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Chip map

Figure 1: Full chip map
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Figure 2: GDS render
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Figure 3: Logic density (local interconnect layer)
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Projects

Chip ROM [0]

• Author: Uri Shaked
• Description: ROM with information about the chip
• GitHub repository
• HDL project
• Mux address: 0
• Extra docs
• Clock: 0 Hz

How it works

ROM memory that contains information about the Tiny Tapeout chip. The ROM is
8-bit wide and 256 bytes long.

The ROM layout The ROM layout is as follows:

Address Length Encoding Description
0 8 7-segment Shuttle name (e.g. “tt07”), null-padded
8 8 7-segment Git commit hash
32 96 ASCII Chip descriptor (see below)
248 4 binary Magic value: &amp;quot;TT\xFA\xBB&amp;quot;
252 4 binary CRC32 of the ROM contents, little-endian

The chip descriptor The chip descriptor is a simple null-terminated string that
describes the chip. Each line is a key-value pair, separated by an equals sign. It
contains the following keys:

Key Description Example value
shuttle The identifier of the shuttle tt07
repo The name of the repository TinyTapeout/tinytapeout-07
commit The commit hash * a1b2c3d4

• The commit hash is only included for Tiny Tapeout 5 and later.

Here is a complete example of a chip descriptor:
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shuttle=tt07
repo=TinyTapeout/tinytapeout-07
commit=a1b2c3d4

How the ROM is generated The ROM is automatically generated by tt-support-
tools while building the final GDS file of the chip. Look at the rom.py file in the
repository for more details.

How to test

Read the ROM contents by setting the address pins and reading the data pins. The
first 16 bytes of the ROM are 7-segment encoded and contain the shuttle name and
commit hash. You can read them by toggling the first four DIP switches and observing
the on-board 7-segment display.

Pinout

# Input Output Bidirectional
0 addr[0] data[0]
1 addr[1] data[1]
2 addr[2] data[2]
3 addr[3] data[3]
4 addr[4] data[4]
5 addr[5] data[5]
6 addr[6] data[6]
7 addr[7] data[7]
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TinyTapeout 7 Factory Test [1]

• Author: Tiny Tapeout
• Description: Factory test module
• GitHub repository
• HDL project
• Mux address: 1
• Extra docs
• Clock: 0 Hz

How it works

The factory test module is a simple module that can be used to test all the I/O pins
of the ASIC.
It has three modes of operation:

1. Mirroring the input pins to the output pins (when rst_n is low).
2. Mirroring the bidirectional pins to the output pins (when rst_n is high sel is

low).
3. Outputing a counter on the output pins and the bidirectional pins (when rst_n

is high and sel is high).

The following table summarizes the modes:

rst_n sel Mode ou_out value uio pins
0 X Input mirror ui_in High-Z
1 0 Bidirectional mirror uio_in High-Z
1 1 Counter counter counter

The counter is an 8-bit counter that increments on every clock cycle, and resets when
rst_n is low.

How to test

1. Set rst_n low and observe that the input pins (ui_in) are output on the output
pins (ou_out).

2. Set rst_n high and sel low and observe that the bidirectional pins (uio_in)
are output on the output pins (ou_out).

3. Set sel high and observe that the counter is output on both the output pins
(ou_out) and the bidirectional pins (uio).
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Pinout

# Input Output Bidirectional
0 sel / in_a[0] output[0] / counter[0] in_b[0] / counter[0]
1 in_a[1] output[1] / counter[1] in_b[1] / counter[1]
2 in_a[2] output[2] / counter[2] in_b[2] / counter[2]
3 in_a[3] output[3] / counter[3] in_b[3] / counter[3]
4 in_a[4] output[4] / counter[4] in_b[4] / counter[4]
5 in_a[5] output[5] / counter[5] in_b[5] / counter[5]
6 in_a[6] output[6] / counter[6] in_b[6] / counter[6]
7 in_a[7] output[7] / counter[7] in_b[7] / counter[7]
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6 bit addr [2]

• Author: Nigel Coburn, Jason Murray
• Description: 6 bit addr, with continuous assignment (no clock)
• GitHub repository
• HDL project
• Mux address: 2
• Extra docs
• Clock: 0 Hz

How it works

6 Bit Addr: Overview

2x6 bit inputs with a carry 6 bit output with a carry

How to test

Addition with no carry

A=0b000001 IC = 0 B=0b000001 O=0b000010 OC = 0

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

# Input Output Bidirectional
0 0th bit for A input 0th bit for A+B 0th bit for B input
1 1st bit for A input 1st bit for A+B 1st bit for B input
2 2nd bit for A input 2nd bit for A+B 2nd bit for B input
3 3rd bit for A input 3rd bit for A+B 3rd bit for B input
4 4th bit for A input 4th bit for A+B 4th bit for B input
5 5th bit for A input 5th bit for A+B 5th bit for B input
6 Input Carry bit Output Carry bit
7
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TTDLL [3]

• Author: Dan Petrisko
• Description: An all-digital DLL
• GitHub repository
• HDL project
• Mux address: 3
• Extra docs
• Clock: 0 Hz

How it works

This is a test design for all-digital tunable, hierarchical and composable oscillation
blocks. The base primitives are delay elements, delay rows, delay columns and control
registers. Control registers determine which delay elememts are active at a given
setting, increasing or decreasing the total period. We deomnstrate a clock generator
and 90-degree delay line as potential applications for these elements. This design has
been validated in TSMC-28 using commercial tools. This will be the first test of this
design on open tools and and open PDK.
For a clock generator there are an odd number of delay elements, which causes the
total delay to act as half of a clock oscillation. This is a fairly simple ring oscillator
design, although it is designed to be glitch-free upon frequency changes and have even
steps between tuning frequencies.
For a 90-degree delay line (useful in DDR controllers among other things), we take two
odd delay blocks equal in size. The output of the first block is the generated 90-degree
clock. The output of the second block is a generated 180-degree clock. Now, 180-
degrees is trivial phase to generate – simply invert the input clock. We can compare
the racing 180-degree clocks using a (intentionally) metastable register. If the dly180
> clkinv, then we reduce the dly latency. If the dly180 < clkinv, then we increase the
dly latency. This will automatically tune dly90 due to the symmetry of the blocks.
TODO: Images coming soon!

How to test

The main driver for hardware testing is bsg_tag (https://github.com/bespoke-silicon-
group/basejump_stl), which has python and C++ drivers available. The exact tag
sequence can be found in the test/ directory. Examples of using this testing infras-
tructure is in ZynqParrot (https://github.com/black-parrot-hdk/zynq-parrot). If the
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sequence is completed successfully, the IO outputs will increment proporotionally to
the current clock frequency!

External hardware

Although the clock and delay period can be approximated by the counter outputs, an
external oscilloscope is helpful for visualizing the clock and delay waveforms themselves,
including phase and jitter.

Pinout

# Input Output Bidirectional
0 p_tag_clk_i p_osc_clk_o p_div_count_0_o
1 p_tag_en_i p_ds_clk_o p_div_count_1_o
2 p_tag_data_i p_gen_clk_o p_div_count_2_o
3 p_dly_clk_o p_div_count_3_o
4 p_mon_clk_o p_div_count_4_o
5 p_div_clk_o p_div_count_5_o
6 p_ds_reset_o p_div_count_6_o
7 p_mon_reset_o p_div_count_7_o
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8-Bit Register [4]

• Author: Eric Ulteig
• Description: The 8 inputs are saved to the 8 outputs on a clock pulse
• GitHub repository
• Wokwi project
• Mux address: 4
• Extra docs
• Clock: 1 Hz

How it works

D-type flip-flops are used to store the input bits.

How to test

The 8 inputs are saved to the 8 outputs. Use the push button to save and hold.

Pinout

# Input Output Bidirectional
0 input1 output1
1 input2 output2
2 input3 output3
3 input4 output4
4 input5 output5
5 input6 output6
6 input7 output7
7 input8 output8
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UACJ_PWM [6]

• Author: Grupo C
• Description: Implementacion de un modulador de ancho de pulso (PWM) me-

diante Verilog esencial en electronica para regular la energia entregada a un
dispositivo, este diseño esta bajo los requisitos del sistema

• GitHub repository
• HDL project
• Mux address: 6
• Extra docs
• Clock: 10000000 Hz

How it works

con una Implementacion de un modulador de ancho de pulso (PWM) mediante Verilog
esencial en electronica para regular la energia entregada a un dispositivo, este diseño
esta bajo los requisitos del sistema

How to test

con un fpga de xilinx basys 3

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

# Input Output Bidirectional
0 duty_[0] pwm_o
1 duty_[1]
2 duty_[2]
3 duty_[3]
4 duty_[4]
5 duty_[5]
6 duty_[6]
7 duty_[7]
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GPS signal generator [8]

• Author: Grupo de Aplicaciones en Sistemas Embebidos - Universidad Tecnológica
Nacional Facultad Regional Haedo

• Description: Generate a GPS IF signals using the following parameters: sat id,
code phase, doppler and SNR.

• GitHub repository
• HDL project
• Mux address: 8
• Extra docs
• Clock: 16368000 Hz

How it works

The gps signal generator is a configurable block capable used to test search algorithms
for GPS receivers. It is composed by two main blocks:

• Register bank: a set of configuration registers with a uart rx interface for write-
only operations. These registers lets the user control: satellite ID, PRN code
phase, doppler frequency, noise level, among others.

• Core: the core of the project is composed by a Gold Code generator, an NCO
(numerically controlled oscillator) and PRNGs (pseudo random number genera-
tors). The core also provides a 1-bit message input to modulate the generated
signal with a “navigation message”.

Block Diagram

Serial communication

Register bank configuration is performed through the serial interface. The operation
to write a single register is divided in two steps:

• Send address byte.
• Send data byte.

Register bank description

This section describes the registers of the device and its functionality.
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Figure 4: Block Diagram

Control Register:
• Address: 0x0
• Width: 8 bits

b7 b6 b5 b4 b3 b2 b1 b0
X X signal off noise off X X X general enable

• b0: general enable of the core.
• b4: turn off noise generator.
• b6: turn off signal.

Sat_id register:
• Address: 0x2
• Width: 5 bits

b4 b3 b2 b1 b0
id[4] id[3] id[2] id[1] id[0]

• id[4:0]: Selects the satellite PRN code. There are up to 32 satellite PRN codes.
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Doppler register:
• Address: 0x3
• Width: 8 bits

b7 b6 b5 b4 b3 b2 b1 b0
d[7] d[6] d[5] d[4] d[3] d[2] d[1] d[0]

• d[7:0]: Doppler selection. The resultant frequency will be equal to:

𝑓𝑜𝑢𝑡 = 4092000.0 − 8000.0 + 500.0 ∗ (𝑑 − 176)𝑀𝐻𝑧

Code phase low register:
• Address: 0x4
• Width: 8 bits

b7 b6 b5 b4 b3 b2 b1 b0
p[7] p[6] p[5] p[4] p[3] p[2] p[1] p[0]

• p[7:0]: low byte of the PRN code phase.

Code phase high register:
• Address: 0x5
• Width: 8 bits

b7 b6 b5 b4 b3 b2 b1 b0
p[15] p[14] p[13] p[12] p[11] p[10] p[9] p[8]

• p[15:8]: high byte of the PRN code phase.

SNR register
• Address: 0x6
• Width: 3 bits

b2 b1 b0
snr[2] snr[1] snr[0]
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• snr[2:0]: This indicates how many right shifts (») will be applied to the generated
signal. Applying more shifts reduces the amplitude of the signal with respect to
the generated noise, reducing the SNR.

How to test

Clock frequency of the system should be set to 16.368 MHz. The register bank is
configured with a uart interface at 115200 bauds. Enable the design by writting the
corresponding bit of the control bank.

External hardware A micropocessor or FPGA can be used to modulate the navi-
gation message at the input. The output can be recorded for post-analysis or fed to
the digital front end of a GPS receiver. The output is a 1-bit signal.

Figure 5: search_example

Example: expected output of a search algorithm
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Pinout

# Input Output Bidirectional
0 msg_in -

Used to
modulate
GPS signal
with custom
navigation
message.

sin_out -
Sine output
with
CA+msg
modulation +
noise.

Not used

1 Not used cos_out -
Cosine
output with
CA+msg
modulation
(no noise).

Not used

2 Not used noise_start_out
- Start of
PRNG
sequence
used as noise.

Not used

3 rx_in -
UART rx
input. Used
to configure
the register
bank.

start_out -
Start of GPS
signal. This
output goes
high when
the
configured
phase
matches the
actual phase
of the output
signal.

Not used

4 Not used clk - Output
clock

Not used

5 Not used Not used Not used
6 Not used Not used Not used
7 Not used Not used Not used
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Gaussian Blur [10]

• Author: Alfonso Cortes
• Description: 4-bit gaussian blur filter
• GitHub repository
• Wokwi project
• Mux address: 10
• Extra docs
• Clock: 100000 Hz

How it works

This filter receives nine 4-bit pixels in a free-running shift register and performs a
gaussian blur, returning the value of the middle pixel. The weights are as shown
below.

Figure 6: 0 _9K4Upm5p0aBIKDS

How to test

Input the pixel value and its neighborhood (nine pixels) from left to right, top to bottom.
Once the shift register is full (after nine clock cycles) the output can be sampled. The
last stage of the shift register is also available at the output for testing purposes.
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External hardware

An FPGA should be useful.

Pinout

# Input Output Bidirectional
0 reg_in[0] reg_out[0]
1 reg_in[1] reg_out[1]
2 reg_in[2] reg_out[2]
3 reg_in[3] reg_out[3]
4 blur[0]
5 blur[1]
6 blur[2]
7 blur[3]

24



UART [12]

• Author: Elisa Parent
• Description: Connecting two digital devices
• GitHub repository
• Wokwi project
• Mux address: 12
• Extra docs
• Clock: 300 Hz

How it works

Using a connector to send digital signals to different digital parts.

How to test

Switchs are used to pick the ASCII character

External hardware

arduino,7-seg display, 8 switch

Pinout

# Input Output Bidirectional
0 in1 out1
1 in2 out2
2 in3 out3
3 in4
4 in5
5 in6
6 in7
7 in8
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Digital Timer [14]

• Author: Francisca Donoso
• Description: The circuit acts as a configurable timer displaying the remaining

time in binary form as time passes
• GitHub repository
• Wokwi project
• Mux address: 14
• Extra docs
• Clock: 0 Hz

How it works

A value is placed in the inputs from 0 to 7 to define how much it counts. Then, the
start input is set to 1 to load that value, and it begins to count. When it reaches zero,
the end flag is raised.

How to test

External hardware

It is recommended to use switches for the inputs, a button for the start input, and
LEDs for all the outputs.

Pinout

# Input Output Bidirectional
0 in_start
1
2
3
4 out_state
5 out_end_flag
6
7
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Clock Domain Crossing FIFO [36]

• Author: Pavan Mantri
• Description: This FIFO buffers 4-bits data asynchronously across clock domains
• GitHub repository
• HDL project
• Mux address: 36
• Extra docs
• Clock: 0 Hz

How it works

The cdc_fifo module transfers data between two clock domains: a write clock domain
and a read clock domain. The module includes a dual-ported RAM(dpram) for storing
data, along with logic for handling read and write operations(cdc_fifo_read_state
and cdc_fifo-write-state). synchronizers(synchronizer) and binary/gray convert-
ers(binary_to_gray and gray_to_binary) ensure proper synchronization between two
clock domains.

How to test

Hold write_reset and read_reset LOW while running the clock for a bit to reset, then
raise to initialize the module.
writing to the fifo: Prepare your data on the 4-bit write_data bus, ensure the full state
is low and then raise write_increment for 1 cycle of write_clock to write data into the
FIFO memory.
Reading from the fifo: The FIFO will present the current output on the read_data bus.
If empty is low, this output should be valid and you can acknowledge receive of this
vallue by raising read_increment for 1 cycle of read_clock.

External hardware

NO external hardware is used.

Pinout
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# Input Output Bidirectional
0 write_clock empty write_reset
1 write_increment full read_reset
2 read_clock
3 read_increment
4 write_data0 read_data0
5 write_data1 read-data1
6 write_data2 read_data2
7 write_data3 read_data3
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Pong-VGA [38]

• Author: Victor Zayakov
• Description: Pong game over a VGA connection
• GitHub repository
• HDL project
• Mux address: 38
• Extra docs
• Clock: 50000000 Hz

How it works

This project is an implementation of the classic Pong video game. The interface is VGA,
and the game will be displayed when connected to a monitor using a VGA cable. This
includes all elements of the game: the two paddles and the ball, and a scoreboard.
The VGA protocol is implemented in hardware using Counter modules, RangeCheck
modules, and an FSM to control them. It follows the VGA specification of 640x480
resolution at 60Hz, and operates using a 50MHz clock signal.
The rest of the hardware for the Pong video game works on top of the VGA module.

How to test

The game can be tested through a direct connection to a monitor over VGA. Four
switches and one button are required to interact with the game: An up/down switch
and move/no-move switch for each of the two players, and one button for serving the
ball.
To test the HDL design, one can compare the timing of all 8 VGA pins to the industry-
standard timing defined here: http://www.tinyvga.com/vga-timing/640x480@60Hz

External hardware

The game requires four switches and one button to play, as mentioned above. It also
requires an external splitter for each of the three VGA color signals. This is to split
each of VGA_R, VGA_G and VGA_B from 1-bit to 8-bit signals. These splitters can
be placed on an external PCB.
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Pinout

# Input Output Bidirectional
0 R_move_switch VGA_CLK
1 R_up_switch VGA_BLANK_N
2 L_move_switch VGA_SYNC_N
3 L_up_switch VGA_VS
4 serve_L_button VGA_HS
5 VGA_R
6 VGA_G
7 VGA_B
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Iterative MAC [40]

• Author: Raju Machupalli
• Description: Iterative multiply and accumulation unit for ML accelerators
• GitHub repository
• HDL project
• Mux address: 40
• Extra docs
• Clock: 50000000 Hz

How it works

The design contains iterative multiplication and addition unit. The multiplier is a 7x8
bit unit. At reset time, input through ui_in pins stores in a reg and used as operand
1 for multiplier. After reset, operand 2 for multiplier is supplied through ui_in at
each clock cycle. The bidirectional pins provide operand 3 which will be added to the
multiplier output. the output is read through uo_out pins.

How to test

It’s a bit complex, as bias values are supplied in different sequences, and output needs
to change or align with the read output. Full instructions will be added here once the
design is submitted for fabrication.

External hardware

It does not require any additional hardware supply the input data using CPU.

Pinout

# Input Output Bidirectional
0 ui_in[0] uo_out[0] uio_in[0]
1 ui_in[1] uo_out[1] uio_in[1]
2 ui_in[2] uo_out[2] uio_in[2]
3 ui_in[3] uo_out[3] uio_in[3]
4 ui_in[4] uo_out[4] uio_in[4]
5 ui_in[5] uo_out[5] uio_in[5]
6 ui_in[6] uo_out[6] uio_in[6]
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# Input Output Bidirectional
7 ui_in[7] uo_out[7] uio_in[7]
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Adiabatic PSU sequencer test [42]

• Author: Chris Pacejo
• Description: test of a power supply sequencer for adiabatic circuits
• GitHub repository
• HDL project
• Mux address: 42
• Extra docs
• Clock: 32000000 Hz

How it works

This is a simple sequencer for a 9-step 4-phase combined power-clock PSU for adiabatic
circuitry. The rate of each phase is 1/32 the input clock rate.
It generates two sets of control signals, for phases 0 and 1. The control signals indicates
which step of the charging circuitry should be activated. (Phases 2 and 3 simply invert
the meaning of the steps.)
Since there are not enough output pins to represent all steps, pin ui[0] selects whether
phase 0 or 1 is routed to the output pins. Steps 1 through 7 of the selected phase are
routed to uo[1] through uo[7]. Steps 0 and 8 of both phases 0 and 1 are routed to
pins uio[0] through uio[3] regardless of the setting of ui[0] .
Finally, four “digital sync” signals are generated and routed to pins uio[4] through
uio[7]. These mark appropriate clock cycles when data can be latched in to or out
from an adiabatic gate on phase 0 or 1.

How to test

This project is free-running. Simply issue a reset, then use ui[0] to select which phase
you wish to monitor, and monitor it.

External hardware

No external hardware is necessary.

Pinout
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# Input Output Bidirectional
0 phase select (X) selected phase (X) phase 0 step 0
1 phase X step 1 phase 0 step 8
2 phase X step 2 phase 1 step 0
3 phase X step 3 phase 1 step 8
4 phase X step 4 digital sync phase 0 read
5 phase X step 5 digital sync phase 1 read
6 phase X step 6 digital sync phase 0 write
7 phase X step 7 digital sync phase 1 write
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PRBS Generator [44]

• Author: David Parent
• Description: Generates a PRBS signal
• GitHub repository
• HDL project
• Mux address: 44
• Extra docs
• Clock: 0 Hz

How it works

The chip generates a PRBS31 signal using a Fibonacci LFSR and analyzes it with the
same structure. The output of the PRBS is taken off the chip and read back in to be
analyzed.
Two 7-bit vectors are converted into puedo random signal PSR by comparing the vector
to the PRBS. These signals are also output and can be used as an alternative to a
PWM DAC. These two PRS are multiplied with an and gate, and the out is sent off-
chip. Singal A is squared by delaying it by one clock cycle and anding the signal with
the delayed version.
A 131-bit PRBS generator is included as well to fill up the tile as much as possible.
Everything will be documented here:https://docs.google.com/document/d/1nhcHBQsxXUUo1_4WGjxFoWHzpVBCy18a5GQimM9eUtQ/edit?usp=sharing

How to test

Input Clock and reset

External hardware

ADALM2000

35

https://github.com/davidparent/tt_um_davidparent_hdl


# Input Output Bidirectional

Pinout

# Input Output Bidirectional
0 i1 out1
1 i2 out2
2 i3 out3
3 i4
4 i5
5 i6
6 i7
7 i8
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Full-adder out of a kmap [46]

• Author: Levi Feldman
• Description: A full-adder made out of a kmap.
• GitHub repository
• Wokwi project
• Mux address: 46
• Extra docs
• Clock: 0 Hz

How it works

It is a straightforward full-adder circuit but it is made directly out of the kmaps for
both outputs.

How to test

Standard full-adder usage. But the implementation is different though.

External hardware

None.

Pinout

# Input Output Bidirectional
0 A SUM
1 B C-OUT
2 C-IN
3
4
5
6
7
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dEFAULt 2hAC [64]

• Author: Beau Ambur
• Description: Inverted 7-segment !(tinY tAPeout)
• GitHub repository
• Wokwi project
• Mux address: 64
• Extra docs
• Clock: 1 Hz

How it works

Sequentially spells out a message using the 7-segment display.

How to test

Decipher the hidden message by inverting the segments.

Pinout

# Input Output Bidirectional
0 a
1 b
2 c
3 d
4 e
5 f
6 g
7 dot
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ECC_test1 [65]

• Author: Dr. Vaibhav Neema
• Description: it is use for detecting single bit error
• GitHub repository
• Wokwi project
• Mux address: 65
• Extra docs
• Clock: 0 Hz

How it works

The objective of this work is to design a chip module which performs 1-bit error de-
tection and correction in the transmitted encoded data. The proposed design includes
three sections: a transmitter, built in self-test block (for testing purposes), and a re-
ceiver. The transmitter takes an 8-bit input and generates 4 redundant bits, creating
a 12-bit encoded data stream for transmission. The second block is used as built in
self-test block(BIST). This block is used to intentionally insert an error during trans-
mission of encoded data to properly test our design. If no error is inserted in the
transmitted code word, 4 output pins display the redundant bits. However, If 1-bit
error is provided, these pins display the error position. The receiver block can correct
any 1-bit error in the received 12-bit data and displays the corrected data as provided
at the input side.

How to test

This design has 8-input data pins which will use to provide digital input bits, 8 output
pins will use to check the output by connectings LED’s. Four birectional pins will use
as a input ports for BIST and remaining four bidirectional pins will use as output pins
to detect the postion of the error.

External hardware

Twelve LED’s, LED Display, four bit counter, Eight bit counter and Twelve digital input
switch

Pinout
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# Input Output Bidirectional
0 IN0 OUT0 ttio0:IN
1 IN1 OUT1 ttio1:IN
2 IN2 OUT2 ttio2:IN
3 IN3 OUT3 ttio3:IN
4 IN4 OUT4 ttio4:OUT
5 IN5 OUT5 ttio5:OUT
6 IN6 OUT6 ttio6:OUT
7 IN7 OUT7 ttio7:OUT
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All Digital DAC and Analog Comparators [66]

• Author: Maximiliam Luppe
• Description: Implementation of a DAC and three versions of a analog comparator

using only standard cells
• GitHub repository
• HDL project
• Mux address: 66
• Extra docs
• Clock: 0 Hz

How it works

This project implements three different analog comparators based on standard logic
cells. They are based on work of Sala et al. [1].

Figure 7: Digital DAC and Comparators diagram

Two DACs, based on the work of Yang et al. [2], also implemented using only standard
logic cells, with the aid of two 5-bit counters, generate an analog ramp signal to test
the comparators.

1. R. D. Sala, C. Bocciarelli, F. Centurelli, V. Spinogatti and A. Trifiletti,
“A Novel Ultra-Low Voltage Fully Synthesizable Comparator exploiting
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NAND Gates,” 2023 18th Conference on Ph.D Research in Microelec-
tronics and Electronics (PRIME), Valencia, Spain, 2023, pp. 21-24, doi:
10.1109/PRIME58259.2023.10161936

2. D. Yang, T. Ueno, W. Deng, Y. Terashima, K. Nakata, A. T. Narayanan, R.
Wu, K. Okada, A. Matsuzawa, “A 0.0055mm2 480µW Fully Synthesizable PLL
Using Stochastic TDC in 28nm FDSOI,” IEICE Transactions on Electronics, v.
E99.C, no. 6, 2016, pp. 632-640, doi: 10.1587/transele.E99.C.632

How to test

The SEL pin alows to select two different test conditions. With SEL=0, both coun-
ters work together, generating a 10-bit sequence. For each step in the DAC1, DAC0
generates 32 different voltage levels, from near 0V to near Vcc. With SEL=1, both
counters work independently.

External hardware

It’s necessary an osciloscope to visualize the outputs from the DACs and the compara-
tors.

