How to test

For ReLu:The output is same as the input value if it is positive and zero otherwise. For
Sigmoid:Used for binary classification and predict the probability as output.

External hardware

A voltage source at analog pin 1 and analog pin 4 which is an output of an ANN

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7

Analog pins
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ua# analog# Description
0 11 in1
1 6 out1
2 10 gnd1
3 7 in2
4 9 out2
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TT06 OTP Encryptor [544]

• Author: , Aimee Kang, Alexander Schaefer
• Description: Encryption and Decryption Unit through Utilization of Psuedoran-

dom One Time Pads
• GitHub repository
• HDL project
• Mux address: 544
• Extra docs
• Clock: 50000 Hz

How it works

8 bit data inputs come through ui_in in the form of either plaintext or ciphertext.
Bit 0 of uio_in is used to determine whether the chip will perform encryption or
decryption. When it is high, decryption will be performed. When it is low, decryption
will be performed. However, the enable signal must be high in both cases for either
encryption or decryption to be performed. In the case of encryption, the chip will take
an 8 bit value from an internal pseudorandom number generator to use as a one time
pad. To create the ciphertext, the chip will xor the bits of the one time pad with their
relative bits in the plaintext to create ciphertext. In order to later recover the plaintext,
the one time pad is stored in an internal register file, and the index of the register of
which the pad is stored in is outputed to bits 6 through 4 of uio_out. There are 8
registers in the register file (0-7). To decrypt ciphertext, the decrypt signal must be
high (bit 0 of uio_in) and the index that the associated one time pad is stored in must
be inputted to uio_in bits 3 through 1. Then, the one time pad will be recovered from
the indexed register, the pad will be xored with the ciphertext, and the plaintext will
be produced as output.

How to test

Testing can be performed by ensuring that inputted plaintext can be recovered by
taking the encrypted output and register index and feeding it into the system.

External hardware

External hardware with basic memory, wiring, and data displaying functionality should
be suitable to test this chip. Verilog testing was performed by using one external
register for data output, one external register for index output, and a means to read
the data from the registers. Basic binary instrumentation may be needed if direct
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access to wires is not possible in order to shift the register index from the output bits
of 6 through 4 to the input bits of 3 through 1.

Pinout

# Input Output Bidirectional
0 data[0] out[0] decrypt
1 data[1] out[1] r_num[0]
2 data[2] out[2] r_num[1]
3 data[3] out[3] r_num[2]
4 data[4] out[4] index_out[0]
5 data[5] out[5] index_out[1]
6 data[6] out[6] index_out[2]
7 data[7] out[7]
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Convertidor de Tiempo a Digital (TDC) [545]

• Author: Juan Vargas Ferrer & Luis Carlos Alvarez Simón
• Description: El proyecto consiste en el diseño de un circuito Front end o interfaz

para convertir a digital la señal proveniente de un sensor con salida en tiempo.
• GitHub repository
• HDL project
• Mux address: 545
• Extra docs
• Clock: 50000000 Hz

Convertidor de Tiempo a Digital (TDC)

How it works

El proyecto consiste en el diseño de un circuito Front end o interfaz para convertir
a digital la señal proveniente de un sensor con salida en tiempo. La industria nos
proporciona un sinfín de sensores para medir o monitorear diferentes variables físicas,
dichos sensores pueden proporcionar su señal en diferentes formas; voltaje, corriente,
frecuencia, tiempo (ancho de pulso), entre otras. El bloque que se propone se enfoca
en la conversión de tiempo (definido entre el flanco de subida y bajada de un pulso)
a un formato digital, también conocidos como circuitos TDC (Time to Digital
Converter), para posteriormente enviarlo vía RS232 para que pueda ser monitoreado
en una PC o dispositivo compatible con el protocolo RS232.
En la figura 1 se muestra el diagrama a bloques del sistema, como se observa se
compone de un bloque llamado contadorTDC, el cual se encarga de realizar el conteo
una vez que se recibe un pulso de entrada, cuando el pulso finaliza se guarda el dato
generado en un registro y posteriormente se envía en al exterior en forma serial mediante
el bloque RS232_TX. El bloque RS232_TX funciona a una velocidad de 9600 baudios
con 8 bits de datos y paridad impar, de tal manera que en la PC o dispositivo usado para
visualizar la información debe configurarse de la misma manera. El funcionamiento del
sistema está controlado por la máquina de estados, cuyo funcionamiento es de la
siguiente manera: cuando se recibe el flanco de subida del pulso de entrada el contador
se activa y, al finalizar el pulso se pasa a un estado que hace que se almacene el valor
del contador, posteriormente este valor es enviado al transmisor para que sea enviado
de manera serial por el módulo RS232_TX, finalmente el sistema regresa al estado
inicial para poder recibir un nuevo pulso.
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Figura 1. Diagrama a bloques del TDC.

[!NOTE] En la figura 2 se muestra el diagrama de conexión del sistema
con los pines del Frame del chip y a continuación se proporciona una
descripción de las señales en cada una de ellas.

• clk -> clk.- Señal de reloj del sistema, la cual será de 50MHz.

• in_out[7] -> Pulso/señal.- En este pin de entrada se introducirá
el pulso de entrada que será convertido a digital por el sistema. El
ancho del pulso debe estar entre 40ns a 5.1us. Este pulso puede ser
proporcionado por un generador de funciones o la señal proveniente
de un sensor en forma de pulsos.

• in_out[6] -> reset.- Este pin de entrada produce el reset del
módulo transmisor, el cual debe ser activado para inicializar dicho
múdulo, se recomienda conectar un push button configurado en pull
down.

• in_out[1] -> tx.- Pin de salida por el cual se envía el dato digital
de manera serial, dicho dato corresponde al valor digital del ancho
del pulso de entrada, con una resolución igual al periodo de la señal
de reloj. Para poder capturar el dato en una computadora mediante
un monitor serial, se deberá conectar este pin a la terminal RX del
módulo RS232 que recibirá el dato; el cual deberá tener la siguiente
configuración:

• Baud rate: 9600
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• Data bits: 8 bits
• Paridad: impar (odd)

• in_out[0] -> eot.- Pin de salida que permite monitorear la ban-
dera que indica el final de una transmisión, en este pin puede ser
conectado un led. Sin embargo, debido a la velocidad de transmisión
éste será casi imperceptible, por lo que es opcional. Aún así podemos
conectar un osciloscopio para su mejor visualización.

Figura 2. Diagrama a bloques del TDC dentro del área definda.
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How to test

Las pruebas se realizaron en Modelsim en su versión gratuita, para ello se hizo una
adecuación generando un pequeño modulo PWM dentro de la aplicación para simular
lo que sería la señal de un sensor, para este caso se opto por generar cuatro valores de
PWM los cuales generan cuatro valores distintos que se transmiten por RS232, en la
figura 3 se muestra la primer combinación de PWM que corresponde a una combinación
00 y que genera un valor binario 00010011.

Figura 3. Combinación 00 que genera un valor binario 00010011.
El siguiente valor de prueba fue la combinación 01 la cual genero un valor binario
00100111 y dicha simulación se puede observar en la figura 4, en dicha figura se puede
observar como cambia el ancho de pulso que hace que se genere dicho valor binario.

Figura 4. Combinación 01 que genera un valor binario 00100111.
A continuación el siguiente valor de prueba fue la combinación 10 la cual genero un
valor binario 00111011 y dicha simulación se puede observar en la figura 5, en dicha
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figura se puede observar como cambia el ancho de pulso que hace que se genere dicho
valor binario.

Figura 5. Combinación 10 que genera un valor binario 00111011.
Para finalizar la última combinación 11 genero un valor binario 01001111 y dicha
simulación se puede observar en la figura 6, en dicha figura se puede observar al igual
que las anteriores como cambia el ancho de pulso que hace que se genere dicho valor
binario.

Figura 6. Combinación 11 que genera un valor binario 01001111.
Para finalizar la etapa de pruebas se opto por realizar una prueba en una tarjeta de
desarrollo AMIBA 2, la cual cuenta con un FPGA Spartan 6 XC6SLX9, 216/576 Kb
de Block RAM, un oscilador de 50 MHz, convertidor USB/RS232 (FTDI FT2232HL),
leds de propósito general, switch de dos posiciones de propósito general, etc. En
el siguiente enlace se podrá observar un video en el cual se muestran las distintas
combinaciones simuladas anteriormente y además se puede ver el valor enviado por el
puerto serial, el cual es monitoreado mediante la aplicación Serial Debug Assistant,
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como recurso extra se hizo uso de los leds de propósito general como apoyo para poder
visualizar el valor generado y a su vez poder ver este valor en el monitor serial, que en
nuestro caso se muestra en hexadecimal corroborando lo generado con lo enviado.

Pinout

# Input Output Bidirectional
0 eot
1 tx
2
3
4
5
6 reset
7 stop
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SynchMux [546]

• Author: bc2kaneda
• Description: A 2 bit synchronous mux with output enable
• GitHub repository
• Wokwi project
• Mux address: 546
• Extra docs
• Clock: 0 Hz

How it works

If OE == 0 then Y[0:1], YP, Z[0:1] and ZP are in a high-z state.
Output Y[0:1] = (SEL == 0) ? A[0:1] : B[0:1] Output Z[0:1] = (SEL == 0) ?
~A[0:1] : ~B[0:1]
Output YP and ZP are the parity of Y and Z respectively.
POPCNT_Y[0:1] and POPCNT_Z[0:1] are the population count of {Y[0:1],YP} and
{Z[0:1],ZP} respectively. These pins are never in high-z state.

Pinout

# Input Output Bidirectional
0 CLK POPCNT_Y0 Y1
1 RST POPCNT_Y1 Y2
2 A1 POPCNT_Z0 YP
3 A2 POPCNT_Z1 Z1
4 B1 Z2
5 B2 ZP
6 SEL
7 OE
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3-bit ALU [547]

• Author: José Raña Gámez
• Description: This device is a 3-bit ALU that generates 5 operations in parallel.

The operations that the ALU performs are: addition, subtraction, multiplication,
division and modulo operation. The device has 2 inputs; A[3-bit] and B[3-bit]
along with a 3-bit selector (Selector[3-bit]). It also has a single 6-bit output
(OutPut[6-bit]). In the end, the design entails 15 pins in total; 9 input and
6 output pins. The operation of this ALU is simple: At input A and B, the
values are set using switches, for example, A= 111 and B=101. To obtain the 5
different results through the different 5 operations that the ALU performs, the
3-bit selector (Selector[3-bits]) is used, therefore, using 3 switches we will place
the result that we want to observe at the output.

• GitHub repository
• HDL project
• Mux address: 547
• Extra docs
• Clock: 0 Hz

How it works

This device is a 3-bit ALU that generates 5 operations in parallel. The operations
that the ALU performs are: addition, subtraction, multiplication, division and modulo
operation. The device has 2 inputs; A[3-bit] and B[3-bit] along with a 3-bit selector
(Selector[3-bit]). It also has a single 6-bit output (OutPut[6-bit]). In the end, the
design entails 15 pins in total; 9 input and 6 output pins. The operation of this ALU is
simple: At input A and B, the values are set using switches, for example, A= 111 and
B=101. To obtain the 5 different results through the different 5 operations that the
ALU performs, the 3-bit selector (Selector[3-bits]) is used, therefore, using 3 switches
we will place the result that we want to observe at the output. The selector works as
follows: since the selector is 3-bit, we will have 2^3= 8 combinations, but in this case
we will only use the first 5 combinations in this way:
Combination 1 for sum: 000
Combination 2 for subtraction: 001
Combination 3 for multiplication: 010
Combination 4 for division: 011
Combination 5 for module: 100
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The remaining combinations do not have an assigned operating function, therefore, the
remaining combinations will not generate any result at the output of the device.

How to test

Choose two values of 3-bits for the inputs A and B by using switches, for example:
A=111 and B=101. Then, use the 3-bit selector that has 3 switches to choose one
of the 5 combinations to select an operation (sum[000], substraction[001], multiplica-
tion[010], division[011] and module[100]) so that it can be obtained the wanted results
observed at the output (Leds).
For example: we choose the values A=111 and B=101. Then, if the 3-bit selector has
the combination 011 then the operation will be A=111 / B=101 (division).
Another example, we choose the values A=111 and B=101. Then, if the 3-bit selector
has the combination 010 then the operation will be A=111 * B=101 (multiplication).
Another example, we choose the values A=111 and B=101. Then, if the 3-bit selector
has the combination 000 then the operation will be A=111 + B=101 (sum).
The results will be shown at the 6-bit output that uses 6 Leds to demonstrate the
results of any of the 5 operations available in the ALU.

External hardware

3-bit input “A”: uses 3 switches.
3-bit input “B”: uses 3 switches.
3-bit input “Selector”: uses 3 switches.
6-bit output “Results”: uses 6 Leds.
The mentioned inputs and outputs are respectively connected to the pins of the project
circuit as follows:
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Inputs

ui[0]: “First bit for input ‘A’(input of 3-bits)”
ui[1]: “Second bit for input ‘A’(input of 3-bits)”
ui[2]: “Third bit for input ‘A’(input of 3-bits)”
ui[3]: “First bit for input ‘B’(input of 3-bits)”
ui[4]: “Second bit for input ‘B’(input of 3-bits)”
ui[5]: “Third bit for input ‘B’(input of 3-bits)”
ui[6]: “Unused input bit”
ui[7]: “Unused input bit”

Outputs

uo[0]: “First bit for output ‘Leds’(output of 6-bits)”
uo[1]: “Second bit for output ‘Leds’(output of 6-bits)”
uo[2]: “Third bit for output ‘Leds’(output of 6-bits)”
uo[3]: “Fourth bit for output ‘Leds’(output of 6-bits)”
uo[4]: “Fifth bit for output ‘Leds’(output of 6-bits)”
uo[5]: “Sixth bit for output ‘Leds’(output of 6-bits)”
uo[6]: “Unused output bit”
uo[7]: “Unused output bit”

Bidirectional pins

uio[0]: “First bit for input ‘ctrl’(input of 3-bits)”
uio[1]: “Second bit for input ‘ctrl’(input of 3-bits)”
uio[2]: “Third bit for input ‘ctrl’(input of 3-bits)”
uio[3]: “Unused bidirectional I/O bit”
uio[4]: “Unused bidirectional I/O bit”
uio[5]: “Unused bidirectional I/O bit”
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uio[6]: “Unused bidirectional I/O bit”
uio[7]: “Unused bidirectional I/O bit”
For a better visualization, see Figure 1.

Figure 53: ALU_3bits

Figure 1: ‘External Hardware pins conections visualization’

Pinout

# Input Output Bidirectional
0 First bit for

input
‘A’(input of
3-bits)

First bit for
output
‘Leds’(output
of 6-bits)

First bit for input
‘ctrl’(input of 3-bits)
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# Input Output Bidirectional
1 Second bit

for input
‘A’(input of
3-bits)

Second bit
for output
‘Leds’(output
of 6-bits)

Second bit for input
‘ctrl’(input of 3-bits)

2 Third bit for
input
‘A’(input of
3-bits)

Third bit for
output
‘Leds’(output
of 6-bits)

Third bit for input
‘ctrl’(input of 3-bits)

3 First bit for
input
‘B’(input of
3-bits)

Fourth bit for
output
‘Leds’(output
of 6-bits)

Unused bidirectional I/O
bit

4 Second bit
for input
‘B’(input of
3-bits)

Fifth bit for
output
‘Leds’(output
of 6-bits)

Unused bidirectional I/O
bit

5 Third bit for
input
‘B’(input of
3-bits)

Sixth bit for
output
‘Leds’(output
of 6-bits)

Unused bidirectional I/O
bit

6 Unused input
bit

Unused
output bit

Unused bidirectional I/O
bit

7 Unused input
bit

Unused
output bit

Unused bidirectional I/O
bit
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8-bit Binary Counter [548]

• Author: Aryan kannaujiya, Shivam Bhardwaj and Ambika Prasad Shah
• Description: This Verilog module defines a synchronous 8-bit counter, where the

count increments on each rising edge of the clock input (clk). Additionally, it
features an asynchronous reset input (rst_n), which,0 when activated, sets the
counter output (out) to zero regardless of the clock signal.

• GitHub repository
• HDL project
• Mux address: 548
• Extra docs
• Clock: 50000000 Hz

How it works

The Verilog module implements a 8 bit binary counter with clock (clk), reset (rst_n),
up count (ui_in[2]), down count(ui_in[3]), hold (ui_in[4]) ,output pins for
binary (out), hexa decimal (hex) and decimal (dec). Upon a clock rising edge or
reset assertion, it resets the output to 0 or increments it by 1, respectively. This design
facilitates counting operations in digital systems, maintaining a 8-bit output range.

How to test2

We test it on Vivado and open sources (OpenROAD and OpenLane).

External hardware

defaults

Pinout

# Input Output Bidirectional
0 clk out
1 rst_n hex
2 ui_in[2] dec
3 ui_in[3]
4 ui_in[4]
5
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# Input Output Bidirectional
6
7
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SumLatchUART_System [549]

• Author: Gilberto Ramos Valenzuela
• Description: 4 bit adder
• GitHub repository
• HDL project
• Mux address: 549
• Extra docs
• Clock: 50000000 Hz

How it works

The system operates by receiving a 4-bit input and storing it in one of two registers,
designated as Register A or Register B. Following this, the Arithmetic Logic Unit (ALU)
receives a 4-bit operation selection code which dictates the specific operation to be
executed on the input data. These operations can include addition, subtraction, bitwise
AND, bitwise OR, and other logical or arithmetic operations depending on the design
of the ALU.
Once the operation is performed, the output is routed to a Universal Asynchronous
Receiver-Transmitter (UART) transmitter. The UART transmitter facilitates the com-
munication of the result to either a microcontroller or a standalone UART interface.
This allows for seamless integration with larger systems or external devices, enabling
the processed data to be utilized for various applications.

How to test

Hardware Components To test the hardware, you will need the following compo-
nents:

1. Two push buttons with pull-up resistors, used for saving data to Register A and
Register B respectively.

2. Eight switches, designated for Data_input and OP_select operations.
3. One LED indicator to signify the functioning of the Arithmetic Logic Unit (ALU).
4. An output pin configured to transmit the Tx signal.
5. A microcontroller or UART-capable device operating at a baud rate of 9600.

To conduct testing, you’ll need to connect a 50MHz clock signal to the clk pin. Begin
by selecting operations according to the Operation table provided in the README
section of this repository. The operands to be saved in registers range from 0000 to
1111, corresponding to decimal values 0 to 15.
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Given the utilization of an 8-bit output signal in the block diagram, no overflow is
expected for most operations. However, when using the multiplication Op code, it’s
important to note that the maximum numbers to be multiplied are 1111 times 1111,
resulting in 11100001, which equals 255 in decimal.

External hardware

1. LED for UARTBUSY indicator.
2. UART resiver to get data out.
3. 2 push buttons with pull-up resistor.
4. 50MHz ocilator or function generator

Pinout

# Input Output Bidirectional
0 data_input [0] clk
1 data_input [1] reset_n
2 data_input [2] save_a_n
3 data_input [3] save_b_n
4 Op_select [4] uart_tx_en
5 Op_select [5] uart_txd
6 Op_select [6] uartbusy
7 Op_select [7]
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Power Management IC [550]

• Author: Matthew Wong
• Description: Creates a half bridge PWM duel output from ADC input
• GitHub repository
• HDL project
• Mux address: 550
• Extra docs
• Clock: 10000000 Hz

How it works

This uses a set of state machines to generate 2 ADC controlled pwms. A heartbeat
signal periodically pings the ADC to update the pwm’s duty cycle.
The heartbeat sends the conversion start (convStart) high signal to begin the conver-
sion. The ADC sets up and then replies with a busy high when the ADC is ready to
be read. When the busy high is read, the chip responds with a read and chip select
(rd_cs) which are tied together. The parallel 8bit conversion is sent to the chip. See
AD7819YNZ datasheet for details on ADC conversion. The conversion is Mode 2.
After the ADC is read, the duel pwms’ duty cycles are updated. 0 is the min voltage
and 255 is the max voltage. The duel pwms are 180 deg out of phase and should
never overlap. Otherwise this could lead to shoot-thru which could destroy the FETs.
A dead zone was built into the state machine to prevent this overlap.

How to use

After reset, the syncRectifierLs and syncRectifierHs outputs will produce a pwm signal
based on the 8bit parallel ADC input. You need to build the circuit shown in the
PMIC.png. You could also just hook up an oscilloscope to the syncRectifierLs and
syncRectifierHs and see the 180 deg out of phase square waves.

External hardware

https://www.analog.com/media/en/technical-documentation/data-sheets/ad7819.pdf
(AD7819NZ 8-bit parallel output ADC) https://www.digikey.com/en/htmldatasheets/production/638815/0/0/1/mcp14700
(MCP14700 Highside Driver)
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Future Versions

I plan to build the ADC internally so I’m not tying up 8 GPIO pins with the ADC
parallel output. I also would like to implement current sensing, current feedforward,
prebiasing, soft-switching, PID and other more advanced features if I have time.

Pinout

# Input Output Bidirectional
0 adcVoltage[0] convStart busy
1 adcVoltage[1] rd_cs
2 adcVoltage[2] syncRectifierLs
3 adcVoltage[3] syncRectifierHs
4 adcVoltage[4]
5 adcVoltage[5]
6 adcVoltage[6]
7 adcVoltage[7]
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BIT COMPARATOR [551]

• Author: FELIPE SD
• Description: Compare two bits
• GitHub repository
• Wokwi project
• Mux address: 551
• Extra docs
• Clock: 0 Hz

How it works

This test consist in compare two bits determinating wich one is bigger or are equals

How to test

To testo the project just insert 2 input bits (A and B) and then make a verification
with the possible inputs 00 01 10 11 you should check the three outputs, fist one when
both are equal, and second and thrid when any other input is bigger. OUTPUT 1 =
1 when equals OUTPUT 2 = 1 when bigger OUTPUT 3 = 1 when bigger

External hardware

Use leds to check the output Used input with any desired devices.

Pinout

# Input Output Bidirectional
0 BIT A OUTPUT A
1 BIT B OUTPUT B
2 OUTPUT C
3
4
5
6
7
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2 bit Binary Calculator [552]

• Author: Nikhil Jindal
• Description: This is a 2 bit calculator that can multiply, subtract or even add 2

bit binary numbers.
• GitHub repository
• Wokwi project
• Mux address: 552
• Extra docs
• Clock: 0 Hz

How it works

This is a 2 bit calculator that can multiply,add or subtract 2 bit binary numbers.

How to test

In this, user enters 2 numbers A and B of 2 bit each and select the operation at a time
and it calculates the answer and display it on 7 segment display.(A should be greater
than B to check subtract if not then do 2’s compliment)

External hardware

Dip switch and 7 segment display screen.

Pinout

# Input Output Bidirectional
0 A0 a
1 A1 b
2 B0 c
3 B1 d
4 Multiply e
5 Sum f
6 Subtract g
7

404

https://github.com/alexishereok/binary-calculator
https://wokwi.com/projects/395034561853515777


IFSC Keypad Locker [553]

• Author: Roddy Romero; Gabriel Mota; Luis Davi Paganella; Vinicius Westphal
De Paula;

• Description: 4 digit Locker of an ordinary 4x4 contact keypad (based on Arduino
keypad)

• GitHub repository
• Wokwi project
• Mux address: 553
• Extra docs
• Clock: 100 Hz

How it works

The circuit consists of 8 input and output pins. 4 input and output pins are reserved
for the 4 x 4 matrix keypad. The rows are connected to the output (0,1,2,3) while
the columns are connected to the inputs (3,4,5,6). The circuit is powered at input
pin 0. A high clock signal is recommended to prevent delays when keys are pressed,
so the frequency was set as 100 Hz. Pins 1 and 2 are used for setting and resetting
the circuit’s flip-flops. This circuit does not require setting any flip-flops, so this input
should be grounded. The Reset should be connected to a button because every time
the circuit is started for the first time, the flip-flops may start with random states,
which can impede the correct operation of the circuit. Therefore, the button is used
to reset it the first time it is used and to be able to register a new password. Output
pin 6 is the signal indicating whether a password is registered. Output pin 5 indicates
the state of the lock; if the entered password matches the registered password, the
signal is positive. Pin 7 is a verification signal indicating that the circuit is operating
correctly.
Basic Operating Principle:
The circuit must receive a signal from a 4x4 matrix contact keypad to register and
receive password attempts. For this, the circuit must energize each row of the keypad
so that when a button is pressed, the contact of that row x and column y sends a
signal (x,y) to the circuit. Additionally, the circuit must automatically register 4 digits
and then enter the “password attempt” mode, where all subsequent digits are used to
attempt to enter the password.
Therefore, there are 8 registers to receive the Row x Column coordinates of the keypad.
Since the password consists of 4 digits, there are 4 sets of these 8 registers connected in
series. There are two main states: “Register password” and “Password attempt”. Each
state has 32 registers, grouped into 4 sets in series, each with 8 registers in parallel.
All registers are connected with the clock in parallel.
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How to test

After turning on the circuit and restarting it for the first time, the circuit has 3 logical
operating states: No key pressed, Key pressed, Key released.
When no key is pressed, the clock signal is sent in parallel to 4 registers in series (Shift
registers). These registers sequentially transfer only one positive signal in a loop. This
allows the circuit to energize only one row of the keypad at a time.
When a key is pressed, the signal travels through the 4 registers until it reaches the
respective row that had contact with the column. When this row is reached, the closed
contact of this row with the column of the pressed key energizes that column. The
column sends the signal back to the circuit, which triggers a clock gating that blocks
the clock signal to the registers. This way, the shift circuit is “paused” while the
column is energized. To ensure that only one row is connected, there is a verification
step. If it is confirmed that only one row is connected and the column is activated,
a “button pressed” flip-flop is set. This flip-flop serves as a small delay to allow a
clock step for the password registers. This permission is achieved with an AND gate,
which connects the delay flip-flop and a control flip-flop, responsible for controlling
the “password attempt” and “password registration” states. While no password is
registered, the circuit first feeds the “password registration” registers.
When the key is released, the column is de-energized, and then the “button pressed”
flip-flop is automatically reset, sending a low signal to the clock of the registers. Thus,
when another key is pressed, the clock of the registers goes to the rising edge, and the
coordinates data are shifted until reaching the 4th and last register.
The last register of the “Password Register” sends a signal to the state control flip-flop,
which is then set and starts blocking any clock from that set of registers. This activates
the “Password Attempt” mode, where now the clock step is only for this other set of
registers. When the same 4 digits are pressed in the exact order as those registered, a
high signal is sent at the output, indicating that the password is correct.

External hardware

• 1 Arduino 4x4 Matrix membrane Keyboard
• 1 Step Button
• Couple of LEDs

Pinout
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Figure 54: Diagram

# Input Output Bidirectional
0 VCC Keypad Row pin 1
1 RESET Keypad Row pin 2
2 GND Keypad Row pin 3
3 Keypad Column pin 1 Keypad Row pin 4
4 Keypad Column pin 2
5 Keypad Column pin 3 Locker State (LED 1)
6 Keypad Column pin 4 Registered Password Signal (LED 2)
7 Line Verifier (LED 3)
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Measurement of CMOS VLSI Design Problem 4.11 [554]

• Author: Eric Smith
• Description: Measure the delay of each design in the problem with varying load.

See project Readme for details.
• GitHub repository
• HDL project
• Mux address: 554
• Extra docs
• Clock: 0 Hz

Project

Measure the delay of the implementations of problem 4.11 in Weste & Harris
https://pages.hmc.edu/harris/cmosvlsi/4e/index.html

Problem 4.11

Consider four designs of a 6-input AND gate shown below. Develop an expression for
the delay of each path if the path electrical effort is H. What design is fastest for H =
1? For H = 5? For H = 20?

For this problem, H measures the capacitance the AND gate needs to drive. It’s the
output capacitance divided by the input capacitance of one inverter. So H=20 means
the output capacitance is the same as 20 inverters.
For an example of when this could occur, consider this AND gate as a row decoder,
and H is the number of columns.

The Theory of Logical Effort

For more details see

• Weste & Harris Chapter 4 Section 4 (4th Edition)
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• https://www.ece.ucdavis.edu/~vojin/CLASSES/EPFL/Papers/LE-orig-
paper.pdf

• https://shop.harvard.com/book/9781558605572

This is the linear delay model and the basic theory is the delay of a gate can be
determined by the equation:
D = G * H + P

Variable Name Description
H Electrical Effort The amount of output

capacitance this gate
needs to drive relative to
the input capacitance of
an inverter.