Pinout

# Input Output Bidirectional
0 First Counter Clock VinP
1 Second Counter Clock VinM
2 Comparators Clock VoutP_NAND
3 First Counter Enable VoutM_NAND
4 Second Counter Enable VoutP_AO22
5 Counter Mode Selection VoutM_AO22
6 VoutP_MX21
7 VoutM_MX21
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443MHz Manchester Decoding [67]

• Author: Zachary Kohnen
• Description: A manchester decoder and parser for a 433 mhz transmission
• GitHub repository
• HDL project
• Mux address: 67
• Extra docs
• Clock: 20000 Hz

How it works

There are 2 state machines. One to decode the manchester encoded signal, and the
other to parse the data frames. For the manchester decoding aspect, the following
state machine is implemented.

Figure 8: State Diagram

Blue text are side effects of the transitions. 𝑁𝑠 is a counter that increments while in
each state, and is reset on each state transition.
The state machine makes use of a delay of 5 cycles in order to ignore any non-data
carrying transition.
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The data sent over the air follows the following format. (bit labels are as the data is

shifted into a shift-register (0 = last bit received))
In order to save space in the design, since the preamble section and data section are
of equal length, only half of the message needs to be buffered at a time.
The below diagram shows 2 views into the shift register. The first view is used
to validate the existence of a preamble. Once that has been tripped, the sys-
tem reloads the register with 0x1, and fills the register again until the initial set
bit falls into the last (96) place, causing the shift register to halt all loads until it is reset.

How to test

Wire the system up, and read out the internal registers through the parallel_out
lines

Address Parallel Out
0000 thermostat_id[7:0]
0001 thermostat_id[15:8]
0010 thermostat_id[23:16]
0011 thermostat_id[31:24]
0100 room_temp[7:0]
0101 room_temp[15:8]
0110 set_temp[7:0]
0111 set_temp[15:8]
1000 state
1001 tail_1
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Address Parallel Out
1010 tail_2
1011 tail_3
1100-1111 00000000

External hardware

Pin ui_in[0] (digital_in) must be connected to the digital output of a 433MHz
receiver

Pinout

# Input Output Bidirectional
0 digital_in parallel_out[0] full
1 parallel_out[1] manchester_clock
2 halt parallel_out[2] manchester_data
3 parallel_out[3] transmission_begin
4 address[0] parallel_out[4] neg_edge
5 address[1] parallel_out[5] pos_edge
6 address[2] parallel_out[6]
7 address[3] parallel_out[7]
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Dummy Counter [68]

• Author: Chinmay
• Description: A 16-bit counter
• GitHub repository
• HDL project
• Mux address: 68
• Extra docs
• Clock: 0 Hz

How it works

Like a 16-bit counter

How to test

Like a 16-bit counter

External hardware

NA

Pinout

# Input Output Bidirectional
0 count_en b0 b8
1 mult_en b1 b9
2 m_a0 b2 b10
3 m_a1 b3 b11
4 m_a2 b4 b12
5 m_b0 b5 b13
6 m_b1 b6 b14
7 m_b2 b7 b15

46

https://github.com/pyamnihc/tt07-dummy-counter


MicroCode Multiplier [69]

• Author: Neil Powell
• Description: microcode unit for shift and add multiplication
• GitHub repository
• HDL project
• Mux address: 69
• Extra docs
• Clock: 1000 Hz

How it works

Input two 4-bit numbers A and B. 8-bit product is returned.

How to test

Just reset and supply the inputs

External hardware

Switches and LEDs

Pinout

# Input Output Bidirectional
0 inputA[0] SMP_out[0]
1 inputA[1] SMP_out[1]
2 inputA[2] SMP_out[2]
3 inputA[3] SMP_out[3]
4 inputB[0] SMP_out[4]
5 inputB[1] SMP_out[5]
6 inputB[2] SMP_out[6]
7 inputB[3] SMP_out[7]
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My 9-year-old son made an 8-bit counter chip [70]

• Author: Kian Dabui
• Description: My 9-year-old son made an 8-bit counter chip following instructions

and a picture with a brief explanation.
• GitHub repository
• Wokwi project
• Mux address: 70
• Extra docs
• Clock: 0 Hz

How it works

My 9-year-old son made an 8-bit counter chip following instructions and a picture with
a brief explanation.

How to test

The output from Q0 to Q7 counts up in binary.

External hardware

The output from Q0 to Q7 counts up in binary using an LED Pmod.

Pinout

# Input Output Bidirectional
0 q0
1 q1
2 q2
3 q3
4 q4
5 q5
6 q6
7 q7
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TT7 Simple Clock [71]

• Author: Joseph Hsu
• Description: This is a very simple, configurable clock. By default it’s 20 MHz,

but it can be configured to 10/12/14 Mhz.
• GitHub repository
• HDL project
• Mux address: 71
• Extra docs
• Clock: 20000000 Hz

How it works

So this clock is configured off of the FPGA clock at 20 MhZ. However, the clock is
configurable to different frequencies and settings.

How to test

See if the clock works. The first, second, and third switches should speed up/slow
down the clock, which can be used to set the clock. The fourth switch is used to go
to arduino mode. The fifth, sixth switches should allow you to switch between the
minutes display and the hours display respectively. The seventh switch should allow
you you to run the clock in 4 segment display mode.

External hardware

PMOD 2 segment display, possible 4 segment

Pinout

# Input Output Bidirectional
0
1 Clock Option - 10 MHz
2 Clock Option - 12 MHz
3 Clock Option - 14 MHz
4 Arduino Mode
5 Minute Display
6 Hour Display
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# Input Output Bidirectional
7 4 Digit Mode
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Basilisc-2816 v0.1c CPU (experimental) [72]

• Author: Toivo Henningsson
• Description: Small 2-bit serial 8/16 bit CPU
• GitHub repository
• HDL project
• Mux address: 72
• Extra docs
• Clock: 50000000 Hz

Overview

Basilisc-2816 v0.1 is a small 2-bit serial 2/8/16 bit processor that fits into one Tiny
Tapeout tile. It has been designed around the constraints of

• small area,
• 4 pin serial memory interface to a RAM emulator implemented in an RP2040

microcontroller (which can be supported by the RP2040 microcontroller on the
Tiny Tapeout 7 Demo Board),

• to be suitable to be included in in the next version of the AnemoneGrafx-
8 retro console https://github.com/toivoh/tt06-retro-console, which motivates
the other constraints.

Features:

• 2-bit serial execution:
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– ALU results etc are calculated at 2 bits/cycle
– 2-bit-serial register file with two read/write ports
– Addresses and data are sent to/from memory at 2 bits/cycle

∗ The processor starts to operate on each bit of incoming read data as
it arrives

– Saves area compared to processing 8/16 bits per cycle / using a parallel
access register file

– No point in calculating faster than the memory interface allows

• 8x 8-bit general purpose registers that can be paired into 4x 16-bit general
purpose registers, plus an 8 bit stack register

• 8 bit and 16 bit versions of almost all instructions
• 64 kB address space
• 16 bits/instruction
• Quite regular and orthogonal instruction encoding, most instructions can use

most addressing modes

– op reg, src and op src, reg instruction forms

• Instructions:

– mov, swap
– binop: add/adc/sub/sbc/and/or/xor/cmp/test

∗ for register-to-register also: neg/negc/revsub/revsbc/and_not/
or_not/xor_not/not,

– shl/shr/sar/rol/ror with variable or immediate shift count,
– mul: 8x8 and 8x16 bit multiply instructions, producing 2 result bits per

cycle like everything else,
– branch cc, offset: relative branch

∗ unconditional/call/12 conditions including signed/unsigned compar-
isons,

– jump/call: absolut direct/indirect jump/call,
– additional functionality through combination with addressing modes, e g,

ret = jump [pop]

• Addressing modes:

– [imm7] / [imm7*2]: zero page
– [r16 + imm2]
– [r16 + r8]
– [r16] with postincrement/predecrement
– [push] / [pop] / [top-of-stack] depending on whether the operand

is written/read/modified
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– [imm16]

• Sign/zero extension of any 8 bit register as source operand to 16 bit instructions
• imm16 / [imm16] operands supported using extra instruction word
• 2-4 word instruction prefetch queue

Basilisc-2816 v0.1 variants

Basilisc-2816 v0.1 has been taped out in three variants for Tiny Tapeout 7:

mul Prefetch Hardened Uses Mux
instruction queue size with latches address

v0.1a yes 2 OpenLane 1 no 967
v0.1b no 3 OpenLane 2 no 202
v0.1c yes 4 OpenLane 2 yes 72

successively more experimental. Longer prefetch queue should help contribute to better
performance, especially with long memory access latencies.
This is the 0.1c version. For more details, see https://github.com/toivoh/tt07-basilisc-
2816-cpu/blob/main/docs/info.md or the documentation for Basilisc-2816 v0.1a CPU
[967].

Pinout

# Input Output Bidirectional
0 rx_in[0] tx_out[0]
1 rx_in[1] tx_out[1]
2 tx_fetch
3 tx_jump
4
5
6
7
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SIMON [73]

• Author: seanyen0
• Description: SIMON game
• GitHub repository
• HDL project
• Mux address: 73
• Extra docs
• Clock: 20000000 Hz

How it works

SIMON game. Comes up with sequences of increasing length. User imitates sequence
with Digilent PmodBTN. If user loses, 7-segment display shows “L” and user’s max
number of correct sequences in hex. Upon losing, user can press any button to reset.

How to test

Manual reset can be applied by toggling input “in7” high-low.
User needs PmodBTN to enter the guesses.

External hardware

Digilent PmodBTN plugged into upper row of input header.

Pinout

# Input Output Bidirectional
0 Button 0 sseg0
1 Button 1 sseg1
2 Button 2 sseg2
3 Button 3 sseg3
4 sseg4
5 sseg5
6 sseg6
7 Reset sseg7
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VGA Snake Game [74]

• Author: Barak Hoffer
• Description: Snake game with vga output
• GitHub repository
• HDL project
• Mux address: 74
• Extra docs
• Clock: 31500000 Hz

How it works

A simple snake game with vga output and left,right,up,down buttons.

How to test

Connect to a VGA monitor. Change left,right,up,down (ui_in[0:3]) buttons to change
movement.

External hardware

TinyVGA PMOD

Pinout

# Input Output Bidirectional
0 left R1
1 right G1
2 up B1
3 down VSync
4 R0
5 G0
6 B0
7 HSync
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Modified Booth Multiplier [75]

• Author: Varun Chandra Pendyala
• Description: The proposed design multiplies two 8bit signed numbers using mod-

ified booth algorithm
• GitHub repository
• HDL project
• Mux address: 75
• Extra docs
• Clock: 100000000 Hz

How it works

The project multiplies two 8 bit signed numbers and generates a 16 bit product using
Modified Booth Multiplier Algorithm

How to test

Two 8-bit signed numbers are fed as input to the multiplier, the multiplier bits are
recoded and fed to a dadda multiplier design and the corresponding outputs are added
in a carry lookahead adder to get the final 32 bit product

External hardware

N.A

Pinout

# Input Output Bidirectional
0 multiplicand[0] product[0] product[8]
1 multiplicand[1] product[1] product[9]
2 multiplicand[2] product[2] product[10]
3 multiplicand[3] product[3] product[11]
4 multiplicand[4] product[4] product[12]
5 multiplicand[5] product[5] product[13]
6 multiplicand[6] product[6] product[14]
7 multiplicand[7] product[7] product[15]
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GDS counter-measures experiment 1 [76]

• Author: Aurélien Hernandez
• Description: Experiment with GDS-level open-source countermeasure implemen-

tation
• GitHub repository
• HDL project
• Mux address: 76
• Extra docs
• Clock: 0 Hz

How it works

PoC of custom hardened macro for fab testing and research purposes. It simply expose
a set of customized matrices hardened.

How to test

Select one of the two sets of matrices using the MAT_SEL input. Compare the
observated IN –> OUT mapping using the reference model (GDS).

External hardware

Nothing required.

Pinout

# Input Output Bidirectional
0 in_mat_0 out_mat_0 mat_sel
1 in_mat_1 out_mat_1
2 in_mat_2 out_mat_2
3 in_mat_3 out_mat_3
4 in_mat_4 out_mat_4
5 in_mat_5 out_mat_5
6 in_mat_6 out_mat_6
7 in_mat_7 out_mat_7
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unisnano [77]

• Author: Maria, Diego, Victor
• Description: UART menu with text output and hardware actions
• GitHub repository
• HDL project
• Mux address: 77
• Extra docs
• Clock: 50000 Hz

How it works

A basic UART driver TX and RX is created and waits for the user input as characters
(From 1 to 7 with no line ending). If options from 1 to 5 are selected, an informative
text is displayed. If options from 6 to 7 are selected, an output bit is toggled

How to test

An UART transciever is requiered, using the recommended UART pins RX on #3 and
TX on #34. A 50MHZ clock is needed at 115200bps

External hardware

Two LED’s with a MOSFET driver

Pinout

# Input Output Bidirectional
0
1 output1
2 output2
3 rx
4 tx
5
6
7
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fractran-tt [78]

• Author: Jack Leightcap
• Description: Hardware implementation of John Conway’s estoeric turing-

complete lanugage Fractran
• GitHub repository
• HDL project
• Mux address: 78
• Extra docs
• Clock: 1 Hz

How it works

Fractran is an esoteric programming language built around prime factorization.
Fractran programs are lists of positive fractions: e.g.,

17
91, 78

85, 19
51, 23

38, 29
33, 77

29, ⋯

Execution follows 3 rules:

1. The program is given an initial input integer 𝑛 ∈ ℕ. This is the “accumulator”
value.

2. To compute the next state, 𝑛 ← 𝑞𝑛 where 𝑞 ∈ ℚ is the first fraction in the
program where 𝑞𝑛 ∈ ℕ.

3. Repeat (2) until no such 𝑞 exists, then halt with output 𝑛.

Depending on how terms are represented, (2) is a very simple operating to implement
in hardware. The “cheat” is to operate on pre-factored values: for example, the first
few fractions of the above example:

2030507−111013−1171, 21315−17011013117−1, 203−1507011013017−1191, 2−130507011013017019−1231, 203−1507011−1130170190230291, ⋯

For 𝑛 = 825 = 3152111, 𝑛𝑞 ∈ ℕ if all pairwise added prime factor degrees are
positive: testing 825 × 17

91 :

3152111 × 7−113−1 = 31527−111113−1

The negative degrees are not cancelled by the terms of 𝑛: testing 825 × 29
33 ,
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3152111 × 3−111−1291 = 52291

All negative degrees cancel, and the result is written as the new accumulator.

How to test

See port mapping in info.yaml.
Encodings:

• accumulator: 8-bit unsigned integer degrees. Value 0b11111111 reserved as
sentinel “STOP” value.

• fraction: 8-bit signed (one’s complement) degrees. Value 0b11111111 (the
“second zero”) reserved as sentinel “STOP” value.

Apply to these two inputs pair of streams of prime factor degrees. When the each
stream is exhausted, apply the “STOP” value.
For each input, there is output:

• resultant degree, or “STOP” when both input streams exhausted, indicating a
positive result and accumulator writeback.

• HALT, when a negative degree is calculuated, indicating the start of the next
fraction.

External hardware

The logic implemented internally is quite small, requiring support circuitry. This might
include:

1. fraction counter: program counter
2. degree pointer: counter for current prime term
3. fraction ROM: storing prime degrees, punctuaed by “STOP”s
4. banked accumulator RAM: two banks of memory to store current accumulator,

and calculated value. on an integral result, the ‘scratch’ bank is switched to
accumulator, old accumulator becomes ‘scratch’.

Pinout
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# Input Output Bidirectional
0 accumulator stream [0] factorized stream [0] fraction stream [0]
1 accumulator stream [1] factorized stream [1] fraction stream [1]
2 accumulator stream [2] factorized stream [2] fraction stream [2]
3 accumulator stream [3] factorized stream [3] fraction stream [3]
4 accumulator stream [4] factorized stream [4] fraction stream [4]
5 accumulator stream [5] factorized stream [5] fraction stream [5]
6 accumulator stream [6] factorized stream [6] fraction stream [6]
7 accumulator stream [7] factorized stream [7] fraction stream [7]
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Phase Shifted PWM Modulator [79]

• Author: Nelson Salvador & Francisca Donoso
• Description: Phase-Shifted Pulse Width Modulation (PS-PWM) that generates

the switching signals for 2 PMOS and 2 NMOS from a duty cycle (d1 and d2)
• GitHub repository
• HDL project
• Mux address: 79
• Extra docs
• Clock: 1000 Hz

How it works

The Phase Shifted PWM (PS-PWM) system generates phase-shifted PWM signals
used for controlling power converters. The main module orchestrates the process by
integrating various submodules. It starts by receiving and assigning inputs, then uses
a shift register to process serial data, which determines control signals for selecting
clock sources and phase-shifted triangular waveforms. These waveforms are generated
by dedicated modules for different phases (0, 90, 180, and 270 degrees). The system
selects the appropriate phase for two channels and compares these waveforms with input
data to produce raw PWM signals. Dead time generators add configurable delays to
these signals to prevent transistor cross-conduction. Finally, an output multiplexer and
enable control ensure the PWM signals are correctly outputted based on enable signals,
producing the desired PS-PWM output.

How to test

1. Initial Setup
• Connect Power Supply:

– Ensure the module is powered correctly.
• Clock Signal:

– Connect a function generator to the clk input.
• Control Signals:

– Connect switches or signal sources for rst_n, CLK_SR, and data_SR.
• Inputs:

– Connect ui_in and uio_in to signal sources like DIP switches or a mi-
crocontroller.
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2. Reset the Module
• Procedure:

– Set rst_n to low to reset the module.
– Observe the module’s outputs to confirm they reset.
– Set rst_n to high to release the reset.

3. Shift Data into the Shift Register
• Procedure:

– Set data_SR to the first bit of your 11-bit data (1 or 0).
– Pulse CLK_SR high, then low to clock in the bit.
– Repeat for each bit in your data sequence (e.g., 11'b00011001101.

Sequentially input each bit representing dt[0] to dt[4], SELEC-
TOR_SIGNAL_GENERATOR_1[0], SELECTOR_SIGNAL_GENERATOR_1[1],
SELECTOR_SIGNAL_GENERATOR_2[0], SELECTOR_SIGNAL_GENERATOR_2[1],
OUTPUT_SELECTOR_EXTERNAL[0], and OUTPUT_SELECTOR_EXTERNAL[1]
into the data_SR input. For each bit, you set data_SR to the correspond-
ing value (1 or 0) and toggle CLK_SR high, then low, to clock in the bit.
This sequential shifting ensures that each data_out corresponds to the
specified comment name within the Shift_Register module.).

4. Configure ui_in and uio_in (example, 20% duty cycle)
• Procedure:

– Set ui_in to 11010000 to set d1 = 13 (d1 and d2 are 6 bit length, so
13/64 is about 20%).

– Set uio_in[3:0] to 1101 to set part of d2 = 13.

5. Monitor Outputs
• Procedure:

– Use an oscilloscope or logic analyzer to check uo_out signals.
– Verify the PWM signals on uo_out[0] (PMOS1), uo_out[1] (NMOS2),

uo_out[2] (PMOS2), uo_out[3] (NMOS1), and the clock signal on
uo_out[4].

– Confirm the PWMs duty cycle matches the expected 20%.
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External hardware

There is no need of external hardware.

Pinout

# Input Output Bidirectional
0 d1[0] PMOS1 d2[2]
1 d1[1] NMOS2 d2[3]
2 d1[2] PMOS2 d2[4]
3 d1[3] NMOS1 d2[5]
4 d1[4] clk_in CLK_SR
5 d1[5] Data_SR
6 d2[0] CLK_EXT
7 d2[1]
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4bit_CPU_td4 [128]

• Author: Ko Kosugi
• Description: 4bit_CPU
• GitHub repository
• HDL project
• Mux address: 128
• Extra docs
• Clock: 10 Hz

How it works

4-bit CPU with 4 input ports and 4 output ports.

How to test

Set the inputs and check the outputs.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

# Input Output Bidirectional
0 data_0 addres_0 IO_0
1 data_1 addres_1 IO_1
2 data_2 addres_2 IO_2
3 data_3 addres_3 IO_3
4 data_4 cf 0
5 data_5 ALU_to_reg_0 ALU_to_reg_3
6 data_6 ALU_to_reg_1 select_0
7 data_7 ALU_to_reg_2 select_1
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DVD Screensaver with Tiny Tapeout Logo (Tiny VGA)
[130]

• Author: Uri Shaked
• Description: Tiny Tapeout Logo bouncing around the screen (640x480 VGA)
• GitHub repository
• HDL project
• Mux address: 130
• Extra docs
• Clock: 25175000 Hz

How it works

Displays a bouncing Tiny Tapeout logo on the screen.

Figure 9: Tiny Tapeout screensaver

How to test

Connect to a VGA monitor. Set the following inputs to configure the design:

• tile (ui_in[0]) to repeat the logo and tile it across the screen,
• color (ui_in[1]) to enable color output.
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External hardware

TinyVGA PMOD

Pinout

# Input Output Bidirectional
0 tile R1
1 color G1
2 B1
3 VSync
4 R0
5 G0
6 B0
7 HSync
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Ripple Carry Adder 8 bit [132]

• Author: Jason Kaufmann
• Description: Adds two 8 bit numbers together
• GitHub repository
• HDL project
• Mux address: 132
• Extra docs
• Clock: 0 Hz

How it works

The “Ripple Carry Adder 8 bit” project adds two 8-bit numbers together using a ripple
carry adder (RCA) architecture. This is implemented using a series of full adders, each
of which adds two bits along with a carry-in from the previous less significant bit. The
result is an 8-bit sum and a carry-out bit for the most significant bit.
The project consists of the following modules:

1. halfadder: A simple module that computes the sum and carry-out of two 1-bit
inputs.

2. fulladder: A module that uses two halfadder instances to add three 1-bit
inputs (two bits and a carry-in) and produces a sum and carry-out.

3. rca8: An 8-bit ripple carry adder module that cascades eight fulladder in-
stances to add two 8-bit numbers.

4. tt_um_example: The top module that connects the inputs and outputs to
the rca8 module, performing the addition operation and providing the result
through the output pins.

The tt_um_example module takes two 8-bit inputs (ui_in and uio_in), adds them
using the rca8 module, and outputs the 8-bit sum (uo_out).

How to test

To test the “Ripple Carry Adder 8 bit” project:

1. Provide two 8-bit numbers as inputs via the ui_in and uio_in pins.
2. Observe the 8-bit sum output on the uo_out pins.
3. Ensure that all connections are made correctly as per the pinout configuration.

For example, if you input the binary numbers 00001101 (13 in decimal) and 00000111
(7 in decimal) on ui_in and uio_in respectively, the output on uo_out should be
00010010 (20 in decimal).
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External hardware

No external hardware is required for this project. It operates purely based on the digital
inputs provided and generates a digital output. However, for testing and demonstration
purposes, you may use input switches and output LEDs or a similar setup to visualize
the input and output binary numbers.

Pinout

# Input Output Bidirectional
0 A0 OUT0 B0
1 A1 OUT1 B1
2 A2 OUT2 B2
3 A3 OUT3 B3
4 A4 OUT4 B4
5 A5 OUT5 B5
6 A6 OUT6 B6
7 A7 OUT7 B7

69



DuckCPU [134]

• Author: Alex Studer
• Description: Small System-on-Chip based around a custom 8-bit CPU.
• GitHub repository
• HDL project
• Mux address: 134
• Extra docs
• Clock: 50000000 Hz

How it works

This is a small System-of-Chip (SoC) built around the DuckCPU, an 8-bit CPU that
implements a custom architecture based on the Zilog Z80 and Sharp LR35902. It was
designed primarily for learning purposes.
The following peripherals are provided:

• RSPI (reserved SPI, for flash/RAM acccess)
• UART0
• SPI0

More detailed documentation will be added to the project page after the tapeout.

How to test

Connect a SPI flash IC to the RSPI pins, with rspi_flash_ce_n as its chip enable.
Similarly, connect a SPI RAM IC, with rspi_ram_ce_n as its chip enable.
Pull the bootsel pin low and reset the chip. This puts it into its bootloader mode. You
can then use ducktool to download code onto the flash/RAM and reset the CPU.

External hardware

Minimum requirement:

• SPI flash IC (tested with ISSI IS25LP020E)
• SPI RAM IC (tested with ISSI IS66WVS1M8BLL)
• USB to UART circuit (included on demo board)

While we do follow the standard Tiny Tapeout pinout for UART, we do not for SPI.
This is because we want to save the bidirectional pins for use by the GPIO peripheral.
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Pinout

# Input Output Bidirectional
0 rspi_clk gpio0_data[0]
1 rspi_mosi gpio0_data[1]
2 rspi_flash_ce_n gpio0_data[2]
3 rspi_ram_ce_n gpio0_data[3]
4 bootsel uart0_tx gpio0_data[4]
5 spi0_miso spi0_clk gpio0_data[5]
6 rspi_miso spi0_mosi gpio0_data[6]
7 uart0_rx spi0_ce_n gpio0_data[7]
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John Pong The Second [136]

• Author: Sophia Rustfield (Representing HSWAW)
• Description: a hyper simple pong game with the polish pope taking the role of

the ball outputted over vga
• GitHub repository
• HDL project
• Mux address: 136
• Extra docs
• Clock: 25175000 Hz

How it works

it outputs VGA, using all of the dedicated output pins and three of the bidirectional
pins, and takes player input on 5 of the dedicated input pins, it works by having a
counter that counts clock cycles since boot, and outputs one pixel per clock cycle, on
the first clock cycle of vsync, all game logic happens.

How to test

you’re gonna need to play the game, and hook it up to a monitor with a DAC

External hardware

• a circuit that can convert the digital output to analog VGA
• a monitor that supports VGA
• a circuit for some buttons for the player input there are no part numbers here

because we built everything outselves except for the monitor, and monitors are
ubiquotus

Pinout

# Input Output Bidirectional
0 move paddle up red channel bit 0 blue channel bit 0
1 move paddle down red channel bit 1 blue channel bit 1
2 move player 2 paddle up red channel bit 2 blue channel bit 2
3 move player 2 paddle down green channel bit 0
4 high voltage to activate player 2, low for ai green channel bit 1
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# Input Output Bidirectional
5 green channel bit 2
6 horizontal sync signal
7 vertical sync signal
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Four NIST SP 800-22 tests implementation [138]

• Author: Maximiliam Luppe
• Description: Implementation of the first four NIST statistic tests
• GitHub repository
• HDL project
• Mux address: 138
• Extra docs
• Clock: 0 Hz

How it works

This project implements a LFSR where the D-type FFs (DFFs) are replaceded by
configurable delay lines.

Figure 10: ALFSR diagram

The configurable delay lines are implement using multiplexers and buffers. The buffers
generate a delay line path and the multiplexer select differents paths according to its
selection control signals. The selection control signals are generated by a conventional
LFSR.
It’s expected that this circuit act as either as a convencional LFSR, or as an oscillator,
or as a chaotic oscilator, according to the path generated by each delay line.
To verify its functionality, four statistical tests from the NIST statistical suite are also
implemented:

1. The Frequency (Monobit) Test
2. Frequency Test within a Block
3. The Runs Test
4. Tests for the Longest-Run-of-Ones in a Block
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They are choosen because they require at least 100 bits sequence to test.
The implementations are based on the following works:

• L. B. Carreira, P. Danielson, A. A. Rahimi, M. Luppe and S. Gupta, “Low-
Latency Reconfigurable Entropy Digital True Random Number Generator
With Bias Detection and Correction,” in IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 67, no. 5, pp. 1562-1575, May 2020, doi:
10.1109/TCSI.2019.2960694

• V. B. Suresh, D. Antonioli and W. P. Burleson, “On-chip lightweight implemen-
tation of reduced NIST randomness test suite,” 2013 IEEE International Sym-
posium on Hardware-Oriented Security and Trust (HOST), Austin, TX, USA,
2013, pp. 93-98, doi: 10.1109/HST.2013.6581572.

• F. Veljković, V. Rožić and I. Verbauwhede, “Low-cost implementations of on-the-
fly tests for random number generators,” 2012 Design, Automation & Test in
Europe Conference & Exhibition (DATE), Dresden, Germany, 2012, pp. 959-964,
doi: 10.1109/DATE.2012.6176635.

How to use

Explain how to use your project

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

# Input Output Bidirectional
0 LFSR Configurator clock NIST 01 test output ALFSR analog output 0
1 ALFSR reset NIST 02 test output ALFSR analog output 1
2 NIST random bits input NIST 03 test output ALFSR analog output 2
3 Operation mode NIST 04 test output ALFSR analog output 3
4 NIST Global error output
5 LFSR Configurator output
6 ALFSR digitalized output 3
7 ALFSR analog output 3
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Subleq CPU with FRAM and UART [140]

• Author: Philip Mohr
• Description: Stupid slow Subleq CPU using an external SPI FRAM
• GitHub repository
• HDL project
• Mux address: 140
• Extra docs
• Clock: 10000000 Hz

How it works

Subleq refers to a kind of OISC where the one instruction is “SUBtract and branch if
Less-than or EQual to zero”, conventionally abbreviated to subleq.
Subleq is a simple one instruction language. Each Subleq instruction has 3 memory
address operands. Since Subleq has only one instruction, the opcode itself is conven-
tionally omitted, so each instruction is three addresses long.
You can easily output data in the C Code. Look in the examples how it’s done. In
Subleq it’s implemented like this: If B is -1 (negative unity), then the number contained
in the address given by A is interpreted as a character and written to the machine’s
output. C is unused.
The Baud is 115200, when a 10MHz clock is used.
There is a C Compiler for Subleq. It only supports a typeless simplified subset of C,
but most simple things can be done with it. It is written in C++ and doesn’t depend
on libraries or external tools. The original website for it is offline, but infos about the
compiler still exist on the Esolang Wiki (->Higher Subleq) with a Download Link at
the web archive on the bottom of the page. But i will also include the compiler code
in the repo.

How to test

Use an Arduino compatible Microcontroller with at least 16KB Memory. Convert the
output from the compiler with the given converter to an array, import it to the given
Arduino Sketch, flash it and run it. The cpu is designed for 10MHz, but it needs to
be tested how fast or slow it can go. The SPI clock is half the input clock. Keep in
mind that when changing the clock speed the uart baud will also change. I will make
a kinda userfriendly toolchain and publish it on my github. It will include a Subleq to
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hex converter (for Quartus etc.), a Subleq to C string converter, an Arduino sketch for
flashing to FRAM and example C/Subleq codes.

External hardware

SPI FRAM
As RAM an 8KB FRAM is used with a 20MHZ SPI interface (MB85RS64V). The
advantage of SPI RAM in comparison to SPI Flash is the access time. Every byte
can be accessed directly without having bank switching, which leads to different access
when randomly accessing data. But in comparison to usual RAM, FRAM is non-volatile.
So it has the advantages of Flash and RAM memory (but costs much more).

Pinout

# Input Output Bidirectional
0 in_miso out_mosi data_0
1 out_sck data_1
2 out_cs data_2
3 tx data_3
4 tx_credits data_4
5 data_5
6 data_6
7 data_7
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RO-based Physically Unclonable Function (PUF) [142]

• Author: Pablo Aravena
• Description: Implementation of a Ring Oscillator-based Physically Unclonable

Function (PUF) in Sky130, with 8 bits of Challenge-Response Pairs (CRP)
• GitHub repository
• HDL project
• Mux address: 142
• Extra docs
• Clock: 10000000 Hz

How it works

A physical unclonable function (PUF) is a hardware security primitive that maps an
input (called a challenge) to an output (called a response) in a similar fashion to a
hash function. The goal of a PUF can be many: uniquely identifying an integrated
circuit (IC) from another while still keeping deterministic outputs for the same IC,
using a set of challenge-response pairs (CRP); generating random-enough nonces; or
even authenticating an IC (stronger version of identification). In order to evaluate
its performance for those goals, relevant metrics such as uniqueness, reliability,
uniformity and entropy of CRPs over many PUF ICs are commonly employed. The
PUF implementation for this project uses many identical, 7-inverter ring oscillators
(RO) which introduce randomness or variation in their operating frequencies at the
time of the fabrication process itself.
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In this case, an 8-bit parallel architecture for each bit of a CR P is adopted. The
8-bit challenge is shared along 8 independent blocks in order to derive only 1-bit of
the response per block. One PUF block contains 32 ROs, where one RO is selected
between the top half of the ROs over a challenge-dependent (4 MSB) 16-bit mux, while
other RO is selected from the remaining bottom half over the second chall-dependent
(4 LSB) 16-bit mux. Then, both muxes connect directly to 1 counter of its own. Both
of the counters then race each other until a given threshold (65535 in this case) is
reached, and an arbiter module that’s connected to both counters declares the winner
in a 1-bit response.
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How to test

Start by feeding an 8-bit challenge to the 8 input pins in the Tiny Tapeout board
before enabling or selecting this module. This will ensure that the appropiate input
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data is sampled while initiating the ring oscillators. After some milliseconds, a result
should appear at the 8 output pins as individual response bits. To generate another
CRP without powering-off the board, first start sending the new challenge on the input
pins continously. After it, drive the reset pin high and then immediately low in order
to sample the newest input values. Note that the output or responses may change as
the device reaches operational temperature, after which they will become consistent.
This instability is due to the ROs’ sensitivity to temperature, which will slightly change
frequency operation.
EXTRA: In order to accurately estimate entropy, uniqueness, reliability and uniformity
for this PUF architecture in Sky130, a lot of measurements must be taken to ensure
unbiased representation of data and validity of the metric’s results. That’s why the
module’s author needs you, a Tiny Tapeout board owner, to join in this open-source
effort of characterizing this manufacturing process and PUF architecture. The required
data to collect would be the set of all possible 8-bit Challenge-Response Pairs (CRP)
generated by your specific device. For more information on how to help and where to
register your CRPs, check the GitHub repo related to this project. The plan is to make
this data and the metrics transparent and public, updating them in real time.

External hardware

No external hardware is required for this project.

Pinout

# Input Output Bidirectional
0 challenge bit 1 response bit 1
1 challenge bit 2 response bit 2
2 challenge bit 3 response bit 3
3 challenge bit 4 response bit 4
4 challenge bit 5 response bit 5
5 challenge bit 6 response bit 6
6 challenge bit 7 response bit 7
7 challenge bit 8 response bit 8
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FastMagnitudeComparator [192]

• Author: Daniel Burke
• Description: Digital neuron threshold detector
• GitHub repository
• HDL project
• Mux address: 192
• Extra docs
• Clock: 0 Hz

How it works

For neuron thereshold evaluation in digital approaches, a fast magnitude determination
is often necessary.
This component is based upon well-documented Clint Cole (Digilent) bit-sliced expand-
able, structural code re-expressed in AND-INV format to target optimized ABC9 AIG
graph synthesis in OpenLane. https://www.realdigital.org/doc/a39d855f71772426c968c0151112b476
It is intentionally unclocked for measurements, and can be easily modified as a
windowing-comparator for inference field requirements.
The fast magnitude comparitor is second of a series of common, scaleable library of
elements intended to support CMOS digital neuron biomemetic building blocks, the
first being a scaleable fast accumulator for vector evaluation and integration based
upon a generated Sklansky adder/subtractor.
Each component is intended to be fashioned in structural Verilog for future optimiza-
tion, scale well so as to support varying bit-width large vector resolutions, and whenever
possible described in AND-INV form to leverage the OpenLane ABC9 logic optimizer
which uses AIG graphs.

How to test

The user will supply two numbers of appropriate length (A, B, each 8 bits in this case)
with returning signals indicating “A less than B”, “A equal to B”, or “A greater than
B” as LT_out, EQ_out, and GT_out respectively.

External hardware

Means to supply appropiate width words (in this instance one 8b byte) and read back
GT, EQ, LT signals.

82

https://github.com/drburke3/FastMagnitudeComparator


Pinout

# Input Output Bidirectional
0 ui_in[0] ui_out[0] uio[0]
1 ui_in[1] ui_out[1] uio[1]
2 ui_in[2] ui_out[2] uio[2]
3 ui_in[3] ui_out[3] uio[3]
4 ui_in[4] ui_out[4] uio[4]
5 ui_in[5] ui_out[5] uio[5]
6 ui_in[6] ui_out[6] uio[6]
7 ui_in[7] ui_out[7] uio[7]
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8 bit PRNG [194]

• Author: Jorge Garcia Martinez
• Description: 8 bit PRNG based on Xorshift
• GitHub repository
• HDL project
• Mux address: 194
• Extra docs
• Clock: 0 Hz

How it works

PRNG: Xorshift Overview A Xorshift is a type of pseudorandom number genera-
tor (PRNG) that utilizes shift and XOR operations to generate a sequence of pseudo-
random numbers. Introduced by George Marsaglia in 2003, the Xorshift is renowned for
its speed and simplicity of implementation in both hardware and software platforms.

Theoretical Basis for an 8-bit Xorshift

State Register The Xorshift algorithm employs a state register that, in the case
of an 8-bit Xorshift, consists of an 8-bit integer. This register maintains the current
state of the PRNG, which is updated with each iteration to produce the subsequent
pseudorandom number.

Fundamental Operations
• XOR: The XOR (�) operation is essential for bit scrambling in the state. It takes

two bits and returns 1 if the bits are different and 0 if they are the same.
• Shift: Shift operations (either left or right) move bits by a specified number of

positions, introducing zeros into the vacated positions.

Sequence of Operations At each step, the current state is altered using a series of
XOR and shift operations. For instance, an 8-bit Xorshift might proceed as follows:

1. x = x � (x &amp;lt;&amp;lt; a)
2. x = x � (x &amp;gt;&amp;gt; b)
3. x = x � (x &amp;lt;&amp;lt; c)
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Here, x denotes the current state, while &amp;lt;&amp;lt; and &amp;gt;&amp;gt;
signify left and right shifts, respectively. The constants a, b, and c determine the
magnitude of these shifts.

Period The period of a Xorshift depends on both the number of bits in the state
register and the choice of shift parameters a, b, and c. For an 8-bit register, the
maximum achievable period is 2^8 - 1 = 255, assuming the parameters are selected
wisely to prevent short cycling.

How to test

To test this random number generator you must place an 8-bit seed as input (ui_in) and
after 2 cycles of latency you will obtain a random number at each clock cycle at the out-

put (uo_out).

wire [7:0] ui_in
wire [7:0] uio_in

wire ena
wire clk
wire rst_n

wire [7:0]uo_out
wire [7:0]uio_out
wire [7:0]uio_oe

For more information about rtl: <tt_um_jorga20j_prng.md>

Pinout

# Input Output Bidirectional
0 Seed bit 0 Pseudo-Random number bit 0
1 Seed bit 1 Pseudo-Random number bit 1
2 Seed bit 2 Pseudo-Random number bit 2
3 Seed bit 3 Pseudo-Random number bit 3
4 Seed bit 4 Pseudo-Random number bit 4
5 Seed bit 5 Pseudo-Random number bit 5
6 Seed bit 6 Pseudo-Random number bit 6
7 Seed bit 7 Pseudo-Random number bit 7

85



8-bit DEM R2R DAC [196]

• Author: Eric Fogleman
• Description: 8-bit segmented mismatch-shaping R2R DAC
• GitHub repository
• HDL project
• Mux address: 196
• Extra docs
• Clock: 10000000 Hz

Operation

This design implements a linear 8-bit DAC suitable for dc and low-frequency inputs. The
encoder quantizes the 8-bit input to a 55-level signal. An analog voltage is produced by
connecting the encoder’s outputs to a modified R-2R ladder on the PCB (see External
Hardware). Quantization noise is shaped in the frequency domain with a 1st order
highpass shaped. The residual high frequency noise is suppressed using an analog
lowpass filter. With a clock frequency of 6.144 MHz and a lowpass filter corner of 24
kHz, the oversampling ratio (OSR) is 256.
This encoder provides quantization noise shaping similar to that of a multibit delta-
sigma modulator, but it is a purely feedforward network with no quantization error
feedback. The theory behind this encoder is described in: A. Fishov, E. Fogleman, E.
Siragusa, I. Galton, “Segmented Mismatch-Shaping D/A Conversion”, IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), 2002
This design is a revision to that on TT06 that implements element mismatch shaping
as well as quantization noise shaping.

External hardware

Ideally, this encoder would be buffered through a clean analog supply and retimed at the
output with a clean clock to align the bit transitions. However, reasonable performance
should be possible driving the resistor ladder directly from the encoder through the IO
supply. When used n this way, the IO supply acts as the DAC’s reference voltage.
DAC input data is provided through ui_in[7:0], and the encoder updates using the
project clock. Clock frequencies in the range of 1-10 MHz are reasonable. Higher
clock frequency increases the OSR. The encoder output is uo_out[7:0], and it can
be reconstructed by summing the bits with the following weights:
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v_out = 0.5*vdd_io*(1 + (2**-4)*(8*uo_out[7]+uo_out[6]) + 4*(uo_out[5]+uo_out[4]) + 2*(uo_out[3]+uo_out[2]) +
(uo_out[1]+uo_out[0])
- 15)

The DAC’s output swing ranges from 0.25*vdd_io to 0.75*vdd_io, where vdd_io
is the IO supply voltage.
An external resistor ladder is required to create the analog output voltage, and a
capacitor is required to filter high-frequency noise. The termination resistors are placed
at the ends of the ladder to ensure that each section has nominally identical load
resistance.
The resistor ladder shown below sums the outputs with this weighting. Any output
network that can create this weighting will work.

Figure 11: DAC resistor network

The suggested unit R value is 10 kOhm, thus all elements marked R should be 10 kOhm,
and all 4R elements should be 40 kOhm. This gives an equivalent output resistance
at v_dac of 10 kOhm. A 680 pF output capacitor provides a 23 kHz lowpass corner.
With this choice of R, each IO driver will sink/source a maximum of 55 uA with vdd_io
at 3.3 V.
Precise resistor matching is not required to obtain 8-bit linearity. Resistor mismatch
error appears as first-order shaped noise in the output and can be removed by analog
lowpass filtering.

Testing

The DAC is free-running off the project clock, and inputs appear at the output imme-
diately after clock synchronization. A simple dc test can be performed using the input
DIP switches and the resistor ladder.
The encoder has four modes of operation determined by uio_in[1:0]:

• 3: 1st order shaping with dither
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• 2: randomization (flat spectral shaping)
• 1: 1st order shaping, no dither
• 0: static encoding (no shaping)

The dc value DAC output can be measured with a DMM. The DAC’s output swing
ranges from 0.25*vdd_io to 0.75*vdd_io, where vdd_io is the IO supply voltage.
The DAC’s LSB voltage is vdd_io/32.

Pinout

# Input Output Bidirectional
0 d_in[0] y8[0] en_enc
1 d_in[1] y8[1] en_dith
2 d_in[2] y16[0] y1[0]
3 d_in[3] y16[1] y1[1]
4 d_in[4] y32[0] y2[0]
5 d_in[5] y32[1] y2[1]
6 d_in[6] y64[0] y4[0]
7 d_in[7] y64[1] y4[1]
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FP-8 MAC Module [198]

• Author: Wilfred Kisku
• Description: A simple MAC implementation using Chisel for two FP8 numbers,

incorporates both addition and multiplication for FP8 numbers. Partial register
at 0x00 which is the start value. Result is valid after 3 clock cycles.

• GitHub repository
• HDL project
• Mux address: 198
• Extra docs
• Clock: 0 Hz

Design

Figure 12: block diagram

The digital block comprises of two sub blocks and a top module that incorporates a
MAC (multiply-and-accumulate) operation.
This IEEE 754 format for a 8-bit FP precision for addition and multiplication is imple-
mented. The operations incorporate intricacies and corner cases for handling +/- inf,
NaN, Zeros and a full 8-bit precision range.

Details of FP8 Binary Formats
Exponent Bias 15
Infinites 𝑆.11111.002
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Details of FP8 Binary Formats
NaN 𝑆.11111.𝑋𝑋2
Zero 𝑆.00000.00
Max Normal 𝑆.11110.112
Min Normal 𝑆.00001.002
Max Subnormal 𝑆.00000.112
Min Subnormal 𝑆.00000.012

Though this format is highly limited in precision and range compared to standard
floating-point formats like IEEE 754 single-precision (32-bit) or double-precision (64-
bit). It would likely be used in specialized scenarios where memory is at a premium or
where precision beyond this level is unnecessary. The MAC operations can be verified
on the 8-bit FP data, with both addition and multiplication.
The following are the highlights and the pin descriptions:

• There are two inputs that take in FP8 data in the format S.EEEEE.SS
• The first stage of operation is a multiplication between the two inputs.
• The second stage is the addition on the multiplication result and the partial

residing in the output register.
• At each clock cycle the partial result in latched to the output register, taking 3

cycles for giving the result.

Figure 13: timing diagram

How to test

Run make in the /test directory.
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External hardware

The design is self sustaining sequential, requiring only an output buffer to store the
current partial products and the MAC resultant after 3 clock cycles. This is supposed
to be a preliminary result block that can make up systolic arrays, hardware accelerators
and many other.

Pinout

# Input Output Bidirectional
0 FP8 input A pin 0. FP8 output pin 0. FP8 input B pin 0.
1 FP8 input A pin 1. FP8 output pin 1. FP8 input B pin 1.
2 FP8 input A pin 2. FP8 output pin 2. FP8 input B pin 2.
3 FP8 input A pin 3. FP8 output pin 3. FP8 input B pin 3.
4 FP8 input A pin 4. FP8 output pin 4. FP8 input B pin 4.
5 FP8 input A pin 5. FP8 output pin 5. FP8 input B pin 5.
6 FP8 input A pin 6. FP8 output pin 6. FP8 input B pin 6.
7 FP8 input A pin 7. FP8 output pin 7. FP8 input B pin 7.
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SerDes [200]

• Author: Mahaa Santeep G
• Description: The project implements a Serializer and Deserializer (SerDes) mod-

ule for converting data between parallel and serial formats in digital systems.
• GitHub repository
• HDL project
• Mux address: 200
• Extra docs
• Clock: 100 Hz

How it works

The SerDes project operates by efficiently converting data between parallel and serial
formats, enabling seamless communication between systems with different data transfer
requirements. Here’s how it works:

1. Serialization Path:

• Parallel data is received through the data_8b_in input.
• Upon the rising edge of the clock (clk) and when the data enable signal

(data_en) is active, the input data is latched to ensure synchronization.
• The latched parallel data undergoes encoding into a 10-bit format using an

8b/10b encoding scheme. This encoding scheme provides sufficient data
integrity and clock recovery capabilities for serial transmission.

• The encoded data is further latched and transmitted serially through the
ser_out output when the serializer enable signal (ser_en) is asserted.

2. Deserialization Path:

• Serial data is received through the ser_in input.
• The serial data is shifted in parallel using a Serial-In-Parallel-Out (SIPO)

shift register when the parallel enable signal (par_en) is active.
• The parallel data is latched upon the rising edge of the clock (clk) and

when the data enable signal (data_en) is active to ensure synchronization.
• The latched parallel data undergoes decoding from the 10-bit format back

to an 8-bit format, effectively reversing the serialization process.
• The decoded parallel data is output through the data_out output.

3. Synchronization and Reset:

• Synchronous reset (rst) ensures proper initialization of internal state vari-
ables and output data.
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• Latch modules are employed throughout the process to synchronize data
with the clock and ensure stable output.

4. Integration and Flexibility:

• The project provides a modular and flexible design, facilitating easy inte-
gration into larger systems.

• Users can adjust control signals (data_en, ser_en, par_en) to tailor the
operation to specific requirements.

• Proper clock domain crossing techniques are employed to ensure reliable
data transfer between parallel and serial domains.

Overall, the SerDes project offers an efficient and reliable solution for bidirectional
data conversion, enabling seamless communication between systems with disparate
data transfer interfaces.

How to test

The provided RTL project implements a Serializer and Deserializer (SerDes) module
capable of converting data between parallel and serial formats. The module, encap-
sulated within serdes_top, features inputs for clock signal (clk), active high reset
(rst), data enable signal (data_en), and control signals for serialization (ser_en)
and deserialization (par_en). Parallel data is input through data_8b_in, undergoing
latching, encoding into 10-bit data, and serial output (ser_out) generation during
serialization, while serial input (ser_in) undergoes deserialization, parallelization, and
output (data_out) generation. Synchronous reset ensures proper initialization, and
latch modules synchronize data. The project facilitates seamless integration into larger
systems, offering flexibility and reliability for applications requiring efficient data trans-
mission across parallel and serial interfaces.

External hardware

There are No External Hardware Used in the Project

Pinout

# Input Output Bidirectional
0 data_8b_in[0] data_out[0] ser_in
1 data_8b_in[1] data_out[1] ser_out
2 data_8b_in[2] data_out[2] data_en
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# Input Output Bidirectional
3 data_8b_in[3] data_out[3] par_en
4 data_8b_in[4] data_out[4] ser_en
5 data_8b_in[5] data_out[5]
6 data_8b_in[6] data_out[6]
7 data_8b_in[7] data_out[7]
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Basilisc-2816 v0.1b CPU [202]

• Author: Toivo Henningsson
• Description: Small 2-bit serial 8/16 bit CPU
• GitHub repository
• HDL project
• Mux address: 202
• Extra docs
• Clock: 50000000 Hz

Overview

Basilisc-2816 v0.1 is a small 2-bit serial 2/8/16 bit processor that fits into one Tiny
Tapeout tile. It has been designed around the constraints of

• small area,
• 4 pin serial memory interface to a RAM emulator implemented in an RP2040

microcontroller (which can be supported by the RP2040 microcontroller on the
Tiny Tapeout 7 Demo Board),

• to be suitable to be included in in the next version of the AnemoneGrafx-
8 retro console https://github.com/toivoh/tt06-retro-console, which motivates
the other constraints.

Features:

• 2-bit serial execution:
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– ALU results etc are calculated at 2 bits/cycle
– 2-bit-serial register file with two read/write ports
– Addresses and data are sent to/from memory at 2 bits/cycle

∗ The processor starts to operate on each bit of incoming read data as
it arrives

– Saves area compared to processing 8/16 bits per cycle / using a parallel
access register file

– No point in calculating faster than the memory interface allows

• 8x 8-bit general purpose registers that can be paired into 4x 16-bit general
purpose registers, plus an 8 bit stack register

• 8 bit and 16 bit versions of almost all instructions
• 64 kB address space
• 16 bits/instruction
• Quite regular and orthogonal instruction encoding, most instructions can use

most addressing modes

– op reg, src and op src, reg instruction forms

• Instructions:

– mov, swap
– binop: add/adc/sub/sbc/and/or/xor/cmp/test

∗ for register-to-register also: neg/negc/revsub/revsbc/and_not/
or_not/xor_not/not,

– shl/shr/sar/rol/ror with variable or immediate shift count,
– mul: 8x8 and 8x16 bit multiply instructions, producing 2 result bits per

cycle like everything else,
– branch cc, offset: relative branch

∗ unconditional/call/12 conditions including signed/unsigned compar-
isons,

– jump/call: absolut direct/indirect jump/call,
– additional functionality through combination with addressing modes, e g,

ret = jump [pop]

• Addressing modes:

– [imm7] / [imm7*2]: zero page
– [r16 + imm2]
– [r16 + r8]
– [r16] with postincrement/predecrement
– [push] / [pop] / [top-of-stack] depending on whether the operand

is written/read/modified
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– [imm16]

• Sign/zero extension of any 8 bit register as source operand to 16 bit instructions
• imm16 / [imm16] operands supported using extra instruction word
• 2-4 word instruction prefetch queue

Basilisc-2816 v0.1 variants

Basilisc-2816 v0.1 has been taped out in three variants for Tiny Tapeout 7:

mul Prefetch Hardened Uses Mux
instruction queue size with latches address

v0.1a yes 2 OpenLane 1 no 967
v0.1b no 3 OpenLane 2 no 202
v0.1c yes 4 OpenLane 2 yes 72

successively more experimental. Longer prefetch queue should help contribute to better
performance, especially with long memory access latencies.
This is the 0.1b version. For more details, see https://github.com/toivoh/tt07-basilisc-
2816-cpu/blob/main/docs/info.md or the documentation for Basilisc-2816 v0.1a CPU
[967].

Pinout

# Input Output Bidirectional
0 rx_in[0] tx_out[0]
1 rx_in[1] tx_out[1]
2 tx_fetch
3 tx_jump
4
5
6
7
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integer to posit converter and adder [204]

• Author: A. Fasolino, G.D. Licciardo, A. Torino, F. Del Prete, C. Parrella
• Description: Our module executes a fixed to posit conversion and an addition
• GitHub repository
• HDL project
• Mux address: 204
• Extra docs
• Clock: 30000000 Hz

How it works

The module (Fig. 1) is fed by two fixed-point numbers, namely af and bf, coverts them
into the posit arithmetic [1] format (ap and bp) and sums them to produce a posit
output (sp).

Figure 14: fixed2posit-module drawio

It is made of two units: 1.

1) 16-bit 2’s complement fixed-point 0.15 coded to 16-bit standard posit (16,1)
converter, namely fixed to posit converter,

2) posit adder, that executes the addition of posit numbers according to the posit
standard.

The conversion is operated as described in [1], leveraging a leading zero counter [2]
and some glue logic.
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2. The addition leverages the architecture presented in [3].