G Logical Effort Logical Effort is a rough
measure of the gate’s
complexity. It can be
thought of as the
amount of input
capacitance relative to
an inverter with equal
drive strength, the
amount of drive strength
when the input
capacitance is the same
as an inverter, or the
slope of the fanout line.
More “complex” gates
will have higher logic
efforts.

P Parasitic Delay Parasitic delay measures
the output capacitance
of this gate relative to
the output capacitance
of an inverter of the
same strength. More
complex gates have
more output
capacitance.
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Variable Name Description
D Stage Delay The delay of this stage

relative to the delay of
one inverter.

The linear delay model has several possible issues (Weste & Harris covers this), but
critically, it ignores wires. It’s known to work well enough for 0.25u processes and
above, where wire loading is less significant relative to the delay and loading of the
transistors themselves. We’ll see how well it works at 130nm for Sky130A in the
TinyTapeout/OpenLane flow, where placement density is not particularly high.

What I implemented

How I determined the drive values

The key is to notice that when we increase the drive of one cell, we increase the load
on the previous cell. This changes the electrical effort of that cell. So, for part D we
end up with the following chain
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There are equations one can use to optimize this but I just used mathematica because
it’s faster. Here is how I solved H=20 for part D.

Then I just used the cell with the nearest drive from the library and checked the result
was within one inverter delay of the optimal value.
This procedure is roughly equivalent to what ABC does in the OpenLane flow after
mapping. Remember that although ABC can optimize drive, it can’t modify structure.
As we can see, the choice of structure does have implications on performance, even
after the drive is optimized.

Calculated delays with optimized drive

Design H=1 H=5 H=20
A 10.7 14.8 22.7
B 8.3 12.5 20.0
C 9.7 14.5 23.0
D 12.0 14.8 18.6

These are in units of one inverter delay which is about 70pS in Sky130A.

What is drive?

Drive counts the number of equivalent parallel gates to increase the output current
the resulting compound gate. More gates in parallel allows sourcing larger load capac-
itances with higher dv/dt at the cost of input capacitance, area, and power.
Opting for an integrated cell for the parallel gates is a practical choice. It empowers the
layout engineer to implement strategies that effectively minimize wire loading and out-
put capacitance of the overall structure, thereby enhancing the gate’s performance.
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See the various incarnations of nand2 in Sky130A for an example.
https://diychip.org/sky130/sky130_fd_sc_hd/cells/nand2/
To those with a more analog bend you might think the previous gate is acting like
a pre-amplifier, and you’re right. It is exactly the same. You might also notice the
inverter is basically a class B stage, except it inverts. It is and that’s what makes it
such a good reference when one considers driving loads.

This provides a bit of theory behind the ZtA video

When are 2 logic gates faster than 1?
The video is a bit different than this problem in that it kept the load constant but
shrunk the period constraints.
Here we keep the period constraint the same but increase the load. At the end of the
day it’s the same idea in that we’re changing I to get a different dv/dt for a given C.
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Test structure

Raw Delay Calculations

In[1]:= NMinimize[{
(x 5/3+3)+(y/x*1+1)+(z/y*4/3+2)+(5/z*1+1),(*G and P from Table 4.2 and 4.3 in Weste & Harris *)
1<=x,x<8,1<=y,y<8,1<=z,z<8},{x,y,z}]
Out[1]= {14.303,{x->1.09546,y->2.00004,z->2.73865}}
In[2]:= (*Part A*)
In[3]:= Round[(H/x 1+1+(x (6+2)/3+6))/.{H->{1,5,20},x->{1,2,4}},0.1]
Out[3]= {10.7,14.8,22.7}
In[4]:= (*Part B*)
In[5]:= Round[((H/x 5/3+2)+(x 5/3+3))/.{H->{1,5,20},x->{1,2,4}},0.1]
Out[5]= {8.3,12.5,20.}
In[6]:= (*Part C*)
Round[((H/x 7/3+3)+(x 4/3+3))/.{H->{1,5,20},x->{1,2,4}},0.1]
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Out[6]= {9.7,14.5,23.}
In[7]:= (*Part D*)
In[8]:=
Round[((x 5/3+3)+(y/x*1+1)+(z/y*4/3+2)+(H/z*1+1))/.{H->{1,5,20},x->{1,1,1},y->{1,1,2},z->{1,2,6}},0.1]
Out[8]= {12.,14.8,18.}

Hopefully there are no typos or transcription errors.

Pinout

# Input Output Bidirectional
0 sel[0] b[0] a[0]
1 sel[1] b[1] a[1]
2 sel[2] b[2] a[2]
3 sel[3] b[3] a[3]
4 h[0] &(A[5:0]) a[4]
5 h[1] ntest a[5]
6 h[2] count a[6]
7 ntest overflow a[7]
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TDM Digital Clock [555]

• Author: Hassan & Huzaifa tariq
• Description: a digital clock that uses time division multiplexing, using 8 outputs

to drive six seen segmetns displas
• GitHub repository
• HDL project
• Mux address: 555
• Extra docs
• Clock: 50000000 Hz

How it works

i dont know Explain how your project works it works because it works

How to test

you dont Explain how to use your project you dont

External hardware

none List external hardware used in your project (e.g. PMOD, LED display, etc), if any
just switche and leds

Pinout

# Input Output Bidirectional
0 ui_in[0] uo_out[0] uio_out[0]
1 ui_in[1] uo_out[1] uio_out[1]
2 ui_in[2] uo_out[2] uio_out[2]
3 ui_in[3] uo_out[3] uio_out[3]
4 ui_in[4] uo_out[4] uio_out[4]
5 ui_in[5] uo_out[5] uio_out[5]
6 ui_in[6] uo_out[6] uio_in[6]
7 ui_in[7] uo_out[7] uio_in[7]
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Hardware Trojan Part II [556]

• Author: Jeremy Hong
• Description: Pseudorandom number generator with and without hardware trojan
• GitHub repository
• Wokwi project
• Mux address: 556
• Extra docs
• Clock: 10000 Hz

Credit

My School and Instructor: Wright State University EE-4550/6550 IC Hardware Security
and Trust by Dr. Saiyu Ren
My employer: Two Six Technologies
My teammates: Celeste Irwin and Nicholas Nissen

How it works

This pseudorandom number generator (PRNG) is compromised of scan flip-flops (SFF)
and XOR gates. There are two PRNGs in this design, a PRNG with and without a
hardware trojans

How to test

Test by giving design a clock signal, and then set the PRNG by setting the scanin pins,
and then toggle the scan enable pin. To reset turn off all the scanin pins and then
leave the scan enable pin on for a few seconds.

External hardware

Pattern generator and logic analyzer recommended.

Pinout
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# Input Output Bidirectional
0 Scan Enable PRNG 1 output Trojan Free Input, ScanIn 8
1 ScanIn 1 PRNG 2 output trojan inserted Input, ScanIn 9
2 ScanIn 2 Input, ScanIn 10
3 ScanIn 3 Input, External Trojan Trigger
4 ScanIn 4 Output, single inverter test
5 ScanIn 5 Input, single inverter test
6 ScanIn 6 Input, 8 inverters test
7 ScanIn 7 Output, 8 inverters test

417



4-Bit ALU [557]

• Author: Daniel Kaminski
• Description: 4-Bit ALU with Cornell ECE2300 op-code instructions.
• GitHub repository
• HDL project
• Mux address: 557
• Extra docs
• Clock: 0 Hz

How it works

This project uses the Cornell University ECE2300 (SP24 taught by Zhiru Zhang) ISA
to implement a 4-bit ALU. This ALU uses a top-level controller module to pipe the
correct inputs and select the correct outputs (src/alu.v). The logical functions are
implemented using the following instructions.

FS Function Logical Equivalent
000 ADD A + B
001 SUB A - B
010 SRA (Shift Right Arithmetic) A»>
011 SRL (Shift Right Logical) A »
100 SLL (Shift Left Logical) A «
101 AND A & B
110 OR A + B
111 INVALID INVALID

How to test

Input your first value, A to UI[7:4], and B to UI[3:0]. You then put your function select
(FS) input into UIO[2:0], and you can read your Y output at UO[7:4], your carry out
at UO[3], overflow at UO[2], negative at UO[1], and zero at UO[0].

External hardware

None! Just a way to input your desired values and read the outputs.
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Pinout

# Input Output Bidirectional
0 B[0] Z FS[0]
1 B[1] N FS[1]
2 B[2] V FS[2]
3 B[3] C
4 A[0] Y[0]
5 A[1] Y[1]
6 A[2] Y[2]
7 A[3] Y[3]
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8-bit DEM R2R DAC [558]

• Author: Eric Fogleman
• Description: 8-bit segmented mismatch-shaping R2R DAC
• GitHub repository
• HDL project
• Mux address: 558
• Extra docs
• Clock: 10000000 Hz

Operation

This design implements a linear 8-bit DAC suitable for dc and low-frequency inputs.
An analog voltage is produced by connecting the encoder’s outputs to a modified R-
2R ladder on the PCB (see External Hardware). It achieves high-linearity by using
segmented mismatch-shaping, so the DAC does not require matched resistors. The
encoder provides 1st order mismatch and quantization noise shaping. With a clock
frequency of 6.144 MHz and a lowpass filter corner of 24 kHz, the oversampling ratio
(OSR) is 256.
Error due to resistor mismatch appears at the output as 1st-order highpass shaped
noise. The encoder also reduces the bit-width from 8-bits, and quantization error is
also 1st-order highpass shaped. Thus, with passive filtering, a linear, low-noise dc
output can be achieved. The theory behind this encoder is described in: A. Fishov, E.
Fogleman, E. Siragusa, I. Galton, “Segmented Mismatch-Shaping D/A Conversion”,
IEEE International Symposium on Circuits and Systems (ISCAS), 2002
Ideally, this encoder would be buffered through a clean analog supply and retimed
to reduce glitches on output transitions. However, reasonable performance should be
possible driving the resistor ladder directly from the encoder through the IO supply.

How to test

DAC input data is provided through ui_in[7:0], and the encoder uses the project
clock for mismatch shaping. Clock frequencies in the range of 1-10 MHz are reasonable.
Higher clock frequency increases the OSR but may increase glitch error. The encoder
output is uo_out[7:0], and it can be reconstructed by summing the bits with the
following weights:

out = 8*uo_out[7]+uo_out[6]) + 4*(uo_out[5]+uo_out[4]) + 2*uo_out[3]+uo_out[2]) + uo_out[1]+uo_out[0]
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The resistor ladder shown below sums the outputs with this weighting. Any output
network that can create this weighting will work.

The DAC is free-running off the project clock, and inputs appear at the output imme-
diately after passing through a pair of clock sync registers. A simple dc test can be
performed using the input DIP switches and the resistor ladder. It is possible to input
dynamic waveforms from the microcontroller as well.
The encoder has four modes of operation determined by uio_in[1:0]:

• 3: 1st order mismatch-shaping with dither
• 2: randomization (flat spectral shaping)
• 1: 1st order shaping, no dither
• 0: static encoding (no linearization)

External hardware

Technically, this is a mismatch shaping DAC encoder. For a high-performance DAC, it
is best to use a precision reference voltage and a clean clock source for edge retiming.
However, it is possible to connect the encoder directly to a resistor ladder. In this case,
the digital IO supply acts as the DAC’s reference voltage, and timing skews between
the uo_out bits may impact performance.
An external resistor ladder is required to create the analog output voltage, and a
capacitor is required to filter high-frequency noise. The termination resistors are placed
at the ends of the ladder to ensure that each section has nominally identical load
resistance.
The suggested unit R value is 10 kOhm. The equivalent output resistance of the
network at v_out is 10 kOhm. A 680 pF output capacitor provides a 23 kHz lowpass
corner. With this choice of R, the minimum load resistance on each uo_out pin is 60
kOhm, and the driver will source a maximum of 55 uA at 3.3 V.

Pinout
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# Input Output Bidirectional
0 d_in[0] d_out_0[0] en_enc
1 d_in[1] d_out_0[1] en_dith
2 d_in[2] d_out_1[0]
3 d_in[3] d_out_1[1]
4 d_in[4] d_out_2[0]
5 d_in[5] d_out_2[1]
6 d_in[6] d_out_3[0]
7 d_in[8] d_out_3[1] ena_and_rst_n
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UART Transceiver [559]

• Author: Saad Khan, Saim Iqbal
• Description: 8 bit data frame, with little endian transmit and receive signals
• GitHub repository
• HDL project
• Mux address: 559
• Extra docs
• Clock: 50000000 Hz

How it works

to be added later

How to test

to be added later

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any to
be added later

Pinout

# Input Output Bidirectional
0 ui_in[0] uo_out[0] uio_in[0]
1 ui_in[1] uo_out[1] uio_in[1]
2 ui_in[2] uo_out[2] uio_in[2]
3 ui_in[3] uo_out[3] uio_out[3]
4 ui_in[4] uo_out[4] uio_out[4]
5 ui_in[5] uo_out[5] uio_out[5]
6 ui_in[6] uo_out[6] uio_out[6]
7 ui_in[7] uo_out[7] uio_out[7]
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Universal Motor and Actuator Controller [582]

• Author: Assoc. Prof. Dinçer Gökcen, Ethem Buğra Arslan, Batu Cem Özyurt
• Description: bldc motor controller and autotuner for controller by MNS lab
• GitHub repository
• HDL project
• Mux address: 582
• Extra docs
• Clock: 50000000 Hz

How it works

For some motor driver and BLDC motor combinations with encoders, the controller
works universally through its I2C interface via PID control and Nichols-Ziegler auto-
tuning algorithm for automated PID constants. I2C Addressing: Slave Address: 0x72
Subaddresses:

How to test

Test when a motor setup is ready by simply communicating through I2C with SCL
at about 100kHz. With the adressing above, one can automate PID control or take
over (override) to manual settings. Generated PWM and desired motor period is also
interfaced through I2C and fully configurable.

External hardware

Motor Driver has to be used in order to convert digital pwm signals to power signals.
BLDC motor with positive and negative inputs & at least 2 encoders must be used to
infer speed and direction.
Pullup resistors are needed to communicate through i2c, if not provided.

Pinout

# Input Output Bidirectional
0 encoder_a motor_positive sda
1 encoder_b motor_negative
2
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# Input Output Bidirectional
3
4
5
6
7 scl
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Dgrid_FPU [590]

• Author: Aravind-Prasad-Abhinav-Prakash
• Description: 4 Input FPU for MAC at 40MHZ
• GitHub repository
• HDL project
• Mux address: 590
• Extra docs
• Clock: 40000000 Hz

How it works

The Dgrid_FPU (Floating Point Unit) is an integral component of computer
hardware engineered to execute floating-point arithmetic operations. It features four
32-bit inputs organized to conduct dual multiplications followed by an addition in series.
Specifically, the first pair of 32-bit inputs is multiplied, and simultaneously, the second
pair is processed similarly. The results from these multiplications are then fed into a
two-input adder, producing a 32-bit final output. This configuration is highly effective
in applications that demand robust computing capabilities, such as high-performance
computing, digital signal processing, scientific simulations, and graphics processing.
The Dgrid_FPU’s architecture, which enables the parallel processing of multiple arith-
metic operations, significantly boosts performance in these computationally intensive
tasks.

32bit I\P 32bit I\P 32bit I\P 32bit I\P
| | | |

---------------------- ----------------------
\ / \ /
\ FPU / \ FPU /
\ MULTIPLIER / \ MULTIPLIER /
\ / \ /
-------------- --------------

|___________ ________________|
32bit| | 32bit

----------------------
\ /
\ FPU /
\ ADDER /
\ /
--------------

|
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32bit O\P

The Dgrid_FPU top module is designed with a configuration that supports 8-bit input
and output interfaces, necessitating a systematic process to handle the 128-bit data
(comprising four 32-bit inputs) required for operations. The input process involves 16
clock cycles to load the four 32-bit registers sequentially. Once the data is loaded, the
computation begins, producing a 32-bit output over the subsequent two clock cycles.
After the computation phase, the 32-bit result is output through the 8-bit interface,
which requires an additional four clock cycles to read out the data thoroughly. Addi-
tionally, two clock cycles are utilized for data transfer, bringing the total cycle count
to 24 for an entire operation sequence from input loading to output retrieval.
A reset operation is required to prepare the module for a new data set, ensuring that
the Dgrid_FPU is ready to process subsequent inputs efficiently. It is important to
note that both the input and output data conform to the IEEE 754 standard for
floating-point numbers, ensuring compatibility and precision in high-stake computa-
tional applications.
This Verilog code outlines a Floating Point Unit (FPU) for use in Machine Arithmetic
Cores (MACs) within AI accelerators. The FPU facilitates key operations such as
adding and multiplying floating-point numbers, which are crucial for executing complex
mathematical computations in AI algorithms. It includes modules for managing data
input and output, processing up to 128-bit and 32-bit registers, and handling edge
cases like infinity and zero. This architecture is especially beneficial for AI applications,
allowing parallel processing and enhancing computational efficiency and precision in
neural networks. By accelerating operations and ensuring robust data handling, this
FPU is instrumental in optimizing AI accelerators, ultimately speeding up learning and
inference processes.

How to test

To effectively test the Dgrid_FPU, follow these step-by-step instructions:

• Reset the Circuit: Initiate by resetting the circuit to clear any previous data
and prepare it for new input.

• Write Data: Write a 128-bit bitstream that includes all four inputs, entering
the data 8 bits at a time. This step requires 16 clock cycles to complete.

• Wait for Computation: Allow the module to process the inputs, which will
take up to the 20th clock cycle.

• Read Output Data: From the 21st to the 24th clock cycle, read out the
32-bit result in increments of 8 bits to verify the output and ensure the system’s
functionality.
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Example
• I1 = 2.2 (HEX - 400ccccd)
• I2 = 3.3 (HEX - 40533333)
• I2 = 4.4 (HEX - 408ccccd)
• I2 = 5.5 (HEX - 40b00000)
• FINAL OUTPUT = 31.46 (HEX - 41fbae13)

Then the bitstream will be 400ccccd_40533333_408ccccd_40b00000 and start
sending it from LHS e.g. - Fist data to be send is 40 and last data is 00 and then
observe the output.

Figure 55: image

Waveform

Pinout

# Input Output Bidirectional
0 Bit 0 Input Bit 0 Output Output used as valid Signal
1 Bit 1 Input Bit 1 Output Output used as valid Signal
2 Bit 2 Input Bit 2 Output Output used as valid Signal
3 Bit 3 Input Bit 3 Output Output used as valid Signal
4 Bit 4 Input Bit 4 Output 0
5 Bit 5 Input Bit 5 Output 0
6 Bit 6 Input Bit 6 Output 0
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# Input Output Bidirectional
7 Bit 7 Input Bit 7 Output 0
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Parity Generator [608]

• Author: Eric Ulteig
• Description: TT06 Learning Exercise
• GitHub repository
• Wokwi project
• Mux address: 608
• Extra docs
• Clock: 0 Hz

How it works

Data present on the 8 input pins is converted and readable on the output pins.

How to test

Set the input switches and view the output LEDs.

External hardware

No external hardware is used.

Pinout

# Input Output Bidirectional
0 input1 output1
1 input2 output2
2 input3 output3
3 input4 output4
4 input5
5 input6
6 input7
7 input8
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24 H Clock [609]

• Author: UABC Team
• Description: typical 23h-format 4 digits clock. Two digits for hours and the

other for minutes.
• GitHub repository
• HDL project
• Mux address: 609
• Extra docs
• Clock: 1000000 Hz

How it works

This is a typical 23h-format 4 digits clock. Two digits for hours and the other for
minutes. Digits are in BCD format. It uses a 1 megahertz signal for reference. One
push button for setting the hour or minute and another push button for advancing
forward the hours or the minutes. In order to display the hour it is needed four 7-
segment-BCD decoders.

How to test

A one MegaHertz clock signal must be connected to the clk pin. Reset goes from 1 to
0 to start the clock operation. In order to set the correct hour, a pulse signal is needed
in the set pin, then M0 digit should be blinking, a pulse in the P0 pin will change this
digit. A new pulse in the set pin will change the process to the M1, and another pulse
to the H0 and H1.

External hardware

3 push buttons, 1 MHz signal generator, 4 seven segment decoders.

Pinout

# Input Output Bidirectional
0 rst M0[0] H0[0]
1 clk M0[1] H0[1]
2 P0 M0[2] H0[2]
3 set M0[3] H0[3]
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# Input Output Bidirectional
4 M1[0] H1[0]
5 M1[1] H1[1]
6 M1[2] Dots
7 M1[3]
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Sequence detector using 7-segment [610]

• Author: Atharv Sharma & Lipika Gupta
• Description: Detects sequence ‘1001’ and displays ‘8.’ on 7-segment led display,

otherwise displays ‘-’ only
• GitHub repository
• HDL project
• Mux address: 610
• Extra docs
• Clock: 1 Hz

How it works

• In this project, we have designed a sequence detector using finite state machine
(FSM)

• It is designed using verilog, and detects sequence ‘1001’
• The logic is made using cases, and it detects the sequence while covering over-

lapping cases as well

How to test

• If the sequence is detected, the output register z is set to logic 1 that displays
‘8.’ on 7-segment display

• If the sequence is not detected (the output register is 0), 7-segment display
shows ‘-’

• LEDs can be tested in two ways when ui_in [7:1] is kept 7’b1111111 (status for
testing - condition = 7’b1111111):

1. If first 4 bits of reg seg_test (uio_in [7:4]) are 0 during testing, we can
display numbers from 0 to 9 if we vary last 4 bits (uio_in[3:0]) from 0000
to 1001

2. If first 4 bits of reg seg_test (uio_in [7:4]) are 1 during testing, we can
display each led seperately by varying last 4 bits (uio_in[3:0]) from 0000
to 0111

External hardware

• We need to use 8 LEDs for 7-segment LED display output ([7:0] uo_out), so
that the output can be displayed and verified accordingly at seg
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• In addition to this, we need to use an input source from which we can manipulate
input logic onto the input register x (ui_in[0])

Pinout

# Input Output Bidirectional
0 x seg[0] seg_test[0]
1 condition[0] seg[1] seg_test[1]
2 condition[1] seg[2] seg_test[2]
3 condition[2] seg[3] seg_test[3]
4 condition[3] seg[4] seg_test[4]
5 condition[4] seg[5] seg_test[5]
6 condition[5] seg[6] seg_test[6]
7 condition[6] seg[7] seg_test[7]
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CDMA_2024 [611]

• Author: Santiago Robledo Acosta, Jóse Miguel Rocha Pérez
• Description: This is a CDMA circuit for lab testing in order to see the properties

of Gold Codes in an Osciloscope
• GitHub repository
• HDL project
• Mux address: 611
• Extra docs
• Clock: 1000000 Hz

How it works

This is a very simple circuit, it consists in two LSFR register lineary connecated in an specific way in order to generate two m-sequences, in order to
generate this pair of m-sequences, we input an initial vaule called seed, this is because we cannot generate a PN signal if the LSFR registers have an
initial value of 0s. For this design we used two LSFR with 5 D Flip-Flops. With this we can generate a PN signal with a length of(2^5)-1.
With this PN signal and modulus 2 adding the signal we want to tranmit, we generate a CDMA signal, which we are going to study simulating a channel with
an OPAM in order to add noise to the CDMA and feed it back to the designed circuit to see the bit-error rate of this device.
With this we hope to study and put to test.
* CDMA
* Gold Sequences.
* The effect of the noise in the CDMA.
* Reception process with a simulated channel.
* Apply the knowledge aquired within the Latinpractice Bootcamp initiative and apply the knowledge to design and print in a silicon waffle the proposed device.

How to test

As we used a hardware description language (Verilog), we created an specific testbench for the cdma.v, this testbench simply initializes the input signals
to 0 in order to generate the adequate signal such as the clock, a test signal to send that lasts 31 clock cycles (Spread-spectrum), a seed value to load both LSFR
The stimulus simple will assign a value to set_i and deactivate it to load the seed, after that, the LSFR have a linear feedback and will contantly generate the Gold signal
each clock cycle. With the test signal_i we the system will generate the CDMA signal and assign it to CDMA_o, the Gold signal is assigned to Gold_o, this is the tranmition process.

For the reception process, we simply assign the value of CDMA_o to receptor_i and the output will be observerd at receptor_o, we can observe that we recovered signal_i as
it shows the same time diagram as receptor_o.

As for the LED_o it works as a simple indicator that the inputed seed is valid for transmission.

The template will include the verilog file with its testbench.
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External hardware

OPAM, Testboard, LED

Pinout

# Input Output Bidirectional
0 signal_i cdma_o
1 seed_i[0] gold_o
2 seed_i[1] receptor_o
3 seed_i[2] led_o
4 seed_i[3]
5 seed_i[4]
6 seed_i[5]
7 load_i
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Simple Stopwatch [612]

• Author: Fabio Ramirez Stern
• Description: A simple stopwatch counting in 100th seconds and outputing it via

SPI to a MAX7219 chip controlling an 8 digit 7-segment display.
• GitHub repository
• HDL project
• Mux address: 612
• Extra docs
• Clock: 1000000 Hz

How it works

A clock divider turns 1 MHz into 100 Hz, which drives a stopwatch going from 00:00:00
to 59:59:99. To achieve this, a chain of two types of counting circuit, one per digit gives
it’s output to an SPI master that encodes the result to be displayed on a 7-segment
display with at least 6 digits.

How to test

The start/stop button toggles the clock, the lap time button pauses the display, while
the clock keeps running in the background. Pressing it again re-enables the display.
The time can be reset with the reset button on input 2, or with the chip/PCB wide
reset. The PCB wide reset affects everything, the input pin driven reset does only
resets the counters.

External hardware

2-3 buttons, one for start/stop and one for lap times. For the reset, either a third button
or the dev board’s reset for the whole chip can be used. 1 MAX7219/MAX7221 driven
7-segment display, or something that can interpret the SPI signal according to the
MAX’s specifications.

Pinout

# Input Output Bidirectional
0 start/stop SPI MOSI
1 lap time SPI CS (active low)
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# Input Output Bidirectional
2 reset (active high) SPI CLK
3 stopwatch enabled (counting up)
4 display enabled (goes low when showing lap time)
5
6
7
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Clock [613]

• Author: Hilburn
• Description: ASIC Desktop Clock
• GitHub repository
• HDL project
• Mux address: 613
• Extra docs
• Clock: 50000000 Hz

How it works

Generates a 1 second pulse that increments a seconds, minutes, and hours timer that
then gets decoded and displayed on the 7-segment display

How to test

Connect 7-segment display and adjust imput switches to desired clock frequency

External hardware

PMOD, 7-segment display, breadboard

Pinout

# Input Output Bidirectional
0 Clock 10 MHz 7-seg[0]
1 Clock 12 MHz 7-seg[1]
2 Clock 14 MHz 7-seg[2]
3 Clock 20 MHz 7-seg[3]
4 Show Minuetes 7-seg[4]
5 Show Hours 7-seg[5]
6 7-seg[6]
7 7-seg[7]
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MULDIV unit (8-bit signed/unsigned) [614]

• Author: Darryl Miles
• Description: Combinational Multiply and Divide Unit (signed and unsigned)
• GitHub repository
• HDL project
• Mux address: 614
• Extra docs
• Clock: 0 Hz

Background

Combinational multiply / divider unit (8bit+8bit input)
This is an updated version of the original project that was submitted and manufac-
tured in TT04 https://github.com/dlmiles/tt04-muldiv4. The previous project was
hand crafted in Logisim-Evolution then exported as verilog and integrated into a TT04
project.
This version is the same design, extended to 8-bit wide inputs, but instead of hand
crafting the logic gates in a GUI we convert functional blocks into SpinalHDL language
constructs. Part of the purpose of this design is to understand the area and timing
changes introduced by adding more bits, then to explore alternative topologies.
The goal of the next iteration of this design maybe to introduce a FMA (Fused Mul-
tiply Add/Accumulate) function and ALU function to explore if there is some useful
composition of these functions (that might be useful in an 8bit CPU/MCU design, or
scale to something bigger). The next iteration on from this could explore how to draw
the transistors directly (instead of using standard cell library) for such an arrangement,
this may result in non-rectangular cells that interlock to improve both area density and
timing performance. Or it might go up in smoke… who knows.