References
[1] J. Gustafson. “Posit arithmetic.” Mathematica Notebook describing the posit
number system, 2017.
[2] Milenković, Nebojša & Stankovic, Vladimir & Milić, Miljana. (2015). Modular
Design Of Fast Leading Zeros Counting Circuit. Journal of Electrical Engineering. 66.
329-333. 10.2478/jee-2015-0054.
[3] R. Murillo, A. A. Del Barrio and G. Botella, “Customized Posit Adders and Multipli-
ers using the FloPoCo Core Generator,” 2020 IEEE International Symposium on Circuits
and Systems (ISCAS), 2020, pp. 1-5, doi: 10.1109/ISCAS45731.2020.9180771.

How to test

Provide two fixed-point input data and they will be added in posit arithmetic.

Pinout

# Input Output Bidirectional
0 data input addition result data valid
1 data input addition result alu valid
2 data input addition result read data valid
3 data input addition result read data ready
4 data input addition result
5 data input addition result
6 data input addition result
7 data input addition result
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LFSR [206]

• Author: James Meech and Werner Florian
• Description: Linear feedback shift register random number generator
• GitHub repository
• HDL project
• Mux address: 206
• Extra docs
• Clock: 0 Hz

How it works

It is a linear feedback shift register random number generator connected to a wishbone
bus to allow it to fit within the pin constraints of Tiny Tapeout.

How to test

Please see the cocotb testbench in the test.py in the test directory for the startup
procedure for loading a seed and starting the linear feedback shift register output.

External hardware

Use the microcontroller on the development board to apply the correct startup signals
to the board.

Pinout

# Input Output Bidirectional
0 Wishbone

data input
bit 0

Output bit to
indicate
whether or
not the
wishbone has
stalled
(o_wb_stall)

Wishbone input bit to
indicate that a valid bus
cycle is in progress
(i_wb_cyc, hardcoded as
an input)
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# Input Output Bidirectional
1 Wishbone

data input
bit 1

LFSR output
bit
(o_wb_data)

Wishbone chipselect
input bit to indicate a
valid seed data transfer
cycle (i_wb_stb,
hardcoded as an input)

2 Wishbone
data input
bit 2

Output bit
for the
wishbone to
acknowledge
the successful
end of
writing part
of the LFSR
seed
(o_wb_ack)

Wishbone input bit to
indicate a read or a write
cycle read = 0, write = 1
(i_wb_we, hardcoded as
an input)

3 Wishbone
data input
bit 3

Not used in
this design

Wishbone input address
bit zero to select which
eight bit byte of the seed
to write (i_wb_addr[0])

4 Wishbone
data input
bit 4

Not used in
this design

Wishbone input address
bit one to select which
eight bit byte of the seed
to write (i_wb_addr[1])

5 Wishbone
data input
bit 5

Not used in
this design

Wishbone input address
bit two to select which
eight bit byte of the seed
to write (i_wb_addr[2])

6 Wishbone
data input
bit 6

Not used in
this design

Not used in this design

7 Wishbone
data input
bit 7

Not used in
this design

Not used in this design
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Serial Character LED Matrix [225]

• Author: Ciro Cattuto
• Description: LED matrix character display controlled via UART
• GitHub repository
• HDL project
• Mux address: 225
• Extra docs
• Clock: 20000000 Hz

How it works

This project drives an LED-matrix character display composed of one or more Pixie
Chroma chainable devices, each one featuring two 5x7 LED matrices based on the
WS2812B RGB LEDs. Each 5x7 LED matrix displays one character. The display
shows characters received over a serial port.
Up to 4 chained devices are supported for a maximum of 8 characters. The displayed
characters are received from a serial port using the UART protocol (9600 baud, 8N1).
The project includes a simple UART implementation. Every time a character is received
over UART, the displayed characters shift left, and the new character appears to the
right. 5x7 matrix representations for printable ASCII characters are supported using
the font from Arduino Microview Library encoded in a character ROM. Non-printable
ASCII characters are shown as an empty rectangle. Each new character appears with
a color randomly chosen among a palette of 16 colors contained in a color ROM. A
pseudo-random number generator based on a linear-feedback shift register is used for
color selection.
The project is designed to demonstrate components that should be easily re-usable:

• WS2812B LED strip driver
• UART receiver and transmitter (8N1 only, no flow control)
• linear-feedback pseudo-random number generator
• character ROM
• cocotb tests for UART and WS2812B protocol

How to test

Basic setup:
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• Connect uo[0] to the input pin (DATA_IN) of a Pixie Chroma LED-matrix
display (two 5x7 WS2812B LED matrices). Ensure the VCC and GND pins are
connected to an adequate power source.

• Configure the input (e.g., using the DIP switches of the PCB) as follows: set
ui[0] and ui[1] to 0 to use one Pixie Chrome (i.e., two 5x7 LED matrices);
set ui[2] to 1 to enable UART echo; set ui[4] and ui[5] to 0 to disable
LED dimming, set ui[6] to 0 to select internal display refresh, and ui[7] to
0 to select random color selection.

• Connect the UART interface of the project (RX is ui[3], TX is uo[4]) to a
serial terminal or a UART-to-USB PMOD or adapter (e.g., the one provided by
the onboard RP2040 of the Tiny Tapeout PCB). Configure the serial interface
for 9600 baud, 8 bits, 1 start bit, no parity bit, and 1 stop bit (8N1), with no
hardware or software flow control.

• Open the terminal and type any characters: printable ASCII characters will
appear from the right-hand side on the LED matrix and shift left as more char-
acters are typed. Each character will appear with a different random color.
Non-printable ASCII characters are shown as an empty rectangle. When ui[2]
is set to 1, received characters are echoed on the serial connection.

To use more than one Pixie Chroma, chain additional displays after the first
one. This project supports up to 4 displays (e.g., 8 5x7 LED matrices). Set ui[1]
and ui[0] (e.g., by using the DIP switches of the PCB) to configure the number of
displays you are using: 00 for 1 display, 01 for 2 displays, 10 for 3 displays, and 11 for
4 displays (8 5x7 characters).
Dimming of the LED matrix is controlled by the ui[5] and ui[4] signals: 00 for
no dimming, 01, 10, and 11 for increasing dimming.
The color of characters is randomly chosen when ui[6] is low, and fixed when
‘ui[6] is high. The fixed color can be changed by sending over UART a non-printable
byte >= 128: the lower 4 bits of such value are stored and used as an index in the
color ROM (16 different colors).
Two display refresh modes are available, controlled by ui[6]. When ui[6] is low,
refresh is internally triggered at a frequency of about 75 Hz. When ui[6] is high,
refresh is triggered via UART, whenever a CR or LF character is received. For both
refresh modes, uo[1] is pulsed high on LED matrix refresh.

External hardware

• 1 to 4 Pixie Chroma WS2812B LED-matrix displays (chained if more than one
is used). An external power source for the LED matrix is recommended.
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• UART terminal or UART-to-USB adapter (PMOD or on-board via RP2040).
TX-only is sufficient.

Pinout

# Input Output Bidirectional
0 num chars selector 0 LED strip
1 num chars selector 1 LED strip latch
2 UART loopback option
3 UART RX
4 dimmer selector 0 UART TX
5 dimmer selector 1
6 internal/external refresh selector
7 random/fixed color selector UART RX valid
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DDS and DAC [227]

• Author: Meonwara
• Description: DDS with DAC and analogue output pin
• GitHub repository
• Analog project
• Mux address: 227
• Extra docs
• Clock: 40000000 Hz

How it works

Simplistic DDS (accumulator + sinewave lookup table) with resistive DAC to provide
analogue output. Board switches control the output frequency.

How to test With a 40MHz clock selected, change the input switches to some
binary value 1-255. Observe a rail to rail sinewave at the analogue pin ua[0].

External hardware DAC output resistance about 10kOhm. Could add an external
capacitor to ground to smooth / filter the waveform.

Pinout

# Input Output Bidirectional
0 ui[0] uo[0] uio[0]
1 ui[1] uo[1] uio[1]
2 ui[2] uo[2] uio[2]
3 ui[3] uo[3] uio[3]
4 ui[4] uo[4] uio[4]
5 ui[5] uo[5] uio[5]
6 ui[6] uo[6] uio[6]
7 ui[7] uo[7] uio[7]

Analog pins
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ua# analog# Description
0 4 ua[0]
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PLL Playground [229]

• Author: Sean Patrick O’Brien
• Description: Phase-Locked Loop and its parts
• GitHub repository
• Analog project
• Mux address: 229
• Extra docs
• Clock: 0 Hz

How it works

VCO The VCO is a current-starved ring oscillator with a variable number of stages.
The digital inputs s0 and s1 determine the number of stages. The analog vcont input
controls the frequency by adjusting the amount of current received by the inverters.

PFD The PFD takes two input signals and uses the difference in phase+frequency
to drive a charge pump.

How to test

VCO Apply a voltage between 1.0V and 1.8V to vcont (ua0) and observe the
oscillator output on uo0.

PFD Apply two reference signals to the inputs ui2 and ui3 and observe the voltage
change on vout (ua1).

External hardware

An osilloscope, function generator, and a benchtop power supply would be handy but
are not required.
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# Input Output Bidirectional

Pinout

# Input Output Bidirectional
0 vco0_s0 vco0_out
1 vco0_s1
2 pfd0_clk
3 pfd0_ref
4
5
6
7

Analog pins

ua# analog# Description
0 0 vco0_vcont
1 5 pfd0_vout
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Analog comparator [231]

• Author: Diego Carrera and Leonel Miranda
• Description: Analog comparator made by the MNEL team from USFQ.
• GitHub repository
• Analog project
• Mux address: 231
• Extra docs
• Clock: 0 Hz

How it works

Circuit that compares two voltages or currents and produces a binary output indicating
which input is greater.

How to test

To test a comparator, apply known input voltages and check if the output logic level
matches the expected result based on the input conditions. Vary the input voltages
across the entire range and verify the output transitions occur at the specified threshold
voltage.

External hardware

none

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7
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Analog pins

ua# analog# Description
0 1 analog input
1 3 analog reference
2 2 analog output
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Gilbert Mixer [233]

• Author: Kolos Koblasz
• Description: Gilbert Cell mixer for up and down conversion
• GitHub repository
• Analog project
• Mux address: 233
• Extra docs
• Clock: 100000000 Hz

How it works

This mixed signal circuit is a mixer. It can up or down convert a signal. The digital
control part can generate internal LO signal with different frequencies, but also can
pass an external Lo signal to the analog mixer.

How to test

Send analog signal to the input ports and measure the output ports. Also apply external
LO or use internal LO source.

External hardware

Since the user have to bias the in_n and in_p ports with 900-950mV and apply a
differential signal in the range of 20mV peak-to-peak I would say a custom interface
PCB is needed to use the mixer. TO DO later.

Pinout

# Input Output Bidirectional
0 ext_lo_en
1 ext_lo_n
2 ext_lo_p
3 int_lo_settings[0]
4 int_lo_settings[1]
5 int_lo_settings[2]
6
7
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Analog pins

ua# analog# Description
0 4 in_n
1 1 in_p
2 3 out_p
3 2 out_n
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Instrumentation Amplifier for Electrocardiogram Signal
Adquisition [239]

• Author: Rocha Judith Rocha-Torres
• Description: The amplifier gatters the electrical signal coming from the

skin/muscles over the heart
• GitHub repository
• Analog project
• Mux address: 239
• Extra docs
• Clock: 0 Hz

How it works

The designed instrumentation amplifier extracts very low differencial mode signal from
very noisy common mode signals by means of a three opamp array. The differential gain
can be changed by two digital bits called “Sel_26dB” and “Sel_42dB”, when Sel_26dB
= 0 Sel_42dB = 0 the differential gain is 0 dB, when Sel_26dB = 1 and Sel_42dB =
0 the differential gain is 26 dB, when Sel_26dB = 1 and Sel_42dB = 1 the differential
gain is 46 dB. In all cases the CMRR is 120 dB. The designed instrumentation amplifier
also included a sense circuits that helps to stabilize the analog ground.

How to test

1. Apply a DC level equals to vdd = 1.8V and vss = 0V.
2. Set the following bits to Sel_26dB = 0 and Sel_42dB = 0.
3. Apply a 1 mV differential signal into Vip and Vin analog ports using a balum.
4. Measure the differential responds at node Vo using Keysight-E5061B ENA vector

network analyzer, a 0 dB gain shall be expected.
5. Apply a 1 mV common signal into Vip and Vin analog ports.
6. Measure the common responds at node Vo using Keysight-E5061B ENA vector

network analyzer.
7. Performs the substraction of the differential gain and the common gain, the

CMRR responds should be obtined.
8. Set the following bits to Sel_26dB = 1 and Sel_42dB = 0.
9. Apply a 1 mV differential signal into Vip and Vin analog ports using a balum.
10. Measure the differential responds at node Vo using Keysight-E5061B ENA vector

network analyzer, a 26 dB gain shall be expected.
11. Apply a 1 mV common signal into Vip and Vin analog ports.
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12. Measure the common responds at node Vo using Keysight-E5061B ENA vector
network analyzer.

13. Performs the substraction of the differential gain and the common gain, the
CMRR responds should be obtined.

14. Set the following bits to Sel_26dB = 1 and Sel_42dB = 1.
15. Apply a 1 mV differential signal into Vip and Vin analog ports using a balum.
16. Measure the differential responds at node Vo using Keysight-E5061B ENA vector

network analyzer, a 42 dB gain shall be expected.
17. Apply a 1 mV common signal into Vip and Vin analog ports.
18. Measure the common responds at node Vo using Keysight-E5061B ENA vector

network analyzer.
19. Performs the substraction of the differential gain and the common gain, the

CMRR responds should be obtined.

External hardware

• 1 PCB
• 1 Balum
• 1 Keysight-E5061B ENA vector network analyzer
• 3 Female-Female BNC cable.
• 1 Female-Female-Female BNC T-adapter
• 1 Keithly 2231A power supply
• 1 Agilent 34401A digital multimeter

Pinout

# Input Output Bidirectional
0 Sel_42dB
1 Sel_26dB
2
3
4
5
6
7

Analog pins
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ua# analog# Description
0 5 vo
1 0 AGND
2 4 VirGND_FB
3 1 VirGND_Out
4 3 Vin
5 2 Vip
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router [256]

• Author: Leeja & Saranya
• Description: 1*3 router
• GitHub repository
• HDL project
• Mux address: 256
• Extra docs
• Clock: 10000000 Hz

How it works

routes the data to 3 directions

How to test

give input to data_in

External hardware

Pinout

# Input Output Bidirectional
0 data_in[0] data_out_0[0] data_out_2[0]
1 data_in[1] data_out_0[1] data_out_2[1]
2 data_in[2] data_out_0[2] data_out_2[2]
3 pkt_valid data_out_1[0] vld_out_0
4 read_enb_0 data_out_1[1] vld_out_1
5 read_enb_1 data_out_1[2] vld_out_2
6 read_enb_2 err
7 busy
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Conway’s Terminal [258]

• Author: Ciro Cattuto
• Description: A simulation of Conways’ Game of Life visualized to an ANSI

terminal over UART
• GitHub repository
• HDL project
• Mux address: 258
• Extra docs
• Clock: 24000000 Hz

How it works

This projects simulates Conway’s Game of Life in hardware on a small (32x16) grid with
periodic boundary conditions. At each time step, the output of the simulation is printed
to an ANSI serial terminal over a serial (UART) interface. The initial state of the board
is pseudo-random, generated using a linear-feedback shift register. Single characters
received over the serial interface are used to control the simulation, according to the
following table:

• &amp;lt;space&amp;gt;: start/stop simulation
• 0: randomize state
• 1: single-step the simulation

The UART interface of the project is exposed according the the Tiny Tapeout rec-
ommended pinout, with ui_in[3] used for RX signal and uo_out[4] for TX. The
UART is configured as 8N1 at 115200 baud, with no flow control.
VGA output of the simulation state is also exposed on the bidirectional pins, that are
all configured as outputs and wired to work with a TinyVGA PMOD.

How to test

Connected the UART interface of the project to any UART terminal, or to an UART-
to-USB PMOD or adapter, e.g., the one provided by the onboard RP2040 of the PCB.
Configure the serial interface for 8 bits, 1 start bit, no parity bit, 1 stop bit (8N1), with
no hardware or software flow control. Open the terminal and type any character: this
will bring up a welcome message explaining how to control the simulation.
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External hardware

UART terminal, or UART-to-USB adapter (PMOD or on-board via RP2040). Option-
ally, TinyVGA PMOD for VGA output.

Pinout

# Input Output Bidirectional
0 hsync
1 B[0]
2 G[0]
3 UART RX R[0]
4 UART TX vsync
5 B[1]
6 G[1]
7 R[1]
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Zilog Z80 [259]

• Author: ReJ aka Renaldas Zioma
• Description: Z80 open-source silicon. Goal is to become a silicon proven, pin

compatible, open-source replacement for classic Z80.
• GitHub repository
• HDL project
• Mux address: 259
• Extra docs
• Clock: 16000000 Hz

How it works

On April 15 of 2024 Zilog has announced End-of-Life for Z80, one of the most famous 8-
bit CPUs of all time. It is a time for open-source and hardware preservation community
to step in with a Free and Open Source Silicon (FOSS) replacement for Zilog Z80.
The implementation is based around Guy Hutchison’s TV80 Verilog core.
The future work

• Add thorough instruction (including ‘illegal’) execution tests ZEXALL to test-
bench

• Compare different implementations: Verilog core A-Z80, Netlist based
Z80Explorer

• Create gate-level layouts that would resemble the original Z80 layout. Zilog
designed Z80 by manually placing each transistor by hand.

• Tapeout QFN44 package
• Tapeout DIP40 package

Z80 technical capabilities

• nMOS original frequency 4MHz. CMOS frequency up to 20 MHz. This tapeout
on 130 nm is expected to support frequency up to 50 MHz.

• 158 instructions including support for Intel 8080A instruction set as a subset.
• Two sets of 6 general-purpose reigsters which may be used as either 8-bit or

16-bit register pairs.
• One maskable and one non-maskable interrupt.
• Instruction set derived from Datapoint 2200, Intel 8008 and Intel 8080A.

Z80 registers

• AF: 8-bit accumulator (A) and flag bits (F)
• BC: 16-bit data/address register or two 8-bit registers
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• DE: 16-bit data/address register or two 8-bit registers
• HL: 16-bit accumulator/address register or two 8-bit registers
• SP: stack pointer, 16 bits
• PC: program counter, 16 bits
• IX: 16-bit index or base register for 8-bit immediate offsets
• IY: 16-bit index or base register for 8-bit immediate offsets
• I: interrupt vector base register, 8 bits
• R: DRAM refresh counter, 8 bits (msb does not count)
• AF': alternate (or shadow) accumulator and flags (toggled in and out with EX

AF, AF' )
• BC', DE' and HL': alternate (or shadow) registers (toggled in and out with EXX)

Z80 Pinout

,---------.__.---------.
<-- A11 |1 40| A10 -->
<-- A12 |2 39| A9 -->
<-- A13 |3 Z80 CPU 38| A8 -->
<-- A14 |4 37| A7 -->
<-- A15 |5 36| A6 -->
--> CLK |6 35| A5 -->
<-> D4 |7 34| A4 -->
<-> D3 |8 33| A3 -->
<-> D5 |9 32| A2 -->
<-> D6 |10 31| A1 -->

VCC |11 30| A0 -->
<-> D2 |12 29| GND
<-> D7 |13 28| /RFSH -->
<-> D0 |14 27| /M1 -->
<-> D1 |15 26| /RESET <--
--> /INT |16 25| /BUSRQ <--
--> /NMI |17 24| /WAIT <--
<-- /HALT |18 23| /BUSAK -->
<-- /MREQ |19 22| /WR -->
<-- /IORQ |20 21| /RD -->

`----------------------'

How to test

Hold all bidirectional pins (Data bus) low to make CPU execute NOP instruction.
NOP instruction opcode is 0. Hold all input pins high to disable interrupts and signal
that data bus is ready.
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Every 4th cycle 8-bit value on output pins (Address bus low 8-bit) should
monotonously increase.

Timing diagram, input pins

Z80CLK____ ____ ____ ____ ____ ____
__/ \____/ \____/ \____/ \____/ \____/ `____ ...
| | | | | |
| | | | | |

/RESET___________________________________________________________
__/

/WAIT ___________________________________________________________
__/

/INT ___________________________________________________________
__/

/NMI ___________________________________________________________
__/

/BUSRQ___________________________________________________________
__/

D7..D0 NOP NOP NOP NOP NOP
__ XXXXXXXXX ___#00___ ___#00___ ___#00___ ___#00___ ___#00___

Expected signals on output pins
/M1 _________ ____________________

\__________________/ \_________
/MREQ ___________________ ______________________________

\________/
/RD ___________________ ______________________________

\________/
A0..A7

__ XXXXXXXXX ___#00___ ___#00___ XXXXXXXXX XXXXXXXXX ___#01___

External hardware

Bus de-multiplexor, external memory, 8-bit computer such as ZX Spectrum.
Alternatively the RP2040 on the TinyTapeout test PCB can be used to simulate RAM
and I/O.
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Pinout

# Input Output Bidirectional
0 /WAIT /M1, A0, A8 D0
1 /INT /MREQ, A1, A9 D1
2 /NMI /IORQ, A2, A10 D2
3 /BUSRQ /RD, A3, A11 D3
4 /WR, A4, A12 D4
5 /RFSH, A5, A13 D5
6 /HALT, A6, A14 D6
7 /BUSAK, A7, A15 D7
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VGA Perlin Noise [260]

• Author: Uri Shaked
• Description: Simple animated perlin noise for TinyVGA PMod
• GitHub repository
• HDL project
• Mux address: 260
• Extra docs
• Clock: 31500000 Hz

How it works

Generates an animated perlin noise pattern on the screen. The perlin noise code was
created with the help of the Tiny Tapeout AI Assist GPT.

How to test

Connect to a VGA monitor. Change pattern_sel (ui_in[0]) to choose between two
different patterns.

External hardware

TinyVGA PMOD

Pinout

# Input Output Bidirectional
0 pattern_sel R1
1 G1
2 B1
3 VSync
4 R0
5 G0
6 B0
7 HSync
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4-bit R2R DAC [261]

• Author: Vishal Bingi
• Description: It is a 4-bit R2R DAC with a sawtooth waveform driver
• GitHub repository
• Analog project
• Mux address: 261
• Extra docs
• Clock: 0 Hz

How it works

It is a simple 4-bit R2R DAC, which is driven externally by an openlane generated
sawtooth waveform generator.

How to test

Drive externally: Set the “external data” input high to provide the DAC with external
data. Then drive the 4 inputs and observe the analog output.
Drive with internal sawtooth wave generator: Set the “external data” input low to
enable the sawtooth generator. A sawtooth wave should be seen on the analog output.
To change the frequency of the sawtooth wave, set the inputs and then raise the “load
divider” input.

External hardware

A multimeter to measure the output voltage on analog pin 0.

Pinout

# Input Output Bidirectional
0 bit 0 external data
1 bit 1 load divider
2 bit 2
3 bit 3
4
5
6
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# Input Output Bidirectional
7

Analog pins

ua# analog# Description
0 7 DAC output
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MOS Bandgap [263]

• Author: Matt Venn
• Description: bandgap using only MOSFETs
• GitHub repository
• Analog project
• Mux address: 263
• Extra docs
• Clock: 0 Hz

How it works

Read the paper here and see the DTMOS variant below.

Circuit

DTMOS variant connects the lower PMOS body to VSS instead of VDD.

Simulation

MOS

• Simulated output is 0.714 to 0.716v across 10 to 120 degrees C.
• Simulated output is 0.6 to 0.8v across 1.6 to 2v VDD.

DTMOS

• Simulated output is 0.515 to 0.510v across 10 to 120 degrees C.
• Simulated output is 0.3 to 0.6v across 1.6 to 2v VDD.

How to test

MOS Connect a multimeter to analog output 0. It should measure around 0.7v and
remain constant with temperature.

DTMOS Connect a multimeter to analog output 0. It should measure around 0.5v
and remain constant with temperature.
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Figure 15: bandgap circuit

Figure 16: opamp buffer
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Figure 17: sim
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Figure 18: sim
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External hardware

Multimeter, hot air gun to heat the chip

References

• A sky130 reference bandgap with results
• DTMOS varient

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7

Analog pins

ua# analog# Description
0 9 bandgap
1 8 bandgap_dtmos
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VGA Checkers [264]

• Author: ReJ aka Renaldas Zioma
• Description: VGA
• GitHub repository
• HDL project
• Mux address: 264
• Extra docs
• Clock: 25200000 Hz

How it works

It generates patterns on VGA screen.

How to test

Connect to VGA monitor.

External hardware

TinyTapeout VGA PMOD, VGA monitor

Pinout

# Input Output Bidirectional
0 R
1 G
2 B
3 vsync
4 R
5 G
6 B
7 hsync
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Analog buffer test [265]

• Author: Aron Dennen
• Description: Double inverter project from Matt’s analog course
• GitHub repository
• Analog project
• Mux address: 265
• Extra docs
• Clock: 0 Hz

How it works

This is the double inverter project from Matt’s analog course, it’s two inverters (one
big and one small) connected to form a buffer

How to test

Analog input is ua[1], output is ua[0]

External hardware

none

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7

Analog pins
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ua# analog# Description
0 7 analog output
1 9 analog input
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Current Mode Trigger [267]

• Author: Alfiero Leoni
• Description: Hysteresis Trigger working with input currents
• GitHub repository
• Analog project
• Mux address: 267
• Extra docs
• Clock: 0 Hz

How it works

The current mode trigger is a Schmitt trigger, therefore with hysteresis, that takes
currents as input instead of voltages and produces a digital output that rises from 0 to
1 when the input current overcomes the first threshold and falls from 1 to 0 when the
current falls below the second threshold. The hysteresis thresholds are internally set
with reference currents. In particular, the rising edge current threshold is fixed, while
the falling edge trigger can be adjusted by means of an external voltage reference.
The current mode trigger is useful to detect signals coming from devices that work in
current mode, such as photodiodes, SPADs, and Silicon photomultipliers. The latter
represents an emerging technology for LIDAR systems, medical diagnosis, and particle
physics detection systems, where even a single photon can be detected and converted
into a photocurrent. In this sense, the current mode trigger can quickly detect a rare
event of specific particle detection, as in the experiments for Dark Matter research.

How to test

The trigger can be tested with current input signal (such as a triangular wave) and the
output should be monitored to look for digital transitions. A reference voltage of 0.9
V should be applied to teh vref pin, while the falling threshould can be set by applying
a voltage between 1.45 and 1.55V to the vgf pin.

External hardware

A Current signal generator is needed, such as the keithley 2450 Sourcemeter or any
equivalent SMU, to produce the input signal. As an alternative, a current could be
generated by means of a voltage source with a series resistance. In any case, the input
current range should be around tens of microAmperes. A tunable Voltage supply is
needed to produce the voltage references and a fast oscilloscope can be used to monitor
the trigger output
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Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7

Analog pins

ua# analog# Description
0 6 input
1 7 input
2 9 output
3 8 input
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Dickson Charge Pump [269]

• Author: Uri Shaked
• Description: Pumps the input voltage up to ~5.4V
• GitHub repository
• Analog project
• Mux address: 269
• Extra docs
• Clock: 2000000 Hz

How it works

A 3-stage dickson charge pump. The output voltage is Vout = 4*(VPWR - Vths)
= ~5.44 V where VPWR is the digital input voltage (1.8 V), and Vths is the threshold
voltage of the LVS NMOS (nominal 0.44 V when width=7, length=8).

How to test

Apply a clock signal of 2 MHz to the clk input. In TT07, the analog pin voltage is
limited to VDDIO/VDDA (usually 3.3 V), so the output voltage will be divided by two.
You can measure the divided output voltage at the ua[0] (vout_div) pin.

Simulation results

Post layout simulation showing the output voltage x1.vout and the divided output
voltage on ta ua[0] pin. The output voltage stabilizes at ~5.0 V, and the divided
output voltage at ~2.5 V. The current draw is about 357 nA.
The following graph shows the input clock, the intermediate voltages at the output of
each stage, the output voltage, and the divided voltage as they rise during the first 10
us of operation.

Silicon measurements

The output voltage on ua[0] was measured with a digital multimeter that has a
7.8MΩ input impedance, at various clock frequencies. The following table summarizes
the results:
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Figure 19: output voltage and divided voltage
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Figure 20: output voltage and intermediate voltages

Input Frequency (KHz) ua[0] Voltage Charge Pump Voltage *
0 0.065 0.130
10 0.236 0.472
50 0.643 1.286
100 1.006 2.012
250 1.524 3.048
500 1.862 3.724
1000 2.091 4.182
2000 2.213 4.426
5000 2.271 4.542
7500 2.276 4.552
10000 2.274 4.548
15000 2.265 4.530
20000 2.254 4.508
40000 2.190 4.380
62000 2.086 4.172
100000 1.768 3.536

• The charge pump voltage is the ua[0] voltage measurement multiplied by 2. This
is because the analog pin voltage is limited to 3.3 V, so the charge pump voltage
is divided by 2.
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The following graph shows the output voltage as a function of the input frequency:

Figure 21: output voltage vs frequency

Overall, it seems that the charge pump works as expected, with the output voltage
peaking at around 4.55 V when the input frequency is in the 5-10 MHz range.

Project layout

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7

Analog pins
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Figure 22: Project layout

ua# analog# Description
0 8 vout_div
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DDA solver for van der Pol oscillator [270]

• Author: Adonai Cruz
• Description: Digital differential analyzer (DDA) solver for the van der Pol oscil-

lator using posit (16,1)
• GitHub repository
• HDL project
• Mux address: 270
• Extra docs
• Clock: 0 Hz

How it works

The DDA core expects to receive via SPI port the parameter for the van der Pol
oscillator encoded in posit (16,1) padded with 2 zero bytes to compose a 32-bit word.
When an SPI message is started by the master (SPI CS pin low) the integrators are
clocked and solutions for both state variables, X and Y, are transmitted back serially
via SPI as a single 32-bit word for each time step with the 16 bits MSB encoding
X and the 16 bits 16 bits LSB encoding Y. Simulation can be stopped by stopping
communication via SPI.

How to test

In order to test chip reset the chip (RST_N active low) and start a duplex SPI com-
munication transmitting 32-bit word with the van der Pol parameter 𝜇 encoded in
posit (16,1) using the 16 bits LSB of the 32-bit word (padded with zeros). A con-
troller software to interface with the chip via FTDI FT232H using SPI is available at
https://github.com/adonairc/tt07-dda-van-der-pol

External hardware

This projects uses the top row pins of PMOD for SPI:
uio[0] - CS
uio[1] - MOSI
uio[2] - MISO
uio[3] - SCK
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Figure 23: DDA solutions of the van der Pol oscillator showing the evolution of the
limit cycle for different values of 𝜇

Pinout

# Input Output Bidirectional
0 SPI CS
1 SPI MOSI
2 SPI MISO
3 SPI CLK
4
5
6
7
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Analog Test Circuit ITS 2 [271]

• Author: A. N Irfansyah, Raditya Eka, Yohanes Stefanus
• Description: PLL parts (VCO and phase detector)
• GitHub repository
• Analog project
• Mux address: 271
• Extra docs
• Clock: 0 Hz

How it works

This tinytapeout submission consists of:

1. A VCO based on transmission gates with additional on-chip capacitors to further
linearize the response.

2. A phase detector and VCO to form parts of a PLL.

How to test

Pinouts:
Analog pins:
ua[0] - VCO #1 output
ua[1] - VCO#1 VCONT- / Phase Detector (PLL) ref
ua[2] - VCO#1 VCONT+ / Phase Detector (PLL) input / PLL feedback
ua[3] - PLL VCO output
ua[4] - PLL Filter (n)
ua[5] - PLL Filter (p)

External hardware

To test, typical experimental setup to test pll, or vco, would be required.

Pinout
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# Input Output Bidirectional
0
1
2
3
4
5
6
7

Analog pins

ua# analog# Description
0 11 vco1_out
1 6 vco1_in-
2 10 vco1_in+
3 7 pllvco_out
4 9 pllfilter_n
5 8 pllfilter_p
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VGA player [320]

• Author: shadow1229
• Description: 80 x 60 binary pixel video player with PCM/PWM audio playing

feature
• GitHub repository
• HDL project
• Mux address: 320
• Extra docs
• Clock: 31500000 Hz

How it works

This project plays binary-colored 80px x 60px @ 24fps video recorded in SPI NOR flash,
playing with 640px x 480px @72Hz VGA. Additionally, the project plays PCM or PWM
Audio recorded in same flash chip. The input chooses type of audio(PCM/PWM), type
of VGA PMOD, and the color of the video. Also, uio[7:2] is used for SPI communication
and uio[1:0] is used for audio output. Finally, output is used as video output.

How to test

Hook up a VGA monitor to the outputs and provide a clock at 31.5 MHz. choose
the type of audio output with input[0], and choose the type of VGA PMOD with the
input[1]. color of pixels which turned off (which data of the pixel is 0) is selected with
inputs[4:2] (2:R, 3:G, 4:B), and color of pixels which turned on (which data of the pixel
is 1) is selected with inputs[7:5] (5:R, 6:G, 7:B).
Data structure of SPI flash chip:

1. Data address starts with 0x000000.
2. Each frame takes 65 x 128 bit, where each 128 bits are used for video/audio data

for each line(640px x 8px). 2.1. Since the video uses 24fps, while the VGA uses
72Hz, each frame is shown three times in the VGA. 2.2. Thus, each line(=128
bits) are uses as following way: line[127:0] = {audio_0[15:0], audio_1[15:0],
audio_2[15:0], video[79:0]}, where audio_i is audio data for the line in the
(i+1)th iteration. 2.3 The first 5 lines in the frame are used for porch and vsync,
which means video data in the line is ignored. However, audio data in the line
still valid. Also, this is why each frame uses 65 x 128 bit and not 60 x 128 bit.
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3. Due to limitation of data, maximum amount of 16131 frames will be sup-
ported. reaching 16132th frame will restart the project. (check overflow
in tt_vga_player.v) For more infomation, check bit_dump_8060_wav.py in
bad_apple folder.

External hardware

Audio - For PCM, using piezo on uio[1:0] would work. For PWM, external DAC like
LTC2644 chip is needed (not tested though) Set input[0] low to use 74880Hz 1-bit
PCM mode and high to 9360Hz 8-bit PWM mode.
VGA PMOD - you can use one of these VGA PMODs:

• https://github.com/mole99/tiny-vga
• https://github.com/TinyTapeout/tt-vga-clock-pmod Set input[1] low to use

tiny-vga and high to use vga-clock

SPI flash (W25Q128JVSSIQ)

• https://www.adafruit.com/product/5634

Pinout

# Input Output Bidirectional
0 74880Hz 1-bit PCM(0) / 9360Hz 8-bit PWM(1) hsync / R1 sound n
1 Tiny VGA(0) / VGA clock PMOD(1) vsync / G1 sound p
2 color_off(0) - R B0 / B1 spi I/O 0 (W25Q128JVSSIQ NOR SPI flash chip)
3 color_off(0) - G B1 / VS spi I/O 1
4 color_off(0) - B G0 / R0 spi I/O 2
5 color_on(1) - R G1 / G0 spi I/O 3
6 color_on(1) - G R0 / B0 spi flash clock
7 color_on(1) - B R1 / HS spi chip select
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Explorer [322]

• Author: sylefeb
• Description: none
• GitHub repository
• HDL project
• Mux address: 322
• Extra docs
• Clock: 33000000 Hz

How it works

This design performs a 2D ‘voxel’ raycasting of a terrain, implementing in actual hard-
ware the 1992 Voxel Space algorithm used in the Comanche game.
The chip is designed in Silice, the source code is in the main repo.

Figure 24: A terrain

How to test

A specific data file containing terrain data has to be uploaded to SPI-ram before this
can run. The plan is to do that from the RP2040 of the PCB.

147

https://github.com/sylefeb/tt07-explorer
https://en.wikipedia.org/wiki/Voxel_Space
https://github.com/sylefeb/Silice/
https://github.com/sylefeb/Silice/tree/wip/projects/qspi_terrain


Another way to test is on a IceStick HX1K. Instructions coming soon!

External hardware

• QSPI PSRAM PMOD from machdyne
• 240x320 ST7789V screen

Pinout

# Input Output Bidirectional
0 Button 0 QSPI ram, csn (output)
1 Button 1 SPI screen, clock QSPI ram, io0 (bidir)
2 Button 2 SPI screen, csn QSPI ram, io1 (bidir)
3 Button 3 SPI screen, dc QSPI ram, clock (output)
4 SPI screen, mosi QSPI ram, io2 (bidir)
5 SPI screen, resn QSPI ram, io3 (bidir)
6 QSPI ram, bank select 0 (output)
7 QSPI ram, bank select 1 (output)
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Real Time Motor Controller [324]

• Author: J. R. Petrus
• Description: Controls a stepper motor with precise timing between steps.
• GitHub repository
• HDL project
• Mux address: 324
• Extra docs
• Clock: 50000000 Hz

Introduction

The Real Time Motor Controller (RTMC) is designed to control a stepper motor such
as the SEQ_28BYJ_48. The step_table is programmed with the coil positions for the
motor, and each step advances the table_idx to the next coil position. The size of
the step is programmable via step_size. The step_size may be positive or negative.
The example motor supports step_size in [-2, -1, 1, 2]. The table_last set the limit
for the table_idx before resetting to 0. It would be set to 7 for the example motor if
abs(step_size) == 1 or 6 if abs(step_size) == 2.
The step control increments the table_idx + step_size. The run control continously
increments table_idx, with a pause of step_delay cycles between increments.

SPI Peripheral Protocol

Control of the RTMC is accomplished via its SPI peripheral interface and simple
read/write protocol.
SPI must be byte-oriented and send most significant bit first.
SPI mode must be CPOL=0, CPHA=0.
1-byte OPCODE: NOP=0, RD=1, WR=2.
1-byte ADDRESS: Select the register
2-byte DATA: Transfer in two bytes, MSB first.
1-byte RESULT: BUSY=0, ACK=1, ACK_DATA=2
The SPI peripheral should operate at up to 1/2 the core clock frequency. My target is
50 MHz core and 25 MHz SCK.
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Write Operation Tx: WR, ADDR, DATA0, DATA1
Rx: Loop reading 1-byte RESULT until ACK seen.

Read Operation Tx: RD, ADDR
Rx: Loop reading 1-byte RESULT until ACK_DATA seen.
Rx: DATA0, DATA1

Memory Map

16-bit
Register Offset AccessDescription
id 0x00 R ID: {version, idcode}
gpio 0x01 RW GPIO: {mc_oe[7:0], gpo[3:0], gpi[3:0]}
step_ctrl 0x02 RW Step Control: {run, step, reserved[4:0],

table_last[3:0], step_size[4:0]}
step_stat 0x03 R Step Status: {reserved[7”0], state[3:0],

table_idx[3:0]}
step_delay0 0x04 RW Step Delay: Most significant 16 bits, unsigned.
step_delay1 0x05 RW Step Delay: Least significant 16 bits, unsigned.
step_count0 0x06 R,

WC
Step Count: Most significant 16 bits, signed. WC =
write-to-clear

step_count1 0x07 R,
WC

Step Count: Least significant 16 bits, signed.

delay_count0 0x08 R,
WC

Delay Count: Most significant 16 bits, unsigned.

delay_count1 0x09 R,
WC

Delay Count: Least significant 16 bits, unsigned.

step_table[0] 0x10 RW Motor State 0: 8-bits mapped to uio[7:0].
… …
step_table[15]0x1F RW Motor State 15: 8-bits mapped to uio[7:0].

Pinout

Inputs ui[0]: General Purpose Input gpi[0]
ui[1]: General Purpose Input gpi[1]
ui[2]: General Purpose Input gpi[2]
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ui[3]: General Purpose Input gpi[3]
ui[4]: SPI0.cs
ui[5]: SPI0.sck
ui[6]: SPI0.tx
ui[7]: Connected to uo[6]

Outputs uo[0]: General Purpose Output gpo[0]
uo[1]: General Purpose Output gpo[1]
uo[2]: General Purpose Output gpo[2]
uo[3]: General Purpose Output gpo[3]
uo[4]: Connected to ^uio_in
uo[5]: Connected to ui[7]
uo[6]: Connected to ena
uo[7]: SPI0.rx

Bidirectional pins uio[0]: Motor Control mc[0]
uio[1]: Motor Control mc[1]
uio[2]: Motor Control mc[2]
uio[3]: Motor Control mc[3]
uio[4]: Motor Control mc[4]
uio[5]: Motor Control mc[5]
uio[6]: Motor Control mc[6]
uio[7]: Motor Control mc[7]

How to test

Connect up the external hardware, program the registers, and write a 1 to the run bit.
MicroPython code in the works, but not until the chips come back.
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External hardware

Assuming use of the TT Demo board.
Utilize the RP2040 SPI0 in controller mode to communicate with the RTMC.
Connect uio[3:0] to a SEQ_28BYJ_48 motor + ULN2003 Driver.
uio[7:4] could optionally be connected to a second motor driven in tandem.

Pinout

# Input Output Bidirectional
0 General

Purpose
Input gpi[0]

General
Purpose
Output
gpo[0]

Motor Control mc[0]

1 General
Purpose
Input gpi[1]

General
Purpose
Output
gpo[1]

Motor Control mc[1]

2 General
Purpose
Input gpi[2]

General
Purpose
Output
gpo[2]

Motor Control mc[2]

3 General
Purpose
Input gpi[3]

General
Purpose
Output
gpo[3]

Motor Control mc[3]

4 SPI0.cs Connected to
^uio_in

Motor Control mc[4]

5 SPI0.sck Connected to
ui[7]

Motor Control mc[5]

6 SPI0.tx Connected to
ena

Motor Control mc[6]

7 Connected to
uo[6]

SPI0.rx Motor Control mc[7]
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QOA Decoder [326]

• Author: Nicholas West
• Description: A decoder for the QOA audio format.
• GitHub repository
• HDL project
• Mux address: 326
• Extra docs
• Clock: 30303030 Hz

How it works

This chip is for decoding the QOA audio format, which is designed to be a simple, fast
format for 16 bit PCM audio data. The specification is one page, and is availible at
qoaformat.org. The chip communicates through an SPI slave mode 0 interface to a
controller chip, which handles the file interface and all adjecent functions. The chip
only handles decoding samples into their 16 bit uncompressed versions.

Block diagram The chip itself consists of two main parts, an SPI interface for com-
munication, and the decoder itself. The decoder contains a parser for the SPI data,
the LMS predictor/updater at the heart of the QOA format, and the history/weights
for the LMS predictor. For die area savings, we use a sequential multiplier in the LMS
predictor, and save on the expensive dequantizing computations by using a precalcu-
lated table from the reference code on Github. We save space further by only saving
half the values, since every odd index is just the negative counterpart of the previous
value, and we can just flip the sign.

The decoder itself The decoder has three main parts, registers for the LMS history
and weights, a parser for handling SPI data, and the QOA decoder in the parser.
First off, whenever data_rdy is pulsed, the main state machine in the parser decodes
spi_in into either a hist/weights fill instruction, a sample decode instruction, or a
sample send instruction.

• If the instruction is a hist/weights fill, it takes the next 2 bytes (i.e. 2 data_rdy
pulses) and puts them into the history or weights registers specified by the index
in the instruction.

• If the instruction is a sample send request, the parser will set the spi_out
register to the upper bit of sample, wait for it to transmit (8 SPI clock cycles,
so a data_rdy pulse), then set it to the low byte and finish the transmission.
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Figure 25: A diagram showing the internal structure of the chip
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Figure 26: A block diagram of the decoder itself, showing the components and how
they are linked
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• Finally, if it is a sample decode instruction, it will iteratively multiply the history
and weights values using a sequential multiplier, adding them to an accumulator.
It then uses combinational logic and the ROM to calculate the final sample. This
is then used to update history, weights, and is sent if a sample send request is
recived.

How to test

Connect the chip to a mode 0 SPI master, with a clock rate at least 6x slower than the
chip clock. Then, fill the LMS history and weights, by using the following instruction:
| bit[7] | bit[6] | bit[5] | bit[4] | bit[3] | bit[2] | bit[1] | bit[0] | | —— | —— | —— |
—— | —— | —— | —— | —— | | 0 | | | | Adress[1] | Adress[0] | BankSel | 0 |
BankSel chooses between history and weights, 1 for weights and 0 for history. Adress
is just which of the 4 values to fill, as specified by QOA. The next two bytes are the
data to fill the history or weights with, MSB first. If you want to then send a sample,
the following instruction is used: | bit[7] | bit[6] | bit[5] | bit[4] | bit[3] | bit[2] | bit[1]
| bit[0] | | —— | —— | —— | —— | —— | —— | —— | —— | | sf_quant[3] |
sf_quant[2] | sf_quant[1] | sf_quant[0] | qr[2] | qr[1] | qr[0] | 1 |
qr and sf_quant are exactly as they are in the QOA specification, with this chip
decoding sample by sample.
After sending the sample, wait 40 chip clock cycles, then request the sample with the
following instruction: | bit[7] | bit[6] | bit[5] | bit[4] | bit[3] | bit[2] | bit[1] | bit[0] | |
—— | —— | —— | —— | —— | —— | —— | —— | | 1 | | | | | | | 0 |
Once you send that instruction, the next two bytes sent by the chip will be the decoded
sample, MSB first. While you are reciving the sample, you can send any data, but it
will be ignored. The chip will send unknown data when the instruction is not used.
On the testbench, it can calculate one sample every 5680ns, SPI transfer included, at
a clock speed of 50MHz and an SPI frequency of 8MHz, which should be achivable
on hardware. This can likely be improved by using a custom/different approach to
SPI, since my test bench leaves relatively long periods of inactivity. The current speed
results in a max of 176,056 samples per second, more than enough for real time audio
streaming.
Eventually I will get arould to writing code for the interface on my Github, please look
back there for updates.
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External hardware

Since this is a co-processor for the QOA format, a seperate microcontroller is required
to interface with it. Since I am used to the RP2040 and it is included on the Tiny
Tapeout PCB, I will likely provide software for it on my Github in the future. I plan
to take a streaming approach with this software, so a PC supporting USB will also be
needed to send, store, and convert the files.

Pinout

# Input Output Bidirectional
0 CS
1 MOSI
2 MISO
3 SCK
4
5
6
7
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underserved [328]

• Author: Olof Kindgren
• Description: The award-winning SERV, the world’s smallest RISC-V CPU. Now

on Tiny Tapeout!
• GitHub repository
• HDL project
• Mux address: 328
• Extra docs
• Clock: 20000000 Hz

How it works

When the system boots up, it will start accessing the SPI bus to set up a connected
SPI Flash memory in XIP mode and start executing instructions from there. The GPIO
can be used to output data, e.g. as a bitbanged UART.

Figure 27: Environment

How to test

The testbench contains a model of an SPI Flash. A program in Verilog Hex format
can be preloaded into the Flash model.
Underserved can easiest be run locally using FuseSoC.
Install FuseSoC

pip install fusesoc

Create and enter a new workspace
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mkdir workspace && cd workspace

Register underserved as a library in the workspace

fusesoc library add underserved /path/to/prince

…if repo is available locally or… …to get the upstream repo

fusesoc library add underserved https://github.com/olofk/underserved

Show available cores in workspace (probally just underserved for now if you haven’t
added other libraries)

fusesoc core list

Show info about underserved

fusesoc core show underserved

Run linting (static code checks) using Verilator

fusesoc run --target=lint underserved

Run underserved testbench

fusesoc run --target=sim underserved

Run with modelsim instead of default tool (icarus)

fusesoc run --target=sim underserved --tool=modelsim

External hardware

Expects a compatible SPI Flash. The XIP controller was stolen from PicoSoC which
also contains some info about compatible SPI Flash components.
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Pinout

# Input Output Bidirectional
0 gpio0
1 gpio1
2 gpio2
3 gpio3
4 gpio4
5 sclk
6 cs_n
7 mosi miso
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co processor for precision farming [330]

• Author: MITS ECE
• Description: The processor will detect the deviation in sensor data and the sensor

fault
• GitHub repository
• HDL project
• Mux address: 330
• Extra docs
• Clock: 0 Hz

How it works

The processor will read the datas from the four sensors sequentially and analyse whether
any deviation has been occoured with respect to the previous data and provide a
warning signal also it continuously checks the senor datas and identify any fault has
been occured and provides another warning signal with a signal providing the sensor
identification.

How to test

If the sensor identifier data is 00 which means it is sensor1 and input data is 10000001
and this compared with the previously stored data which may be 10000100 for example
,then there is a deviation and the processor will provide output as 1 and the bidirectional
as 00.

External hardware

8 bit ADC is needed to convert the sensor data

Pinout

# Input Output Bidirectional
0 Input data from the sensors Deviation detector Sensor identifier
1 Input data from the sensors Falut warning Sensor identifier
2 Input data from the sensors Falut warning
3 Input data from the sensors Falut warning
4 Input data from the sensors Sensor identifier
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# Input Output Bidirectional
5 Input data from the sensors Sensor identifier
6 Input data from the sensors Sensor identifier
7 Input data from the sensors Sensor identifier
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Delay Line Time Multiplexed NAND Gate [332]

• Author: Frans Skarman (TheZoq2)
• Description: A time multiplexed nand gate powered by a giant shift reigster
• GitHub repository
• HDL project
• Mux address: 332
• Extra docs
• Clock: 0 Hz

How it works

This is a single NAND gate that is fed its inputs from, and writes its results to a giant
shift register. With this, we can achieve the ultimate time/space tradeoff, a single
nand gate able to emulate quite complex logic.

How to test

Undecided, we are working on a yosys backend to generate “programs” for this which
you can then run by driving the inputs

External hardware

You need an FPGA or similar to drive the inputs at high enough precision to feed
“instructions” to the device.

Pinout

# Input Output Bidirectional
0 TODO TODO
1 TODO TODO
2 TODO TODO
3 TODO TODO
4 TODO TODO
5 TODO TODO
6 TODO TODO
7 TODO TODO
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Neural Network dinamic [334]

• Author: Kevin Gajardo, David Tapia
• Description: One line description
• GitHub repository
• HDL project
• Mux address: 334
• Extra docs
• Clock: 66000000 Hz

How it works

The project consists of a neural network of 4 (parameterizable and reusable) neurons,
thanks to control signals.
From an 8-bit input, the inputs will be introduced into a reusable neural network of
4 neurons. Through a shift register, 4 different inputs are captured. Furthermore,
thanks to a state machine, the parameters associated with each neuron are obtained:
4 weights and 1 bias, in total 20 parameters per network layer.
State changes are made using a binary signal, where the input data and neuron param-
eters are received and then the neurons are fed back their outputs to the next layer.
To observe the network’s output one need to bring the state machine to the first state
using the pin “Finished”, then, in the next 4 clock cycles the outputs of the neurons
3 to 0 will be shown on the output at the same time some new external inputs can be
introduced to a new neural network without the need for a reset

State Description
State_IN The inputs of the neurons are found

entering and the outputs are shown.
State_BUFF Neuron inputs are maintained while

network parameters are entered
State_OUT Feedback of neurons with their previous

result

Below is the structure for inputting the neurons entries:
Node A corresponds to the output of the state machine, and node B to the parameters
for each neuron.
Regarding the parameters, they are fed in sequence, from neuron 3 to neuron 0. And
the weights correspond to powers of 2, so, if w00=3, the input0 to the neuron0 will
be multiplied by 2³.
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Figure 28: ChipUSM1 (1)
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Figure 29: ChipUSM2

How to test

The input signals must be coordinated to achieve correct testing, where the following
order must be followed to enter the inputs and parameters considering multiple layers.
in_3 > in_2 > in_1 > in_0 > b3 > w33 > w32 > w31 > w30 > b2 > w23 > w22 >
w21 > w20 > b1 > w13 > w12 > w11 > w10 > b0 > w03 > w02 > w01 > w00
Each entry must be maintained for 2 clk, to be captured on the rising edge and thus
there is displacement with the shift registers.

External hardware

An FPGA is recomended in to perform the tests and feed the weights correctly. Also,
the weights must be trained first in some other system, e.g. in a pc using Python or
Matlab.

Pinout

# Input Output Bidirectional
0 data_in[0] data_out[0] selector[0]
1 data_in[1] data_out[1] selector[1]
2 data_in[2] data_out[2] selector_out[0]
3 data_in[3] data_out[3] selector_out[1]
4 data_in[4] data_out[4]
5 data_in[5] data_out[5]
6 data_in[6] data_out[6]
7 data_in[7] data_out[7]
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Chess [452]

• Author: Hannah Ravensloft
• Description: chess move generator
• GitHub repository
• HDL project
• Mux address: 452
• Extra docs
• Clock: 0 Hz

A Reimplementation of Belle’s Move Generator

In honour of about 30 years since the creation of Deep Blue, I decided to recreate the
move generation system that it uses, dating back to Belle from 1983.