How It Works

Due to the limited total IOs available at the external TT interface it is necessary to
clock the project and setup UI_IN[0] to load each of the 2 8-bit input registers.
The data is latched at the CLK NEGEDGE and the value provided to the combina-
tional logic MUL/DIV operations (which are seperate logic modules) with the answer
becoming immediately available (after propagation and ripple settling time) at the
outputs.
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The result output is also multiplexed and has an immediate and register mode. The
immediate mode provides a direct visibility of the MUL/DIV combintational timing
between input and outputs (you need to account for address multiplex of high-low 8bit
sides of result). The registered mode capture the result in full so that it is possible to
pipeline interleave request and result information to achieve higher throughput.
So one half of the answer is immediately available to read and the other half of the an-
swer can be read by toggling UI_IN[0] (address bit0). Clocking is needed for registered
output mode, but not necessarily for immediate mode.
// FIXME please check out the original githun for any enahcnaed // documentation for
this project, potentially improved information // nearer PCB+IC delivery (to customer)
schedule but also post-production // post-physically testing results and information. //
I hope to produce some kind graphs showing the timing capture and // reliability to
show and demonstrate the cascade effect. This assume // I have the design correct to
allow this to happen, but there are some // tricked (like extending CLK on-duty cycle
when latches are open) enough // to see result capture output.
// FIXME provide wavedrom diagram (MULU, MULS, DIVU, DIVS)
// FIXME explain IMMediate mode and REGistered mode (to pipeline)
// FIXME provide blockdiagram of functional units // D // MUX // X Y registers
(loaded from multiplexed D) // OP -> res flags // P P registers // DEMUX // R
// FIXME explain architective difference to previous example and // considerations
why to change.
// FIXME explain addressing mode to allow much wider units and // potentially uneven
input sizes.
Multiplier (signed/unsigned) Method uses Ripple Carry Array as ‘high speed multiplier’
Setup operation mode bits MULDIV=0 and OPSIGNED(unsigned=0/signed=1) Setup
A (multiplier 8-bit) * B (multiplicand 8-bit) Expect result P (product 16-bit)
Divider (signed/unsigned) Method uses Full Adder with Mux as ‘combinational
restoring array divider algorithm’. Setup operation mode bits MULDIV=1 and
OPSIGNED(unsigned=0/signed=1) Setup Dend (dividend 8-bit) / Dsor (divisor 8-bit)
Expect result Q (quotient 8-bit) with R (remainder 8-bit)
Divider has error bit indicators that take precedence over any result. If any error bit
is set then the output Q and R should be disregarded. When in multiplier mode error
bits are muted to 0. No input values can cause an overflow error so the bit is always
reset.
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How to test

Please check back with the project github main page and the published docs/ directory.
There is expected to be some instructions provided around the time the TT05 chips a
received (Q4 2024).
At the time of writing receiving a physical chip (from a previous TT edition) back has
not occured, so there is no experience on the best way to test this project, so I defer
the task of writing this section to a later time.
There should be sufficient instructions here start you own journey.

External hardware

It is expect the RP2040 and a Python REPL should be sufficient test this project.

Thoughts to the future (next iteration)

uio_in[3] might moved to bit4 and DIV0/OVER combined into bit5 This would allow
the address the contigious area below. However during a test build of a MULDIV16
version it easily exceeds 1x1, as this stage looking towards making builds with permu-
tations of design/topology and method to generate GDS. So 1x1 is good to achieve
this.
The uio_in[3] feature wants to use registered mode to lock result when last address is
clocked in this way we can pipeline result and demonstration of what pipelining can do
to increase thoughput.
The TB is limited to the 4bit version. Ran out of time to validate registered output
and pipeline.
Encapsulate the SpinalHDL Scala netlist generation, and write a yosys JVM module
harness (a yosys C++ module that is a JVM thread/process runner, with communi-
cation interface, data/ffi API/lifecycle). Then write a yosys plugin that allows it to
directly include, use and call for generated data based on parametric details.
Consider emitting a custom cell/macro/GDS_object that yosys can call for, then emit
verilog like a regular standard cell module.
Consider modifying OpenROAD/OpenLane to incorporate generated macros directly
into other detailed routing environment then have the existing detailed routing work
around it as-is.
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TODO

Fixup the original logicsim schematic labels.
The input re-ordering (which made the SpinalHDL algo easier)
Relabel the P6_EXTND_EN to P7_EXTND_EN the original prodict index label was
a bad choice in retrospect.
Provide the SpinalHDL directory to the project with the sbt project and netlist gener-
ation code.
Fill out SpinalHDL unit testing testing.
Test support for SUPPORT_SIGNED=false (try to completely remove nets from out-
put instead of assigning constant False and letting synthesis optimize away)
Implement support for seperate SUPPORT_SIGNED for each input with 3 modes of
operation ALWAYS/NEVER/BOTH(like now using control input bit)
Implement and test support for odd-sized inputs, so the width of X and Y or DEND
and DSOR can be different sizes.
When input width can be unequal, test out the EOVERFLOW in the divider is wired
to the correct port and works in this scenarios.
Provide unit testing for commong multipler sizes, obvious byte boudnaries but also the
sizes common in FPGA DSP primitives.

Pinout

# Input Output Bidirectional
0 Data0 see

docs
Result0 see
docs

Addr bit0 HI=1/lo=0
mux of Data and Result
(input only)

1 Data1 see
docs

Result1 see
docs

unused

2 Data2 see
docs

Result2 see
docs

unused

3 Data3 see
docs

Result3 see
docs

Result mux regis-
tered=1/immediate=0
(input only)

4 Data4 see
docs

Result4 see
docs

DIV error overflow
(output only)
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# Input Output Bidirectional
5 Data5 see

docs
Result5 see
docs

DIV error divide-by-zero
(output only)

6 Data6 see
docs

Result6 see
docs

OPSIGNED mode (input
only)

7 Data7 see
docs

Result7 see
docs

MULDIV mode (input
only)
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motor a pasos [615]

• Author: Alan Tavira
• Description: Motor a pasos con base de tiempo para control de velocidad, cambio

de sentido de giro y de tipo de paso
• GitHub repository
• HDL project
• Mux address: 615
• Extra docs
• Clock: 50000000 Hz

How it works

En este trabajo se realiza un motor a pasos con la implementación de una máquina de
estados tipo moore. El cambio de un estado a otro se hace a diferentes velocidades,
1s, 0.5s, 0.25s y 0.125s, utilizando la base de tiempo realizada en el trabajo anterior.
Se realizan 3 tipos de pasos para este motor los cuales son el paso completo, el medio
paso y el paso doble y cada uno de estos puede ser realizado en el sentido horario o
antihorario.
El motor a pasos puede implementarse como una máquina de estados en la cual ten-
dremos 3 entradas y 4 salidas. Las entradas son :
-Selector de velocidad: Viene de una base de tiempo previamente realizada. En el
código puede verse como un wire llamado vel. Si está en un valor alto se cambia al
siguiente estado mientras que en un valor bajo se mantiene en el mismo estado. Con
esta entrada podemos variar la velocidad con la que cambian los estados.
-Sentido: Esta entrada indica si el motor a pasos tendrá el sentido antihorario u horario,
en el código esta representada por la entrada sentido.
-Paso: Con esta entrada definimos si el paso será completo, medio o doble. En el
código se define como paso.
Las 4 bobinas de salidas se definen como I1, I2, I3 y I4. En la figura podemos ver el
diagrama de la maquina de estados que representa al motor a pasos. La entrada H
corresponde a la salida de la base de tiempo vel, la salida D al sentido y P al tipo de
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paso.
En la siguiente figura se presentan las conexiones de las entradas y sali-
das de la máquina de estados con las correspondientes al chip del proyecto.
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Las entradas RST, select, sentido y paso son entradas que pueden ser controladas con
un switch o push button ya que únicamente se requiere de un valor lógico alto o bajo
para ellas. La entrada CLK corresponde al reloj, no se conecta al reloj del chip para
poder tener más libertad en el valor de la frecuencia de la base de tiempo. Aunque
originalmente se utilizó un reloj de 50MHz. Finalmente, las salidas I1, I2, I3 y I4 son
las salidas de la máquina de estados. La frecuencia de operación de estas dependen
del valor de la entrada select, ya que esta controla la velocidad del pulso de la base
de tiempo que a su vez controla la velocidad a la que operara la máquina de estados
(50MHz, 25MHz, 12.5MHz o 6.25MHz).

How to test

Se utiliza un reloj de 50MHz para la máquina de estados y la base de tiempo. Dependi-
endo del selector de velocidad el cambio de un estado a otro se dará en 1s (cuando se
cuenten todos los ciclos), 0.5s (conteo de la mitad de los ciclos), 0.25s (conteo de 1/4

447



del total de los ciclos) o 0.125s (1/8 de los ciclos). Si la entrada “paso” esta activa
entonces el cambio será de medio paso y cuando este en bajo el paso será completo, si
la entrada paso está en bajo y nos encontramos en un estado correspondiente a medio
paso (4, 5, 6 o 7) entonces el paso será doble. Si la entrada “sentido” está en bajo
entonces el cambio se dará en sentido horario y cuando la entrada este en un valor
alto el sentido será antihorario. Por último, la salida de la base de tiempo nos indica
si cambiar a otro estado (valor en alto) o permanecer en el mismo estado (valor en
bajo).
Para la simulación se cambia el parámetro f de la base de tiempo de 50000000 a 8
para facilitar la simulación. La señal de reset se deja en el valor fijo 0, el reloj tiene un
periodo de 1ns, el select y el sentido se establecen con un periodo de 324ns y el paso
con 162ns. De esta manera podemos ver todas las combinaciones para las entradas
sentido y paso con una sola velocidad. En la figura se observan las salidas correspondi-
entes a cada estado con el sentido horario (sentido=0) y el paso completo (paso=0).

los estados cuando el sentido es horario (sentido=0) y se tienen medios pasos (paso=1)

se tienen en la siguiente imagen
La imagen de abajo muestra la combinación de entradas correspondientes a un sentido
antihorario (sentido=1) y ya que el paso es completo entre los estados 4 al 7 se consid-

era un paso doble (paso=0).
En la próxima imagen se regresa al medio paso (paso=1) pero ahora en sentido antiho-
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rario (sentido=1).
Finalmente, tenemos los diferentes valores que puede tomar el selector de
velocidad (1s, 0.5s, 0.25s y 0.125s). Para cada caso las salidas son las
mismas pero con una frecuencia más alta en comparación a la anterior.

External hardware

FPGA Cyclone II EP2C35F672C6ES

Pinout

# Input Output Bidirectional
0
1 CLK
2 RST I4
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# Input Output Bidirectional
3 select[0] I3
4 select[1] I2 paso
5 I1 sentido
6
7
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MULDIV unit (8-bit signed/unsigned) with sky130 HA/FA
cells [616]

• Author: Darryl Miles
• Description: Combinational Multiply and Divide Unit (signed and unsigned)
• GitHub repository
• HDL project
• Mux address: 616
• Extra docs
• Clock: 0 Hz

Background

Combinational multiply / divider unit (8bit+8bit input)
This is an updated version of the original project that was submitted and manufac-
tured in TT04 https://github.com/dlmiles/tt04-muldiv4. The previous project was
hand crafted in Logisim-Evolution then exported as verilog and integrated into a TT04
project.
This version is the same design, extended to 8-bit wide inputs, but instead of hand
crafting the logic gates in a GUI we convert functional blocks into SpinalHDL language
constructs. Part of the purpose of this design is to understand the area and timing
changes introduced by adding more bits, then to explore alternative topologies.
The goal of the next iteration of this design maybe to introduce a FMA (Fused Mul-
tiply Add/Accumulate) function and ALU function to explore if there is some useful
composition of these functions (that might be useful in an 8bit CPU/MCU design, or
scale to something bigger). The next iteration on from this could explore how to draw
the transistors directly (instead of using standard cell library) for such an arrangement,
this may result in non-rectangular cells that interlock to improve both area density and
timing performance. Or it might go up in smoke… who knows.

How It Works

Due to the limited total IOs available at the external TT interface it is necessary to
clock the project and setup UI_IN[0] to load each of the 2 8-bit input registers.
The data is latched at the CLK NEGEDGE and the value provided to the combina-
tional logic MUL/DIV operations (which are seperate logic modules) with the answer
becoming immediately available (after propagation and ripple settling time) at the
outputs.
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The result output is also multiplexed and has an immediate and register mode. The
immediate mode provides a direct visibility of the MUL/DIV combintational timing
between input and outputs (you need to account for address multiplex of high-low 8bit
sides of result). The registered mode capture the result in full so that it is possible to
pipeline interleave request and result information to achieve higher throughput.
So one half of the answer is immediately available to read and the other half of the an-
swer can be read by toggling UI_IN[0] (address bit0). Clocking is needed for registered
output mode, but not necessarily for immediate mode.
// FIXME please check out the original githun for any enahcnaed // documentation for
this project, potentially improved information // nearer PCB+IC delivery (to customer)
schedule but also post-production // post-physically testing results and information. //
I hope to produce some kind graphs showing the timing capture and // reliability to
show and demonstrate the cascade effect. This assume // I have the design correct to
allow this to happen, but there are some // tricked (like extending CLK on-duty cycle
when latches are open) enough // to see result capture output.
// FIXME provide wavedrom diagram (MULU, MULS, DIVU, DIVS)
// FIXME explain IMMediate mode and REGistered mode (to pipeline)
// FIXME provide blockdiagram of functional units // D // MUX // X Y registers
(loaded from multiplexed D) // OP -> res flags // P P registers // DEMUX // R
// FIXME explain architective difference to previous example and // considerations
why to change.
// FIXME explain addressing mode to allow much wider units and // potentially uneven
input sizes.
Multiplier (signed/unsigned) Method uses Ripple Carry Array as ‘high speed multiplier’
Setup operation mode bits MULDIV=0 and OPSIGNED(unsigned=0/signed=1) Setup
A (multiplier 8-bit) * B (multiplicand 8-bit) Expect result P (product 16-bit)
Divider (signed/unsigned) Method uses Full Adder with Mux as ‘combinational
restoring array divider algorithm’. Setup operation mode bits MULDIV=1 and
OPSIGNED(unsigned=0/signed=1) Setup Dend (dividend 8-bit) / Dsor (divisor 8-bit)
Expect result Q (quotient 8-bit) with R (remainder 8-bit)
Divider has error bit indicators that take precedence over any result. If any error bit
is set then the output Q and R should be disregarded. When in multiplier mode error
bits are muted to 0. No input values can cause an overflow error so the bit is always
reset.
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How to test

Please check back with the project github main page and the published docs/ directory.
There is expected to be some instructions provided around the time the TT05 chips a
received (Q4 2024).
At the time of writing receiving a physical chip (from a previous TT edition) back has
not occured, so there is no experience on the best way to test this project, so I defer
the task of writing this section to a later time.
There should be sufficient instructions here start you own journey.

External hardware

It is expect the RP2040 and a Python REPL should be sufficient test this project.

Thoughts to the future (next iteration)

uio_in[3] might moved to bit4 and DIV0/OVER combined into bit5 This would allow
the address the contigious area below. However during a test build of a MULDIV16
version it easily exceeds 1x1, as this stage looking towards making builds with permu-
tations of design/topology and method to generate GDS. So 1x1 is good to achieve
this.
The uio_in[3] feature wants to use registered mode to lock result when last address is
clocked in this way we can pipeline result and demonstration of what pipelining can do
to increase thoughput.
The TB is limited to the 4bit version. Ran out of time to validate registered output
and pipeline.
Encapsulate the SpinalHDL Scala netlist generation, and write a yosys JVM module
harness (a yosys C++ module that is a JVM thread/process runner, with communi-
cation interface, data/ffi API/lifecycle). Then write a yosys plugin that allows it to
directly include, use and call for generated data based on parametric details.
Consider emitting a custom cell/macro/GDS_object that yosys can call for, then emit
verilog like a regular standard cell module.
Consider modifying OpenROAD/OpenLane to incorporate generated macros directly
into other detailed routing environment then have the existing detailed routing work
around it as-is.

453



TODO

Fixup the original logicsim schematic labels.
The input re-ordering (which made the SpinalHDL algo easier)
Relabel the P6_EXTND_EN to P7_EXTND_EN the original prodict index label was
a bad choice in retrospect.
Provide the SpinalHDL directory to the project with the sbt project and netlist gener-
ation code.
Fill out SpinalHDL unit testing testing.
Test support for SUPPORT_SIGNED=false (try to completely remove nets from out-
put instead of assigning constant False and letting synthesis optimize away)
Implement support for seperate SUPPORT_SIGNED for each input with 3 modes of
operation ALWAYS/NEVER/BOTH(like now using control input bit)
Implement and test support for odd-sized inputs, so the width of X and Y or DEND
and DSOR can be different sizes.
When input width can be unequal, test out the EOVERFLOW in the divider is wired
to the correct port and works in this scenarios.
Provide unit testing for commong multipler sizes, obvious byte boudnaries but also the
sizes common in FPGA DSP primitives.

Pinout

# Input Output Bidirectional
0 Data0 see

docs
Result0 see
docs

Addr bit0 HI=1/lo=0
mux of Data and Result
(input only)

1 Data1 see
docs

Result1 see
docs

unused

2 Data2 see
docs

Result2 see
docs

unused

3 Data3 see
docs

Result3 see
docs

Result mux regis-
tered=1/immediate=0
(input only)

4 Data4 see
docs

Result4 see
docs

DIV error overflow
(output only)
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# Input Output Bidirectional
5 Data5 see

docs
Result5 see
docs

DIV error divide-by-zero
(output only)

6 Data6 see
docs

Result6 see
docs

OPSIGNED mode (input
only)

7 Data7 see
docs

Result7 see
docs

MULDIV mode (input
only)

455



mult_2b [617]

• Author: Juan Manuel Lpez Pasten
• Description: Multiplixador de 2 bits utilizando compyertas logicas
• GitHub repository
• HDL project
• Mux address: 617
• Extra docs
• Clock: 0 Hz

How it works

EL proyecto es un multiplicador sencillo de 2 bits para cada entrada a,b. Se realizó
describiendo el circuito con compiertas lógicas utilizando multiplicaciones con com-
puertas AND y medios sumadores con la combinación de compuertas AND y XOR.
Este circuito es completamente combinacional y es una aplicación práctica sencilla y
didáctica para obtener un circuito físico final a partir de la descripción en verilog.

A1 A0 B1 B0 P3 P2 P1 P0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 0 1 1
1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1

How to test

Las entradas del circuito de 2 bits, a y b, deben conectarse a interruptores como lo
pueden ser DIP switch, con sus respectivas resistencias. Las salida out de 4 bits se
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puede conectar a leds, de igual manera con sus respectivas resistencias para evitar
dañar algún componente.

External hardware

El hardware externo utilizado es:
-DIP switch 4 posiciones. -4 lEDS.

Pinout

# Input Output Bidirectional
0 a (bit 0) out (bit 0) not used
1 a (bit 1) out (bit 1) not used
2 b (bit 0) out (bit 2) not used
3 b (bit 1) out (bit 3) not used
4 not used not used not used
5 not used not used not used
6 not used not used not used
7 not used not used not used
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NCL LFSR [618]

• Author: Tommy Thorn
• Description: A trivial little example to try out self-timed logic
• GitHub repository
• HDL project
• Mux address: 618
• Extra docs
• Clock: 0 Hz

How it works

Logic is dual redundantly encoded so we can distingush data (DATAx) and no data
(NULL). … to be filled in.

How to test

You can’t really test without a scope and a way to drive inputs

External hardware

Scope

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7
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Decodificador binario a display 7 segmentos hexadecimal
[619]

• Author: Victor Manuel Cante Saloma
• Description: Muestra un número binario de 4 bits en un diplay de 7 segmentos

(ánodo común) en hexadecimal
• GitHub repository
• HDL project
• Mux address: 619
• Extra docs
• Clock: 0 Hz

How it works

The operation is quite simple; when entering a 4-bit binary number, this number is
shown at the output on a 7-segment common anode display in hexadecimal. The input
“h” is a 4-bit vector, and the output “S” is a 7-bit vector. For the output “S”, the
most significant bit corresponds to segment “a”, and so on, until the least significant
bit, which corresponds to segment “g”, as shown in figure 1. Since the display is anode
common, to indicate that a segment is on, it is indicated with a “0”.
In the simulation shown in Figure 2, we can see that given a binary number that we
introduce at the input, an output combination corresponds to the value to be shown
on the 7-segment display in hexadecimal form, that is, given The binary number at the
input corresponds to a 7-bit binary number, which is actually a pattern to light each
segment of the 7-segment display, which obviously corresponds to the input number
to be displayed.
According to Figure 3, the connections of the proposed circuit to those of the project
in general are detailed below.

1. For the input, which is a 4-bit vector “h”, the overall project pins connected to
the proposed circuit are as follows:

in[0]: “h[0]” //Bit 0
in[1]: “h[1]” //Bit 1
in[2]: “h[2]” //Bit 2
in[3]: “h[3]” //Bit 3
in[4]: “no use”
in[5]: “no use”
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Figure 56: display
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Figure 57: Simu

in[6]: “no use”
in[7]: “no use”

2. For the output, which is a 7-bit vector “S”, the overall project pins connected
to the proposed circuit are as follows:

out[0]: “S[0]” //Segmento g
out[1]: “S[1]” //Segmento f
out[2]: “S[2]” //Segmento e
out[3]: “S[3]” //Segmento d
out[4]: “S[4]” //Segmento c
out[5]: “S[5]” //Segmento b
out[6]: “S[6]” //Segmento a
out[7]: “no use”
The signals, both input and output, are logic highs and lows, that is, usually 5 volts to
define a logic “1”, and 0 volts for a logic “0”. Let us remember that in the case of the
output, an inverse logic is applied to the output since it is a common anode display,
but in essence they are logical “1” and “0”.

How to test

To check the operation, a 4-position dip switch is connected to the input, connected
to a suitable power supply for the system, with its respective precautions (resistances),
according to the number that you want to show on the display, for which appropriately
connect each switch to the corresponding bit it represents. For the output, it is con-
venient to connect a 7-segment display (common anode) to corroborate its operation,
according to the pins that correspond to each segment, mentioned in the previous
section.
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Figure 58: latin2
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External hardware

A 4-position DIP Switch for the input, which will serve to form the 4-bit binary number,
along with its proper power supply, and a 7-segment display (common anode), to
visualize its operation, connected with due precautions to avoid damage. Added to all
this is a breadboard to place these components.

Figure 59: SWI-18-3

Pinout

# Input Output Bidirectional
0 Bit 0 Segmento g no use
1 Bit 1 Segmento f no use
2 Bit 2 Segmento e no use
3 Bit 3 Segmento d no use
4 no use Segmento c no use
5 no use Segmento b no use
6 no use Segmento a no use
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# Input Output Bidirectional
7 no use no use no use
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Figure 60: AR1112-KPS1203D-Fuente-de-Alimentacion-120V-3A-V8
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Figure 61: Displaysa
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Figure 62: image
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Latch RAM (64 bytes) [620]

• Author: Mike Bell
• Description: 64 byte RAM built out of latches
• GitHub repository
• HDL project
• Mux address: 620
• Extra docs
• Clock: 0 Hz

What’s the project?

A 64 byte RAM implemented using 512 latches.
Resetting the project does not reset the RAM contents.

How to test

To read a byte from memory:

• Set the addr pins to the desired address and set wr_en low
• Pulse clk
• data_out (the output pins) reads the value at the memory location.

To write a byte to memory:

• Set the addr pins to the desired address, set data_in (the bidirectional pins)
to the desired value, and set wr_en high

• Pulse clk
• The memory location will be written on the next cycle. The data_out pins will

now read the old value at this address.
• The next cycle can not be a write.

On the cycle immediately after a write the value of wr_en and data_in will be ignored
- the cycle is always a read. If addr is left the same then the value read will be the
value just written to that location.
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How it works

Setting values into latches reliably is a little tricky. There are two important consider-
ations:

• The latch gate must only go high for the latches for the byte that is addressed.
The other latch gates must not glitch.

• The data must be stable until the latch gate is definitely low again.

To ensure the restrictions are met, writes take 2 cycles, and only 1 write can be in
flight at once, so the cycle after any write is always treated as a read.
The scheme used is described in detail below.

Writing: Ensuring stable inputs to the latches. The write address,
addr_write, is always set to the same value for 2 clocks when doing a write. When
the write is requested addr_write and data_to_write are captured. wr_en_next
is set high. If wr_en_next was already high the write is ignored, so the inputs to the
latches aren’t modified when a write is about to happen.
On the next clock, wr_en_valid is set to wr_en_next. addr_write is stable at
this time so the sel_byte wires, that contain the result of the comparison of the
write address with the byte address for each latch, will already be stable at the point
wr_en_valid goes high.
wr_en_ok is a negative edge triggered flop that is set to !wr_en_valid. This will
therefore go low half a clock after wr_en_valid is set high. And because two consec-
utive writes are not allowed it will always be high when wr_en_valid goes high.
The latch gate is set by anding together wr_en_valid, wr_en_ok and the sel_byte
for that byte. This means the latch gate for just the selected byte’s latches goes high
for the first half of the write clock cycle. data_to_write is stable across this time (it
can not change until the next clock rising edge), so will be cleanly captured by the
latch when the latch gate goes low.

Reading: Mux and tri-state buffer. Reading the latches is straightforward. How-
ever, a 64:1 mux for each bit is relatively area intensive, so instead for each bit we have
4 16:1 muxes feeding 4 tri-state buffers.
Only the tri-state buffer corresponding to the selected read address is enabled, and the
output is taken from the wire driven by those 4 buffers.
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To minimize contention, the tri-state enable pin of the buffers is driven directly from
a flop which captures the selected read address directly from the inputs, at the same
cycle as the addr_read flops are set.
The combined output wire then goes to a final buffer before leaving the module, en-
suring the outputs are driven cleanly.

Pinout

# Input Output Bidirectional
0 addr[0] data_out[0] data_in[0]
1 addr[1] data_out[1] data_in[1]
2 addr[2] data_out[2] data_in[2]
3 addr[3] data_out[3] data_in[3]
4 addr[4] data_out[4] data_in[4]
5 addr[5] data_out[5] data_in[5]
6 data_out[6] data_in[6]
7 wr_en data_out[7] data_in[7]
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Serial to Parallel Register [621]

• Author: Ricardo M. Rocha Torres
• Description: This is a simple Serial to Parallel Register
• GitHub repository
• HDL project
• Mux address: 621
• Extra docs
• Clock: 0 Hz

How it works

A erial-parallel register, is a digital circuit used to store data sequentially and then
transfer it in parallel. It works in the following way:
Serial Input: Data is input sequentially, bit by bit, through a single input line. These bits
move through the register, being temporarily stored in the register’s memory cells.
Temporary Storage: As bits are entered, each bit is loaded into a memory cell within the
register. This is typically done using a serial shifting mechanism, where each new bit
pushes the next bit to the next memory cell, thus shifting all previous bits forward.
Parallel Transfer: When all the bits have been entered into the register serially and
temporarily stored, they can be transferred simultaneously or in parallel from the mem-
ory cells of the register to a parallel width data bus. This is achieved by loading each
bit stored in the memory cells into parallel output lines that are connected to the data
bus.Typically, type D latches or flip flops are used, which are controlled by the clock,
which determines when a data chain begins or ends.
Control and Synchronization: The operation of the serial-parallel register is controlled
by control signals that indicate when to start inputting data, when to stop serial input,
when to start parallel transfer, and when to stop transfer. Accurate synchronization is
crucial to ensure that data moves correctly through the register and is transferred to
the data bus at the right time.
For this project, a 4-bit serial-parallel register was made, which consists of a clock, a
reset, the serial input and the parallel output.
The importance of this register is found in a binary search block used in converters
such as ADC SAR by its acronym Digital Analog Converter successive approximation
register which introduces a series of data into the system in serial form and requires a
series in parallel to determine the value to convert.
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How to test

The testbench used was proposed, carried out in ACTIVE HDL-Student Version, the
stimuli used were.
10ns period clock. Reset, through a formula which at 0 fs is 1 and 0 after 1 ns to clean
the data and start with a known value with is 0. Serial input, a 20 ns clock.
The parallel output is updated every 4 clock cycles and displays the result until it
updates the next 4 clock cycles with a new result.

External hardware

Wave generator:This controls the system clock externally
Switch, connected in the reset and is used when we perform a conversion, It can also
be used with a button or with a wave generator using a square pulse once. The reset
switch value must be 0 to allow a value that is different from 0 on the parallel output.
Logic Analyzer. This allows a serial signal to be introduced into the system that varies
its values non-periodically to read its conversion in parallel, the same logic analyzer can
read the output in parallel. Keysight 1681AD Logic Analyzer in INAOE con be used.
Another way is to use an FPGA programmed with serial values and it can obtain the
output values in parallel.