How it works Internally, there is a 256-bit chessboard (4 bits per square), along
with a 64-bit square-enable mask.
Each square “transmits” attacks to its neighbour squares, which either propagate at-
tacks along empty squares, or generate their own. These attacks are processed by
“receivers”, which produce a priority level based on opcode and the piece on that
square. The priority levels go through an arbitration network, which chooses the most
promising square, which gets output from the chip.
Due to the space limitations present on Tiny Tapeout, though, there are some very
notable design differences. The original design calculates all 8x8 squares in a single
cycle, handling both positive and negative directions.

Opcodes
To be finalised.

The chip has 16 input bits and 8 output bits.

bit pattern command description
1111 __ss ssss ____ FIND-SRC output the

least-valuable
enabled attacker of
square s.
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bit pattern command description
1110 ____ ____ ____ FIND-DST output the

most-valuable
enabled piece on the
board.

1101 __ss ssss ___v ENABLE-SET set the
square-enable bit of
square s to v.

1100 ____ ____ ____ ENABLE-ALL set all square-enable
bits.

1011 __ss ssss vvvv SQUARE-SET set the chessboard
on square s to have
value v.

1010 ____ ____ ____ ROTATE rotate the
chessboard 180
degrees.

1001 ____ ____ ____ FLIP-COLOR flip the colours of all
pieces on the
chessboard, so that
friendly becomes
enemy and vice
versa.

1000 ____ ____ ____ ENABLE-US set the
square-enable bits of
all friendly pieces.

How to test Use the test suite.

External hardware The RP2040 microprocessor in the dev board is intended to
be used to drive the move generator, as there isn’t enough room in the chip to do it
itself.

Pinout

# Input Output Bidirectional
0 Address bit 0 Square out bit 0 Data in bit 0
1 Address bit 1 Square out bit 1 Data in bit 1
2 Address bit 2 Square out bit 2 Data in bit 2
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# Input Output Bidirectional
3 Address bit 3 Square out bit 3 Data in bit 3
4 Address bit 4 Square out bit 4 Data in bit 4
5 Address bit 5 Square out bit 5 Data in bit 5
6 Address bit 6 End iteration bit Data in bit 6
7 Address bit 7 (valid) Illegal position bit Data in bit 7
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Mastermind [458]

• Author: Tom Gurrieri and Anthony Gurrieri
• Description: Play the game: Mastermind
• GitHub repository
• HDL project
• Mux address: 458
• Extra docs
• Clock: 20000000 Hz

How it works

The goal of Mastermind is to guess the correct color combination with the minimal
number of inputs. Guesses are made using specific inputs which represent different
colors.

How to test

To randomly pick the hidden color answer, press any push button once.
After the answer is chosen, the user can start to make guesses. No color can be
repeated in a guess (and it won’t be repeated in the answer either). A guess consists
of 4 button pushes to select 4 colors.
Once a guess is selected, the LEDs will show the guide code. The four LEDs closest
to the left will show how many colors are correct (but not necessarily in the correct
place), and the four LEDs closes to the right will show how many colors are in the
correct position. Using this hint, the user can make an educated guess as to what their
next guess will be.
If 10 rounds go by and the user doesn’t get the correct combination, the LEDs will
flash on and off to indicate a loss. If the user guesses the correct color combination,
the light is shifted to the left by a clock to indicate a win.

External hardware

The external hardware that may be useful in playing the game are two Pmod BTNs
(410-077) for a total of 8 push buttons (for color inputs), a Pmod8LD (410-163) for 8
output LEDs, and a 2x6 pin to dual 6-pin Pmod splitter cable (240-110) to use both
push button Pmods.. All can be purchased on digilent.com
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Pinout

# Input Output Bidirectional
0 Red Correct Position 1 unused
1 Yellow Correct Position 2 unused
2 Green Correct Position 3 unused
3 Blue Correct Position 4 unused
4 Orange Correct Color 1 unused
5 Black Correct Color 2 unused
6 White Correct Color 3 unused
7 Purple Correct Color 4 unused
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TinyWSPR [462]

• Author: asinghani
• Description: Tiny WSPR Beacon
• GitHub repository
• HDL project
• Mux address: 462
• Extra docs
• Clock: 0 Hz

How it works

Tiny WSPR Beacon for transmitting Weak Signal Propagation Reporter radio signals.
Recommended for 20m and 40m bands.

How to test

Use the “config in” pins to input one byte of config data at a time. Input the 6-letter
callsign as ASCII characters, padded as is standard for WSPR. Input the 4-letter grid
square with the second and third character swapped (i.e. FN01 -> F0N1). Input the
power level as a single byte in dBm. It must end in a 0, 3, or 7 for proper decoding.
Input the symbol time (the number of clock cycles in 0.6827 seconds) as a 4-byte,
big-endian value. Input the divisor (2^32 * (transmit_freq / clk_freq)) as a
4-byte, big-endian value. Input the deviation (2^32 * (1.4648 / clk_freq)) as a
2-byte, big-endian value. Wait until exactly one second after an even-numbered UTC
minute, then raise the RF start pin. It is recommended to do this using a GPS-based
timekeeping source.

External hardware

An external lowpass filter to remove harmonics is absolutely required, as this design
uses a square-wave transmitter that generates harmonics well outside the legal limit.
An appropriately tuned antenna for the band being used is also necessary in order to
transmit effectively.

Pinout
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# Input Output Bidirectional
0 Config valid RF out config[0]
1 Config start RF out (mirror) config[1]
2 RF start transmit unused config[2]
3 unused unused config[3]
4 unused unused config[4]
5 unused unused config[5]
6 unused Debug out config[6]
7 unused Debug out config[7]
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Mini AIE: 2x2 CGRA with Ring-NoC [480]

• Author: Lyte Venn
• Description: A mini aie/coarse-grained reconfigurable array
• GitHub repository
• HDL project
• Mux address: 480
• Extra docs
• Clock: 10000000 Hz

How it works

This is a minimalistic coarse-grained reconfigurable array inspired by AMD AI engine
architecture. The hardware design consists of

• A 2x2 array of compute tiles
• A simplified packet-switched network-on-chip (NoC) to connect the compute

tiles
• Two interface tiles to connect the array to external memory and host

The packets loaded by interface tiles are routed through the NoC to the compute tiles.
The compute tiles process the packets and send to next compute tile or interface tile.
The packets are processed in a pipelined manner.

How to test

TBA

Pinout

# Input Output Bidirectional
0 data_0 out_0 debug_out0
1 data_1 out_1 debug_out1
2 data_2 out_2 debug_out2
3 data_3 out_3 debug_out3
4 data_4 out_4 debug_out4
5 data_5 out_5 debug_out5
6 data_6 out_6 debug_out6
7 data_7 out_7 debug_out7
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Field Programmable Resistor Network [482]

• Author: htfab
• Description: A few resistors and switches wired up in a matrix pattern.
• GitHub repository
• Analog project
• Mux address: 482
• Extra docs
• Clock: 0 Hz

How it works

A few resistors and switches are wired up in a matrix pattern. Switches are implemented
as pass gates controlled by latches that keep the configuration. The network can be
used as a makeshift DAC by controlling the “bitstream”.

AP HI0

HI1

HI2

VI0 VI1 VI2

HR02

HS02
HL02

V
R
2
2

V
S
2
2

V
L 2

2

Figure 30: Circuit diagram

Matrix cells can be selected using the H_GATE_i and V_GATE_j inputs:

• H_GATE_0 = uio_in[5]
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• H_GATE_1 = uio_in[2]
• H_GATE_2 = ui_in[1]
• V_GATE_0 = uio_in[6]
• V_GATE_1 = uio_in[3]
• V_GATE_2 = uio_in[0]

When the inputs H_GATE_i and V_GATE_j are on, the latches in the cell ij become
transparent and configure the pass gates as follows:

• HR_ij ← HD_RES = ui_in[4]
• HS_ij ← HD_SHORT = ui_in[3]
• HL_ij ← HD_LINE = ui_in[2]
• VR_ij ← VD_RES = ui_in[7]
• VS_ij ← VD_SHORT = ui_in[6]
• VL_ij ← VD_LINE = ui_in[5]

Once H_GATE_i or V_GATE_j is off again, the latches close and the pass gates keep
their configuration. Thus a new cell with different i or j can be configured using the
same inputs.

How to test

After the network is configured as above, manipulate the digital inputs H_INPUT_i
and V_INPUT_j to apply 0 V or 1.8 V at the respective nodes of the network:

• HI_0 ← H_INPUT_0 = ui_in[0]
• HI_1 ← H_INPUT_1 = rst_n
• HI_2 ← H_INPUT_2 = clk
• VI_0 ← V_INPUT_0 = uio_in[7]
• VI_1 ← V_INPUT_1 = uio_in[4]
• VI_2 ← V_INPUT_2 = uio_in[1]

The voltage can be measured externally at the analog pin AP = ua[0].

External hardware

Multimeter (or microcontroller with ADC) to measure the output voltage.

Pinout
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# Input Output Bidirectional
0 H_INPUT_0 V_GATE_2
1 H_GATE_2 V_INPUT_2
2 HD_LINE H_GATE_1
3 HD_SHORT V_GATE_1
4 HD_RES V_INPUT_1
5 VD_LINE H_GATE_0
6 VD_SHORT V_GATE_0
7 VD_RES V_INPUT_0

Analog pins

ua# analog# Description
0 0 ANALOG_PIN
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AY-8193 single channel DAC [484]

• Author: ReJ aka Renaldas Zioma
• Description: Logarithmic 4-bit DAC for AY-8193 sound generator
• GitHub repository
• Analog project
• Mux address: 484
• Extra docs
• Clock: 0 Hz

How it works

Current steering DAC.

How to test

Set one of the input / bidir pins to regulate current.

External hardware

Measure with osciloscope or use amplifier and speakers.

Pinout

# Input Output Bidirectional
0 db
1 db db
2 db db
3 db db
4 db db
5 db db
6 db db
7 db db

Analog pins

178

https://github.com/rejunity/tt07-analog-dac-ay8913


ua# analog# Description
0 5 output
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dual oscillator [486]

• Author: Devin Atkin
• Description: 20 Mhz and 21Mhz Output Sine Waves
• GitHub repository
• Analog project
• Mux address: 486
• Extra docs
• Clock: 0 Hz

How it works

Figure 31: Top Level TB Schematic

This project should generate 2 sinusoidal oscillators centered around ~0.9V relative to
the chips ground. The oscillators are based on a pair of ring oscillators so they should
oscillate regardless of the chips corner; however, their frequency will vary together
dramatically. Their final simulated output frequencies are slightly above their respective
targets of 20MHz and 21Mhz with a slightly greater seperatation between them.

Inverter The inverter has dummy transistors added on both sides of it. This is
less for some practical matching purpose and more as a way to deliberately add some
additional capacitance into the circuit to slow the inverters down. A good potential
improvement would be to add switches to the dummy transistors here to enable and
disable the oscillators on command.
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Figure 32: Sine Output

Op Amp The Op Amp is designed based on the work in opamp_1_design.md. It
is a basic 2 stage voltage feedback op-amp. The final transistor sizings have been
adjusted post design to help with simplifying layout. The designed frequency for the
Op Amp is a unity gain frequency of ~50Mhz, with a load capacitance of 5pF to allow
it to effectively drive the chip outputs.

Analog Buffer The analog buffer component is simply an op-amp configured as a
voltage follower. This is mostly made into a seperate module to maintain consistency
across followers as well as to minimize the amount of layout work required as the
component gets reused multiple times.
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Figure 33: Inverter Schematic
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Figure 34: Op Amp Schematic
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Oscillator 20Mhz - 21Mhz

The oscillators are basic ring oscillators with a single op-amp on the output. They
are 21 and 19 inverters long respectively. These produce close to the desired output
frequencies.

Figure 35: Filter Response

filter 22Mhz This is a second order butterworth filter intended to cut-off higher
order components of the oscillators square wave output and provide a sinewave output.
It keeps the DC component so as not to hit either of the chips rails.
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Capacitor Array The Filter response relies on the capacitors matching relatively
closely. Therefore they have been split into even sized segments and laid out according
to centroid matching techniques so that on each filter they maintain relatively even
responses.

How to test

Hook the outputs up to an oscilloscope or other device to measure the frequency
generated.

External hardware

No external hardware is required for this module to function. The internal driving
circuitry is designed around driving ~5pF, so it should be able to properly drive most
high-impedance inputs to be used elsewhere in the circuit.

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7

Analog pins

ua# analog# Description
0 0 20Mhz Output
1 5 21Mhz Output
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Analog TDC [488]

• Author: Luis Carlos Alvarez Simon
• Description: Analog part of a Time to Digital Convert
• GitHub repository
• Analog project
• Mux address: 488
• Extra docs
• Clock: 0 Hz

How it works

A Time to Digital Converter (TDC) is a circuit that measures the time interval between
two events with high precision and converts this into a digital value. TDCs are fun-
damental components in various applications, including digital communications, radar
systems, particle physics experiments, etc. The operation of a TDC can be classified
into two types: direct and indirect measurement methods. Direct measurement cap-
ture time interval using a high-speed clock signal and a counter, while indirect methods
employ in the first stage a Time-to-Voltage conversion followed by an analog-to-digital
conversion or other similar blocks. The resolution of a TDC is determined by the
frequency of the clock that drives the counter (Resolution=1/clock_frequency). Res-
olution in a TDC is defined as the smallest time difference that can be measured and
distinguished by the converter. To achieve a balance between high resolution and wide
dynamic range, it involves the use of coarse and fine resolution measurements within
a single TDC architecture. Coarse resolution typically achieved using a counter that
increments in every cycle of a clock. Fine resolution is employed to measure smaller seg-
ments of time within the coarse intervals, significantly improving the overall precision
of the TDC often realized through techniques like time interpolation, delay line encod-
ing, or the use of high-frequency clocks for a short duration. In a TDC using coarse
and fine resolutions, the time interval between two events is first quantified in coarse
units. Then, the fine resolution measures the fraction of the coarse unit that remains
unaccounted for at the end of the interval. The total resolution is a combination of
both resolutions, where the fine resolution refines the measurement within one coarse
clock cycle. This combination offers a detailed time measurement while maintaining
the capability to measure long intervals. The circuit present here comprises the analog
part for the fine resolution of a Time to Digital Converter based on time interpolation.
A width input pulse in the interval of 20 to 60 nanoseconds is converted to a periodic
square signal with a period that is 90 times wider than the input pulse. So, we can use
a counter with a low frequency clock to convert the time input pulse to digital format.
For example, if we use a 25MHz clock frequency, we can measure the time of the input
pulse with a resolution of 444ps.
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In the Fig. 1 we can see the block diagram of the System. We introduce an input
pulse on the input “Time” (after applying a reset on the capacitors) and charge the
two capacitors in the first block with a constant current. They stop charging when
the pulse finishes. The second block uses the voltages generated in the first block
as references to charge and discharge a capacitor, generating a square signal at the
output. The period of the output signal is equal to: T=90*Delta_Time.

Figure 1. Block diagram of the System.

How to test

Figure 2 shows the block of the System with all the inputs and outputs that we can
access in the circuit. The diagram shows the signal that we need to apply for to get
the desired output signal. We can apply a width pulse between 20 to 60ns (at the pin
pulse), besides the reset signals to discharge the capacitors (reset and resetCH pines),
one before and one after the pulse, as shown the Figure 2. Connecting an oscilloscope
to the output (Vout and VoutN) allows us to see the square periodic signal with a
period proportional to the width of the input pulse, as explained in the first section.
CH and CL are only used to monitor the behaviour of the comparators.
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Figure 2. Inputs and Outputs of the System and test signals.
Look at Figure 3 for the circuit’s connection to the chip frame, and at Figure 4 for the
simulation results showing how the circuit behaves.

188



Figure 3. Pins used from the frame.
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Figure 4. Simulation results.

External hardware

You need only a digital signal generator to generate the input pulse and reset signals,
current source of 13uA to biasing and an oscilloscope to see the results.

Pinout

# Input Output Bidirectional
0 ResetCH CH
1 Reset VoutN
2
3
4
5
6
7
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Analog pins

ua# analog# Description
0 4 Iin
1 1 Pulse
2 3 Vout
3 2 CL

191



12 bit SAR ADC [490]

• Author: Ricardo Nunes
• Description: A 12 bit differential (11 bit single-ended) SAR ADC
• GitHub repository
• Analog project
• Mux address: 490
• Extra docs
• Clock: 0 Hz

How it works

This is a 12 bit SAR ADC. The ADC uses ~ 0.8 fF unit capacitors built with the fringe
and parallel plate capacitance between the metal1 and metal2 layers.
The input signal (VIN_P - VIN_N) is sampled for 2 clock cycles if the previous con-
version finished, there’s a rising edge of the clock signal and the START input is high.
After the sampling phase, the ADC determines the 12 bits by comparing the sampled
input signal with a DAC voltage using a binary search.
The conversion result can be obtained from the DATA[5:0] outputs. The 6 most-
significant bits are sampled at the rising edge of the CLK_DATA output and the 6
least-significant bits at the falling edge.
The START signal can be kept always high to convert continuously the input signal.
The comparator has a preamplifier with a gain of 20 to 30x. The preamplifier helps
to relax the noise requirements of the strongarm latched comparator and makes it
more predictable (not possible to run transient simulations with noise in ngspice). The
comparator can calibrate its own offset. To do so, the EN_CAL_OFFSET input
needs to be high. At the end of a conversion the comparator inputs are shorted,
a comparison is triggered and an offset is introduced on purpose to counteract the
comparator offset.
The ADC can be configured to convert a differential signal or a single-ended signal. For
a single-ended configuration the ADC has a resolution of 11 bit and for a differential
configuration 12 bit. For a differential configuration the inputs (VIN_P and VIN_N)
should have a typical common-mode voltage of 0.6 V. For a single-ended configuration
the VIN_N input should be close to VSS.

Pinout

Name Direction Type Description
VDD Input Supply 1.8 V supply input.
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Name Direction Type Description
VSS Input Supply Ground.
VREF Input Analog 1.2 V reference voltage.
VREF_GNDInput Analog Reference voltage ground.
VCM Input Analog 0.6 V common-mode voltage.
VIN_P Input Analog Positive input signal.
VIN_N Input Analog Negative input signal.
CLK Input Digital Clock input.
RST_Z Input Digital Enable input.
START Input Digital Start conversion input. Keep high to convert

continuously.
EN_OFFSET_CALInput Digital Enables comparator offset self-calibration.
SINGLE_ENDEDInput Digital Configures ADC for single-ended input and VIN_N is

used as ground reference.
CLK_DATAOutput Digital Rising edge used to sample the 6 MSBs and falling

edge used for the 6 LSBs of ADC output.
DATA[5:0]Output Digital Result of the conversion.

Specification

Parameter Min Typical Max Unit
Supply Voltage 1.7 1.8 1.9 V
Power Consumption µA
Temperature 0 27 85 ºC
Reference Voltage 1.15 1.2 1.25 V
Input Common Mode Voltage (differential)� 0.5 0.6 0.7 V
Ground Reference Voltage (single-ended) -0.1 0 0.1 V
Output resistance for analog inputs 500 Ω
Clock Frequency¹ 20 MHz
Clock Low Pulse Width² 10 ns
Sampling Frequency 1/16 of clock freq.
Sampling Capacitance ~ 1.8 pF
INL³ LSB
DNL³ LSB
ENOB without noise� bit
ENOB with noise��� bit
SNDR without noise� dB
SNDR with noise��� dB
SFDR� dB
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¹ Input signal is sampled for 2 clock cycles. Clock/sampling frequency is limited by the
500 Ω resistance from the pads to the circuit in the TinyTapeout IC.
² Clock falling edge triggers the latched comparator, therefore clock low pulse width
has to be larger than latched comparator propagation delay.
³ Typical values for INL/DNL based on C extraction. Mismatch is not included.
� SNDR/ENOB do not include distortion introduced by TinyTapeout analog MUX.
� Noise estimated, not obtained directly from simulation.
� Both 2*VIN(CM)-VCM and VCM should respect the limits to ensure comparator
input common-mode voltage range is respected.

DNL/INL The DNL and INL were estimated by extracting all the DAC capacitors
from the C extraction netlist. A python script reads the netlist file, extracts all the
relevant capacitances and simulates the output of the ADC for a sweep of the input
signal in order to calculate the DNL and INL. The results can be seen in the figure below.
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How to test

Apply a differential voltage with a common-mode voltage of 0.6 V to VIN_P and
VIN_N. If the ADC is running in the single-ended configuration, connect VIN_N to
the ground reference of the input signal and VIN_P to the input signal.
To measure offset and noise short VIN_P and VIN_N and connect them to 0.6 V.
Apply a 20 MHz clock signal to the CLK input. The latched comparator is triggered
at the falling edge of the CLK signal and the output is sampled at the rising edge.
Therefore, the high time of the CLK signal should be long enough to allow the DAC
to fully settle and the low time should be larger than the propagation delay of the
comparator. Around 10 ns low time should be enough.
The ADC requires 16 cycles for 1 conversion. The frequency of the clock signal can
be increased depending on the resistance between the analog pins and the circuit.
Set the RST_Z input high to enable the circuit and set the START input high to
continuously convert.
The CLK_DATA pin should oscillate with a frequency of 1.25 MHz (20 MHz / 16).
The 6 most-significant bits of the conversion result can be sampled on the rising edge
of the CLK_DATA signal and the 6 least-significant ones on the falling edge.

External hardware

Pinout

# Input Output Bidirectional
0 start data[5]
1 en_offset_cal data[4]
2 single_ended data[3]
3 data[2]
4 data[1]
5 data[0]
6 clk_data
7

Analog pins

ua# analog# Description
0 0 vcm
1 4 vref
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ua# analog# Description
2 1 vref_gnd
3 3 vin_n
4 2 vin_p
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RF_peripheral_circuits [492]

• Author: Shilpa Pavithran, Vineeta V Nair, Sruthi P, Aravind S, Vyshnav P
Dinesh, Aswani A R

• Description: Peripheral circuits for RF based transmission.
• GitHub repository
• Analog project
• Mux address: 492
• Extra docs
• Clock: 0 Hz

How it works

Based upon different modes differnt circuits are selected including RF based transmis-
sion.

How to test

Select a mode with proper input so as to select the rquired Rf transmission peripheral
circuit.

External hardware

VNA, Multimeter and CRO.

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
6
7
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Analog pins

ua# analog# Description
0 5 vth/out
1 0 vin/vin[+]
2 4 vin[1]/vin[-]
3 1 s
4 3 ant
5 2 ind
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mixed_signal_pulse_gen [494]

• Author: Aravind, Allwan
• Description: Mixed signal pulse generator
• GitHub repository
• Analog project
• Mux address: 494
• Extra docs
• Clock: 0 Hz

How it works

When input is given, pulse is generated accordingly.

How to test

give input

External hardware

NA

Pinout

# Input Output Bidirectional
0 pulse_period[0] s_out_lines[1] pulse_count[1]
1 pulse_period[1] s_out_lines[0] pulse_count[2]
2 pulse_period[2] pulse_count[3]
3 pulse_period[3] pulse_count[4]
4 percentage[0] pulse_count[5]
5 percentage[1] pwm_out2 pulse_count[6]
6 start pwm_out1 pulse_count[7]
7 pulse_count[0] vout_1 pulse_count[8]

Analog pins
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ua# analog# Description
0 5 s_in_lines[1]
1 0 s_in_lines[0]
2 4 vss
3 1 vout_4
4 3 vout_3
5 2 vout_2
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TT07 Analog Factory Test [512]

• Author: Sylvain Munaut
• Description: Test structures for TT07 analog support
• GitHub repository
• Analog project
• Mux address: 512
• Extra docs
• Clock: 0 Hz

How it works

FIXME

How to test

FIXME

External hardware

FIXME

Pinout

# Input Output Bidirectional
0 ena0_n
1 ena1
2
3
4
5
6
7

Analog pins
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ua# analog# Description
0 11 ibias
1 6 vgnd_sense
2 10 vpwr_sense
3 7 loopback[0]
4 9 loopback[1]
5 8 loopback[2]
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Tiny Eater 8 Bit [514]

• Author: Jason Kaufmann
• Description: Recreation of Ben Eater’s 8 bit breadboard computer
• GitHub repository
• HDL project
• Mux address: 514
• Extra docs
• Clock: 12000000 Hz

How it works

This is Ben Eater’s 8 Bit computer on an ASIC!
All credit for the design, amazing instructional videos, and diagams below goes to Ben
Eater.

Figure 36: overview-with-chip-descriptions1
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High level overview Full Computer Schematic:
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Simple Control Signal Diagram:
*Note: The output register and logic to display the digits is not included on the ASIC.
The 8 bit output value is put on the bus and the “output register in” control signal (oi)
is on an output pin. This way you can use the data bus as a general purpose interface
to any display you want. (i.e. you can read in the data to the RP2040 and show it on
the screen, you can build the actual output register as shown in the videos and connect
it to the PMOD header, etc.)
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ASIC 2D:
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ASIC 3D:

How to test

To program the computer follow these steps:

• enable my design in TT
• send prog_mode bit high
• set the four prog_address bits to the address you want to write to, put the data

you want to store at that address on the I/O lines, and then pulse the clock.
• since this computer only has a 4 bit address space you can only store 16 bytes

total in the internal RAM.
• see https://eater.net/8bit/ for more details.

Instructions

OPC DEC HEX DESCRIPTION
NOP 00 0000
LDA 01 0001 Load contents of memory address aaaa into register A.
ADD 02 0010 Put content of memory address aaaa into register B, add A

+ B, store result in A.
SUB 03 0011 Put content of memory address aaaa into register B,

subtract A - B, store result in register A.
STA 04 0100 Store contents of register A at memory address aaaa.
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OPC DEC HEX DESCRIPTION
LDI 05 0101 Load 4 bit immediate value in register A (loads ‘vvvv’ in A).
JMP 06 0110 Unconditional jump. Set program counter (PC) to aaaa,

resume execution from that memory address.
JC 07 0111 Jump if carry. Set PC to aaaa when carry flag is set and

resume from there. When carry flag is not set, resume
normally.

JZ 08 1000 Jump if zero. As above, but when zero flag is set.
09 1001
10 1010
11 1011
12 1100
13 1101

OUT 14 1110 Output register A to 7 segment LED display as decimal.
HLT 15 1111 Halt execution.

External hardware

You will need the RP2040 or a similar microcontroller to write the program into the
internal memory. If you really wanted to, you could go old school and use DIP switches
and a manual clock pulse as well.
You will want to make the output register on a breadboard to connect it to the 8
bit I/O lines from the PMOD header. See https://eater.net/8bit/output for detailed
design info.