Pinout

# Input Output Bidirectional
0 no use no use Bit 0
1 no use no use Bit 1
2 no use no use Bit 2
3 no use no use Bit 3
4 no use no use no use
5 no use no use Serie_in
6 no use no use rst
7 no use no use clk
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Combination Lock [622]

• Author: Eric Cheng
• Description: 4-bit combination lock with a maximum of 3 attempts per lock and

a master reset
• GitHub repository
• Wokwi project
• Mux address: 622
• Extra docs
• Clock: 10000 Hz

How it works

Everything is controlled using the CLOCK, RESET, and input pins. The first step after
starting the simulation is pressing RESET.

Setting a Passcode To set a passcode, IN0 will need to be set to HIGH for the
duration of the setup. Then, create a combination of IN1, IN2, IN3, and IN4. This will
be your passcode after setting IN0 back to LOW. The passcode can be reset anytime
with IN0. OUT 0~3 represent the current password of the lock.

Unlocking To unlock the combination lock, you will set IN1, IN2, IN3, and IN4 to
the previous combination in Setting a Passcode. To verify, set IN5 to HIGH. If
correct, the LED at OUT4 will go HIGH. The lock will only be in an unlocked state
if IN5 is held at HIGH. Returning IN5 back to LOW will lock the combination lock
again.

Number of Attempts The user will only have 3 tries to get the right combination
before the input pins IN1, IN2, IN3, and IN4 become pin-locked (unusable). Once the
lock become unusable, OUT5 will go LOW. A press of the RESET button will turn it
back to normal.

How to test

The normal flow of using the design is to first set a password of your liking (assuming
you are the admin). Then, the lock would be free to use. If in a case where the user
failed three times to unlock the lock, it is up to the admin to reset the pin-lock for
continued use.
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External hardware

A microcontroller (or other hardware of sorts) that allows only the admin to be able
to reset the pin-lock is reccomended. Buttons, switches, or other forms of input are
necessary for physical operation of the lock.

Pinout

# Input Output Bidirectional
0 Set CurrPswd[0]
1 Pswd[0] CurrPswd[0]
2 Pswd[1] CurrPswd[0]
3 Pswd[2] CurrPswd[0]
4 Pswd[3] Unlocked
5 Enter PinLocked
6
7
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PWM [623]

• Author: NoeReyes
• Description: This project involves Pulse Width Modulation, enabling the duty

cycle to be adjusted between 10% and 90% using switches.
• GitHub repository
• HDL project
• Mux address: 623
• Extra docs
• Clock: 50000000 Hz

How it works

Pulse Width Modulation (PWM) is a technique used in electronics to control the
average voltage applied to a load by rapidly switching a digital signal on and off at
varying duty cycles. This method is commonly employed in applications such as motor
speed control, LED brightness adjustment, and power regulation. By adjusting the
duty cycle of the signal, PWM enables precise control over the output voltage or
power, allowing for efficient and flexible manipulation of electrical devices.
My project involves Pulse Width Modulation (PWM), allowing the duty cycle to be
adjusted between 10% and 80% using 3 switches with 7 different combinations. Each
combination increments the duty cycle by 10%. For example, ‘000’ represents a 10%
duty cycle, and ‘111’ represents an 80% duty cycle. The PWM was designed for a
frequency of 1KHz.
The above image represents the PWM module that was designed.

[2:0] LOAD Duty Cicle
000 10%
001 20%
010 30%
011 40%
100 50%
101 60%
110 70%
111 80%

In the previous table, the variation of the duty cycle is shown as a function of the
LOAD input combination.
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Figure 63: PWM
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How to test

The LOAD input should be connected to a switch, CLK is connected to a 50MHz clock,
and RESET to a button. To ensure proper operation, press RESET to set the initial
conditions. Once this is done, choose the LOAD input combination to set the desired
duty cycle.

External hardware

The external hardware includes one LED, a 1k ohm resistor, and three 2-position
switches.

Pinout

# Input Output Bidirectional
0 load 0
1 load 1
2 load 2
3
4
5
6
7 PWM
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SPELL [642]

• Author: Uri Shaked
• Description: SPELL is a minimal, cryptic, stack-based programming language

crafted for The Skull CTF
• GitHub repository
• HDL project
• Mux address: 642
• Extra docs
• Clock: 10000000 Hz

How it works

SPELL is a minimal, stack-based programming language created for The Skull CTF.
The language is defined by the following cryptic piece of Arduino code:

void spell() {

uint8_t*a,pc=16,sp=0,
s[32]={0},op;while(!0){op=

EEPROM.read(pc);switch(+op){case
',':delay(s[sp-1]);sp--;break;case'>':
s[sp-1]>>=1|1;break;case'<':s[sp-1]<<=1;

break;case'=':pc=s[sp-1]-1;sp--;break;case
'@':if(s[sp-2]){s[sp-2]--;pc=s[sp-1]-1;sp+=
1;}sp-=2;break;case'&':s[sp-2]&=s[sp-1];sp-=1;
break;case'|':s[sp-2]|=s[sp-1];sp-=1;break;case

'^':s[sp-2]^=s[sp-1];sp--;break;case'+':s[sp-2]+=
s[sp-1];sp=sp-1;break;case'-':s[sp-2]-=s[sp-1];sp--;
break;case'2':s[sp]=s[sp-1];sp=sp+1;break;case'?':s[

sp-1]=EEPROM. read(s[sp-1]|0 );break;case
"!!!"[0]: 666,EEPROM .write(s
[sp-1] ,s[sp-2] );sp=+
sp-02; ;break; 1;case
"Arr"[ 1]: s[+ sp-1]=
*(char*) (s[+ sp-1 ]);break
;case'w':* (char*)( s[+sp-1]) =s[sp-+2];
sp-=2;break;case+ 'x':s[sp] =s[sp-1

];s[sp-1]=s[sp + -2];s[sp-2]=s[
0|sp];break; ;; case"zzz"[0
]:sleep();" Arrr ";break;case
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255 :return;; default:s [sp]
=+ op;sp+= 1,1 ;}pc=
+ pc + 1; %>

}

This design is an hardware implementation of SPELL with the following features:

• 32 bytes of program memory (volatile, simulates EEPROM)
• 32 bytes of stack memory
• 8 bytes of internal RAM
• 8 I/O pins (uio)

Initially, all the program memory is filled with 0xFF, and the stack and data memory are
filled with 0x00. The program counter and the stack pointer are both set to 0x00.
To load a program or inspect the internal state, the design provides access to the
following registers via a simple serial interface:

Address Register name Description
0x00 PC Program counter
0x01 SP Stack pointer
0x02 EXEC Execute-in-place (write-only)
0x03 STACK Stack access (read the top value, or push a value)

The serial interface is implemented using a shift register, which is controlled by the
following signals:

Pin Type Description
reg_sel input Select the register to read/write
load input Load the selected register with the value from the shift

register
dump input Dump the selected register value to the shift register
shift_in input Serial data input
shift_out output Serial data output

When load is high, the value from the shift register is loaded into the selected register.
When dump is high, the value of the selected register is dumped into the shift register,
and can be read after two clock cycles by reading shift_out (MSB first).
For example, if you want to read the value of the program counter, you would:
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1. Set reg_sel to 0x00 and set dump to 1
2. Wait for two clock cycles for the first bit (MSB) to appear on shift_out.
3. Read the remaining bits from shift_out on each clock cycle.

To write a value to the program counter, you would:

1. Write the value to the shift register, one bit at a time, starting with the MSB.
2. Set reg_sel to 0x00 and set load to 1.
3. Wait for a single clock cycle for the value to be loaded.

Writing an opcode to the EXEC register will execute the opcode in place, without
modifying the program counter (unless the opcode is a jump instruction).
The STACK register is used to push a value onto the stack or read the top value from
the stack (for debugging purposes).

Data memory and I/O registers The data memory space is divided into two
regions:

Address range Description
0x00 - 0x07 General-purpose data storage (data memory)
0x20 - 0x5F I/O and control registers

Other addresses are unmapped.
The following registers are available in the data memory space:

Address Name Description
0x36 PINB Read the value of the portb pins, or toggle the output when

written to
0x37 DDRB Set the direction of the portb pins (0 = input, 1 = output)
0x38 PORTBWrite to the portb pins

For example, to toggle the value of the portb[2] (uio[2]) pin, you would write
0x04 to the PINB register.
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How to test

To test SPELL, you need to load a program into the program memory and execute it.
You can load the program by repeatedly executing the following steps for each byte of
the program:

1. Write the byte to the top of the stack (using the STACK register)
2. Write the address of the byte in the program memory to top of the stack
3. Write the opcode ! to the EXEC register

After loading the program, you can execute it by writing the address of the first byte
in the program memory to the PC register, and then pulsing the run signal.

Test program The following program which will rapidly blink an LED connected
to the uio[0] pin. The program bytes should be loaded into the program memory
starting at address 0:

[1, 55, 119, 1, 54, 119, 250, 44, 3, 61]

For a more complex test program, see the TT06 SPELL bringup script.

External hardware

None

Pinout

# Input Output Bidirectional
0 run sleep gpio[0]
1 step stop gpio[1]
2 load wait_delay gpio[2]
3 dump shift_out gpio[3]
4 shift_in gpio[4]
5 reg_sel[0] gpio[5]
6 reg_sel[1] gpio[6]
7 gpio[7]
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RNG3 [654]

• Author: Luca Collini
• Description: NIST RNG TESTS
• GitHub repository
• HDL project
• Mux address: 654
• Extra docs
• Clock: 50000000 Hz

How it works

This design takes a bit every clock cycles and evaluates if the bit source is random.
This particular test is the Monobit test from NIST 800.22. The output is given every
65536 cycles. The is_random signal is to be checked only when the valid signal is
high.

How to test

Provide Clock and input bit.

External hardware

Non for now. Planning to add soon

How to use

send one bit per clock cycle to the epsilon port. check is_random when valid is high.
The design evaluates every 65536 bits.

Pinout

# Input Output Bidirectional
0 epsilon is_random
1 valid
2
3
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# Input Output Bidirectional
4
5
6
7
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4-Bit Full Adder and Subtractor with Hardware Trojan
[672]

• Author: Jeremy Hong
• Description: Externally triggered hardware trojan in a 4-bit full adder and sub-

tractor
• GitHub repository
• Wokwi project
• Mux address: 672
• Extra docs
• Clock: 100000 Hz

How it works

4-Bit Full Adder and Subtractor with hardware trojan inserted in the critical path

How to test

Use DIP Switches, provide external input for last B input bit and hardware trojan
trigger signal.

External hardware

Pattern Generator and logic analyzer

Pinout

# Input Output Bidirectional
0 Add/Subtract 7 Segment Display Input - B3
1 A0 7 Segment Display Input - Hardware Trojan Trigger
2 B0 7 Segment Display Output - LFSR 1
3 A1 7 Segment Display Output - LFSR 2
4 B1 7 Segment Display Output - LFSR 3
5 A2 7 Segment Display Input - LFSR 3
6 B2 7 Segment Display Input - LFSR 4
7 A3 7 Segment Display Output - LFSR 7
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Notre Dame Dorms LED [673]

• Author: Allison Fleming, Daniel Yu, Matthew Morrison
• Description: Solves a puzzle based on the correct selection of Notre Dame dorms
• GitHub repository
• Wokwi project
• Mux address: 673
• Extra docs
• Clock: 0 Hz

How it works

There are eight switches on this DIP Switch, each representing a dorm on campus. The
LED can be lit up with a minimum of three switches turned on. These three switches
represent the best male dorm (Alumni, Carroll, Keenan, or Dillon), the best female
dorm (Flaherty, Welsh Fam, or PE), and the best gender-neutral dorm (Fischer Grad).
For example, a valid combination would be Alumni, Flaherty, Fischer Grad.
Switch #
1- Alumni, 2- Carroll, 3- Keenan, 4- Dillon, 5- Flaherty, 6- Welsh Fam, 7- Pasquerilla
East, 8- Fischer Grad

How to test

This puzzle is supposed to be a trial and error practice for students to learn about logic
gates. Thus, to test it, play around with using different switches to see what lights up
the LED.

External hardware

One external LED is needed

Pinout

# Input Output Bidirectional
0
1
2
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# Input Output Bidirectional
3
4
5
6
7
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Tiny ALU [674]

• Author: Adam Majmudar
• Description: A super simple ALU from my GPU design
• GitHub repository
• HDL project
• Mux address: 674
• Extra docs
• Clock: 0 Hz

How it works

I’m designing a minimal GPU, which is a large project and also challenging to connect
with the tt06 pins. Rather than try to wrangle with this setup and buy up a bunch of
tiles, I figured I would put together something simple so I can get the peace of mind
of having a submission!
I’ll still be shipping my GPU project, which I’ll add a link to here soon - but for tapeout
I didn’t want to block on that.

How to test

The test bench is quite simple - just testing the addition function of the ALU.

External hardware

No external hardware is needed.

Pinout

# Input Output Bidirectional
0 rs[0] alu_out[0] alu_arithmetic_mux[0]
1 rs[1] alu_out[1] alu_arithmetic_mux[1]
2 rs[2] alu_out[2]
3 rs[3] alu_out[3]
4 rt[0]
5 rt[1]
6 rt[2]
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# Input Output Bidirectional
7 rt[3]
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clk frequency divider controled by rom [675]

• Author: Gilberto Ramos Valenzuela
• Description: Clock divider control by ROM
• GitHub repository
• HDL project
• Mux address: 675
• Extra docs
• Clock: 50000000 Hz

How it works

This is a clock divider. It works by dividing the frequency by a counter. The parameters
for dividing were calculated for 27 frequencies, multiples of 50mHz. These parameters
are stored in a ROM, which can be accessed by a 4-bit input, and it can output 28-bit
data.

How to test

To function, it needs a 50MHz input. You select the frequency by choosing it from
the table shown in the Readme.md. Then, you get the output through an output pin,
which can be tested by an oscilloscope and fed into a microcontroller or any circuit
requiring a square wave signal to function.

External hardware

Requires a 50MHz oscillator.

Pinout

# Input Output Bidirectional
0 F_select [0] clk
1 F_select [1] clk_out
2 F_select [2]
3 F_select [3]
4 F_select [4]
5 reset_n
6
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# Input Output Bidirectional
7
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SAP-1 Computer [676]

• Author: Jonathan Zhou, Rana Singh, Anika Agarwal
• Description: Simple as Possible computer with multiplier and divider into ASIC
• GitHub repository
• HDL project
• Mux address: 676
• Extra docs
• Clock: 10000000 Hz

How it works

(Forked from Brandon Cruz's SAP-1 Design)

Originally, Malvino and Brown presented the SAP-1 architecture in a book called Digital Computer Electronics.
The design gained massive popularity when it was build as a bread board computer by Ben Eater on a series of YouTube videos.
The architecture contains various modules, including
- Clock
- Program Counter
- Register A
- Register B
- Adder
- Multiplier
- Divider
- Memory
- Instruction Register
- Bus
- Controller
This design doesn't have inputs, it is dependent only on the clock that coordinates sequence of the computer's operation.
Its operation consists on the communication that that bus provides between modules; the signal load dumps information into a module
and the enable signal allows the bus to receive a signal. The bus is 8-bit width since it is an 8 bit computer, and the registers
are also 8-bit registers.
The computer can only perform addition, whether it is positive numbers or negative numbers (substraction).
The signals information is stored within the memory module. There bus operations are coordinated with a series of multiplexers and
the instruction execution set gives the SAP-1 a total of six stages from 0 to 5, repeating all over again.
The more important module is the controller. It controlls the assertion execution according to the stimuli from the stages.
The stages 3 to 5 five depend on the instructions of the operation codes.
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How to test

Design Output Reading Section
The design is engineered to read the output signal generated from the bus, which contains the information
of the add and subtract operations executed by the design. Currently, the only method to read the signals
is through an oscilloscope. However, a significant enhancement would be the implementation of a state machine
controlling a 3 7-segment display to show the numbers on the 8-bit bus (up to 255).

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any
Oscilloscope

Pinout

# Input Output Bidirectional
0 bus[0]
1 bus[1]
2 bus[2]
3 bus[3]
4 bus[4]
5 bus[5]
6 bus[6]
7 bus[7]
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PWM Controller [677]

• Author: Ziyi Zhao, Yuchen Ma
• Description: A Low-Cost Pulse Width Modulation (PWM) Controller
• GitHub repository
• HDL project
• Mux address: 677
• Extra docs
• Clock: 0 Hz

How it works

The PWM generates a 10 MHz PWM signal whose duty cycle can be adjusted using
two buttons. The PWM duty cycle can be increased or decreased in steps, constrained
between 10% and 90%.

How to test

Change the inputs ui_in to simulate button presses and check if the PWM duty cycle
increases or decreases as expected.

Pinout

# Input Output Bidirectional
0 increase_duty PWM_OUT
1 decrease_duty
2
3
4
5
6
7
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4 bit RAM [678]

• Author: Alejandro Silva Juarez
• Description: Is a Memory RAM (4 bits)
• GitHub repository
• HDL project
• Mux address: 678
• Extra docs
• Clock: 0 Hz

How it works

It is a 4 bit RAM

How to test

It is tested with 4 inputs, the clock, the write enable input and the 4-bit input data,
the output is 4 bits as well.

External hardware

The chip may need a Microcontroller, Raspberry, Arduino or FPGA for data inputs and
memory addresses or 8 switches can be placed for data inputs and memory addresses.

Pinout

# Input Output Bidirectional
0 Memory entry address [0] Memory output data [0] RAM write enable input
1 Memory entry address [1] Memory output data [1]
2 Memory entry address [2] Memory output data [2]
3 Memory entry address [3] Memory output data [3]
4 Memory input data [0]
5 Memory input data [1]
6 Memory input data [2]
7 Memory input data [3]
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8bit ALU [679]

• Author: David Parent,Chih-Kaun Ho, Edric Ong
• Description: Building a simple 8-bit unsigned Arithmetic logic unit (ALU)
• GitHub repository
• HDL project
• Mux address: 679
• Extra docs
• Clock: 1000 Hz

How it works

How to test

External hardware

ADALM2000. https://www.analog.com/en/resources/evaluation-hardware-and-
software/evaluation-boards-kits/adalm2000.html#eb-overview

Pinout

# Input Output Bidirectional
0 ui_in uo_out
1
2
3
4
5
6
7
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ALU with a Gray and Octal decoders [680]

• Author: Luis Antonio Quezada Santos, Santiago Robledo Acosta, José Miguel
Rocha Pérez

• Description: This is a simple 3 bit ALU with 4 operations: Substraction, Addition,
XOR and AND which its output is conected to an Octal and Gray Decoders.

• GitHub repository
• HDL project
• Mux address: 680
• Extra docs
• Clock: 0 Hz

How it works

This is a pure combinational design. This is a simple ALU (Arithmetic Logic Unit)
whose output is connected to two different decorders, an Octal decoder for two 7
segments displays and an Gray decoder for the same two 7 segments displays. The
output displays will show the result of the operations between two 3 bit numbers
according to Sel_A_in and Sel_M_in.
The Sel_A_in has the following operations according to its value.

• Sel_A_in = 2’b00 , the ALU will be set in substraction. Num_A_in -
Num_B_in.

• Sel_A_in = 2’b01 , the ALU will be set in Adition. Num_A_in + Num_B_in.
• Sel_A_in = 2’b10 , the ALU will be set in XOR. Num_A_in ^ Num_B_in.
• Sel_A_in = 2’b11 , the ALU will be set in AND. Num_A_in & Num_B_in.

The Sel_M_in has the following operations.

• Sel_M_in = 1’b0 , The output will be displayed in the octal system as the
multiplexer selects the output of the Octal Decoder.

• Sel_M_in = 1’b1 , The output will be displayed in the Gray system as the
multiplexer selects the output of the Gray Decoder.

Note: The Gray Decoder has been specially decoded to be shown in a decimal system
for the 7 segments displays.
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How to test

In order to test this device, you will need to input the numbers to the pin where
Num_A_in and Num_B_in are located, this values go from 0 =3’b000 up to 7 =
3’b111. From this point forward modify the correponding bits on the correspondent
selectors based on list displayed in How it works and see the result on the 7 segment
displays (External).

External hardware

For external hardware you’ll need: . An external DC power source. . 14 330 ohms
resistors. . 2 7 segments displays common cathode.

Pinout

# Input Output Bidirectional
0 Sel_A_in [0] Disp_out[6]
1 Sel_A_in [1] Disp_out[7] Disp_out[0]
2 Num_B_in [0] Disp_out[8] Disp_out[1]
3 Num_B_in [1] Disp_out[9] Disp_out[2]
4 Num_B_in [2] Disp_out[10] Disp_out[3]
5 Num_A_in [0] Disp_out[11] Disp_out[4]
6 Num_A_in [1] Disp_out[12] Disp_out[5]
7 Num_A_in [2] Disp_out[13] Sel_M_in
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EVEN AND ODD COUNTERS [681]

• Author: Dr.LIPIKA GUPTA, DEVRAJ, JUGRAJ
• Description: WE CAN CHOOSE TO COUNT EVEN AND ODD BCD
• GitHub repository
• Wokwi project
• Mux address: 681
• Extra docs
• Clock: 10000 Hz

How it works

Welcome, This is basically a even and odd BCD counter:- If input 1 is high, the even
counter is on, If input 2 is high, the odd counter is on.

How to test

We can test it by making input 1 high and connecting 7-segment display to output, if
the even count of BCD is shown, the logic circuit is cleadred the test .

External hardware

• Push button
• 7 - segment display

Pinout

# Input Output Bidirectional
0 IN1 OUT0
1 IN2 OUT1
2 OUT2
3 OUT3
4 OUT4
5 OUT5
6 OUT6
7
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Generador digital trifásico [682]

• Author: Jesús García Guzmán, Jorge Rafael Frantos Morales, Brian Isaías Landa
León, Alan Eduardo Peralta Fuentes, Juan José Guzmán Lagunes, Adolfo de
Jesús García Méndez, Paola Gabriela Rodríguez Sánchez, José de Jesús Sánchez
Hernández

• Description: El proyecto consiste en un microgenerador digital trifásico que tiene
una señal de reloj de entrada y produce tres señales de salida con desfases de 120°
entre sí, con el objetivo de demostrar su viabilidad y funcionalidad en aplicaciones
de ingeniería eléctrica y electrónica.

• GitHub repository
• HDL project
• Mux address: 682
• Extra docs
• Clock: 0 Hz

How it works:
El circuito requiere una entrada de reloj, en este caso llamada “SE”, ya que no se usará
el reloj del sistema, para manejar un registro de tres bits en configuración de anillo
(contador Johnson), con tres salidas digitales desfasadas 120° entre ellas.
La idea de aplicación del circuito se basa en alimentar motores trifásicos que se pudieran
implementar en el área biomédica o similares. Por lo que para llegar a alimentar un
motor se require procesar de las señales de salida de este circuito generador, la idea
es filtrar analógicamente las ondas digitales para obtener tres señales senoidales de
amplitudes iguales y desfasadas 120°. Esto como complemento del proyecto, pues en
este circuito solo se llega hasta la parte de tres salidas cuadradas desfasadas 120°.
En el enlace siguiente se tiene el circuito en diagrama de bloques, en donde se muestra
cómo se tiene el desfase de las tres señales de salida. Para poder usarlo se usó un
switch, en el que manualmente encenciéndolo y apagándolo, se simula la función de
pulsos de entrada y se observa el desfasamiento entre los 3 leds que se tienen en la
salida. https://wokwi.com/projects/392934671873904641
Para comprobar la funcionalidad del código en verilog de nuestro ciircuito, se simuló
usando la herramienta de simulación del software Quartus II. En la imagen siguiente se
puede apreciar que en las salidas “P0, P1 y P2” existe un desfasamiento de 120° entre
sí, teniendo una sola señal de entrada de reloj. La señal de reloj de entrada se designó
como “SE”. De igual forma el código se probó en una FPGA Altera Cyclone II, para
comprobar su funcionamiento y arrojó los resultados esperados en las simulaciones.
Siguiendo el procedimiento que se describe en este mismo archivo README, en la
sección llamada “How to test”.
How to test:
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Figure 64: image

Figure 65: Imagen de WhatsApp 2024-03-31 a las 20 20 17_92d28c8a

500



Para probar el circuito se requieren un generador de señales digitales y un osciloscopio,
preferentemente con al menos 3 canales.
El circuito necesita una señal de reloj de entrada, puesto que no se usó el reloj de
la placa, se requiere conectar un generador de señales en la entrada del circuito la
cual está nombrada como “SE”. Esta señal de entrada se asignó al pin bidireccional
“uio[7]”
La señal “Se” que se inyectará al circuito debe ser de pulsos (una señal cuadrada), con
un voltaje que suba a 5 Vcd y baje a 0 Vcd, con un ciclo de trabajo del 50%.
La frecuencia que se tenía pensada implementar para la señal de entrada es de 60
Hz, pues la idea original era alimentar un pequeño motor que pudiera servir para usos
biomédicos o similares, pero para fines de prueba se puede usar cualquier otra frecuencia,
siempre y cuando el osciloscopio que se vaya a conectar a las salidas, sea capaz de leer
señales a dicha frecuencia.
Antes de conectar la señal de entrada al circuito, es importante comprobar sus valores en
un osciloscopio y un voltímetro, para asegurarse que la señal tiene la forma y magnitud
adecuadas, y que el circuito no se dañe por exceso de voltaje.
Las salidas que estarán desfasadas 120° entre sí serán las llamadas P0, P1 y P2. Estas
tres salidas se asignaron a los pines bidireccionales “uio[2], uio[1], uio[0]” respectiva-
mente. A estos pines de salida se deberán conectar las entradas de los tres canales
del osciloscopio, todo esto habiendo calibrado antes el osciloscopio y verificando que
la señal que se le inyectará al circuito es la correcta. También es importante conectar
las tierras de los cables del generador de señales digitales y del osciloscopio.
Una vez habiendo hecho todo lo anterior, se debería de poder observar en las salidas,
los tres pulsos de igual magnitud, desfasados 120° entre sí.
Si se desean observar las salidas complementarias “Qa, Qb y Qc” estas se asignaron a
los pines “uio[5], uio[4], uio[3]” respectivamente.
External hardware:
Generador de señales digitales: Para alimentar la señal de entrada del circuito. La señal
debe ser un pulso (una señal cuadrada) el cual vaya de 0 a 5V, con un ciclo de trabajo
del 50%. La frecuencia de la señal no debe ser necesariamente una en particular, puede
ser cualquiera, mientras que el osciloscopio que se conente a las salidas sea capaz de
leerlas.
Osciloscopio: Este debe ser de al menos 3 canales, para poder leer las tres salidas
principales del circuito, las cuales estarán desfasadas 120° entre sí.
Para cualquier duda en cuanto a las pruebas del circuito, pueden mandar un correo
electrónico a la siguiente dirección deusjrfm@gmail.com o al numero +522283543917
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Pinout

# Input Output Bidirectional
0 P2
1 P1
2 P0
3 Qc
4 Qb
5 Qa
6 no used
7 SE
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Random number generator [683]

• Author: VineetaVNair & ShilpaPavithran
• Description: Randomly generates bit stream
• GitHub repository
• HDL project
• Mux address: 683
• Extra docs
• Clock: 10000000 Hz

How it works

Based upon user choice, LFSR data is used to randomly generate bit streams

How to test

Vary input seed to change output bits randomly and observe the same when connected
to LEDs.

External hardware

Displays and LED can be added

Pinout

# Input Output Bidirectional
0 seed[0] output_data[0]
1 seed[1] output_data[1]
2 seed[2] output_data[2]
3 seed[3] output_data[3]
4 mode[0] output_data[4]
5 mode[1] output_data[5]
6 output_data[6]
7 output_data[7]
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Stepper [684]

• Author: Miguel de Jesús Salazar Pedraza
• Description: Stepper Control Bipolar Motor
• GitHub repository
• HDL project
• Mux address: 684
• Extra docs
• Clock: 1000000 Hz

How it works

The project consists of a state machine with 4 outputs, which is used to control a
bipolar stepper motor.

How to test

The system has an external clock input, a reset input, a control input for selecting the
direction of rotation of the motor, an enable input and 4 outputs for the stepper motor
coils.

External hardware

The system requires an external clock input to control the speed of the pulses and thus
regulate the rotation speed of the motor.

Pinout

# Input Output Bidirectional
0 Unused Unused Output Bit 0
1 Unused Unused Output Bit 1
2 Unused Unused Output Bit 2
3 Unused Unused Output Bit 3
4 Unused Unused enable
5 Unused Unused direction
6 Unused Unused Unused
7 Unused Unused Unused
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TinyTapeout SPI Master [685]

• Author: Samit & Fahim
• Description: SPI Msster
• GitHub repository
• HDL project
• Mux address: 685
• Extra docs
• Clock: 400000 Hz

How it works

If sel is high, then a counter is output on the output pins and the bidirectional
pins (data_o = counter_o = counter). If sel is low, the bidirectional pins are
mirrored to the output pins (data_o = data_i).

How to test

Set sel high and observe that the counter is output on the output pins (data_o) and
the bidirectional pins (counter_o).
Set sel low and observe that the bidirectional pins are mirrored to the output pins
(data_o = data_i).

Pinout

# Input Output Bidirectional
0 i2c_data_in sck_o
1 i2c_clk_in mosi_o
2 miso_i i2c_data_out
3 i2c_clk_out
4 i2c_data_oe
5 i2c_wb_err_i i2c_clk_oe
6 i2c_wb_rty_i
7
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serie_serie_register [686]

• Author: C.A. Velázquez-Morales
• Description: Registro Serie-Serie, con 4 registros y corrimiento hacia la izquierda

o derecha
• GitHub repository
• HDL project
• Mux address: 686
• Extra docs
• Clock: 10000000 Hz

How it works

Se describe un registro Serie-Serie, con una terminal de entrada (data_in), terminales
de control de reloj, reset negado y habilitación (clk, rst, ena). Se asigna una terminal
para cambiar el tipo de corrimiento del registro (leri): ALTO para la izquierda y BAJO
para la derecha. Se designa una salida del dato en el registro (data_out).

How to test

Se coloca Rst en un valor BAJO, y el Ena en un valor ALTO. El flanco del reloj clk irá
actualizando el valor de 4 registros internos que realizarán el corrimiento (data_reg)
con el valor del dato de entrada (data_in). Del mismo modo, la entrada de dirección
(leri) asignará la dirección del corrimiento y el bit del registro interno que se mostrará
en la salida (data_out).
Banco de Prueba para Simulación en Active-HDL:
Imagen Simulación:
El diagrama que se presenta a continuación ilustra el RTL del circuito generado por
Quartus II, se observa las entradas rst, clk y ena como las entradas básicas del circuito.
Además se observa la entrada data_in como la entrada del dato, así como la entrada
leri, que indica si el corrimiento del registro se realizará hacia la derecha (right) o hacia
la izquierda (left). Del mismo modo se observa que el bit de entrada leri selecciona el
bit que se considerará como el bit de salida data_out.
La conexión se propone como la siguiente imagen
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Figure 66: Captura de pantalla 2024-04-02 162549

Figure 67: Captura de pantalla 2024-04-02 162240
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Figure 68: RTL

Figure 69: Imagen_Diagrama
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External hardware

Se puede utilizar un generador de señales para el reloj (clk) y una base de tiempo para
la habilitación (ena), así como botones o interruptores para las entradas y un led para
visualizar la salida.

Pinout

# Input Output Bidirectional
0 data_in Data_Out No_Used
1 clk No_Used No_Used
2 rst No_Used No_Used
3 ena No_Used No_Used
4 leri No_Used No_Used
5 No_Used No_Used No_Used
6 No_Used No_Used No_Used
7 No_Used No_Used No_Used
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UACJ-Wallace multiplier [687]

• Author: UACJ Group A
• Description: Wallace multiplier
• GitHub repository
• HDL project
• Mux address: 687
• Extra docs
• Clock: 0 Hz

How it works

This project is center in the implementation of Verilog code for 4 bit Wallace tree
multiplier. The design uses half adder and full adder Verilog designs. These modules
will be instantiated for the implementation 4 bit Wallace multiplier.

How to test

Under test file, a wallace_tb.v code is located, this code is the testbench

External hardware

You do not need any special external hardware.

Pinout

# Input Output Bidirectional
0 ui[0] uo [0]
1 ui[1] uo [1]
2 ui[2] uo [2]
3 ui[3] uo [3]
4 ui[4] uo [4]
5 ui[5] uo [5]
6 ui[6] uo [6]
7 ui[7] uo [7]
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UART-Programmable RISC-V 32I Core [710]

• Author: Ethan Nieman
• Description: RISC-V core implementing reduced set of RV32I ISA; programmable

via UART
• GitHub repository
• HDL project
• Mux address: 710
• Extra docs
• Clock: 50000000 Hz

Motivation

This project was developed as a part of the MEST course “ChipCraft: The Art of
Chip Design for Non-Experts”. As a part of the course, students are walked through
the design and implementation of a RISC-V core. At the time that I took this course,
students opting to tape out their RISC-V core were limited to a single, hard-wired
program in place of a true instruction “memory”. This led me to put together a simple
UART controller tied to a 64-byte register file that could act as programmable instruc-
tion memory. Future students (or anyone experimenting with processor design) can
utilize the UART modules in this design to enable programmability of their processor
designs.
I decided on UART over other protocols because of its simplicity and my own familiarity
with it. USB-serial adapters are easy to find and there are several serial terminals out
there. I also decided to implement a very simple auto-baud detection in my design
instead of a fixed baud rate. This was done due to my own uncertainty in the clock
frequency.

How it works

This project implements a simplified RISC-V core that runs instructions from a 64-byte
register file that is programmed by the user via a UART interface.
The RISC-V core adheres to RV32I with the following exceptions:

1. Does not implement FENCE, ECALL, or EBREAK instructions.
2. Only 32-bit loads are implemented. LH, LHU, LB, LBU are all treated as LW.
3. Only 32-bit stores are implemented. SH and SB are treated as SW.
4. Only implements 16 registers (x0 - x15)

511

https://github.com/enieman/uart_programmable_rv32i


Instruction memory and data memory are isolated. Instruction memory and data mem-
ory are implemented as 64-byte (16-word) and 16-byte (4-word) register files that are
written to and read from via a UART interface.
The UART controller operates in two modes: “PROGRAM” and “DATA READ”. Upon
reset of the device, the controller enters “PROGRAM MODE”. During this time, the
user sends a sync packet, followed by the RV32I binary (64-bytes max). Once 64 bytes
have been written (unused space can be filled with “ADD x0, x0, x0” instructions),
the controller will enter “DATA READ” mode. In this mode, the user can read the
contents of data memory by sending a single packet (the contents of this packet do
not matter).
For those wanting to implement their own processor design, use the template TL-
Verilog file /src/tlv/uart_template.tlv and modify line 89 with a URL pointing
to your design. See /src/tlv/cpu_custom.tlv for an example processor design.
Step-by-step usage:

1. Connect the USBUART Pmod to the demo board via jumpers and a breadboard.
The RX pin of the Pmod connects to in2, the TX pin to out2, and PWR/GND
should be connected. No other pins of the Pmod are used.

2. (Optional) Connect the BTN Pmod to the demo board. This Pmod should
connect only to in4-in7.

3. (Optional) Connect 8LD Pmod to out4-out7 (optional). out7 is high when reset
button is pushed, out6 is high when device is in “PROGRAM” mode, out5 is
high when zeros are transmitted on RX, out4 is high when zeros are transmitted
on TX.

4. Connect the host computer to the USBUART Pmod. A serial terminal will be
needed on the laptop. A serial terminal capable of sending binary files is highly
recommended.

5. Connect the demo board to power.
6. Press the reset button (or press BTN3 on the BTN Pmod) to reset the device.
7. Configure the serial terminal for 8 data bits, no parity, and one stop bit.
8. Send a program file from /test/bin and go to step 12. If the serial terminal

does not support this, you can manually program via steps 9-11.
9. Send a single sync packet. A packet of hex value 0x55 is recommended, however

the only requirement is that it should be an odd-numbered value (the device
measures the width of the start bit in clocks).

10. Send instructions as packets. Start with the least-significant byte of the first
instruction, end with the most-significant byte of the last instruction.

11. The device will not switch to “DATA READ” until all instruction memory is
written. If less than 16 instructions were written, fill in with no-ops (e.g. “ADD
x0, x0, x0”).
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12. Read data memory by sending a single packet. The content of the packet does
not matter.

13. To run a different program, repeat steps 6-12.

How to test (option 1)

To run cocotb tests, run make in /test directory. The cocotb test will iterate through
each program name in /test/programs.f and load/execute each program’s corre-
sponding binary file in /test/bin. Data memory contents are compared to each
program’s corresponding text file in /test/solutions to determine pass/fail.
To add new programs to the test, my current workflow is as follows. I did not get
around to figuring out a simple, straightforward way of assembling in python, so the
current workflow is admittedly cumbersome.

1. Create assembly program and store in /test/asm/[program_name].asm.
Keep in mind that there is a max of 16 instructions!

2. Assemble .asm file with an online RV32I assembler. Paste output hex into a
text file and save it as /test/hexstr/[program_name].hexstr.

3. Run /scripts/hexstr_to_bin.py. This will convert the hex strings to a
binary file and save to /test/hexstr/[program_name].bin. It will also
write the UART sync word to the beginning of the file (0x55) and backfill unused
instructions with ADD x0, x0, x0 instructions.

How to test (option 2)

Use Makerchip IDE (makerchip.com) for testing of RISC-V core only.

1. Go to makerchip.com and load the IDE.
2. Open /src/tlv/uart_template.tlv.
3. At line 25, change set(MAKERCHIP, 0) to set(MAKERCHIP, 1)
4. Lines 59 through 79 list a simple test program. If you want to use a different

program, replace these lines with your program. Keep in mind that code under
labels needs to be indented with three spaces.

5. Line 122 can be edited to set pass/fail criteria.
6. Use Ctrl + Enter to compile and start simulation. I have found the VIZ window

to be most helpful in troubleshooting the CPU. Zoom in on the TinyTapeout
chip on the dev board to see a CPU visualization. Advance clock cyles to watch
the simulation progress.
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External hardware

1. USBUART Pmod (https://digilent.com/reference/pmod/pmodusbuart/start) -
Note that jumpers and a breadboard are required to connect as this design does
not use the bidirectional I/O yet.

2. BTN Pmod (https://digilent.com/reference/pmod/pmodbtn/start) - This is
only necessary if ui_in[7] is needed for resetting the design (the demo board I
developed on had a non-functioning reset button). If your reset button works,
this isn’t needed.

3. 8LD Pmod (https://digilent.com/reference/pmod/pmod8ld/start) - This is op-
tional, use if you want to see the UART TX and RX feedback, as well as what
mode the design is in.

Pinout

# Input Output Bidirectional
0
1
2 RX TX
3
4 Data on TX
5 Data on RX
6 UART Controller in Program Mode
7 System Reset System Reset (LED)
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Monobit Test [718]

• Author: Luca Collini
• Description: HLS implementation of NIST 800.22 Monobit Test for RNGs.
• GitHub repository
• HDL project
• Mux address: 718
• Extra docs
• Clock: 50000000 Hz

How it works

This design takes a bit every clock cycles and evaluates if the bit source is random.
This particular test is the Monobit test from NIST 800.22. The output is given every
65536 cycles. The is_random signal is to be checked only when the valid signal is
high.

How to test

Provide Clock and input bit.

External hardware

Non for now. Planning to add soon

How to use

send one bit per clock cycle to the epsilon port. check is_random when valid is high.
The design evaluates every 65536 bits.

Pinout

# Input Output Bidirectional
0 epsilon is_random
1 is_random_triosy_lz
2 valid
3 valid_triosy_lz
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# Input Output Bidirectional
4 epsilon_triosy_lz
5
6
7
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UACJ-MIE-Booth 4 [736]

• Author: UACJ Group A
• Description: Booth 4 multiplier
• GitHub repository
• HDL project
• Mux address: 736
• Extra docs
• Clock: 0 Hz

How it works

The Booth-4 algorithm is a multiplication algorithm that uses a combination of shifting
and addition/subtraction operations to perform signed multiplication of two numbers.
It is specifically designed to optimize the multiplication process by reducing the number
of required partial products and improving efficiency.

How to test

using test bench, applying phhysicial outputs and see output

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

# Input Output Bidirectional
0 X[0] Z[0] Y[0]
1 X[1] Z[1] Y[1]
2 X[2] Z[2] Y[2]
3 X[3] Z[3] Y[3]
4 Z[4]
5 Z[5]
6 Z[6]
7 Z[7]
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4-Digit Scanning Digital Timer Counter [737]

• Author: Muhammad Shofuwan Anwar
• Description: Automatic timer and manual counter controlled by buttons
• GitHub repository
• HDL project
• Mux address: 737
• Extra docs
• Clock: 1000 Hz

How it works

This Verilog module, named timer_counter, is designed to implement a timer and
counter functionality along with a display interface. It utilizes a 1 kHz clock (clk) and
generates a 1 Hz signal (clk_1Hz) using a clock divider. The module has inputs (start,
stop, mode) for controlling the timer operation and outputs (segment, digit) for dis-
playing the timer’s state. It incorporates counters (count0 to count3) which increment
from 0 to 9, each with its reset trigger (rst_count0 to rst_count3). The mode of
operation can be toggled between manual and automatic modes (mode_reg), with a
lock mechanism to prevent bouncing on mode changes (mode_lock). Additionally, it
includes debouncing logic for the input buttons (start, stop, mode). The display logic
selects the appropriate digit to display (selector) and blinks the display when idle or in
manual mode. Finally, it uses a multiplexer (mux) to select the appropriate segment
to display based on the current count and a BCD converter (bcd) to convert the count
to BCD format for display.

How to test

To test the timer_counter module, you can create a Verilog testbench that instantiates
the module and provides stimuli to its inputs (clk, start, stop, mode, rst). You can
simulate various scenarios such as starting and stopping the timer manually, toggling
between manual and automatic modes, and observing the outputs (segment, digit)
to ensure they behave as expected. Additionally, you can simulate edge cases such
as reaching the maximum count value, testing debounce logic, and verifying that the
display blinks correctly when idle or in manual mode. By analyzing the waveform
generated by the simulation, you can verify the functionality of the module and ensure
it meets the design requirements.
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External hardware

There are additional hardware such as:

• 4 digits seven segment display (https://www.tokopedia.com/cncstorejogja/cnc-
7-segment-pin-4-digit-clock-common-anode-red-merah?extParam=src%3Dshop%26whid%3D325343)

• transistors (https://www.tokopedia.com/cncstorejogja/cnc-bc547-to-92-
100ma-npn-amplifier-transistor?extParam=src%3Dshop%26whid%3D325343)

• button (https://www.tokopedia.com/cncstorejogja/cnc-tactile-push-button-
6x6x10mm-switch-murah?extParam=src%3Dshop%26whid%3D325343)

• Custom PCBs (I’m still working on it, I’ll update later)

Pinout

# Input Output Bidirectional
0 inv segment[0] digit[0]
1 mode segment[1] digit[1]
2 start segment[2] digit[2]
3 stop segment[3] digit[3]
4 segment[4]
5 segment[5]
6 segment[6]
7 segment[7]
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FSK Modem +HDLC +UART (PoC) [738]

• Author: Darryl Miles
• Description: FSK Modem w/ HDLC transciever + UART (PoC digital side)
• GitHub repository
• HDL project
• Mux address: 738
• Extra docs
• Clock: 0 Hz

How it works

This is a proof-of-concept design to sketch out the TT_UM digital interface for a later
project design that will attempt to incorporate both analogue and digital aspects of
the basic skeleton shown in this project.
The design is based on the classic circa 1988 model design used in Amateur Radio
Packet systems by G3RUH. The initial specification is looking to achieve data rates of
between 4800 and 64000 baud, but the design maybe able to service audio 1200 baud
packet radio as well.
The design is 1-data-bit per symbol.
The original TNC (Terminal Node Controller) was a Z80 CPU and 8530 Serial Com-
munications Controller. So inline with this I expect to provide an 8-bit CPU (as a
future TT project) as a companion to this so the two items taken together should be
able to form a complete communications solution of a capable TNC. This is an area I
spent a significant amount of my teenage youth understanding and experimenting with
that gave me a good grounding in all the digital electonic, radio and computer/CPU
theory/practice that is still in use today.
The original PCB board design used:

• a x16 master TX CLOCK line of the data rate.
• was based on 12v audio interface/opamps, and 74HC TTL logic
• was capable of the range of baud rates with minor modifications, the most used

speed in my experience is 9600 baud
• the TX DAC was 4 x 8-bit samples per bit, with the waveform lookup using a

12bit address that can see previous bit information sent
• EPROM were used directly to provide waveforms, these have a number of jumper

set modes to allow compensation for non-linear responses at the TX-AUDIO and
RX-AUDIO
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Due to the need to perform ROM lookups, this is operating in 4 phases sharing 6-bit
output from module, and 4-bit input to module. The 4 phases cover a sequence of:

• TX nibble low (6bit address)
• TX nibble high (6bit address)
• RX nibble low (6bit address)
• RX nibble high (6bit address) It is not clear if this arrangement a good choice.

There is also a programmable latency on the reply, of zero-cycles or one-cycle,
the shifts the expectation of the result.

I also need to validate the DAC 8bit loading scheme prevents any chirping (visibily to
DAC of partially loaded data, due to multiplex timing differences) of the data because
it is loaded in 2 halves.
The master clock (CLK pin) due all the above, it is ncessary to run the clock pin at
x4 the x16 of the original design.

data rate baud master clock (CLK) tx clock tx sample clock
4,800 307,200 76,800 19,200
9,600 614,400 153,600 38,400
19,200 1,228,800 307,200 76,800
38,400 2,457,600 614,400 153,600
64,000 4,096,000 1,024,000 256,000
76,800 4,915,200 1,228,800 307,200

Table is in Hz or Baud
The master clock (pin CLK) is driven at x64 the synchrnous data rate. The tx clock
rate is derrived from this ‘CLK divide-by-4’
The UART clocking is also derived from CLK, and each side (uart RX and uart tx) can
be individually configured to be 1:1 or 2:1 the synchronous data rate:

• Uart TX x1 = data rate x1
• Uart TX x2 = data rate x2
• Uart RX x1 = data rate x8 (due to majority voter, 8 sample buffer)
• Uart RX x2 = data rate x16 (due to majority voter, 8 sample buffer)

As you can see maybe there is some headroom for faster transmission speeds within a
TT project, before needing to increase DAC resolution and explore 4FSK/6FSK/QAM
etc…
There are 3 main functional areas with the design:
The type of FSK modem is 2FSK (dual tone) outputting continious wave.
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Upper Digital (included here) This incorpotates a full-duplex HDLC frame pro-
cessor attached to a UART (ttl interface), the UART process encodes the frame in
format similar to KISS format used by TNCs, with a few modifications.

Lower Digital (included here) This manages the receiver clock recovery PLL
circuit and interface, the original designs used EPROM lookup tables with 12bit address
(which has visibility on at least the previous encoded bit) and provides an 8bit data
output.
The data outputs are then fed into a respective 8bit DAC
The receiver has a PLL lock detector which is used to provide DCD (Data Carrier
Detect) signal. While the hardware design is capable of full-duplex operation it is often
used in Amateur Radio situations in a half-duplex situation with a carrier sense channel
sharing algorithym.

Lower Analogue (not includes in this PoC design, see next iteration) The
parts that are missing from the design:

• 8bit DAC for transmit waveform shaping, using 4 samples per bit
• opamp for transmit audio anti-aliasing (low-pass filter?) circuit to remove har-

monic noise from the output audio
• 8bit DAC for receiver clock recovery feedback, using 16 samples per bit.
• opamp for receive audio signal interface, this maybe moved to an external board

due to needing to protect the TT IC from over voltage from being attached
to usuall 12v equipment or maybe 36v when using some ex-commerial radio
trancievers. This may have been a comparator circuit (unsure at this time), fed
into a DFF to synchronise the incoming data to the x16 (of datarate) clock
recovery timing

• 2 x opamp to provide PLL lock detection (unsure how this works atm), I would
guess it can detect when the signal is being centered and has been centered
for some number of samples, maybe via slow capacitance charge up when the
UP/DOWN line is managing to meet an approximate 50%/50% duty cycle per
x16 clock recovery tick.

• 2 x opamp to provide zero-crossing detection, this is used to provide the PLL
its feedback mechanism (the UP/DOWN line) to advance or retard the edge
alightment.

It is hoped all items can be incorporated into the same design using the analogue GDS
facility with TT and connected to the respective lower digital signal.
At this time we bring out the interconnection points (between analogue and lower
digital) to the external interface of TT and we provide a configuration mechnism to
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be externally or internally driven/internally sourced. This should allow for a significant
level of simulation and experimentation by users of the project to understand and
explore FSK/PLL theory by picking a testing configuration combintation, being full-
duplex it should be able to loop-back at various levels to understand each part better.
While also providing those with a Ham Radio license to try out on air communicating
with their local users or AMSAT.
Have fun… 73s de G7LED

How to test

When the final design is completed, there should be a number of visible and testable
aspects available to observe the working of various functions.
I am not expecting this PoV project to yeild good result due to the limited time spent
on it just before submission deadlines for TT06.
Check back with the repo for a testing regime.

External hardware

At this PoC stage, testing with RP2040 and FPGA external boards to validate the
electrical interface acrhetecture makes sense and provided the most options.

Pinout

# Input Output Bidirectional
0 Rx Data UART TX Rx Clock (bidi)
1 Rx Clock UART CTS Up/Down (bidi)
2 UART RTS UART DCD TableAddr[0]
3 TableData[0] Rx Error TableAddr[1]
4 TableData[1] Tx Error TableAddr[2]
5 TableData[2] Sending TableAddr[3]
6 TableData[3] TableAddr[4]
7 UART RX Tx Clock Stobe TableAddr[5]
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DIP Switch to HEX 7-segment Display [739]

• Author: Lance Mitrex
• Description: Input Binary digit, 1 to 16 with the DIP Switch. The HEX is

displayed on the 7-segment display.
• GitHub repository
• HDL project
• Mux address: 739
• Extra docs
• Clock: 0 Hz

How it works

The project was originated during the training class, “ChipCraft: The Art of Chip
Design for Non-Experts” presented by eFabless.
The project utilizes techniques associated with Tiny Tapeout and Redwood EDA.
Project Title: Input DIP Switch to HEX 7-Segment Display.
This Project is a ‘simple’ project for inexperienced FPGA and/or inexperienced Verilog
programmers. The project reads the INPUT DIP Switch on the Tiny Tapeout Demo
Board and outputs the properly formatted Hex character, to the 7-Segment display
which is also located on the Tiny Tapeout Demo Board.
The complete Transaction-Level Verilog code is located in the file, “DIPSwitch_7-
segment.v”
The remainder of this README.md file outlines the process utilized for this project.

How to test

Select a HEX character from 1 to 16 (1 to F). Input the HEX character by using the
appropriate binary value, using the DIP Switch. The HEX character you selected and
input will be displayed on the 7-segment display.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any
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Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7
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tt6-simplez [740]

• Author: Roland Coeurjoly
• Description: Simplez
• GitHub repository
• HDL project
• Mux address: 740
• Extra docs
• Clock: 12000000 Hz

How it works

https://github.com/Obijuan/simplez-fpga

How to test

https://github.com/Obijuan/simplez-fpga

External hardware

https://github.com/Obijuan/simplez-fpga

Pinout

# Input Output Bidirectional
0 RX Serial Input from Keyboard LED 0 Stop Signal Indicator
1 LED 1 TX Serial Output to Display
2 LED 2
3 LED 3
4 LED 4
5 LED 5
6 LED 6
7 LED 7
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PWM_Sinewave_UART [741]

• Author: Luis Gerardo Avila
• Description: This project is a PWM signal generator that creates a sine wave,

with frequency variation between 100 Hz and 700 Hz with steps of 100 in 100
Hz, which is manipulated through a UART interface

• GitHub repository
• HDL project
• Mux address: 741
• Extra docs
• Clock: 25000000 Hz

How it works

Through UART communication, a number from 1 to 7 is sent, indicating the frequen-
cies set in the code, which are from 100 Hz to 700 Hz, then through a pin I generate
a PWM signal which varies in time to generate a sine wave of the frequency that was
requested.

How to test

Only physical tests were carried out with the circuit, a Bluetooth antenna was added
to the UART communication port, and a low pass filter was added to the output of the
system to improve the signal a little and then it was measured with the oscilloscope
and I verify that it delivers the requested frequencies.

External hardware

-Bluetooth HC05. -oscilloscope. -A low pass filter.

Pinout

# Input Output Bidirectional
0 uart_rx uart_tx no use
1 no use no use no use
2 no use pwm_outx no use
3 no use no use no use
4 sw_11 no use no use
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# Input Output Bidirectional
5 sw_01 no use no use
6 rst1 no use no use
7 no use no use no use
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drEEm tEEm PPCA [742]

• Author: Calvin Sokk, William Mingham Zhu, Calvin Yeh, Eric Liu
• Description: Projectile Positioning Calculation Accelerator
• GitHub repository
• HDL project
• Mux address: 742
• Extra docs
• Clock: 0 Hz

How it works

This is a simple shoot the target game in a 32 x 32 square which calculates the trajectory
of a ball.
A target will randomly be generated in the top two rows of the playing field and your
goal is to position your cannon, aim it, and hit the target. The ball that is shot can be
bounced off the left and right walls, but once it hits the ceiling, the game is over.
Your cannon will be at the bottom row of the 32 x 32 square. You will be able to move
it left or right to any square on this bottom row. You will also have 7 different aiming
positions.
Controls:

• ui[0]: “Move Left”
• ui[1]: “Move Right”
• ui[2]: “Aim Left”
• ui[3]: “Aim Right”
• ui[4]: “Shoot”

All shots will be in a linear fashion. For example, if you select the default aim position
(which is Left 2 and Up 1), the ball will be shot linearly with a slope that goes left 2
and up 1.
Here are all the available aiming positions:

1. Left 2 Up 1
2. Left 1 Up 1
3. Left 1 Up 2
4. Up 1
5. Right 1 Up 2
6. Right 1 Up 1
7. Right 2 Up 1
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The generated target’s x and y position will be outputted in the uo[2:6] wires after the
game is initialized. In the first cycle after initialization, these five bits will be driven to
the x value and for the next cycle, they will be driven to the y value.
After shooting the ball, wait until uo[0] (“Result Valid”) is set to high. This indicates
that the simulation is over and the ball has hit the top of the screen. Then, uo[1]
(“Hit”) will tell you whether or not the ball has hit the target.

How to test

To make sure that you hit the target, you will have to draw out the trajectory of the
ball in the 32 x 32 grid.

External hardware

N/A

Pinout

# Input Output Bidirectional
0 Move Left Result Valid
1 Move Right Hit
2 Aim Left Select Data target_x
3 Aim Right Select Data target_x
4 Shoot Select Data target_x
5 Select Data target_x
6 Select Data target_x
7 0 ? target_y = 30 : target_y = 31
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TWI Monitor [743]

• Author: Nicklaus Thompson
• Description: A Two Wire Interface (I2C) bus monitor
• GitHub repository
• HDL project
• Mux address: 743
• Extra docs
• Clock: 50000000 Hz

How it works

This project is a Two-Wire Interface (I2C) monitor. The TWI side is essentially a shift
register and does not respond like a slave or have an address. The system runs at 50
MHz and uses a UART baud rate of 115200. The system cannot currently capture
repeated TWI frames, but captured single frames during testing on an FPGA.

How to test

You can use an Arduino and any TWI-compatible module to generate TWI frames to
view. The frames will be converted to three bytes, those being {addr, R/W}, {data},
and {{4{Addr Ack}}, {4{Data Ack}}}. I use Coolterm to view the hex output, you
can download it at https://freeware.the-meiers.org/.

External hardware

This project needs an external UART to USB adapter if you want to connect it to your
PC.

Pinout

# Input Output Bidirectional
0 SDA_in TX_out
1 SCL_in
2
3
4
5
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# Input Output Bidirectional
6
7
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Displays CIt [744]

• Author: Cambridge
• Description: To display ‘CIt’ on 7 segment display
• GitHub repository
• Wokwi project
• Mux address: 744
• Extra docs
• Clock: 1 Hz

How it works

Worwi project using a D flipflop ring to display “CIt” on the 7 segment display.

How to test

Turn on the required inputs ,turn off the unused inputs.

External hardware

None,beside the TT demo board.