Pinout

# Input Output Bidirectional
0 prog_mode output_enable data0
1 addr0 data1
2 addr1 data2
3 addr2 data3
4 addr3 data4
5 clock_change_mode data5
6 clock_max_count data6
7 data7
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DJ8 8-bit CPU w/ DAC [516]

• Author: DaveX
• Description: DJ8 8-bit CPU with parallel Flash / RAM interface and 8-bit R-2R

DAC
• GitHub repository
• Analog project
• Mux address: 516
• Extra docs
• Clock: 2000000 Hz

How it works

DJ8 is a 8-bit CPU featuring:

• 8 x 8-bit register file
• 3-4 cycles per instruction
• 15-bit address bus
• 8-bit data bus
• 8-bit DAC based on Tiny Tapeout Analog R2R DAC
• Built-in 256-bytes demo ROM with 2 demos

Other implementations:

• TT06 DJ8 8-bit CPU - VHDL
• TTIHP0P2 DJ8 8-bit CPU (no DAC) - Verilog

Memory Map

From To Description
0x0000 0x7fff External memory
0x8000 0xffff Internal Test ROM (256 bytes, mirrored)
0xff00 0xff00 DAC_OUT (8-bit unsigned, write-only)

External memory map if using the recommended setup (see pinout)

From To Description
0x2000 0x3fff External RAM (32 bytes)
0x4000 0x5fff External Flash ROM (16KB)
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Registers There are 8 general purposes 8-bit registers (A,B,C,D,E,F,G,H), two flag
registers (CF, ZF), and 16-bit PC.
For memory addressing, 16-bit combined registers EF and GH are used.
At reset time, PC is set to 0x4000. All other registers are set to 0x80.

Instruction Set For future compatibility, please set the don’t care bits (?) to 0.

ALU reg, imm8: Immediate ALU operation

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 A A A D D D I I I I I I I I

• A : ALU operation

– 000: ADD: reg = reg + imm8
– 001: ADC: reg = reg + imm8 + CF
– 010: SUBC: reg = reg - (imm8 + CF)
– 011: MOVR: reg = reg
– 100: XOR: reg = reg ^ imm8
– 101: OR: reg = reg | imm8
– 110: AND: reg = reg & imm8
– 111: MOVI: reg = imm8

• D : register
• I : imm8

ALU dest, src, A {,shift}: ALU operation with src register & register A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 A A A D D D S S S ? F F 0 0

• A : ALU operation

– 000: ADD: dest = src + A
– 001: ADC: dest = src + A + CF
– 010: SUBC: dest = src - (A + CF)
– 011: MOVR: dest = src
– 100: XOR: dest = src ^ A
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– 101: OR: dest = src | A
– 110: AND: dest = src & A
– 111: MOVI: dest = A

• D : dest register
• S : src register
• F : final shift operation

– 00: No shift
– 01: Shift right logical (shr)
– 10: Shift right arithmetic (sar)

ALU dest, [mem], A {,shift}: ALU operation with memory & register A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 A A A D D D ? ? ? M F F 1 0

• A : ALU operation

– 000: ADD: dest = [mem] + A
– 001: ADC: dest = [mem] + A + CF
– 010: SUBC: dest = [mem] - (A + CF)
– 011: MOVR: dest = [mem]
– 100: XOR: dest = [mem] ^ A
– 101: OR: dest = [mem] | A
– 110: AND: dest = [mem] & A
– 111: MOVI: dest = A

• D : dest register
• M: memory mode

– 0: [GH]
– 1: [EF]

• F : final shift operation

– 00: No shift
– 01: Shift right logical (shr)
– 10: Shift right arithmetic (sar)

MOVR [mem], reg: Store content of register in memory
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 D D D ? ? ? M ? ? 0 1

• D: register
• M: memory mode

– 0: [GH]
– 1: [EF]

Jxx imm12: Conditional or unconditional jump to absolute address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 J J I I I I I I I I I I I I

• J: jmpcode

– 01: Jump if zero (JZ)
– 10: Jump if not zero (JNZ)
– 11: Unconditional jump (JMP)

• I: imm12

– PC = (PC & 0xe000) | (imm12 « 1)

JMP GH: Unconditional jump to address GH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Pinout Due to TT07 IO constraints, pins are shared between Address bus LSB and
Data bus OUT. It means that during memory write instructions, the address space is
only 128 bytes.

Pins Standard mode During memory write execute+writeback cycles
ui[7..0] Data bus IN Data bus IN
uio[7..0] Address bus LSB (7..0) Data bus OUT
uo[6..0] Address bus MSB (14..8) Address bus MSB (14..8)
uo[7] Write Enable Write Enable
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Pins Standard mode During memory write execute+writeback cycles
ua[0] DAC output DAC output

You can connect a 8KB parallel Flash ROM + 32b SRAM without external logic and
use uo[6] for RAM OE# and uo[5] for Flash ROM OE#.
To get a bidirectional data bus (needed for SRAM), uio bus must be connected to ui
bus with resistors. To be tested!

How to test

An internal test ROM with two demos is included for easy testing. Just select the
corresponding DIP switches at reset time to start the demo (technically, a jmp GH
instruction will be seen on the data bus thanks to the DIP switches values, with
GH=0x8080 at reset).

Demo 1: Rotating LED indicator

SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8
0 0 0 0 0 0 1 0

No external hardware needed. This demo shows a rotating indicator on the 7-segment
display. Its speed can be changed with DIP switches, the internal delay loop is entirely
deactivated when all switches are reset.

Demo 2: Bytebeat Synthetizer

SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8
0 0 0 0 0 1 1 0

Modem handshakes sound like music to your hears? It’s your lucky day! Become a
bit-crunching DJ thanks to 256 lo-fi glitchy settings.
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Connect ua[0] -> amp(TBD?) -> speaker. Play with the DIP switches to change the
loop settings. Suggested frequency/amp/passives TBD.

External hardware

• No external hardware for Demo 1
• Speaker (+ amp?) for Demo 2
• Otherwise: Parallel Flash ROM + optional SRAM

Pinout

# Input Output Bidirectional
0 data in 0 address out 8 address out 0 / data out 0
1 data in 1 address out 9 address out 1 / data out 1
2 data in 2 address out 10 address out 2 / data out 2
3 data in 3 address out 11 address out 3 / data out 3
4 data in 4 address out 12 address out 4 / data out 4
5 data in 5 address out 13 address out 5 / data out 5
6 data in 6 address out 14 address out 6 / data out 6
7 data in 7 write enable address out 7 / data out 7

Analog pins

ua# analog# Description
0 10 DAC output
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Twin Tee Sine Wave Generator [518]

• Author: Matt Venn
• Description: Opamp plus notch filter = sine wave out
• GitHub repository
• Analog project
• Mux address: 518
• Extra docs
• Clock: 0 Hz

How it works

The circuit uses a “Twin Tee” filter along with an opamp to generate a sine wave.

Figure 37: Twin Tee Notch Filter

https://www.electronics-tutorials.ws/oscillator/twin-t-oscillator.html

f = 1 / 2 * pi * RC

Notch filter AC analysis
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Figure 38: Notch filter AC analysis
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Figure 39: Opamp AC analysis
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Opamp AC analysis

Transient analysis This simulation was done with a “montecarlo mismatch corner”
which aims to test how well the circuit will work as the resistance and transistors
change across process corners. Each run is shown in a different colour. If R6 resistor
in the Twin Tee filter is too high, the oscillations quickly die out, so it’s deliberately
undersized at the expense of distortion in the sine wave.
This simulation includes extracted parastitics and a model of the pin.

Figure 40: Twin Tee output transient analysis

Acknowledgements

• The opamp design comes from Sai
• The opamp layout comes from Pat Deegan
• Inspired by this video by Alan Wolke.

How to test

After the project is enabled, you should see a sine wave at around 4.93MHz on analog
output pin 0.
There is also a 20 bit digital counter connected to the oscillator output. The top 8
bits are connected to the LEDs. So you should also see the most significant bit (the
dot) flashing about 5 times per second.
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External hardware

Oscilloscope.

Silicon results

The measurement was made with a Keysight HD3 scope. The design is very sensitive
to loading, so a scope probe was connected direct to the pad (after removing the
pulldown).

Figure 41: measurement

The frequency was measured at 4.67MHz, which is about 5% slower than anticipated.

Pinout

# Input Output Bidirectional
0 counter bit 12
1 counter bit 13
2 counter bit 14
3 counter bit 15
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# Input Output Bidirectional
4 counter bit 16
5 counter bit 17
6 counter bit 18
7 counter bit 19

Analog pins

ua# analog# Description
0 11 sine out
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Classic 8-bit era Programmable Sound Generator AY-3-8913
[520]

• Author: ReJ aka Renaldas Zioma
• Description: The AY-3-8913 is a 3-voice programmable sound generator (PSG)

chip from General Instruments. The AY-3-8913 is a smaller variant of AY-3-8910
or its analog YM2149.

• GitHub repository
• Analog project
• Mux address: 520
• Extra docs
• Clock: 2000000 Hz

How it works

A simple 8 bit R2R DAC. Driven externally or by an OpenLane generated sawtooth
waveform generator.

How to test

Drive externally Set the external data input high to provide the DAC with
external data. Then drive the 8 inputs and observe the analog output.

Drive with internal sawtooth wave generator Set the external data input
low to enable the sawtooth generator. A sawtooth wave should be seen on the analog
output.
To change the frequency, set the inputs and then raise the ‘load divider’ input.

External hardware

A multimeter to measure the output voltage on analog pin 0.
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# Input Output Bidirectional

Pinout

# Input Output Bidirectional
0 multiplexed data/address bus LSB (pwm) channel C (in) BC1 bus control
1 multiplexed data/address bus (pwm) channel B (in) BDIR bus direction
2 multiplexed data/address bus (pwm) channel A (in) SEL0 clock divider
3 multiplexed data/address bus (in) SEL1 clock divider
4 multiplexed data/address bus
5 multiplexed data/address bus
6 multiplexed data/address bus
7 multiplexed data/address bus MSB

Analog pins

ua# analog# Description
0 11 (out) channel C
1 6 (out) channel B
2 10 (out) channel A
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Double Balanced Mixer and Quadrature Divider [522]

• Author: Bruce MacKinnon
• Description: Takes an RF input (with DC bias) and a digital LO signal and mixes

to provide a differential IF output. Simulated at 7 MHz.
• GitHub repository
• Analog project
• Mux address: 522
• Extra docs
• Clock: 0 Hz

Overview

The project name notwithstanding, this is a simple double-balanced RF mixer for the
HF frequency range (around 7 MHz). The design is a switching mixer, so the local
oscillator (LO) clock is a digital signal.
The RF input should be DC biased. Expected bias is around 0.6 volts.
A differential IF output is provided. The IF output should be the difference of IFOUT_P
and IFOUT_N.
The detailed document here gets into the mathematical basis for the circuit design
used.
The tile also has a simple digital component called a quadrature divider. This takes a
digital clock and creates two output clocks with quadrature relationship (90 degrees
of phase difference). This would be useful for certain types of RF modulators and
demodulators.
The mixer and the quadrature divider are entirely independent circuits at this time.

Pinouts

• ua[0] - Analog RF input with DC bias.
• ua[1] - Analog IF output (positive phase)
• ua[2] - Analog IF output (negative phase)
• uio_in[0] - Digital local oscillator (LO) input.
• uio_in[1] - Digital clock input for quadrature divider.
• uo_out[0] - Digital quadrature divider output, I phase.
• uo_out[1] - Digital quadrature divider output, Q phase.
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Pinout

# Input Output Bidirectional
0 Local

Oscillator
input for
mixer

I phase
output from
quadrature
divider

1 Clock input
for
quadrature
divider

Q phase
output from
quadrature
divider

2
3
4
5
6
7

Analog pins

ua# analog# Description
0 11 RF input (with DC bias)
1 6 IF output (Positive phase)
2 10 IF output (Negative phase)
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TT07 Differential Receiver test [524]

• Author: Sylvain Munaut
• Description: Small test module to test functionality of a differential input receiver
• GitHub repository
• Analog project
• Mux address: 524
• Extra docs
• Clock: 0 Hz

How it works

FIXME

How to test

FIXME

External hardware

FIXME

Pinout

# Input Output Bidirectional
0 debug q[0] q[8]
1 bias_sel q[1] q[9]
2 q[2] q[10]
3 q[3] q[11]
4 q[4] q[12]
5 q[5] q[13]
6 q[6] q[14]
7 q[7] q[15]

Analog pins
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ua# analog# Description
0 11 clk_n
1 10 clk_p
2 7 data_n
3 9 data_p
4 8 ibias
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QIF Neuron [526]

• Author: Katie Burrows and David Parent
• Description: Models a QIF spiking neuron
• GitHub repository
• Analog project
• Mux address: 526
• Extra docs
• Clock: 0 Hz

How it works

When the input hits a certain voltage, the output will spike and reset to a known
value E. J. Basham and D. W. Parent, “Compact digital implementation of a
quadratic integrate-and-fire neuron,” 2012 Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 2012,
pp. 3543-3548, doi: 10.1109/EMBC.2012.6346731. keywords: {Mathematical
model;Clocks;Equations;Vectors;Computational modeling;Field programmable gate
arrays;Neurons},

How to test

Input a content 8-bit digital singal when the voltage crosses the threshold, and see if it
spikes. See: https://www.dropbox.com/s/6pjsgwxqhryaggs/ee122_lab_manual.pdf?dl=0

External hardware

ADLAM2000

Pinout

# Input Output Bidirectional
0
1
2
3
4
5
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# Input Output Bidirectional
6
7

Analog pins

ua# analog# Description
0 6 Vout
1 10 Vinp
2 7 Vinn
3 9 VoutM
4 8 VinM
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badGPU [582]

• Author: Emery Nagy
• Description: Basic GPU for rasterizing polygons
• GitHub repository
• HDL project
• Mux address: 582
• Extra docs
• Clock: 25000000 Hz

How it works

This project implements a GPU capable of rasterizing 4 triangles. It takes commands
from any microcontroller via the SPI bus and draws them on screen at 640x480 @60Hz.
All colors are 6 bits in depth (i.e rrggbb), giving up to 64 unique colors. It can also set
a unique background color of your choosing.
Design expects a 25Mhz master clock frequency.
Triangles are supplied by their vertices. Note that not all vertex values are supported,
only 80 X vertex positions and 60 Y vertex positions are allowed. This is acheived by
taking the desired vertex position in the 640x480 native display resolution and dividing
it by 8 on the host microcontroller side.

How to test

The device can draw up to 4 polygons, A, B, C, D at a time. Since there is no Z-buffer,
polygon A can be thought of as “closest” to the viewer, B “second closest”, etc. If
there is a region where your set polygons overlap, A will be rasterized over B and so
on.
The “GPU” should be connected to the host microcontroller via SPI (tested with up
to 4Mhz). Note that SPI communication here needs to be with LSB first formatting.
During each frame there is a certain amount of time which is not used to display any
image. Here, the GPU will assert the INT pin, telling the host microcontroller that it
is able to send new commands via SPI.
Example SPI transfers initiated after INT pin asserted
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Figure 42: image

Command set Each SPI command contains a CMD byte along with 6 data bytes.
The 6 data bytes are a packed bitfield with the following formatting:
[CMD - 8 bit] + [Color(r0r1g0g1b0b1) - 6 bit][Vertex 0 X - 7 bit][Vertex 1 X - 7
bit][Vertex 2 X - 7 bit][Vertex 0 Y - 6 bit][Vertex 1 Y - 6 bit][Vertex 3 Y - 6 bit][Unused
- 3 bits]
Available Commands:
SPI_CMD_WRITE_POLY_A = 0x80
SPI_CMD_CLEAR_POLY_A = 0x40
SPI_CMD_WRITE_POLY_B = 0x81
SPI_CMD_CLEAR_POLY_B = 0x41
SPI_CMD_WRITE_POLY_C = 0x82
SPI_CMD_CLEAR_POLY_C = 0x42
SPI_CMD_WRITE_POLY_D = 0x83
SPI_CMD_CLEAR_POLY_D = 0x43
SPI_CMD_SET_BG_COLOR = 0x01
Note the SPI_CMD_SET_BG_COLOR command only utilizes the 6-bit ‘Color’ field,
all other fields are ignored.

Example command setting a blue triangle in the top left corner.
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Example of rendering 2 triangles + background color.

External hardware

In order to use the project you will need the following:

• TinyVGA PMOD https://github.com/mole99/tiny-vga
• VGA screen
• Host microcontroller with SPI enabled

Pinout

# Input Output Bidirectional
0 R1 CS
1 G1 MOSI
2 B1 MISO
3 vsync SCK
4 R0 INT
5 G0
6 B0
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# Input Output Bidirectional
7 hsync
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KianV RISC-V RV32E Baremetal SoC [588]

• Author: Dipl.-Ing. Hirosh Dabui
• Description: A baremetal RISC-V RV32E ASIC with audio, spi, uart
• GitHub repository
• HDL project
• Mux address: 588
• Extra docs
• Clock: 50000000 Hz

How it works

After implementing a KianV uLinux TT06, I felt like implementing a KianV bare metal
edition, which is an RV32E RISC-V32 SoC. This SoC is equipped with a UART, qspi
memory controller (psram/flash), a generic SPI interface, and a sigma-delta emulator
for playing audio files. In the firmware folder, the kernelboot.c and crt0.S files display
all hardware registers and their initialization in the code.

How to test

First, one must build the toolchain for an RV32E, as you can see here:

sudo apt-get update
sudo apt-get install autoconf automake autotools-dev curl python3 libmpc-dev libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo gperf libtool patchutils bc zlib1g-dev libexpat-dev
git clone --recursive https://github.com/riscv/riscv-gnu-toolchain.git
cd riscv-gnu-toolchain
./configure --prefix=/opt/riscv32e --with-arch=rv32e --with-abi=ilp32e
make
export PATH=/opt/riscv32e/bin:$PATH

The following hardware addresses are given:

#define LSR_DR 0x01
#define LSR_TEMT 0x40
#define LSR_THRE 0x20
#define PWM_ADDR (IO_BASE + 0x14)
#define REG_DIV (IO_BASE + 0x10)
#define SPI_DIV (IO_BASE + 0x500010)
#define UART_LSR (IO_BASE + 0x5)
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#define UART_RX (IO_BASE)
#define UART_TX (IO_BASE)

The use of the registers can be determined from the C, linker script and assembly
program. The CPU starts to execute the instruction stored in the NOR Flash at an
offset of 1MiB. When the chip comes into my hands, I will provide demos that I test
on the chip, including audio playback with appropriate documentation.

External hardware

It’s very important to use the PMOD Flash + PSRAM. We only use 8MB of PSRAM
address space.

Pinout

# Input Output Bidirectional
0 uart_rx spi_cen0 ce0 flash
1 spi_sio1_so_miso0 spi_sclk0 sio0
2 spi_sio0_si_mosi0 sio1
3 pwm_o sck
4 uart_tx sd2
5 led[0] sd3
6 led[1] cs1 psram
7 led[2] always high
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TinyTPU [590]

• Author: Refik
• Description: TPU Unit with 2x2 matrix multiplication support
• GitHub repository
• HDL project
• Mux address: 590
• Extra docs
• Clock: 50000 Hz

How it works

The tiny TPU is a accelerator board for multiplying matricies. This version only sup-
ports 2x2 matrix multiplication. However, I will be updating the project to muhc more
complex computations.

How to test

You can run the test file and see how random two 2x2 matricies are multiplied and
passed out.

External hardware

There arent any hardware required for this project. However, you do need a driver to
convert matricies and push as an input, then read as a output. I will be providing a
simple driver once im done with the RTL design

Pinout

# Input Output Bidirectional
0 ui_in[0] uo_out[0]
1 ui_in[1] uo_out[1]
2 ui_in[2]
3 ui_in[3]
4
5
6
7

235

https://github.com/Revenantx86/tt07-tinytpu


8-bit Vector Compute-in-SRAM [642]

• Author: Ramyad Hadidi
• Description: 8-bit Vectorized Compute-in-SRAM
• GitHub repository
• HDL project
• Mux address: 642
• Extra docs
• Clock: 0 Hz

How it Works

This design is a vector multiplier with stationary weights implemented on 4 tiles in tiny
tapeout. The entire design, tests, and documentation took around 10 hours. It con-
tains 8 multiply-and-add (MAC) units, each equipped with two registers, and an adder
tree that sums the multiplication results of an 8-element vector without the loss of pre-
cision. The design allows for weights and activations to be programmed separately into
each MAC unit using specific operation codes (OPs). The weights remain stationary,
meaning they are programmed once and reused for multiple activation inputs.

Components and Operation
1. Multiply-and-Add (MAC) Units:

• Each MAC unit consists of two registers: one for weights (W) and one for
activations (A). The MAC unit performs the multiplication of these two
values and stores the result.

• The weights and activations are loaded into the MAC units using distinct
OP codes (LOAD_W and LOAD_A). The LOAD_W OP code (0b00) loads the
weight into the MAC unit, while the LOAD_A OP code (0b01) loads the
activation value.

• After the weights and activations are loaded, the MAC unit multiplies these
values and stores the result for further processing by the adder tree.

2. Adder Tree:

• The adder tree is responsible for summing the outputs of the 8 MAC
units. It ensures that the multiplication results are accumulated accurately
without precision loss.

• The adder tree is structured hierarchically in three levels to sum the results
efficiently.

– Level 1: Adds pairs of MAC outputs.
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– Level 2: Adds the results of Level 1.
– Level 3: Adds the results of Level 2 to produce the final sum.

• This hierarchical structure ensures that the final sum of all MAC outputs
is computed correctly and efficiently.

3. Readout Mechanism:

• Due to the limited width of the output interface (8 bits), the readout
mechanism reads the final result of the adder tree (s_adder_tree) over
multiple clock cycles.

• The READ_S OP code (0b10) is used to initiate the readout process. The
final sum is split into three 8-bit chunks, which are read sequentially.

• The readout process ensures that the most significant bits (MSBs) are
read first, followed by the least significant bits (LSBs), reconstructing the
complete 19-bit result correctly.

4. Programming and Operation:

• Loading Weights and Activations: The design supports separate load-
ing of weights and activations. Each MAC unit is addressed individually,
and the corresponding values are loaded using the appropriate OP codes.

• Vector Multiplication: Once the weights and activations are loaded,
the MAC units perform the multiplication, and the results are summed by
the adder tree.

• Result Readout: The final sum is read out using the READ_S OP code,
ensuring the complete result is available for further processing or verifica-
tion.

This design efficiently handles the multiplication and accumulation of vectors, ensuring
high precision and accuracy despite the limitations in the size (even with 4 tiles).
It provides a robust mechanism for programming and reading the results, making it
suitable for various applications requiring vector multiplications.

How to Test

There are several tests under test/test.py that would help anyone to understand
how the design works. Due to the limitation of access to the external signals, most
of the tests are commented out. Each test also contains its own commented Verilog
code since some tests were initially developed to test and verify individual units such
as MACs and adders. There are four categories of tests:
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• Single MAC operation test: This test verifies the basic functionality of a
single MAC unit, ensuring that it correctly performs multiplication and stores
the result.

• Multiple MAC units loading weights and activations: This test checks
that multiple MAC units can load weights and activations correctly and simulta-
neously. It ensures that each MAC unit receives and processes its assigned data
independently of the others.

• Adder tree tests verifying that all levels of adder tree are summing to
correct numbers: These tests validate the correctness of the adder tree at all
levels. They ensure that the outputs from the MAC units are correctly summed
through the hierarchical adder tree structure, producing accurate intermediate
and final sums.

• Read result tests that would test read out circuit: These tests focus
on the readout circuit, verifying that the s_adder_tree result can be correctly
read out in multiple 8-bit chunks. This ensures that the readout mechanism
accurately reconstructs the full result over several clock cycles.

• – Read only with external signals: These tests focus on the entire design
only using the external signals. This is the only test not commented in the
final version.

The last three tests work on several test vectors to ensure correct operation with various
numbers. These test vectors include a wide range of values and scenarios to thoroughly
exercise the design and confirm its correctness under different conditions.

OP 00: LOAD_W The LOAD_W function is an integral part of the testbench, designed
to load weight values into the MAC units. This function is invoked by setting the
LOAD_W opcode, which corresponds to the value 0b00 &amp;lt;&amp;lt; 6. The
opcode is combined with the MAC address to target a specific MAC unit for the weight
load operation. The MAC address is specified in the lower bits of the ui_in signal,
allowing precise selection of the MAC unit.
The process begins by setting the ui_in input to the LOAD_W opcode combined with
the target MAC address. This action signals the DUT to prepare for loading the weight
value into the specified MAC unit. Simultaneously, the weight value is provided via
the uio_in input. To ensure that the command and data are properly registered and
processed, the function waits for one clock cycle.
By following these steps, the LOAD_W function effectively communicates with the DUT
to load weight values into the desired MAC units. This operation is crucial for initial-
izing the MAC units with the appropriate weights for subsequent computations.

238



OP 00: LOAD_W Code Snippet for Reference:
async def write_weight(mac_address, weight):

# Set the op code to 00 (write weight) and address
dut.ui_in.value = (0b00 << 6) | mac_address
# Set the weight data
dut.uio_in.value = weight
# Wait for a clock cycle to simulate the write
await ClockCycles(dut.clk, 1)

OP 01: LOAD_A The LOAD_A function is another essential component of the
testbench, designed to load activation values into the MAC units. This function
is activated by setting the LOAD_A opcode, which corresponds to the value 0b01
&amp;lt;&amp;lt; 6. Similar to LOAD_W, the opcode is combined with the MAC
address to target a specific MAC unit for the activation load operation.
The process starts by setting the ui_in input to the LOAD_A opcode combined with the
target MAC address. This action instructs the DUT to prepare for loading the activation
value into the specified MAC unit. Concurrently, the activation value is provided via
the uio_in input. To ensure the command and data are correctly registered and
processed, the function waits for one clock cycle.
By adhering to these steps, the LOAD_A function successfully communicates with the
DUT to load activation values into the designated MAC units. This operation is vital
for initializing the MAC units with the appropriate activation values, enabling accurate
computation during the subsequent processing stages.