Pinout

# Input Output Bidirectional
0 run led_a
1 state_init[0] led_b
2 state_init[1] led_c
3 state_init[2] led_d
4 state_init[3] led_e
5 unused led_f
6 unused led_g
7 unused led_h
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Cambio de giro de motor CD [745]

• Author: Equipo6TESVG
• Description: Cambio de giro de motor CD
• GitHub repository
• Wokwi project
• Mux address: 745
• Extra docs
• Clock: 0 Hz

How it works

Cambio de giro de motor CD.
A schematic of the circuit may be found at:
https://wokwi.com/projects/395344363336889345
The circuit has 10 inputs:

Input Setting
CLK Not Used
RST_N Not Used
01 Input A
02 Not Used
03 Not Used
04 Not Used
05 Input B
06 Not Used
07 Not Used
08 Input C

TENEMOS 3 ENTRADAS CON COMPUERTAS NOT LAS CUALES ESTAN RELA-
CIONADAS CON DOS COMPUERTAS OR,LAS COMPUERTAS NOT LA RELACION
QUE ENTRA ES LO CONTRARIO A LO QUE SALE POR EJEMPLO,SI ENTRA 1
SALE 0 Y SE ENTRA 0 NSALE 1 ESTAS ENTRADAS VAN RELACIONADAS CON
LAS COMPUERTAS AND PERMITINDO QUE UN VALOR DE ENTRADA NO SEA
MODIFICADO POR LA COMPUERTA NOT.LA OTRA ENTRADA DE LA COM-
PUERTA OR DEPENDE DE LO QUE SALE DE LAS COMPUERTAS NOT PERMI-
TIENDO ASI EL CAMBIO, UNA SALIDA DE LA OR ENTRA AND QUE DEPENDE
DE LO ANTERIOR Y OTRAS DE SUS ENTRADAS DEPENDE LE LA PRIMER EN-
TRADA SI EN LA AND ENTRA 1 Y 1 LA SALIDA ES 1 PERMITIENDO ASI EL
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GIRO SI LA COMNIACION DE ENTRADAS CAMBIAN A LA SEGUNDA AND EL
CAMBIO SE DA DE RECHA A IZQUIERDA.

Output Value in
01 A
02 Not Used
03 Not Used
04 Not Used
05 Not Used
06 Not Used
07 Not Used
08 B

EN LA SALIDA A EL VALOR DE LA AND EN 1 EL CUAL HACER QUE EL MOTOR
GIRE A LA DERECHA EN LA SALIDA B EL VALOR DE LA SEGUNDA AND EN 1
Y EL DE LA PRIMERA AND REGRESA A 0 ESO PROVOCA EL CAMBIO DE GIRO
DE DERECHA A IZQUIERDA.
A python implementation of the 32-bit Fibonacci LFSR can be found at the link below.
It may be used for testing the hardware for sequences longer than the initial 100
values.
https://github.com/icarislab/tt06_32bit-fibonacci-prng_cu/main/docs/32-bit-
fibonacci-prng_pythong_simulation.py

External hardware

No external hardware is required.

Pinout

# Input Output Bidirectional
0 E0 S0
1
2
3
4 E4
5
6
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# Input Output Bidirectional
7 E7 S7
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Latin_bomba [746]

• Author: Arizaga Silva
• Description: Circuito de control basado en maquina de estados para controlar el

llenado de un deposito de agua a traves de una bomba
• GitHub repository
• HDL project
• Mux address: 746
• Extra docs
• Clock: 0 Hz

LATINPRACTICE_2024

Figure 70: Logo

Este proyecto forma parte de la iniciativa LATINPRACTICE_2024 con el cual se pre-
tende que profesores universitarios y alumnos de nivel medio superior y superior, tengan
acceso a herramientas de software libre para el diseño de circuitos integrados .
Este proyecto es una máquina de estados sencilla que permite controlar el llenado
y vaciado automático de un depósito superior de agua alimentado por una bomba
conectada a un depósito inferior de agua.

How it works El circuito consta de una máquina de estados tipo Mealy con tres
estados (Espera, llenado y Alarma).
Las entradas del circuito corresponden a sensores que detectan la presencia o ausencia
de agua (1 o 0 lógico), es decir son señales digitales. Un sensor para la cisterna
(depósito inferior) y dos sensores para el depósito superior.
EL circuito cuenta con dos salidas digitales, la primera para encender y apagar la bomba
y la segunda para encender una luz o una alarma que indique que no hay agua en el
depósito inferior.
El proyecto utiliza un modelo de máquina de estados finitos con tres estados para
controlar el llenado del depósito superior mediante una bomba. Los tres estados son:

1. Espera (espera): Este estado indica que el sistema está en espera de alguna
acción. En este estado, la bomba está apagada (bomba_o = 0) y la alarma está
desactivada (alarma_o = 0). La transición desde este estado ocurre cuando

537

https://github.com/arizaga1/Latin_bomba


se detecta que el depósito superior está vacío y que hay agua en el depósito
inferior (sensores_i = 001) o cuando se detecta que la cisterna está llena
(sensores_i = 111) o que no hay agua en el depósito inferior (sensores_i
= xx0) que lo lleva al estado de alarma.

2. Llenado (llenado): En este estado, la bomba está encendida (bomba_o = 1)
para llenar el depósito. La alarma permanece desactivada (alarma_o = 0). La
transición desde este estado ocurre cuando se detecta que la cisterna está llena
(sensores_i = 111), lo que indica que el depósito ha alcanzado su capacidad
máxima y regresa al estado de Espera o que no hay agua en el depósito inferior
(sensores_i = xx0) que lo lleva al estado de alarma.

3. Alarma (alarma): Este estado se activa cuando se detecta una condición de
alarma, como la falta de agua en el depósito inferior . En este estado, la bomba
se apaga (bomba_o = 0) y se activa la alarma (alarma_o = 1). La transición
desde este estado ocurre cuando se detecta que el depósito inferior está lleno
(sensores_i = XX1), lo que indica que se ha resuelto la condición de alarma.

Cada estado y transición está definido en el código Verilog proporcionado, lo que
permite controlar el llenado del depósito mediante la activación y desactivación de la
bomba en respuesta a las lecturas de los sensores.

How to test TODO

External hardware La asignación de entradas y salidas del diseño del control de
la bomba a las entradas y salidas del proyecto Latinpractice son como se indica a
continuación.
ck: Conectado a uio_in[7]. rst_i: Conectado a uio_in[6]. sensores_i: Conec-
tado a uio_in[5:3]. alarma_o: Conectado a uio_out[1]. bomba_o: Conectado a
uio_out[0].
Como puede notarse, el proyecto de la bomba, para hacer más legible el código, indica
cuando un puerto es de entrada colocando un _i al final del nombre del puerto (rst_i)
y cuando un puerto es de salida un _o (bomba_o), excepto en el puerto de reloj.
Las entradas de los sensores pueden ser emuladas con botones o con switches conec-
tados a los puertos bidireccionales uio_in[5:3]. Las salidas pueden emularse utilizando
LED’s conectados a uio_out[0] y uio_out[1] a traveés de una resistencia limitadora de
corriente.
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Authors
• [@Arízaga-Silva](https://www.researchgate.net/profile/Juan-Antonio-Arizaga-

Silva)
• [@Sanchez-Rincón](https://www.researchgate.net/profile/Ismael_Rincon)
• [@Muñiz-Montero](https://www.researchgate.net/profile/Carlos-Muniz-

Montero)

Pinout

# Input Output Bidirectional
0 no used no used bomba_o
1 no used no used alarma_o
2 no used no used no used
3 no used no used sensores_i[0]
4 no used no used sensores_i[1]
5 no used no used sensores_i[2]
6 no used no used rst_i
7 no used no used ck
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Circuito PWM con ciclo de trabajo configurable [747]

• Author: Maria Fernanda Tovany Salvador, Javier Trucios Alonso & Luis David
Vazquez Perez

• Description: A partir de tres senales de entrada digitales selecciona el ciclo de
trabajo de salida (PWM).

• GitHub repository
• HDL project
• Mux address: 747
• Extra docs
• Clock: 0 Hz

How it works

El PWM configurable de ciclo de trabajo incrementales un dispositivo diseñado para
generar señales PWM (Modulación por Ancho de Pulso) con ciclos de trabajo incre-
mentales basados en tres señales de entrada digitales. Este dispositivo permite una
fácil configuración del ciclo de trabajo para adaptarse a una variedad de aplicaciones.
El ciclo de trabajo será incremental con valor de 12.5% para cada combinación de
entrada.

How to test

Usando los puertos de entrada en combinacion de estados logicos y con un uno logico
en enable, puede visualizarse en la salida como la señal de ancho de pulso varia de
acuerdo a las siguientes combinaciones: 000=12.5% 001=25% 010=37.5% 011=50%
100=62.5% 101=75% 110=87.5% 111=100%

External hardware

Generador de señales para generar la señal de reloj de 10MHz, osciloscopio para poder
visualizar el ancho del pulso.

Pinout

# Input Output Bidirectional
0 no use PWM no use
1 no use no use no use
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# Input Output Bidirectional
2 no use no use no use
3 speed[0] no use no use
4 speed[1] no use no use
5 speed[3] no use no use
6 enable no use no use
7 clock no use no use
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Bit Control [748]

• Author: K Opong-Mensah
• Description: Bit pattern cycle on every clock cycle.
• GitHub repository
• HDL project
• Mux address: 748
• Extra docs
• Clock: 0 Hz

How it works

This project outputs a different bit pattern on each clock cycle and then resets.

How to test

To test this project, apply a reset signal, cycle the clock several times and compare to
the expected outputs.

External hardware

GPIOs can be measured directly to test performance.

Pinout

# Input Output Bidirectional
0 out[0]
1 out[1]
2 out[2]
3 out[3]
4 out[4]
5 out[5]
6 out[6]
7 out[7]
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32b Fibonacci Original [749]

• Author: Felipe Serrano
• Description: Fibonacci Serie
• GitHub repository
• Wokwi project
• Mux address: 749
• Extra docs
• Clock: 0 Hz

A schematic of the circuit may be found at:
https://wokwi.com/projects/395618714068432897

Pinout

# Input Output Bidirectional
0 Out0
1 In1 Out1
2 In2 Out2
3 Out3
4 Out4
5 Out5
6 Out6
7 Out7
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Array Multiplier [750]

• Author: UACJ Group A
• Description: Array Multiplier
• GitHub repository
• HDL project
• Mux address: 750
• Extra docs
• Clock: 0 Hz

How it works

This project is centerd in the implementation of a verilog code for 4 bit Wallace tree
multiplier. The design uses half adder and full adder Verilog designs.

How to test

On file Test, there is a testbench call wallace_tb.v Use the code to test the code.

External hardware

You do not need any special external hardware

Pinout

# Input Output Bidirectional
0 ui[0] uo[0]
1 ui[1] uo[1]
2 ui[2] uo[2]
3 ui[3] uo[3]
4 ui[4] uo[4]
5 ui[5] uo[5]
6 ui[6] uo[6]
7 ui[7] uo[7]
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Voting thingey [751]

• Author: Zoda + Jade
• Description: Does modified-consensus voting for redundant microcontrollers, as

a vaguely functional-safety thing
• GitHub repository
• HDL project
• Mux address: 751
• Extra docs
• Clock: 0 Hz

How it works

Our project used the 8 inputs as voters, expecting 1 as “FAIL” and 0 as “PASS” for
votes in the system. As a default, if all systems vote for a pass, the consensus is pass.
However, we also give the user the ability to customize the number of voters and the
threshold of passing.
For instnace, a user may have 8 voters and fail if 3 votes fail.
This is for a safety system where redundant microcontrollers are used to control some
safety critical hardware and we want to avoid single point faults.

How to test

Tested with the unit tests running make -B in test subfolder.

External hardware

N/A

Pinout

# Input Output Bidirectional
0 vote0
1 vote1
2 vote2
3 vote3
4 vote4
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# Input Output Bidirectional
5 vote5
6 vote6
7 vote7
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14 Hour Simple Computer [782]

• Author: Peter Schmidt-Nielsen
• Description: A very simple computer that renders to VGA, designed in the last

14 hours before the submission deadline
• GitHub repository
• HDL project
• Mux address: 782
• Extra docs
• Clock: 50000000 Hz

How it works

Does it even work?

How to test

TODO: Document this. I know, I’m awful, but I’m literally doing this in the last 14
hours of the submission deadline.

External hardware

This project requires an external SPI SRAM, and also an external VGA breakout board!
I’m going to make them, and give them out for free.

Pinout

# Input Output Bidirectional
0 vga_r sram_cs_n
1 vga_g sram_so
2 vga_b sram_sio2
3 vga_hs sram_si
4 vga_vs sram_sck
5 sram_sio3
6
7
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Universal gates [812]

• Author: htfab
• Description: A modern take on 74-series chips
• GitHub repository
• HDL project
• Mux address: 812
• Extra docs
• Clock: 0 Hz

How it works

This project is supposed to eventually become a Wokwi port of unigate-gf.

How to test

Run the testbench in the test directory.

External hardware

None

Pinout

# Input Output Bidirectional
0 a i u21(a..d)
1 b j u31(a..f)
2 c k u22(a..f).1
3 d l u22(a..f).2
4 e m u41(a..j)
5 f n nand(e, f)
6 g o u21(g..j)
7 h p u31(k..p)
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UART interface to ADC TLV2556 (VHDL Test) [814]

• Author: Jonas Nilsson
• Description: Simple interface that allows values from a TLV2556 ADC to be

read out over a UART
• GitHub repository
• HDL project
• Mux address: 814
• Extra docs
• Clock: 48000000 Hz

How it works

This design is an interface that allows a TI TLV2556 ADC to be controlled via a UART.
The ADC settings are static. The UART interface allows prompting a conversion and
will receive the measured value as human readable values.

How to test

Requires a 48 MHz clock.
Connect a TLV2556 and a UART to the appropriate pins. Note that the CTS and RTS
pins have opposite polarity as they’re intended to be connected directly to a CH340
UART-over-USB chip.
Connect with a terminal emulator set to 230400 Baud, 8N1.
Send a single hexadecimal character from 0 to B over the serial port. The digit
represents the channel you wish to convert. The design will cause the tlv2556 to do
a conversion, read out the measured value and send it back in human readable form
over the serial port.
Type CR or LF to enter “continuous mode”. The design will loop through all channels,
converting each in turn, and print a page worth of measured values to the serial port.

Pinout

# Input Output Bidirectional
0 adc_dout adc_clk
1 adc_eoc adc_cs
2 UART RxD adc_din
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# Input Output Bidirectional
3 UART CTS_n (opposite polarity) UART TxD
4 UART RTSn (opposite polarity)
5
6
7
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rng Test [842]

• Author: Luca Collini
• Description: HLS implementation of NIST 800.22 Monobit Test for RNGs.
• GitHub repository
• HDL project
• Mux address: 842
• Extra docs
• Clock: 50000000 Hz

How it works

This design takes a bit every clock cycles and evaluates if the bit source is random.
This particular test is the Monobit test from NIST 800.22. The output is given every
65536 cycles. The is_random signal is to be checked only when the valid signal is
high.

How to test

Provide Clock and input bit.

External hardware

Non for now. Planning to add soon

How to use

send one bit per clock cycle to the epsilon port. check is_random when valid is high.
The design evaluates every 65536 bits.

Pinout

# Input Output Bidirectional
0 epsilon is_random
1 is_random_triosy_lz
2 valid
3 valid_triosy_lz
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# Input Output Bidirectional
4 epsilon_triosy_lz
5
6
7
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Fast Readout Image Sensor Prototype [846]

• Author: Devin Atkin
• Description: This Project Pretends to be an Image Sensor, It’s not an Image

Sensor
• GitHub repository
• HDL project
• Mux address: 846
• Extra docs
• Clock: 50000 Hz

Figure 71: alt text

How it works

This project simulates an image sensor with the intention of validating a readout
method. Light levels are fed in, and then the ouput is used to re-recover those light
levels. This is done by using a set of frequency modules to convert the light levels
into frequencies, and then a set of frequency counters to measure the frequency of the
output. The design is validated through the testbenches both simulating a full 1MP
sensor (These are run in the long testbenches action) and a smaller number of pixels
in the actual manufactured hardware and shorter testbenches. I cannot unfortunately
think of any way to make this design more useful to anyone else, but I wish anyone
who tries the best of luck.

How to test

There are testbenches provided in this repository which should verify the functionaltiy
of the design. The test directory also includes a top level testbench which can be used
to verify the design once it is fabricated.
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External hardware

The top level test under the test directory will have a circuit python equivalent written
which will allow the design to be tested from the external RP2040 microcontroller. This
will allow the design to be tested in the actual hardware as well as in simulation.

Pinout

# Input Output Bidirectional
0 DATA_IN1 DATA_BUS_COL_OUT[0] DATA_BUS_ROW_IN[0]
1 RCLK_1 DATA_BUS_COL_OUT[1] DATA_BUS_ROW_IN[1]
2 LOAD_1 DATA_BUS_COL_OUT[2] DATA_BUS_ROW_IN[2]
3 DATA_IN2 DATA_BUS_COL_OUT[3] DATA_BUS_ROW_IN[3]
4 RCLK_2 DATA_BUS_COL_OUT[4] DATA_BUS_ROW_IN[4]
5 LOAD_2 DATA_BUS_COL_OUT[5] DATA_BUS_ROW_IN[5]
6 DATA_BUS_COL_OUT[6] DATA_BUS_ROW_IN[6]
7 DATA_BUS_COL_OUT[7] DATA_BUS_ROW_IN[7]
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soundgen [897]

• Author: Yanik Drmla
• Description: plays prelude.wav in endless loop
• GitHub repository
• HDL project
• Mux address: 897
• Extra docs
• Clock: 10000000 Hz

How it works

Plays prelude.wav in real Hardware. This works with a sine stored as lookup-table
which is being played with varying frequency.

How to test

To test connect a Piezo to given Pins and listen!

External hardware

piezo

Pinout

# Input Output Bidirectional
0 nc nc nc
1 nc nc nc
2 nc nc nc
3 nc nc nc
4 nc nc nc
5 nc nc nc
6 nc nc pwm_pos
7 nc nc pwm_neg
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Simon Says game [899]

• Author: Uri Shaked
• Description: A simple memory game
• GitHub repository
• HDL project
• Mux address: 899
• Extra docs
• Clock: 50000 Hz

Figure 72: Simon Says Game

How it works

Simon says is a simple electronic memory game: the user has to repeat a growing
sequence of colors. The sequence is displayed by lighting up the LEDs. Each color also
has a corresponding tone.
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In each turn, the game will play the sequence, and then wait for the user to repeat the
sequence by pressing the buttons according to the color sequence. If the user repeated
the sequence correctly, the game will play a “leveling-up” sound, add a new color at
the end of the sequence, and move to the next turn.
The game continues until the user has made a mistake. Then a game over sound is
played, and the game restarts.
Check out the online simulation at https://wokwi.com/projects/395431892849488897
(including wiring diagram).

How to test

You need four buttons, four LEDs, resistors, and optionally a speaker/buzzer and a
two digit 7-segment display for the score.
Ideally, you want to use 4 different colors for the buttons/LEDs (red, green, blue,
yellow).

1. Connect the buttons to pins btn1, btn2, btn3, and btn4, and also connect
each button to a pull down resistor.

2. Connect the LEDs to pins led1, led2, led3, and led4, matching the colors
of the buttons (so led1 and btn1 have the same color, etc.)

3. Connect the speaker to the speaker pin.
4. Connect the seven segment display as follows: seg_a through sev_g to individ-

ual segments, dig1 to the common pin of the tens digit, dig2 to the common
pin of the ones digit.
Set seginv according to the type of 7 segment display you have: high for
common anode, low for common cathode.

5. Reset the game, and then press any button to start it. Enjoy!

Note: the game requires 50KHz clock input.

External Hardware

Four push buttons (with pull-down resistors), four LEDs, and optionally a
speaker/buzzer and two digit 7-segment display

Pinout
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# Input Output Bidirectional
0 btn1 led1 seg_a
1 btn2 led2 seg_b
2 btn3 led3 seg_c
3 btn4 led4 seg_d
4 seginv speaker seg_e
5 dig1 seg_f
6 dig2 seg_g
7
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Gate Guesser [901]

• Author: Fabio Ramirez Stern
• Description: A very simple gate guessing game - which I/O is connected to

what?
• GitHub repository
• HDL project
• Mux address: 901
• Extra docs
• Clock: 0 Hz

How it works

The input and inout (used as inpputs) pins are connected to 8 different logic gates,
which lead to the outputs. Only one logic layer of combinatoric logic. Each input is
hooked up to only one gate.

How to test

No clock, enable or reset is used. As this is just one layer of combinatoric logic, you can
simply check against a precalculated truth table. To play, flip the inputs and observe
the output until you recognise what it must be.

External hardware

Connect 16 switches to the input and inout pins, the 8 outputs are hooked up to one
LED each (or other display hardware of your choice).
The solution is:
SPOILER
out0 = in0 and in2
out1 = not in1
out2 = in5 and in7 and inA
out3 = in6 xor inC
out4 = in4 nand in9
out5 = in8 xnor B
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out6 = inE nor inF
out7 = in3 or inD

Pinout

# Input Output Bidirectional
0 switch0 gatey0 switch8
1 switch1 gatey1 switch9
2 switch2 gatey2 switchA
3 switch3 gatey3 switchB
4 switch4 gatey4 switchC
5 switch5 gatey5 switchD
6 switch6 gatey6 switchE
7 switch7 gatey7 switchF
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sn74169 [903]

• Author: andychip1
• Description: up down counter
• GitHub repository
• HDL project
• Mux address: 903
• Extra docs
• Clock: 1000000 Hz

How it works

Verilog model of the SN74169.

How to test

ui_in[3:0] = A[3:0] 4b parallel load
ui_in[4] = ENPB
ui_in[5] = ENTB
ui_in[6] = LOADB
ui_in[7] = UP/DOWNB
uo_out[3:0] = Q[3:0] 4b output
uo_out[4] = RCOB
uo_out[5] = !ui_in[0] - for debugging
clk = system clock

External hardware

Oscilloscope to observe the outputs.

561

https://github.com/andychip1/sn74169


# Input Output Bidirectional

Pinout

# Input Output Bidirectional
0 A0 Q0
1 A1 Q1
2 A2 Q2
3 A3 Q3
4 ENPB RCOB
5 ENTB
6 LOADB
7 UP
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VGA Experiments in Tennis [905]

• Author: Tom Keddie
• Description: Simple Game
• GitHub repository
• HDL project
• Mux address: 905
• Extra docs
• Clock: 25175000 Hz

How it works

VGA game using paddles attached to input.

How to test

Attach VGA pmod and connect to monitor. Use the inputs to move the paddles

External Hardware

Digilent VGA PMOD or mole99 vga pmod. Buttons to play game on in0-in3

Pinout

# Input Output Bidirectional
0 left paddle up r1/r0 (mole99/digilent) g0
1 left paddle down g1/r1 (mole99/digilent) g1
2 right paddle up b1/r2 (mole99/digilent) g2
3 right paddle down vsync/r3 (mole99/digilent) g3
4 score reset r0/b0 (mole99/digilent) hsync
5 Speed LSB g0/b1 (mole99/digilent) vsync
6 Speed MSB b0/b2 (mole99/digilent) tied low
7 pmod sel (high=mole99, low=digilent) hsync/b3 (mole99/digilent) tied low
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Iron Violet [907]

• Author: John Cope
• Description: It’s a little memory game, as a treat.
• GitHub repository
• HDL project
• Mux address: 907
• Extra docs
• Clock: 50000000 Hz

The Team

John Cope, Kasey Hill, Matt Johnson, Jacob Reyna

How it works

Simon’t involves the device playing a sequence of button-lamps, and the player needs
to repeat the sequence by pressing corresponding buttons.
The game keeps a high score for as long as power is maintained, or until it is reset.
Each button has an associated lamp that lights when being presented to the player, as
well as when the player presses the buttons back into the game.
When a new game starts, the device shines a button-light for a half second, and the
player has to press the same button-lamp within five seconds. Then the game picks
a new button-lamp from any of the four, and plays the first color and the new color
for the player. the player must press the buttons in the same order they are presented.
This continues until the player presses a wrong button, the player waits too long to
press a button, or the game runs out of memory at 32 moves.
When the player enters a correct move in a sequence, the timeout for “forget” death is
reset, and, if there is at least one additional color in the sequence, the eng-game timer
begins again.
At the end of the game, if the player has set a new high score, the game pulses each
lamp in the sequence of red-yellow-green-blue. If the player fails to set a new high
score, the game pulses each lamp in the reverse order.
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External hardware

Lamps need to be driven from the following outputs: 0 to red, 1 to yellow, 2 to green,
and 3 to blue. Four buttons is connected to inputs 0 to 4, and they is physically located
to correspond with the lamps.
A fifth button is connected to input 5, and is used to start a game.

Pinout

# Input Output Bidirectional
0 Red Button Red Lamp
1 Yellow Button Yellow Lamp
2 Green Button Green Lamp
3 Blue Button Blue Lamp
4 Start Game
5
6
7
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Pong [909]

• Author: Alex Segura
• Description: 2-player pong game
• GitHub repository
• HDL project
• Mux address: 909
• Extra docs
• Clock: 25175000 Hz

Figure 73: screenshot

How it works

The pixel clock drives a VGA sync generator that scans the screen. Logic in pong.v
determines whether to draw a pixel.
At each vsync, collisions are detected and the state of the game is updated.
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For the paddle controls, the game uses modified versions of the debounce and encoder
logic from the course to generate the control signals.

How to test

Two vertical paddles and a ball should render at 640x480 resolution. A vertical “net”
should be visible at the middle of the screen. Paddles should respond to the encoders.
The ball should bounce from the top and bottom boundaries of the screen and should
bounce off the paddles. The game should reset when the ball crosses beyond either
paddle.
The verilog code can be run under verilator simulation:

cd src
make -B pong
./obj_dir/pong

SDL2 is a necessary dependency.
W and S control the left paddle. Up and down arrow keys control the right paddle.

External hardware

• Two rotary encoders, one for each paddle.
• TinyVGA Pmod or similar.

Pinout

# Input Output Bidirectional
0 Paddle 1 encoder A R0
1 Paddle 1 encoder B G0
2 Paddle 2 encoder A B0
3 Paddle 2 encoder B VSYNC
4 R1
5 G1
6 B1
7 HSYNC
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KianV uLinux SoC [910]

• Author: Hirosh Dabui
• Description: A RISC-V ASIC that can boot �Linux.
• GitHub repository
• HDL project
• Mux address: 910
• Extra docs
• Clock: 0 Hz

How it works

32-bit RISC-V IMA processor, capable of booting Linux. Features 16 MiB of exter-
nal SPI flash memory, 8 MiB of external PSRAM, a UART peripheral, and a SPI
peripheral.

System Memory Map

The system memory map is as follows:

Address Size Purpose
0x10000000 0x14 UART Peripheral
0x10500000 0x14 SPI Peripheral
0x11100000 0x04 Reset / HALT control
0x20000000 16 MiB SPI Flash
0x80000000 8 MiB PSRAM

The system boots from the SPI flash memory. After reset, the CPU starts execut-
ing code from 0x20100000 (corresponding to the offset 0x100000 into the SPI flash
memory), where the bootloader is expected to be.

UART Peripheral registers

Address Name Description
0x10000000 UART_DATA Write to transmit, read to receive
0x10000005 UART_LSR UART line status register
0x10000010 UART_DIV Clock divider for UART baud rate

568

https://github.com/splinedrive/KianV-RV32IMA-RISC-V-uLinux-SoC


SPI Peripheral registers

Address Name Description
0x10500000 SPI_CTRL0 SPI Peripheral Control
0x10500004 SPI_DATA0 SPI Data
0x10500010 SPI_DIV Clock divider for SPI peripheral

CPU control register

Address Name Description
0x11100000 CPU_RESETWrite 0x7777 to reset the CPU, 0x5555 to halt the CPU.

How to test

Build the system image as described in the kianRiscV repo and load it into the SPI
flash memory:

Flash offset File name Description
0x100000 bootloader.bin Bootloader
0x180000 kianv.dtb Device Tree Blob
0x200000 Image Linux kernel + rootfs

The system runs at 30 MHz, with a maximum tested speed of 34.5 MHz.

External hardware

QSPI Pmod - can be purchased from the Tiny Tapeout store.

Pinout

# Input Output Bidirectional
0 spi_cen0 ce0 flash
1 spi_sclk0 sio0
2 spi_sio1_so_miso0 spi_sio0_si_mosi0 sio1
3 uart_rx led[0] sck
4 uart_tx sd2
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# Input Output Bidirectional
5 led[1] sd3
6 led[2] cs1 psram
7 led[3] always high
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Moosic logic-locked design [911]

• Author: Gabriel Gouvine
• Description: 8-bit counter locked with Moosic logic locking
• GitHub repository
• HDL project
• Mux address: 911
• Extra docs
• Clock: 0 Hz

How it works

This is a simple counter that is incremented every time the first input bit is set.
The trick is that is it locked using logic locking, so that it won’t work unless the proper
key is set first.

How to test

You need to initialize the key with inputs “11100110” (or 0xe6). The 6 most significant
bits (111001) are the key, and the second bit is the key enable. Then you can run the
counter: “00000001” will increment it, while “00000000” will keep the same value.

External hardware

This is purely self-contained to demonstrate logic locking.

Pinout

# Input Output Bidirectional
0 DO_INCR CNT_0
1 KEY_ENABLE CNT_1
2 KEY_0 CNT_2
3 KEY_1 CNT_3
4 KEY_2 CNT_4
5 KEY_3 CNT_5
6 KEY_4 CNT_6
7 KEY_5 CNT_7
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ledcontroller [961]

• Author: Mathias Garstenauer
• Description: A WS2812b addressable LED controller configurable via I2C
• GitHub repository
• HDL project
• Mux address: 961
• Extra docs
• Clock: 25000000 Hz

How it works

This tinytapeout projects implements i2c to drive ws2812b individual addressable LEDs.
The IC can be addressed with the address 0x4A. The register address corrosponds with
the sequential bytes of the leds as follows:

address data
0x00 green0
0x01 red0
0x02 blue0
0x03 green1
0x04 red1
0x05 blue1
0x06 green2
… …
0x green
0x red
0x blue

i2c uses external pullups and open collector outputs. In order to implement this the
IOs were configured so that the input is handled as input by the verilog module. The
out put is set to 0 and the i2c output of the verilog modules toggles between in- and
output mode. Therefor listening to the i2c communication should work just fine with
the IOs in input mode, where they have a high impedance. If something has to be sent
(e.g. acknowledge) the IO is set to output a low value and pulls the i2c line to ground.
Should there be any problems with this configuration the SDA and SCL lines are also
present on the normal outputs.
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How to test

Connect an i2c-master to the chip and write values to the desired registers. The IC
supports sequetial write by auti incrementing the register address if more than one byte
is sent. The LED should update immediately.

External hardware

Microntroller/computer (e.g. STM32, Arduino, Raspberry Pi, …), ws2812b LED (strip,
matrix, …), external pullup resistors for i2c

Pinout

# Input Output Bidirectional
0 i2c SCL alternative for PNP open collector i2c SCL
1 i2c SDA alternative for PNP open collector i2c SDA
2 ws2812b LED output
3
4
5
6
7

573



Digitaler Filter [963]

• Author: Nico Rathmayr
• Description: FIR-Filter using two coefficents to filter 8-bit signal
• GitHub repository
• HDL project
• Mux address: 963
• Extra docs
• Clock: 0 Hz

How it works

The goal of this project is to design and implement an efficient digital filter capable of
filtering unwanted frequencies from a digital signal.
The FIR filter (Finite Impulse Response) is characterized by its finite impulse response
defined by a finite number of coefficients. In this case, only two coefficients are used,
simplifying the design process and optimizing the implementation on an FPGA (Field-
Programmable Gate Array) or another digital circuit.
The two coefficients are carefully selected to achieve the desired frequency response of
the filter. It is essential to consider the requirements of the application, whether it be
for audio processing, image processing, or any other signal processing application.
Assignment of digital inputs and outputs:

• ui_in: 8-bit input signal ‘x’
• uio_in: 8-bit coefficients ‘const_h’
• uo_out: 8-bit output signal ‘y’
• uio_out: not used!
• uio_oe: not used!

Originally, the filter programming was planned with four coefficients, but due to chip
capacity limitations, this ambition had to be reduced to two coefficients. The code
includes comments for additional four-coefficient support, ensuring the possibility of
future program expansion.
To read all coefficients with just one 8-bit input and store them in the corresponding
register, a shift register has been implemented. Each new clock signal edge allows
storing a newly read value at the desired position in the register. Once the maximum
number of positions in the register is occupied, the flag is set to low, and the counter
is reset. The input signal is also read using a shift register by shifting the value in the
register by one position in each step.
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Now, for the actual filter operation: the desired coefficients are multiplied with the
input signal and summed after each step. It is important to note that the two registers
have different sizes and need to be adjusted accordingly. The filtered input signal is
output as the output signal from a section of the bit sequence stored in the sum. These
steps ensure precise signal processing and demonstrate the program’s adaptability for
potential future expansions.

How to test

Refer to the Testbench.

External hardware

You do not need any special external hardware.

Pinout

# Input Output Bidirectional
0 input signal bit 0 output signal bit 0 input coefficient bit 0
1 input signal bit 1 output signal bit 1 input coefficient bit 1
2 input signal bit 2 output signal bit 2 input coefficient bit 2
3 input signal bit 3 output signal bit 3 input coefficient bit 3
4 input signal bit 4 output signal bit 4 input coefficient bit 4
5 input signal bit 5 output signal bit 5 input coefficient bit 5
6 input signal bit 6 output signal bit 6 input coefficient bit 6
7 input signal bit 7 output signal bit 7 input coefficient bit 7
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Wave Generator [965]

• Author: Michael Mayr
• Description: Generates various functions, such as a sine wave, a sawtooth wave,

a triangular wave and a squared wave.
• GitHub repository
• HDL project
• Mux address: 965
• Extra docs
• Clock: 0 Hz

How it works

The Wave Generator is a project that deals with the generation of various signals.
These signals are a sine function, a triangle function, a sawtooth function and a square
pulse function. The desired function, which then provides the output value, can be
selected using simple control signals.
Each calculated value is generated as a 2’s complement in the fixed point system Q7
and then output accordingly either via the parallel or the serial interface. An SPI
interface is used for the serial output, but this can only write and not read. However,
this makes it possible to connect a DAC to the wave generator in order to convert the
digital signals into analogue signals.
In general, the implemented signals can be influenced by three parameters:

• due to the internal clock frequency 𝑓𝑐𝑙𝑘
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• by the phase parameter
• by the amplitude parameter

These three parameters allow these signals to be flexibly configured in terms of their
respective properties. Depending on the type of signal, however, certain restrictions
must be taken into account for the parameters. These restrictions are then described
in the respective section for the corresponding signal.
In addition, the sampling frequency 𝑓𝑠 is linked to the internal clock frequency 𝑓𝑐𝑙𝑘
of the system by a factor of 40. A value therefore requires 40 clock pulses to be
calculated and output via the serial interface. This results in the following relationship:
𝑓𝑠 = 𝑓𝑐𝑙𝑘

40 . The maximum internal clock frequency 𝑓𝑐𝑙𝑘 is 66;MHz and therefore the
maximum sampling frequency 𝑓𝑠 is 1.65;MHz.

Inputs and outputs The Wave Generator uses all 24 digital pins. The input pins are
described in the pinout section. These 8 input pins add up to the bit vector parameter.
This is required to set the phase and amplitude, as the respective value is applied to it
as a 2’s complement in the fixed-point system Q7. The bidirectional pins “set phase”
and “set amplitude” are used to adopt this value as the phase value or amplitude value
in the chip.
The current value is output in parallel form on the output wave pins and in serial form
on the SPI pins. The SPI pins have the same names as defined in the standard, with
the exception that the input pin MISO is missing. This is not required due to the pure
data generation.
The bit vector wavefrom (see pinout section) is used to select the desired function.
The desired function then results depending on the bit pattern:

• 00: Sine wave
• 01: Square puls wave
• 10: Sawtooth wave
• 11: Triangular wave

The value generation can be stopped by the pin enable (see pinout section) with a
LOW level and continued with a HIGH level.

Sine wave The sine wave is generated using a Cordic algorithm, as shown in the be-
low figure. This Cordic algorithm is used in the mode rotation and with the coordinate
system circular. The following function is implemented in the Cordic algorithm:

𝑥𝑛 = 𝑥0 cos(𝑧0) − 𝑦0 sin(𝑧0)

𝑦𝑛 = 𝑦0 cos(𝑧0) + 𝑥0 sin(𝑧0)
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To generate a sine wave from this formula, 𝑦0 must be set to 0 and 𝑥0 must be loaded
with the desired amplitude. The current phase 𝑧0 of the sine wave is calculated in
advance by a phase accumulator. This then transfers its current phase value to the
Z input of the Cordic algorithm. This allows the Cordic algorithm to generate a sine
wave at the Y output, which is then subsequently output.
Due to a property of the Cordic algorithm, the amplitude parameter must be scaled
by a factor 𝑘 before loading into the chip. This factor 𝑘 has a value of 0.6073. This
prevents an overflow in the Q7 format and the correct values are calculated by the
algorithm.
This results in the following formulae for the parameters:

Amplitude parameter = 𝑘𝐴

Phase parameter = 2𝑓
𝑓𝑠

Where 𝐴 ∈ [−1+2−7, 1−2−7] is the desired amplitude and 𝑓 ∈ (0, 𝑓𝑠
2 ] is the desired

frequency.

Square pulse wave The square pulse wave is again calculated with a phase accu-
mulator and a threshold dectection unit (see figure below). The phase accumulator
generates a sawtooth function 𝑥[𝑛], where the difference between one value and its
subsequent value is the phase parameter. An exception occurs in the case of an over-
flow. In this case, the difference is much greater, as the value moves to the negative
end of the number format. This generated value is then compared with the current
amplitude parameter. In this case, the amplitude parameter is a threshold parameter.
The output is then generated according to the following principle: If 𝑥[𝑛] is greater
than the amplitude parameter, 𝑦[𝑛] has the value 1 − 2−7. Conversely, if 𝑥[𝑛] is less
than or equal to the amplitude parameter, 𝑦[𝑛] becomes −1 + 2−7.
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The following formulae are required for the parameters:

Amplitude parameter = 1 − 2−7 − (2 − 2−7)𝑇𝑜𝑛
𝑇

Phase parameter = 2 − 2−7

𝑇 𝑓𝑠

Where 𝑇 > 1
𝑓𝑠

is the desired period duration and 𝑇𝑜𝑛 ∈ (0, 𝑇 ) is the desired pulse
width.

Sawtooth wave The sawtooth wave is basically generated with a phase accumulator
(see figure below). The only difference is that 𝑦[𝑛] is fed back instead of 𝑥[𝑛]. This
makes it possible to generate a sawtooth function with a specific amplitude value. The
threshold dectection unit thus ensures that the function remains in the range from
minus amplitude parameter to amplitude parameter. To do this, 𝑥[𝑛] is checked and
if this value is greater than the amplitude parameter, 𝑦[𝑛] is set to the negative value
of the amplitude parameter. If this does not occur, 𝑥[𝑛] becomes 𝑦[𝑛].
The following formulae are required for the parameters:

Amplitude parameter = 𝐴

Phase parameter = 2𝐴 𝑓
𝑓𝑠

Where 𝐴 ∈ [−1+2−7, 1−2−7] is the desired amplitude and 𝑓 ∈ (0, 𝑓𝑠
2 ] is the desired

frequency.
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Triangle wave With the triangle wave, the current value is taken from the sawtooth
wave and with every second overflow, therefore a change from a positive value to a
negative value (see figure below), the output value is multiplied by -1.
The following formulas are required for the parameters:

Amplitude parameter = 𝐴

Phase parameter = 4𝐴 𝑓
𝑓𝑠

SPI Interface The calculated value is output serially via the SPI interface. The
below timing diagram is used for this purpose. SPI is used in this project with CPOL=0
and CPHA=0. The SPI CLK requires 4 cycles of 𝑓𝑐𝑙𝑘 for one cycle. The other
properties can be taken from the timing diagram.
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How to test

The following procedure is required to generate the desired wave:

1) Initialisation

• Reset the device.
• The enable pin should be connected to LOW.

2) Choose the desired wave

• Set the code for the desired wave on the waveform pins.

3) Calculate the amplitude and the phase parameter with the formulars form the
above sections.

4) Set amplitude parameter

• Load the calculated results on the parameter pins
• Then send a puls to the set amplitude pin

5) Set phase parameter

• Load the calculated results on the parameter pins
• Then send a puls to the set phase pin

6) Enable the output generation

• The enable pin should be connected to HIGH.

7) Now the chip generates the desired wave and output the values on the parallel
and serial interface.

External hardware

Through the SPI interface it is possible to get an analogue signal through a suitable
DAC. However, this DAC must fulfill the requirements of the SPI interface.

Pinout

# Input Output Bidirectional
0 parameter bit 0 (LSB) output wave bit 0 (input) enable pin
1 parameter bit 1 output wave bit 1 (input) waveform bit 0 pin
2 parameter bit 2 output wave bit 2 (input) waveform bit 1 pin
3 parameter bit 3 output wave bit 3 (input) set phase pin
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# Input Output Bidirectional
4 parameter bit 4 output wave bit 4 (input) set amplitude pin
5 parameter bit 5 output wave bit 5 (output) spi cs pin
6 parameter bit 6 output wave bit 6 (output) spi mosi pin
7 parameter bit 7 (MSB) output wave bit 7 (output) spi clk pin
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jku-tt06-advanced-counter [967]

• Author: Martin Putz
• Description: Multi-Digit Counter with changeable maximum values and carry

over.
• GitHub repository
• HDL project
• Mux address: 967
• Extra docs
• Clock: 1000000 Hz

How it works

The design uses in it’s core a series of modified 2-bit-up-down-counters that allow
for setting a custom maximum value. Carry information is only provided if this is
intended by the operating mode. The mode can is selected from individual inputs by a
mode selection module. The output of the counters is serialized and encoded for the
7-segment-display.

External hardware

For each digit used (due to limitations that’s only 2) a push button in active high
configuration is used. A third push button for the refreshing of limits is also required.
Further more, 3 switches are used to determine the operating mode. On the output
side, for each digit an 8-bit-shift-register and a 7-segment-display is used, as the output
value is serialized. For the shift clock two inverse outputs are provided, in case a shift
register with both a load and output input. In that case, the shift_clk is used for
loading and not_shift_clk is used for output. The design was made with the register
HC595 in mind, but will work with other 8-bit shift registers.

Pinout

# Input Output Bidirectional
0 Button 0 In Digit 0 Out Up-Down-Select In
1 Button 1 In Digit 1 Out Set-Carry In
2 Set-Max In
3 Refresh-Limits In
4
5
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# Input Output Bidirectional
6 Shift-Clk Out
7 Not-Shift-Clk Out
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PI-Based Fan Controller [969]

• Author: Dominik Brandstetter
• Description: Temperature Based Fan Speed Controller
• GitHub repository
• HDL project
• Mux address: 969
• Extra docs
• Clock: 1000000 Hz

How it works

This project involves reading a 4-bit ADC value through a dedicated interface. An-
other a 4-bit interface allows the user to set the desired target value. The integrated
controller, designed with fixed parameters, regulates the fan speed through a PWM
(Pulse Width Modulation) output operating at approximately 25 kHz. The controller
maintains a minimum duty cycle of around 20%, and it has the capability to increase
this value up to 100%. The output consists of a signed 4-bit controller value along with
the corresponding PWM signal. Additionally, the current controller value can be read
from the 7-Segment-Display. This configuration ensures precise control and adjustment
of the fan speed based on the input parameters provided through the 4-bit interfaces,
with the added feature of fixed controller parameters for simplicity and stability.

How to test

After reset, the fan controller should initiate operation, adjusting the fan speed based
on the setpoint and ADC value. The PWM output, set at approximately 25 kHz,
regulates the fan speed.

External hardware

4-Bit ADC, LED display, Fan

Pinout

# Input Output Bidirectional
0 ADC_BIT_0 segment_a Controller_SET_BIT_0
1 ADC_BIT_1 segment_b Controller_SET_BIT_1
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# Input Output Bidirectional
2 ADC_BIT_2 segment_c Controller_SET_BIT_2
3 ADC_BIT_3 segment_d Controller_SET_BIT_3
4 SET_BIT_0 segment_e Controller_SIGN_BIT_4
5 SET_BIT_1 segment_f
6 SET_BIT_2 segment_g
7 SET_BIT_3 PWM Output
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PS/2 Keyboard to Morse Code Encoder [971]

• Author: Daniel Baumgartner
• Description: PS/2 Keyboard to Morse Code Encoder
• GitHub repository
• HDL project
• Mux address: 971
• Extra docs
• Clock: 10000000 Hz

How it works

This project implements a PS/2 keyboard to Morse code encoder. For this, the output
of a PS/2 keyboard is evaluated. If a key is pressed on the keyboard, the input is
stored in a 12-bit temporary buffer. All alphanumeric characters are supported, except
for umlauts and numbers on the number pad. The output of the design depends on
the selected mode. Mode 1 is activated with the F1 key and is the default mode after
a reset. In this mode, the contents of the buffer are output when the enter key is
pressed. Mode 2 can be activated with the F4 key. If this mode is active, the content
of the buffer is output as soon as the space bar is pressed. The Morse code output
consists of dots (dits) and dashes (dahs). The timings for dits, dahs, symbol spacing
and spaces have been selected so that a Morse signal with approx. 15 WPM (words
per minute) is generated. The design has four outputs. Dit and dah each have their
own output. A further output is a combination of dit and dah. This output is active
when a dit or dah is being output. The last output is intended for connecting a buzzer
or a small speaker. This output emits a 600Hz square wave signal when either a dit or
a dah is output.
This project is written in Verilog. The design includes three separate modules. One
module for decoding the PS/2 data from the keyboard that evaluates the data sent by
the keyboard. Another module generates the Morse code output based on the keyboard
input, and one additional module generates the 600Hz square wave signal. Across the
modules, multiple finite state machines (FSM) are used. The exact implementation
can be found on GitHub. For further information about the PS/2 protocol, take a look
at PS/2 Wikipedia.

How to Test the Design

Required Hardware To test the design, a PS/2 keyboard is needed. It is important
to use a logic converter (5V to 3.3V) for the data and clock line, as the Tiny Tapeout
chip only supports 3.3V! Connect the data line to ui_in[1] and the clock line to
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ui_in[0]. Additionally, two pull-up resistors (5kΩ) against 5V must be connected
to the two lines. Don’t forget to supply the keyboard with 5V and GND. If you don’t
have a PS/2 keyboard, you can also use a USB keyboard. Some, but not all, USB
keyboards still support the PS/2 protocol. In this case, D+ is clock and D- is data
(don’t forget the pull-up resistors and the level shifter).
After everything is connected, perform a reset and start typing on the keyboard. The
input should be stored in a buffer (max. 14 characters). With F1 and F4, you can switch
between two modes. Mode 1 (F1) is the default mode. In this mode, the characters
stored in the buffer are output when enter is pressed on the keyboard. Mode 2 (F4)
outputs the buffer as soon as the space bar is pressed. It is worth noting that no new
characters can be entered during output. Segment A of the seven-segment display
lights up when a dit is output, segment D lights up when a dah is output. Segment
G lights up when a dit or a dah is output. A buzzer can be connected to output
uo_out[7] (segment DP) which emits the Morse code as a tone (600 Hz). Before
submission to TT06 the design was tested on a Spartan 3AN Starter Kit, so it should
work (hopefully).
PS: You may be surprised when you press the F6 key :)

Pinout

# Input Output Bidirectional
0 PS/2 Clock Dit Output
1 PS/2 Data
2
3 Dah Output
4
5
6 Morse Code Output
7 Morse Code Output (Buzzer)
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16-bit calculator [973]

• Author: Benedikt Muehlbachler
• Description: calculator using 16-bit ALU with 8-bit IO-data port reading/writing

data
• GitHub repository
• HDL project
• Mux address: 973
• Extra docs
• Clock: 0 Hz

How it works

The 16-bit calculator looks in a simplified symbolic schematic as follows:

You have an IO-Port (8-bit) to load data to registers for the operands A and B for the
calculation operation as well as to output the result of the alu operation. The IN[3:0]
are used for the alu operation selection (there are 12 different operations possible).
The CLK is the clock and RST_N is the reset pin. There are also OUT[4:0] which
shows the status of the alu operation as well as the OUT[7:5] to see at which step the
whole operation is.
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To better clarify how it works, there is a timing diagram:

• As long as the RST_N pin is low, the counter is reset and nothing happens.
• If RST_N is HIGH then the operation starts.
• At a negative CLK edge the counter increments and gets 1. At the following

positive CLK edge whatever is on the IO-Port gets loaded into the low-byte of
operand A (at the next negative CLK edge the counter increments.

• At Counter=2 and POS EDGE CLK: IO-Port data gets loaded into High-Byte
of A.

• At Counter=3 and POS EDGE CLK: IO-Port data gets loaded into Low-Byte of
B.

• At Counter=4 and POS EDGE CLK: IO-Port data gets loaded into High-Byte
of B. Additionally, the ALU Operation gets selected.

• At Counter=5 and POS EDGE CLK: The result of the ALU operation is on the
IO-Port (Low-Byte of result), and the Status of the ALU-Operation is updated
at the Status output.

• At Counter=6 and POS EDGE CLK: The high-Byte of the ALU operation is on
the IO-Port.

• At the following NEG EDGE CLK, the Counter will restart from zero (the same
happens if RST_N gets low during the operation.

The following alu operations are possible: | ALU Op Select | Operation | Name of
Operation | |—————|————|————————| | 0 | R=0 | Null Operation |
| 1 | R=~A | Inverse of A | | 2 | R=A«1 | Shift left A | | 3 | R=A»1 | Shift right A |
| 4 | R=rot_l(A) | Rotate left A | | 5 | R=rot_r(A) | Rotate right A | | 6 | R=A+1 |
Increment A | | 7 | R=A-1 | Decrement A | | 8 | R=A and B | Bitwise A and B | | 9
| R=A or B | Bitwise A or B | | 10 | R=A xor B | Bitwise A xor B | | 11 | R=A+B |
Addition of A and B | | 12 | R=A-B | Subtraction of A and B |
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The status out register is as follows: | Status Register | Flag | Description | |———
——–|—————————|—————————————————————-| | Bit
0 | Wrong Operation Flag (WF) | Set when ALU Op Select is 13,14 or 15 (there is
no operation). | | Bit 1 | Zero Flag (ZF) | Set when result is zero. | | Bit 2 | Sign
Flag (SF) | Set when the highest bit (bit 15) is 1. | | Bit 3 | Carry Flag (CF) | Set for
unsigned notation when there is a carry. | | Bit 4 | Overflow Flag (OF) | Set for signed
notation when there is an overflow. |

How to test

•

External hardware

You do not need any special external hardware.

Pinout

# Input Output Bidirectional
0 alu operation

select bit 0
status bit 0
(wrong
operation
flag)

data port bit 0

1 alu operation
select bit 1

status bit 1
(zero flag)

data port bit 1

2 alu operation
select bit 2

status bit 2
(sign flag)

data port bit 2

3 alu operation
select bit 3

status bit 3
(carry flag)

data port bit 3

4 status bit 4
(overflow
flag)

data port bit 4

5 counter bit 0 data port bit 5
6 counter bit 1 data port bit 6
7 counter bit 2 data port bit 7
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LISA 8-Bit Microcontroller [974]

• Author: Ken Pettit
• Description: 8-Bit Microcontroller SOC with 128 bytes DFFRAM module
• GitHub repository
• HDL project
• Mux address: 974
• Extra docs
• Clock: 22000000 Hz

LISA Overview?

LISA is a Microcontroller built around a custom 8-Bit Little ISA (LISA) microprocessor
core. It includes several standard peripherals that would be found on commercial
microcontrollers including timers, GPIO, UARTs and I2C. The following is a block
diagram of the LISA Microcontroller:

• The LISA Core has a minimal set of register that allow it to run C programs:

– Program Counter + Return Address Resister
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– Stack Pointer and Index Register (Indexed DATA RAM access)
– 8-bit Accumulator + 16-bit BF16 Accumulator and 4 BF16 registers

Deailed list of the features
• Harvard architecture LISA Core (16-bit instruction, 15-bit address space)
• Debug interface

– UART controlled
– Auto detects port from one of 3 interfaces
– Auto detects the baud rate
– Interfaces with SPI / QSPI SRAM or FLASH
– Can erase / program the (Q)SPI FLASH
– Read/write LISA core registers and peripherals
– Set LISA breakpoints, halt, resume, single step, etc.
– SPI/QSPI programmability (single/quad, port location, CE selects)

• (Q)SPI Arbiter with 3 access channels

– Debug interface for direct memory access
– Instruction fetch
– Data fetch
– Quad or Single SPI. Hereafter called QSPI, but supports either.

• Onboard 128 Byte RAM for DATA / DATA CACHE
• Data bus CACHE controller with 8 16-byte CACHE lines
• Instruction CACHE with a single 4-instruction CACHE line
• Two 16-bit programmable timers (with pre-divide)
• Debug UART available to LISA core also
• Dedicated UART2 that is not shared with the debug interface
• 8-bit Input port (PORTA)
• 8-bit Output port (PORTB)
• 4-bit BIDIR port (PORTC)
• I2C Master controller
• Hardware 8x8 integer multiplier
• Hardware 16/8 or 16/16 integer divider
• Hardware Brain Float 16 (BF16) Multiply/Add/Negate/Int16-to-BF16
• Programmable I/O mux for maximum flexibility of I/O usage.

It uses a 32x32 1RW DFFRAM macro to implement a 128 bytes (1 kilobit) RAM
module. The 128 Byte ram can be used either as a DATA cache for the processor
data bus, giving a 32K Byte address range, or the CACHE controller can be disabled,
connecting the Lisa processor core to the RAM directly, limiting the data space to
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128 bytes. Inclusion of the DFFRAM is thanks to Uri Shaked (Discord urish) and his
DFFRAM example.
Reseting the project does not reset the RAM contents.

Connectivity

All communication with the microcontroller is done through a UART connected to
the Debug Controller. The UART I/O pins are auto-detected by the debug_autobaud
module from the following choices (RX/TX):

ui_in[3] / ui_out[4] RP2040 UART interface
uio_in[4] / uio_out[5] LISA PMOD board (I am developing)
uio_in[6] / uio_out[5] Standard UART PMOD

The RX/TX pair port is auto-detected after reset by the autobaud circuit, and the
UART baud rate can either be configured manually or auto detected by the autobaud
module. After reset, the ui_in[7] pin is sampled to determine the baud rate selection
mode. If this input pin is HIGH, then autobaud is disabled and ui_in[6:0] is sampled
as the UART baud divider and written to the Baud Rate Generator (BRG). The value
of this divider should be: clk_freq / baud_rate / 8 - 1. Due to last minute additions
of complex floating point operations, and only 2 hours left on the count-down clock,
the timing was relaxed to 20MHz input clock max. So for a 20MHz clock and 115200
baud, the b_div[6:0] value would be 42 (for instance).
If the ui_in[7] pin is sampled LOW, then the autobaud module will monitor all three
potential RX input pins for LINEFEED (ASCII 0x0A) code to detect baud rate and
set the b_div value automatially. It monitors bit transistions and searches for three
successive bits with the same bit period. Since ASCII code 0x0A contains a “0 1 0 1
0” bit sequence, the baud rate can be detected easily.
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Regardless if the baud rate is set manually or using autobaud, the input port selection
will be detect automatically by the autobaud. In the case of manual buad rate selection,
it simply looks for the first transition on any of the three RX pins. For autobaud, it
select the RX line with three successive eqivalent bit periods.

Debug Interface Details The Debug interface uses a fixed, verilog coded Finite
State Machine (FSM) that supports a set of commands over the UART to interface
with the microcontroller. These commands are simple ASCII format such that low-
level testing can be performed using any standard terminal software (such as minicom,
tio. Putty, etc.). The ‘r’ and ‘w’ commands must be terminated using a NEWLINE
(0x0A) with an optional CR (0x0D). Responses from the debug interface are always
terminated with a LINFEED plus CR sequence (0x0A, 0x0D). The commands are as
follows (responsce LF/CR ommited):

Command Description
v Report Debugger version. Should return: lisav1.2
wAAVVVV Write 16-bit HEX value ‘VVVV’ to register at 8-bit HEX address ‘AA’.
rAA Read 16-bit register value from 8-bit HEX address ‘AA’.
t Reset the LISA core.
l Grant LISA the UART. Further data will be ignored by the debugger.
+++ Revoke LISA UART. NOTE: a 0.5s guard time before/after is required.

NOTE: All HEX values must be a-f and not A-F. Uppercase is not supported.

Debug Configuration and Control Registers The following table describes the
configuration and LISA debug register addresses available via the debug ‘r’ and ‘w’
commands. The individual register details will be described in the sections to follow.

ADDR Description ADDR Description
0x00 LISA Core Run Control 0x12 LISA1 QSPI base address
0x01 LISA Accumulator / FLAGS 0x13 LISA2 QSPI base address
0x02 LISA Program Counter (PC) 0x14 LISA1 QSPI CE select
0x03 LISA Stack Pointer (SP) 0x15 LISA2 QSPI CE select
0x04 LISA Return Address (RA) 0x16 Debug QSPI CE select
0x05 LISA Index Register (IX) 0x17 QSPI Mode (QUAD, flash, 16b)
0x06 LISA Data bus 0x18 QSPI Dummy read cycles
0x07 LISA Data bus address 0x19 QSPI Write CMD value
0x08 LISA Breakpoint 1 0x1a The ‘+++’ guard time count
0x09 LISA Breakpoint 2 0x1b Mux bits for uo_out
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ADDR Description ADDR Description
0x0a LISA Breakpoint 3 0x1c Mux bits for uio
0x0b LISA Breakpoint 4 0x1d CACHE control
0x0c LISA Breakpoint 5 0x1e QSPI edge / SCLK speed
0x0d LISA Breakpoint 6 0x20 Debug QSPI Read / Write
0x0f LISA Current Opcode Value 0x21 Debug QSPI custom command
0x10 Debug QSPI Address (LSB16) 0x22 Debug read SPI status reg
0x11 Debug QSPI Address (MSB8)

LISA Processor Interface Details The LISA Core requires external memory for
all Instructions and Data (well, sort of for data, the data CACHE can be disabled then
it just uses internal DFFRAM). To accomodate external memory, the design uses a
QSPI controller that is configurable as either single SPI or QUAD SPI, Flash or SRAM
access, 16-Bit or 24-Bit addressing, and selectable Chip Enable for each type of access.
To achieve this, a QSPI arbiter is used to allow multiple accessors as shown in the
following diagram:

The arbiter is controlled via configuration registers (accessible by the Debug controller)
that specify the operating mode per CE, and CE selection bits for each of the three
interfaces:
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• Debug Interface
• LISA1 (Instruction fetch)
• LISA2 (Data read/write)

The arbiter gives priority to the Debug accesses and processes LISA1 and LISA2 requests
using a round-robbin approach. Each requestor provides a 24-bit address along with 16-
bit data read/write. For the Debug interface, the address comes from the configuration
registers directly. For LISA1, the address is the Program Counter (PC) + LISA1 Base
and for LISA2, it is the Data Bus address + LISA2 Base. The LISA1 and LISA2 base
addresses are programmed by the Debug controller and set the upper 16-bits in the 24-
bit address range. The PC and Data address provide the lower 16 bis (8-bits overlapped
that are ’OR’ed together). The BASE addresses allow use of a single external QSPI
SRAM for both instruction and data without needing to worry about data collisions.
When the arbiter chooses a requestor, it passes its programmed CE selection to the
QSPI controller. The QSPI controller then uses the programmed QUAD, MODE,
FLASH and 16B settings for the chosen CE to process the request. This allows LISA1
(Instruction) to either execute from the same SRAM as LISA2 (Data) or to execute
from a separate CE (such as FLASH with permanent data storage).
Additionally the Debug interface has special access registers in the 0x20 - 0x22 range
that allow special QSPI accesses such as FLASH erase and program, SRAM program-
ming, FLASH status read, etc. In fact the Debug controller can send any arbitrary
command to a target device, using access that either provide an associated address
(such as erase sector) or no address. The proceedure for this is:

1. Program Debug register 0x19 with the special 8-bit command to be sent
2. Set the 9-th bit (reg19[8]) to 1 if a 16/24 bit address needs to be sent)
3. Perform a read / write operation to debug address 0x21 to perform the action.

Simple QSPI data reads/write are accomplished via the Debug interface by setting the
desired address in Debug config register 0x10 and 0x11, then performing read or write
to address 0x20 to perform the request. Reading from Debug config register 0x22 will
perform a special mode read of QSPI register 0x05 (the FLASH status register).
Data access to the QSPI arbiter come from the Data CACHE interface (described later),
enabling a 32K address space for data. However the design has a CACHE disable mode
that directs all Data accesses directly to the internal 128 Byte RAM, thus eliminating
the need for external SRAM (and limiting the data bus to 128 bytes).

Programming the QSPI Controller Before the LISA microcontroller can be used
in any meaningful manner, a SPI / QSPI SRAM (and optionally a NOR FLASH) must
be connected to the Tiny Tapeout PCB. Alternately, the RP2040 controller on the
board can be configured to emulate a single SPI (the details for configuring this are
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outside the scope of this documentation … search the Tiny Tapeout website for details.).
For the CE signals, there are two operating modes, fixed CE output and Mux Mode 3
“latched” CE mode. Both will be described here. The other standard SPI signals are
routed to dedicated pins as follows:

Pin SPI QSPI Notes
uio[0] CE0 CE0
uio[1] MOSI DQ0 Also MOSI prior to QUAD mode DQ0
uio[2] MISO DQ1 Also MISO prior to QUAD mode DQ1
uio[3] SCLK SCLK
uio[4] CE1 CE1 Must be enabled via uio MUX bits
uio[6] - DQ2 Must be enabled via uio MUX bits
uio[7] - DQ3 Must be enabled via uio MUX bits

For Special Mux Mode 3 (Debug register 0x1C uio_mux[7:6] = 2’h3), the pinout is
mostly the same except the CE signals are not constant. Instead they are “latched”
into an external 7475 type latch. This mode is to support a PMOD board connected
to the uio PMOD which supports a QSPI Flash chip, a QSPI SRAM chip, and either
Debug UART or I2C. For all of that functionality, nine pins would be required for
continuous CE0/CE1, however only eight are available. So the external PMOD uses
uio[0] as a CE “latch” signal and the CE0/CE1 signals are provided on uio[1]/uio[2]
during the latch event. This requires a series resistor as indicated to allow CE updates
if the FLASH/SRAM is driving DQ0/DQ1. The pinout then becomes:

Pin SPI/QSPI Notes
uio[0] ce_latch ce_latch HIGH at beginning of cycle
uio[1] ce0_latch/MOSI/DQ0 Connection to FLASH/SRAM via series resistor
uio[2] ce1_latch/MISO/DQ1 Connection to FLASH/SRAM via series resistor
uio[3] SCLK
uio[6] -/DQ2 Must be enabled via uio MUX bits
uio[7] -/DQ3 Must be enabled via uio MUX bits

This leaves uio[4]/uio[5] available for use as either UART or I2C.
Once the SPI/QSPI SRAM and optional FLASH have been chosen and connected,
the Debug configuration registers must be programmed to indicate the nature of the
external device(s). This is accompilished using Debug registers 0x12 - 0x19 and 0x1C.
To programming the proper mode, follow these steps:

1. Program the LISA1, LISA2 and Debug CE Select registers (0x14, 0x15, 0x16)
indicating which CE to use.
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• 0x14, 0x15, 0x16: {6’h0, ce1_en, ce0_en} Active HIGH

2. Program the LISA1 and LISA2 base addresses if they use the same SRAM:

• 0x12: {LISA1_BASE, 8’h0} | {8’h0, PC}
• 0x13: {LISA2_BASE, 8’h0} | {8’h0, DATA_ADDR}

3. Program the mode for each Chip Enable (bits active HIGH)

• 0x17: {10’h0, is_16b[1:0], is_flash[1:0], is_quad[1:0]}

4. For Quad SPI, Special Mux Mode 3, or CE1, program the uio_mux mode:

• 0x1C:
– [7:6] = 2’h2: Normal QSPI DQ2 select
– [7:6] = 2’h3: Special Mux Mode 3 (Latched CE)
– [5:4] = 2’h2: Normal QSPI DQ3 select
– [5:4] = 2’h3: Special Mux Mode 3
– [1:0] = 2’h2: CE1 select on uio[4]

5. For RP2040, you might need to slow down the SPI clock / delay between suc-
cessive CE activations:

• 0x1E:
– [3:0] spi_clk_div: Number of clocks SCLK HIGH and LOW
– [10:4] ce_delay: Number clocks between CE activations
– [12:11] spi_mode: Per-CE FALLING SCLK edge data update

6. Set the number of DUMMY ready required for each CE:

• 0x18: {8’h0, dummy1[3:0], dummy0[3:0]

7. For QSPI FLASH, set the QSPI Write opcode (it is different for various Flashes):

• 0x19: {8’h0, quad_write_cmd}

NOTE: For register 0x1E (SPI Clock Div and CE Delay), there is only a single register,
meaning this register value applies to both CE outputs. Delaying the clock of one CE
will delay both, and adding delay between CE activations does not keep track of which
CE was activated. So if two CE outputs are used and a CE delay is programmed, it will
enforce that delay even if a different CE is used. This setting is really in place for use
when the RP2040 emulation is being used in a single CE SRAM mode only (i.e. you
have no external PMOD with a real SRAM / FLASH chip. In the case of real chips on
a PMOD, SCLK and CE delays (most likely) are not needed. The Tech Page on the
Tiny Tapeout regarding RP2040 SPI SRAM emulation indicates a delay between CE
activations is likely needed, so this setting is provided in case it is needed.
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Architecture Details

Below is a simplified block diagram of the LISA processor core. It uses an 8-bit
accumulator for most of its operations with the 2nd argument predominately coming
from either immediate data in the instruction word or from a memory location addressed
by either the Stack Pointer (SP) or Index Register (IX).
There are also instructions that work on the 15-bit registers PC, SP, IX and RA (Return
Address). As well as floating point operations. These will be covered in the sections
to follow.

Addressing Modes Like most processors, LISA has a few different addressing
modes to get data in and out of the core. These include the following:

Mode Data Description
Register Rx[n -: 8] Transfers between registers (ix, ra, facc, etc.).
Direct inst[n:0] N-bit data stored in the instruction word.
NextOp (inst+1)[14:0] Data stored in the NEXT instruction word.
Indirect mem[inst[n:0]] Address of the data is in the instruction word.
Periph periph[inst[n:0]] Accesses to the peripheral bus.
Indexed mem[sp/ix+inst[n:0]] The SP or IX register is added to a fixed offset.
Stack mem[sp] Stack pointer points to the data (push/pop).
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The Control Registers To run meaninful programs, the Program Counter (PC)
and Stack Pointer (SP) must be set to useful values for accessing program instructions
and data. The PC is automatically reset to zero by rst_n, so that one is pretty much
automatic. All programs start at address zero (plus any base address programmed by
the Debug Controller). But as far as the LISA core is concerned, it knows nothing of
base addresses and believes it is starting at address zero.
Next is to program the SP to point to a useful location in memory. The Stack is a
place where C programs store their local variable values and also where we store the
Return Address (RA) if we need to call nested routines, etc. The stack grows down,
meaning it starts at a high RAM address and decrements as things are added to the
stack. Therefore the SP should be programmed with an address in upper RAM. LISA
supports different Data bus modes through it’s CACHE controller, including CACHE
disable where it can only access 128 bytes. But for this example, let’s assume we have
a full range of 32K SRAM available. The LISA ISA doesn’t have an opcode for loading
the SP directly. Instead it can load the IX register directly with a 15-bit value using
NextOp addressing, and it supports “xchg” opcodes to exchange the IX register with
either the SP or RA. So to load the SP, we would write:

Example:
ldx 0x7FFF // Load IX with value in next opcode
xchg_sp // Exchange IX with SP

The IX register can be programmed as needed to access other data within the Data
Bus address range. This register is useful especially for accessing structures via a C
pointer. The IX then becomes the value of the pointer to RAM, and Indexed addressing
mode allows fixed offsets from that pointer (i.e. structure elements) to be accessed for
read/write.
Loading the PC indirectly can be done using the “jmp ix” opcode which does the
operation pc <= ix. Loading ix from the pc directly is not supported, though this can
be accomplished using a function call and opcodes to save RA (sra) and pop ix:

Example:
get_pc:
sra // Push RA to the stack (Save RA)
pop_ix // Pop IX from the stack
ret // Return. Upon return, IX is the same as PC
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Conditional Flow Processing Program flow is controlled using flags (zero, carry,
sign), arithemetic mode (amode) and condition flags (cond) to determine when pro-
gram branches should occur. Specific opcode update the flags and condition registers
based on results of the operation (AND, OR, IF, etc.). Then conditional branches are
made using bz, bnz and if (and variants ifte “if-then-else” and iftt “if-then-then”). Also
available are rc “Return if Carry” and rz “Return if Zero”, though these are less useful
in C programs as typically a routine uses local variables and the stack must be restored
prior to return, mandating a branch to the function epilog to restore the stack and
often the return address. Below is a list of the opcodes used for conditional program
processing:
Legend for operations below:

• acc_val = inst[7:0]
• pc_jmp = inst[14:0]
• pc_rel = pc + sign_extend(inst[10:0])

Opcode Operation Encoding Description
jal pc <= pc_jmp 0aaa_aaaa_aaaa_aaaa Jump And Link (call).

ra <= pc
ret pc <= ra 1000_1010_0xxx_xxxx Return
reti pc <= ra 1000_11xx_iiii_iiii Return Immediate.

acc <= acc_val
br pc <= pc_rel 1011_0rrr_rrrr_rrrr Branch Always
bz pc <= pc_rel 1011_1rrr_rrrr_rrrr Branch if Zero.

if zero=1
bnz pc <= pc_rel 1010_1rrr_rrrr_rrrr Branch if Not Zero.

if zero=0
rc pc <= ra 1000_1011_0xxx_xxxx Return if Carry

if carry=1
rz pc <= ra 1000_1011_1xxx_xxxx Return if Zero

if zero=1
call_ix pc <= ix 1000_1010_100x_xxxx Call indirect via IX

ra <= pc
jump_ix pc <= ix 1000_1010_101x_xxxx Jump indirect via IX
if cond <= ?? 1010_0010_0000_0ccc If. See below.
iftt cond <= ?? 1010_0010_0000_1ccc If then-then. See below.
ifte cond <= ?? 1010_0010_0001_0ccc If then-else. See below.

The IF Opcode The “if” opcode and it’s variants “if-then-then” and “if-then-else”
control program flow in a slightly different manner than the others. Instead of affecting
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the value of the PC directly, they set the two condition bits “cond[1:0]” to indicate
which (if any) of the two following opcodes should be executed. the cond[0] bit
represents the next instruction and cond[1] represents the instruction following that.
All three “if” forms take an argument that checks the current value of the FLAGS to set
the condition bits. The argument is encoded as the lower three bits of the instruction
word ard operate as shown in the following table:

Condition Test Encoding Description
EQ zflag=1 3’h0 Execute if Equal
NE zflag=0 3’h1 Execute if Not Equal
NC cflag=0 3’h2 Execute if Not Carry
C cflag=1 3’h3 Execute if Carry
GT ~cSigned & ~zflag 3’h4 Execute if Greater Than
LT cSigned & ~zflag 3’h5 Execute if Less Than
GTE ~cSigned zflag 3’h6
LTE cSigned zflag 3’h7

The “if” opcode will set cond[0] based on the condition above and the cond[1] bit
to HIGH. It only affects the single instruction following the “if” opcode. The “iftt”
opcode will set both cond[0] and cond[1] to the same value based on the condition
above. It means “if true, execute the next two opcodes”. And the “ifte” opcode will set
cond[0] based on the condition above and cond[1] to the OPPOSITE value, meaning
it will execute either the following instruction OR the one after that (then-else).

Example:
ldi 0x41 // Load A immediate with ASCII 'A'
cpi 0x42 // Compare A immediate with ASCII 'B'
ifte eq // Test if the compare was "Equal"
jal L_equal // Jump if equal
jal L_different // Jump if different

The above code will load the “jal L_equal” opcode but will not execute it since the
compare was Not Equal. Then it will execute the “jal L_different” opcode. Note that
if the compare were “ifte ne”, it would call the L_equal function and then upon return
would not execute the “L_different” opcode. This is because the cond[1] code is saved
with the Return Address (RA) during the call and restored upon return. This means
the FALSE cond[1] code would prevent the 2nd opcode from executing. As an opcode
gets executed, the cond[1] value is shifted into the cond[0] location, and the cond[1]
is loaded with 1’b1.
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Direct Operations To do any useful work, the LISA core must be able to load and
operate on data. This is done through the accumulator using the various addressing
modes. The diagram below details the Direct addressing mode where data is stored
directly in the opcode / instruction word:
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The instructions that use direct addressing are:

Opcode Operation Encoding Description
adc A <= A + imm + C 1001_00xx_iiii_iiii ADD immediate with Carry
ads SP <= SP + imm 1001_01ii_iiii_iiii ADD SP + signed immediate
adx IX <= IX + imm 1001_10ii_iiii_iiii ADD IX + signed immediate
andi A <= A & imm 1000_01xx_iiii_iiii AND immediate with A
cpi Z,C <= A >= imm 1010_01xx_iiii_iiii Compare A >= immediate
cpi Z,C <= A >= imm 1010_01xx_iiii_iiii Compare A >= immediate

Accumulator Indirect Operations The Accumulator Indirect operations use im-
mediate data in the instruction word to index indirectly into Data memory. That
memory address is then used to load, store or both load and store (swap) data with
the accumulator.

Opcode Operation Encoding Description
lda A <= M[imm] 1111_01pi_iiii_iiii Load A from Memory/Peripheral
sta M[imm] <= A 1111_11pi_iiii_iiii Store A to Memory/Peripheral
swapi A <= M[imm] 1101_11pi_iiii_iiii Swap Memory/Peripheral with A

M[imm] <= A

• p = Select Peripheral (1’b1) or RAM (1’b0)
• iiii = Immediate data

Indexed Operations Indexed operations use either the IX or SP register plus a
fixed offset from the immediate field of the opcode. The selection to use IX vs SP is
also from the opcode[9] bit. The immediate field is not sign extended, so only positive
direction indexing is supported. This was selected because this mode is typically used
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to access either local variables (when using SP) or C struct members (when using IX),
and in both cases, negative index offsets aren’t very useful. The following is a diagram
of indexed addressing:

Opcode Operation Encoding Description
add A <= A+ M[ind] 1100_00si_iiii_iiii ADD index memory to A
and A <= A & M[ind] 1101_00si_iiii_iiii AND A with index memory
cmp A >= M[ind]? 1110_10si_iiii_iiii Compare A with index memory
dcx M[ind] -= 1 1001_11si_iiii_iiii Decrement the value at index memory
inx M[ind] += 1 1110_01si_iiii_iiii Increment the value at index memory
ldax A <= M[ind] 1111_00si_iiii_iiii Load A from index memory
ldxx IX <= M[SP+imm] 1100_110i_iiii_iiii Load IX from memory at SP+imm
mul A <= A*M[ind]L 1100_10si_iiii_iiii Multiply index memory * A, keep LSB
mulu A <= A*M[ind]H 1000_01si_iiii_iiii Multiply index memory * A, keep MSB
or A <= A M[ind] 1101_10si_iiii_iiii
stax M[ind] <= A 1111_10si_iiii_iiii Store A to index memory
stxx M[SP+imm] <= IX 1100_111i_iiii_iiii Save IX to memory at SP+imm
sub A <= A-M[ind] 1100_10si_iiii_iiii SUBtract index memory from A
swap A <= M[ind] 1110_11si_iiii_iiii Swap A with index memory

M[ind] <= A
xor A <= A ^ M[ind] 1110_00si_iiii_iiii XOR A with index memory
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Legend for table above:

• ind = IX or SP + immediate
• s = Select IX (zero) or SP (one)
• iiii = Immediate data

The Zero and Carry flags are updated for most of the above operations. The Carry
flag is only updated for math operations where a Carry / Borrow could occur.

Carry Zero
adc add and
add or xor
sub cmp sub
cmp dcx inx
dcx swap ldax
inx mul mulu

Stack Operations Stack operations use the current value of the SP register to
PUSH and POP items to the stack in opcode. As items are PUSHed to the stack,
the SP is decremented after each byte, and as they are POPed, the SP is incremented
prior to reading from RAM.

Opcode Operation Encoding Description
lra RA <= M[SP+1] 1010_0001_0110_01xx Load {cond,RA} from stack

SP += 2
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Opcode Operation Encoding Description
sra M[SP] <= RA 1010_0001_0110_00xx Save {cond,RA} to stack

SP -= 2
push_ix M[SP] <= IX 1010_0001_0110_10xx Save IX to stack

SP -= 2
pop_ix IX <= M[SP+1] 1010_0001_0110_11xx Load IX from stack

SP += 2
push_a M[SP] <= A 1010_0000_100x_xxxx Save A to stack

SP -= 1
pop_a A <= M[SP+1] 1010_0000_110x_xxxx Load A from stack

SP += 1

How to test

You will need to download and compile the C-based assembler, linker and C compiler
I wrote (will make available) Also need to download the Python based debugger.

• Assembler is fully functional

– Includes limited libraries for crt0, signed int compare, math, etc.
– Libraries are still a work in progress

• Linker is fully functional
• C compiler is somewhat functional (no float support at the moment) but has

many bugs in the generated code and is still a work in progress.
• Python debugger can erase/program the FLASH, program SPI SRAM, start/stop

the LISA core, read SRAM and registers.
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Legend for Pinout
• pa: LISA GPIO PortA Input
• pb: LISA GPIO PortB Output
• b_div: Debug UART baud divisor sampled at reset
• b_set: Debug UART baud divisor enable (HIGH) sampled at reset
• baud_clk: 16x Baud Rate clock used for Debug UART baud rate generator
• ce_latch: Latch enable for Special Mux Mode 3 as describe above
• ce0_latch: CE0 output during Special Mux Mode 3
• ce1_latch: CE1 output during Special Mux Mode 3
• DQ1/2/3/4: QUAD SPI bidirection data I/O
• pc_io: LISA GPIO Port C I/O (direction controllable by LISA)

Pinout

# Input Output Bidirectional
0 pa_in[0]/baud_div[0] pb_out[0] ce0/ce_latch
1 pa_in[1]/baud_div[1] pb_out[1] mosi/dq1/ce0
2 pa_in[2]/baud_div[2] pb_out[2] miso/dq2/ce1
3 pa_in[3]/baud_div[3]/rx pb_out[3] sclk
4 pa_in[4]/baud_div[4] pb_out[4]/tx rx /pc_io[0]/scl/sda
5 pa_in[5]/baud_div[5] pb_out[5] tx /pc_io[1]/sda/scl
6 pa_in[6]/baud_div[6] pb_out[6] scl /pc_io[2]/dq2/rx
7 pa_in[7]/baud_set pb_out[7]/baud_clk sda/pc_io[3]/dq3
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Temperature Sensor NG [975]

• Author: Harald Pretl
• Description: Temperature sensor synthesized from standard cells
• GitHub repository
• HDL project
• Mux address: 975
• Extra docs
• Clock: 10000000 Hz

How it works

There will be a better explanation in the future. In short, it measures the on-chip
temperature, and puts out the result.

How to test

Simply turn it on, and see the result. IO usage documented in the info.yml.
For direct outside control (bypassing the internal measurement state machine), use the
following settings:

• Set uio_in[3:0] = 0b1111 (enable debug mode 15).
• Set the DAC by using ui_in[5:0] (6b direct control of tempsens_dat[5:0]).
• ui_in[6] is connected to tempsens_enable.
• ui_in[7] is connected to tempsens_prechrgn.
• The output of the temperature sensor tempsens_tempdelay is connected to

uio_out[4].
• Use the clk input to synchronize the temperature output of falling edge.

External hardware

Requires a logic analyzer or similar to inspect the digital outputs.
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# Input Output Bidirectional

Pinout

# Input Output Bidirectional
0 DAC code [0] out[0] or out[8] or out[16] debug sel [0]
1 DAC code [1] out[1] or out[9] or out[17] debug sel [1]
2 DAC code [2] out[2] or out[10] or out[18] debug sel [2]
3 DAC code [3] out[3] or out[11] or out[19] debug sel [3]
4 DAC code [4] out[4] or out[12] debug out [0]
5 DAC code [5] out[5] or out[13] debug out [1]
6 output selection [0] out[6] or out[14] debug out [2]
7 output selection [1] out[7] or out[15] debug out [3]
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Pinout

The chip is packaged in a 64-pin QFN package. The pinout is shown below.
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Figure 74: Pinout

Note: you will receive the chip mounted on a breakout board. The pinout is provided
for advanced users, as most users will not need to solder the chip directly.
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The Tiny Tapeout Multiplexer

Overview

The Tiny Tapeout Multiplexer distributes a single set of user IOs to multiple user
designs. It is the backbone of the Tiny Tapeout chip.
It has the following features:

• 10 dedicated inputs
• 8 dedicated outputs
• 8 bidirectional IOs
• Supports up to 512 user designs (32 mux units, each with up to 16 designs)
• Designs can have different sizes. The basic unit is a called a tile, and each design

can occupy up to 16 tiles.

Operation

The multiplexer consists of three main units:

1. The controller - used to set the address of the active design
2. The spine - a bus that connects the controller with all the mux units
3. Mux units - connect the spine to individual user designs

The Controller

The mux controller has 3 inputs lines:

Input Description
ena Sent as-is (buffered) to the downstream mux units
sel_rst_n Resets the internal address counter to 0 (active low)
sel_inc Increments the internal address counter by 1

It outputs the address of the currently selected design on the si_sel port of the spine
(see below).
For instance, to select the design at address 12, you need to pulse sel_rst_n low,
and then pulse sel_inc 12 times:
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Figure 75: Mux Diagram
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Figure 76: Mux Controller Diagram

Figure 77: Mux signals for activating the design at address 12

Internally, the controller is just a chain of 10 D flip-flops. The sel_inc signal is
connected to the clock of the first flip-flop, and the output of each flip-flop is connected
to the clock of the next flip-flop. The sel_rst_n signal is connected to the reset of
all flip-flops.
The following Wokwi projects demonstrates this setup: https://wokwi.com/projects/364347807664031745.
It contains an Arduino Nano that decodes the currently selected mux address and
displays it on a 7-segment display. Click on the button labeled RST_N to reset the
counter, and click on the button labeled INC to increment the counter.

The Spine

The controller and all the muxes are connected together through the spine. The spine
has the following signals going on it:
From controller to mux:

• si_ena - the ena input
• si_sel - selected design address (10 bits)
• ui_in - user clock, user rst_n, user inputs (10 bits)
• uio_in - bidirectional I/O inputs (8 bits)
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From mux to controller:

• uo_out - User outputs (8 bits)
• uio_oe - Bidirectional I/O output enable (8 bits)
• uio_out - Bidirectional I/O outputs (8 bits)

The only signal which is actually generated by the controller is si_sel (using
sel_rst_n and sel_inc, as explained above). The other signals are just going
through from/to the chip IO pads.

The Multiplexer (The Mux)

Each mux branch is connected to up to 16 designs. It also has 5 bits of hard-coded
address (each unit gets assigned a different address, based on its position on the die).
The mux implements the following logic:
If si_ena is 1, and si_sel matches the mux address, we know the mux is active.
Then, it activates the specific user design port that matches the remaining bits of
si_sel.
For the active design:

• clk, rst_n, ui_in, uio_in are connected to the respective pins coming from
the spine (through a buffer)

• uo_out, uio_oe, uio_out are connected to the respective pins going out to
the spine (through a tristate buffer)

For all others, inactive designs (including all designs in inactive muxes):

• clk, rst_n, ui_in, uio_in are all tied to zero
• uo_out, uio_oe, uio_out are disconnected from the spine (the tristate buffer

output enable is disabled)

Pinout

mprj_io pin Function Signal QFN64 pin
0 Input ui_in[0] 31
1 Input ui_in[1] 32
2 Input ui_in[2] 33
3 Input ui_in[3] 34
4 Input ui_in[4] 35
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mprj_io pin Function Signal QFN64 pin
5 Input ui_in[5] 36
6 Input ui_in[6] 37
7 Analog analog[0] 41
8 Analog analog[1] 42
9 Analog analog[2] 43
10 Analog analog[3] 44
11 Analog analog[4] 45
12 Analog analog[5] 46
13 Input ui_in[7] 48
14 Input clk † 50
15 Input rst_n † 51
16 Bidirectional uio[0] 53
17 Bidirectional uio[1] 54
18 Bidirectional uio[2] 55
19 Bidirectional uio[3] 57
20 Bidirectional uio[4] 58
21 Bidirectional uio[5] 59
22 Bidirectional uio[6] 60
23 Bidirectional uio[7] 61
24 Output uo_out[0] 62
25 Output uo_out[1] 2
26 Output uo_out[2] 3
27 Output uo_out[3] 4
28 Output uo_out[4] 5
29 Output uo_out[5] 6
30 Output uo_out[6] 7
31 Output uo_out[7] 8
32 Analog analog[6] 11
33 Analog analog[7] 12
34 Analog analog[8] 13
35 Analog analog[9] 14
36 Analog analog[10] 15
37 Analog analog[11] 16
38 Mux Control ctrl_ena 22
39 Mux Control ctrl_sel_inc 24
40 Mux Control ctrl_sel_rst_n 25
41 Reserved (none) 26
42 Reserved (none) 27
43 Reserved (none) 28
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† Internally, there’s no difference between clk, rst_n, and ui_in pins. They are all
just bits in the pad_ui_in bus. However, we use different names to make it easier to
understand the purpose of each signal.
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