OP 01: LOAD_A Code Snippet for Reference:
async def write_act(mac_address, a_value):

# Set the op code to 01 (write a value) and address
dut.ui_in.value = (0b01 << 6) | mac_address
# Set the a value data
dut.uio_in.value = a_value
# Wait for a clock cycle to simulate the write
await ClockCycles(dut.clk, 1)
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OP 10: read_s The read_s function is a critical part of the testbench designed to
read the final result from the adder tree, known as s_adder_tree. Since the output
interface of the system can only handle 8 bits at a time, the function retrieves the com-
plete result over multiple clock cycles. The process begins by initializing the READ_S
command. This is achieved by setting the ui_in input to the value corresponding
to the READ_S opcode (0b10 &amp;lt;&amp;lt; 6). This command instructs the
system to prepare the s_adder_tree result for reading. To ensure the command is
properly registered and processed by the Device Under Test (DUT), the function waits
for one clock cycle.
Following the initialization of the READ_S command, the function sets the ui_in input
to a non-operational value (0b11 &amp;lt;&amp;lt; 6). This step ensures that
the command remains stable and does not interfere with the readout process. Another
clock cycle wait is introduced to guarantee that the data is ready to be read.
The core of the read_s function involves reading the s_adder_tree result in 8-bit
chunks. The function initializes a variable, result, to store the combined output. It
then enters a loop that iterates three times, corresponding to the three 8-bit chunks
required to construct the 24-bit result. During each iteration, the function waits for the
rising edge of the clock to synchronize with the DUT’s data output. This synchroniza-
tion is crucial for accurate data retrieval. The function reads the current 8-bit chunk
from the uo_out output, shifts the previously read data left by 8 bits, and combines it
with the new chunk using a bitwise OR operation. This method ensures that the first
chunk read corresponds to the most significant bits (MSBs) and the last chunk read
corresponds to the least significant bits (LSBs).
After all three chunks have been read and combined, the function returns the complete
result, which represents the full 19-bit s_adder_tree value. This process highlights
the importance of synchronization with the clock signal and handling data in multiple
cycles due to the 8-bit limitation of the output interface. By following these steps,
the read_s function effectively reads and reconstructs the adder tree result, ensuring
accurate and reliable verification of the system’s computation.

OP 10: read_s Code Snippet for Reference:
async def read_s():

# Set the op code to 10 (read s_adder_tree)
dut.ui_in.value = 0b10 << 6
await ClockCycles(dut.clk, 1)

# Set to non-operational value to avoid interference
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dut.ui_in.value = 0b11 << 6
await ClockCycles(dut.clk, 1)

result = 0
for i in range(3):

await RisingEdge(dut.clk)
result = (result << 8) | int(dut.uo_out.value)

return result

External hardware

Currently, the compute in SRAM does not interface with any external hardware com-
ponents, and in reality in should not! It operates entirely within it own resources with
its own defined set of control commands. Some external signals might be needed to
orchestrate operation of multiple units with a control processor.

Pinout

# Input Output Bidirectional
0 Address bit 0 Data out bit 0 Data in bit 0
1 Address bit 1 Data out bit 1 Data in bit 1
2 Address bit 2 Data out bit 2 Data in bit 2
3 Address bit 3 Data out bit 3 Data in bit 3
4 Address bit 4 Data out bit 4 Data in bit 4
5 Address bit 5 Data out bit 5 Data in bit 5
6 Op Code bit 0 Data out bit 6 Data in bit 6
7 Op Code bit 1 Data out bit 7 Data in bit 7
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Mandelbrot Set Accelerator (32-bit IEEE 754) [654]

• Author: Uri Shaked
• Description: Calculates z = z^2 + c on every clock cycle using 32-bit IEEE

754 floating point arithmetic.
• GitHub repository
• HDL project
• Mux address: 654
• Extra docs
• Clock: 20000000 Hz

How it works

A mandelbrot set is a set of complex numbers that satisfy a certain mathematical
property. The set is defined by iterating a function on a complex number, and checking
if the result of the iteration is bounded. If the result is bounded, the complex number
is part of the mandelbrot set. If the result is unbounded, the complex number is not
part of the mandelbrot set.
This project calculates the function z = z^2 + c iteratively, where z and c are com-
plex numbers. The function is iterated on every clock cycle, and the result is checked
to see if it is bounded (|z| &amp;lt;= 2). When the result is unbounded, the
unbounded signal is set high, and the iter signal is set to the number of iterations
it took for the result to become unbounded.
All the calculations are done in 32-bit IEEE 754 floating point format. The floating
point addition code is taken from Caravel FPU, and the floating point multiplication
code was generated by GPT-4o.

How to test

Load the value of the complex number c that you want to test into the Cr and Ci
registers. Each register holds a 32-bit IEEE 754 floating point number. The value of
c is Cr + Ci * i, where i is the imaginary unit.
The registers are shifted in LSB first, 8 bits at a time. When shifting the last byte, the
corresponding load signal should be set high to load the value into the register.
For example, to load the real part of c into Cr, you would need four clock cycles:

1. Set data_in to the least significant byte (Cr[7:0])
2. Set data_in to the second byte (Cr[15:8])
3. Set data_in to the third byte (Cr[23:16])
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4. Set data_in to the most significant byte (Cr[31:24]), and set load_Cr high
to load the value into the register.

Do the same for the imaginary part of c and Ci. In case you want to load the same
value into both Cr and Ci, you can set load_Cr and load_Ci high at the same
time.
Strobe the start signal to begin the calculation. The design will iterate the function
z = z^2 + c, one iteration per clock cycle. When the result is unbounded, the
unbounded signal will be set high. For numbers that are part of the mandelbrot set,
the unbounded signal will remain low as the design iterates the function.
The values of Cr and Ci are buffered, so you can load new values into the registers
while the design is calculating the mandelbrot set for the previous values. When you
strobe the start signal, the design will begin calculating the mandelbrot set for the
new values of c.
The following example illustrates how to load the value c = 1.2 + 1.4i into the
registers and start the calculation:

Clock data_in load_Cr load_Ci start unbounded

1 0x9A 0 0 0 0
2 0x99 0 0 0 0
3 0x99 0 0 0 0
4 0x3F 1 0 0 0
5 0x33 0 0 0 0
6 0x33 0 0 0 0
7 0xB3 0 0 0 0
8 0x3F 0 1 1 0
9 0x00 0 0 0 0
10 0x00 0 0 0 1

Where:

• 0x3F99999A is the IEEE 754 floating point representation of the real part of c
(1.2)

• 0x3FB33333 is the IEEE 754 floating point representation of the imaginary part
of c (1.4)

• Unbounded goes high two clock cycles after the start signal is strobed, indicating
that the result is unbounded.

When the calculation concludes, the iter signal will hold the number of iterations
it took for the result to become unbounded. The iter signal is valid when the
unbounded signal is set high.
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External hardware

None

Pinout

# Input Output Bidirectional
0 start unbounded data_in[0]
1 load_Cr iter[0] data_in[1]
2 load_Ci iter[1] data_in[2]
3 iter[2] data_in[3]
4 iter[3] data_in[4]
5 iter[4] data_in[5]
6 iter[5] data_in[6]
7 iter[6] data_in[7]
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raybox-zero TT07 edition [714]

• Author: algofoogle (Anton Maurovic)
• Description: TT07 improved resub of ‘simple VGA ray caster game demo’ from

TT04
• GitHub repository
• HDL project
• Mux address: 714
• Extra docs
• Clock: 25000000 Hz

Figure 43: TT07 raybox-zero showing 3D views in simulation and on an FPGA

How it works

This is a framebuffer-less VGA display generator (i.e. it is ‘racing the beam’) that
produces a simple implementation of a “3D”-like ray casting game engine… just the
graphics part of it. It is inspired by Wolfenstein 3D, using a map that is a grid of wall
blocks, with basic texture mapping.
There is nothing yet but textured walls, and flat-coloured floor and ceiling. No doors
or sprites, sorry. Maybe that will come in a future version (stay tuned for TT08 or
some later release, maybe?)
The ‘player’ POV (“point of view”) is controlled by SPI, which can be used to write
the player position, facing X/Y vector, and viewplane X/Y vector in one go.
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NOTE: To optimise the design and make it work without a framebuffer, this renders
what is effectively a portrait view, rotated. A portrait monitor (i.e. one rotated 90
degrees anti-clockwise) will display this like the conventional first-person shooter view,
but it could still be used in a conventional landscape orientation if you imagine it is
for a game where you have a first-person perspective of a flat 2D platformer, endless
runner, “Descent-style” game, whatever.
NOTE: This is a resubmission of an updated version of what originally went to TT04.
While the TT04 version used 4x2 tiles, this TT07 version adds some new features
(namely the option for an external SPI texture ROM), and so uses 6x2 tiles (which
is about 0.25mm2). The opportunity to do this was largely supported by Uri Shaked
and Matt Venn of Tiny Tapeout, who graciously offered a resubmission after it was
found that the TT04 version had suffered from a synthesis bug in an older version
of OpenLane, which led to severe glitches in the rendering (due to an unintended
alteration of the logic).
TBC. Please contact me if you want to know something in particular and I’ll put it
into the documentation!

How to test

TBC. Please contact me if you want to know something in particular and I’ll put it
into the documentation!
Supply a clock in the range of 21-31.5MHz; 25.175MHz is ideal because this is meant
to be “standard” VGA 640x480@59.94Hz.
Start with gen_tex set high, to use internally-generated textures. You can optionally
attach an external QSPI memory (tex_...) for texture data instead, and then set
gen_tex low to use it.
debug can be asserted to show current state of POV (point-of-view) registers, which
might come in handy when trying to debug SPI writes.
If reg input is high, VGA outputs are registered. Otherwise, they are just as they
come out of internal combo logic. I’ve done it this way so I can test the difference (if
any).
inc_px and inc_py can be set high to continuously increment their respective player
X/Y position register. Normally the registers should be updated via SPI, but this allows
someone to at least see a demo in action without having to implement the SPI host
controller. NOTE: Using either of these will suspend POV updates via SPI.
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The “SPI2” ports (reg_sclk, etc.) are for access to all other registers that we can
play with. I decided to keep these separate because I implemented them very late, and
didn’t want to break the existing SPI interface for POV register access.

External hardware

Tiny VGA PMOD on dedicated outputs (uo).
Optional SPI controllers to drive ui_in[2:0] (point-of-view aka vectors) and
uio_in[4:2] (other control/display registers).
Optional external SPI ROM for textures.
TBC. Please contact me if you want to know something in particular and I’ll put it
into the documentation!

Pinout

# Input Output Bidirectional
0 SPI in: pov_sclk red[1] Out: tex_csb
1 SPI in: pov_mosi green[1] Out: tex_sclk
2 SPI in: pov_ss_n blue[1] In: “SPI2” reg_sclk
3 debug vsync_n In: “SPI2” reg_mosi
4 inc_px red[0] In: “SPI2” reg_ss_n
5 inc_py green[0] I/O: tex_io0
6 reg blue[0] In: tex_io1
7 gen_tex hsync_n In: tex_io2
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tiny sha256 [718]

• Author: xenia dragon
• Description: a minimal single-cycle-round sha256 core intended to fit in one tile
• GitHub repository
• HDL project
• Mux address: 718
• Extra docs
• Clock: 50000000 Hz

How it works

This is a minimal SHA-256 hash core implemented in a single-cycle-round architecture.
TODO: expand on this

How to test

TODO: write instructions

External hardware

No external hardware is needed besides some method of interacting with the bus to
transfer commands and data.

Pinout

# Input Output Bidirectional
0 addressed register bit 0 ready data bit 0
1 addressed register bit 1 IO read/write selected data bit 1
2 addressed register bit 2 todo0 data bit 2
3 addressed register bit 3 todo1 data bit 3
4 addressed register bit 4 todo2 data bit 4
5 addressed register bit 5 todo3 data bit 5
6 IO read/write select todo4 data bit 6
7 IO clock todo5 data bit 7
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SPELL [782]

• Author: Uri Shaked
• Description: SPELL is a minimal, cryptic, stack-based programming language

crafted for The Skull CTF
• GitHub repository
• HDL project
• Mux address: 782
• Extra docs
• Clock: 10000000 Hz

How it works

SPELL is a minimal, stack-based programming language created for The Skull CTF.
The language is defined by the following cryptic piece of Arduino code:

void spell() {

uint8_t*a,pc=16,sp=0,
s[32]={0},op;while(!0){op=

EEPROM.read(pc);switch(+op){case
',':delay(s[sp-1]);sp--;break;case'>':
s[sp-1]>>=1|1;break;case'<':s[sp-1]<<=1;

break;case'=':pc=s[sp-1]-1;sp--;break;case
'@':if(s[sp-2]){s[sp-2]--;pc=s[sp-1]-1;sp+=
1;}sp-=2;break;case'&':s[sp-2]&=s[sp-1];sp-=1;
break;case'|':s[sp-2]|=s[sp-1];sp-=1;break;case

'^':s[sp-2]^=s[sp-1];sp--;break;case'+':s[sp-2]+=
s[sp-1];sp=sp-1;break;case'-':s[sp-2]-=s[sp-1];sp--;
break;case'2':s[sp]=s[sp-1];sp=sp+1;break;case'?':s[

sp-1]=EEPROM. read(s[sp-1]|0 );break;case
"!!!"[0]: 666,EEPROM .write(s
[sp-1] ,s[sp-2] );sp=+
sp-02; ;break; 1;case
"Arr"[ 1]: s[+ sp-1]=
*(char*) (s[+ sp-1 ]);break
;case'w':* (char*)( s[+sp-1]) =s[sp-+2];
sp-=2;break;case+ 'x':s[sp] =s[sp-1

];s[sp-1]=s[sp + -2];s[sp-2]=s[
0|sp];break; ;; case"zzz"[0
]:sleep();" Arrr ";break;case
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255 :return;; default:s [sp]
=+ op;sp+= 1,1 ;}pc=
+ pc + 1; %>

}

This design is an hardware implementation of SPELL with the following features:

• 256 bytes of program memory (volatile, simulates EEPROM)
• 32 bytes of stack memory
• 32 bytes of data memory
• 8 bidirectional pins and up to 8 output-only pins

Initially, all the program memory is filled with 0xFF, and the stack and data memory
are filled with 0x00. The program counter is set to 0x00, and the stack pointer is set
to 0x00.
To load a program or inspect the internal state, the design provides access to the
following registers via a simple serial interface:

Address Register name Description
0x00 PC Program counter
0x01 SP Stack pointer
0x02 EXEC Execute-in-place (write-only)
0x03 STACK Stack access (read the top value, or push a value)

The serial interface is implemented using a shift register, which is controlled by the
following signals:

Pin Type Description
reg_sel input Select the register to read/write
load input Load the selected register with the value from the shift

register
dump input Dump the selected register value to the shift register
shift_in input Serial data input
shift_out output Serial data output (when porta[3] is disabled)

When load is high, the value from the shift register is loaded into the selected register.
When dump is high, the value of the selected register is dumped into the shift register,
and can be read after two clock cycles by reading shift_out (MSB first).
For example, if you want to read the value of the program counter (PC), you would:
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1. Set reg_sel to 0x00 and set dump to 1
2. Wait for two clock cycles for the first bit (MSB) to appear on shift_out.
3. Read the remaining bits from shift_out on each clock cycle.

To write a value to the program counter, you would:

1. Write the value to the shift register, one bit at a time, starting with the MSB.
2. Set reg_sel to 0x00 and set load to 1.
3. Wait for a single clock cycle for the value to be loaded.

Writing an opcode to the EXEC register will execute the opcode in place, without
modifying the program counter (unless the opcode is a jump instruction).
The STACK register is used to push a value onto the stack or read the top value from
the stack (for debugging purposes).

Data memory and registers The data memory space is divided into two regions:

Address range Description
0x00 - 0x1F General-purpose data storage (data memory)
0x20 - 0x5F I/O and control registers

Other addresses are reserved for future use, and should not be accessed.
The following registers are available in the data memory space:

Address Name Description
0x36 PINB Read the value of the portb pins, or toggle the output when

written to
0x37 DDRB Set the direction of the portb pins (0 = input, 1 = output)
0x38 PORTBWrite to the portb pins
0x39 PINA Toggle the output on porta pins (write only; read returns 0x00)
0x3A DDRA Enables of the porta pins (0 = disabled, 1 = output)
0x3B PORTAWrite to the porta (output only) pins

For example, to toggle the value of the portb[2] (uio[2]) pin, you would write
0x04 to the PINB register.
The porta[3:0] pins are also used for debug output, and their function is determined
by the DDRA register:
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Output pin DDRA[n] == 0 DDRA[n] == 1
0 sleep porta[0]
1 stop porta[1]
2 wait_delay porta[2]
3 shift_out porta[3]
4 0 porta[4]
5 0 porta[5]
6 0 porta[6]
7 0 porta[7]

How to test

To test SPELL, you need to load a program into the program memory and execute it.
You can load the program by repeatedly executing the following steps for each byte of
the program:

1. Write the byte to the top of the stack (using the STACK register)
2. Write the address of the byte in the program memory to top of the stack
3. Write the opcode ! to the EXEC register

After loading the program, you can execute it by writing the address of the first byte
in the program memory to the PC register, and then pulsing the run signal.

Test programs The following program will spell “SPELL” on the Tiny Tapeout
demo board’s 7-segment display: (see what we did there?)

[127, 58, 119, 0, 129, 57, 57, 244, 62, 116, 109, 50, 0, 38, 94, 59, 119, 250, 44, 0, 59, 119, 25, 44, 11, 64, 3, 61]

The program bytes should be loaded into the program memory starting at address 0.
And of course, the obligatory blink, rapidly blinking an LED connected to the uio[0]
pin:

[1, 55, 119, 1, 54, 119, 250, 44, 3, 61]

External hardware

None
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Errata

When reseting the chip, bytes 0-3 and 128-131 of the program memory are not reset
to 0xFF, and retain their values from the last program loaded (or a random value on
power-up). All other program memory bytes are reset to 0xFF, as expected. This
happens due to a timing issue with the DFFRAM write operation that affects the first
word of each program memory bank.

Pinout

# Input Output Bidirectional
0 run sleep/porta[0] portb[0]
1 step stop/porta[1] portb[1]
2 load wait_delay/porta[2] portb[2]
3 dump shift_out/porta[3] portb[3]
4 shift_in porta[4] portb[4]
5 reg_sel[0] porta[5] portb[5]
6 reg_sel[1] porta[6] portb[6]
7 porta[7] portb[7]
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LISA Microcontroller with TTLC [846]

• Author: Ken Pettit
• Description: 8-Bit Microcontroller SOC with Tiny Tapeout Logic Controller
• GitHub repository
• HDL project
• Mux address: 846
• Extra docs
• Clock: 50000000 Hz

What is LISA?

LISA is a Microcontroller built around a custom 8-Bit Little ISA (LISA) microprocessor
core. It includes several standard peripherals that would be found on commercial
microcontrollers including timers, GPIO, UARTs and I2C. The following is a block
diagram of the LISA Microcontroller:

• The LISA Core has a minimal set of register that allow it to run C programs:

– Program Counter + Return Address Resister
– Stack Pointer and Index Register (Indexed DATA RAM access)
– 8-bit Accumulator + 16-bit BF16 Accumulator and 4 BF16 registers
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Deailed list of the features
• Harvard architecture LISA Core (16-bit instruction, 15-bit address space)
• Debug interface

– UART controlled
– Auto detects port from one of 3 interfaces
– Auto detects the baud rate
– Interfaces with SPI / QSPI SRAM or FLASH
– Can erase / program the (Q)SPI FLASH
– Read/write LISA core registers and peripherals
– Set LISA breakpoints, halt, resume, single step, etc.
– SPI/QSPI programmability (single/quad, port location, CE selects)

• (Q)SPI Arbiter with 3 access channels

– Debug interface for direct memory access
– Instruction fetch
– Data fetch
– Quad or Single SPI. Hereafter called QSPI, but supports either.

• Onboard 128 Byte RAM for DATA / DATA CACHE
• Data bus CACHE controller with 8 16-byte CACHE lines
• Instruction CACHE with a single 4-instruction CACHE line
• Two 16-bit programmable timers (with pre-divide)
• Debug UART available to LISA core also
• Dedicated UART2 that is not shared with the debug interface
• 8-bit Input port (PORTA)
• 8-bit Output port (PORTB)
• 4-bit BIDIR port (PORTC)
• I2C Master controller
• Hardware 8x8 integer multiplier
• Hardware 16/8 or 16/16 integer divider
• Hardware Brain Float 16 (BF16) Multiply/Add/Negate/Int16-to-BF16
• Programmable I/O mux for maximum flexibility of I/O usage.

It uses a 32x32 1RW DFFRAM macro to implement a 128 bytes (1 kilobit) RAM
module. The 128 Byte ram can be used either as a DATA cache for the processor
data bus, giving a 32K Byte address range, or the CACHE controller can be disabled,
connecting the Lisa processor core to the RAM directly, limiting the data space to
128 bytes. Inclusion of the DFFRAM is thanks to Uri Shaked (Discord urish) and his
DFFRAM example.
Reseting the project does not reset the RAM contents.
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Connectivity

All communication with the microcontroller is done through a UART connected to
the Debug Controller. The UART I/O pins are auto-detected by the debug_autobaud
module from the following choices (RX/TX):

ui_in[3] / ui_out[4] RP2040 UART interface
uio_in[4] / uio_out[5] LISA PMOD board (I am developing)
uio_in[6] / uio_out[5] Standard UART PMOD

The RX/TX pair port is auto-detected after reset by the autobaud circuit, and the
UART baud rate can either be configured manually or auto detected by the autobaud
module. After reset, the ui_in[7] pin is sampled to determine the baud rate selection
mode. If this input pin is HIGH, then autobaud is disabled and ui_in[6:0] is sampled
as the UART baud divider and written to the Baud Rate Generator (BRG). The value
of this divider should be: clk_freq / baud_rate / 8 - 1. Due to last minute additions
of complex floating point operations, and only 2 hours left on the count-down clock,
the timing was relaxed to 20MHz input clock max. So for a 20MHz clock and 115200
baud, the b_div[6:0] value would be 42 (for instance).
If the ui_in[7] pin is sampled LOW, then the autobaud module will monitor all three
potential RX input pins for LINEFEED (ASCII 0x0A) code to detect baud rate and
set the b_div value automatially. It monitors bit transistions and searches for three
successive bits with the same bit period. Since ASCII code 0x0A contains a “0 1 0 1
0” bit sequence, the baud rate can be detected easily.
Regardless if the baud rate is set manually or using autobaud, the input port selection
will be detect automatically by the autobaud. In the case of manual buad rate selection,
it simply looks for the first transition on any of the three RX pins. For autobaud, it
selects the RX line with three successive equivalent bit periods.
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Debug Interface Details The Debug interface uses a fixed, Verilog coded Finite
State Machine (FSM) that supports a set of commands over the UART to interface
with the microcontroller. These commands are simple ASCII format such that low-
level testing can be performed using any standard terminal software (such as minicom,
tio. Putty, etc.). The ‘r’ and ‘w’ commands must be terminated using a NEWLINE
(0x0A) with an optional CR (0x0D). Responses from the debug interface are always
terminated with a LINFEED plus CR sequence (0x0A, 0x0D). The commands are as
follows (responsce LF/CR ommited):

Command Description
v Report Debugger version. Should return: lisav1.2
wAAVVVV Write 16-bit HEX value ‘VVVV’ to register at 8-bit HEX address ‘AA’.
rAA Read 16-bit register value from 8-bit HEX address ‘AA’.
t Reset the LISA core.
l Grant LISA the UART. Further data will be ignored by the debugger.
+++ Revoke LISA UART. NOTE: a 0.5s guard time before/after is required.

NOTE: All HEX values must be a-f and not A-F. Uppercase is not supported.

Debug Configuration and Control Registers The following table describes the
configuration and LISA debug register addresses available via the debug ‘r’ and ‘w’
commands. The individual register details will be described in the sections to follow.

ADDR Description ADDR Description
0x00 LISA Core Run Control 0x12 LISA1 QSPI base address
0x01 LISA Accumulator / FLAGS 0x13 LISA2 QSPI base address
0x02 LISA Program Counter (PC) 0x14 LISA1 QSPI CE select
0x03 LISA Stack Pointer (SP) 0x15 LISA2 QSPI CE select
0x04 LISA Return Address (RA) 0x16 Debug QSPI CE select
0x05 LISA Index Register (IX) 0x17 QSPI Mode (QUAD, flash, 16b)
0x06 LISA Data bus 0x18 QSPI Dummy read cycles
0x07 LISA Data bus address 0x19 QSPI Write CMD value
0x08 LISA Breakpoint 1 0x1a The ‘+++’ guard time count
0x09 LISA Breakpoint 2 0x1b Mux bits for uo_out
0x0a LISA Breakpoint 3 0x1c Mux bits for uio
0x0b LISA Breakpoint 4 0x1d CACHE control
0x0c LISA Breakpoint 5 0x1e QSPI edge / SCLK speed
0x0d LISA Breakpoint 6 0x20 Debug QSPI Read / Write
0x0f LISA Current Opcode Value 0x21 Debug QSPI custom command
0x10 Debug QSPI Address (LSB16) 0x22 Debug read SPI status reg
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ADDR Description ADDR Description
0x11 Debug QSPI Address (MSB8)

LISA Processor Interface Details The LISA Core requires external memory for
all Instructions and Data (well, sort of for data, the data CACHE can be disabled then
it just uses internal DFFRAM). To accomodate external memory, the design uses a
QSPI controller that is configurable as either single SPI or QUAD SPI, Flash or SRAM
access, 16-Bit or 24-Bit addressing, and selectable Chip Enable for each type of access.
To achieve this, a QSPI arbiter is used to allow multiple accessors as shown in the
following diagram:

The arbiter is controlled via configuration registers (accessible by the Debug controller)
that specify the operating mode per CE, and CE selection bits for each of the three
interfaces:

• Debug Interface
• LISA1 (Instruction fetch)
• LISA2 (Data read/write)

The arbiter gives priority to the Debug accesses and processes LISA1 and LISA2 requests
using a round-robbin approach. Each requestor provides a 24-bit address along with 16-
bit data read/write. For the Debug interface, the address comes from the configuration
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registers directly. For LISA1, the address is the Program Counter (PC) + LISA1 Base
and for LISA2, it is the Data Bus address + LISA2 Base. The LISA1 and LISA2 base
addresses are programmed by the Debug controller and set the upper 16-bits in the 24-
bit address range. The PC and Data address provide the lower 16 bis (8-bits overlapped
that are ’OR’ed together). The BASE addresses allow use of a single external QSPI
SRAM for both instruction and data without needing to worry about data collisions.
When the arbiter chooses a requestor, it passes its programmed CE selection to the
QSPI controller. The QSPI controller then uses the programmed QUAD, MODE,
FLASH and 16B settings for the chosen CE to process the request. This allows LISA1
(Instruction) to either execute from the same SRAM as LISA2 (Data) or to execute
from a separate CE (such as FLASH with permanent data storage).
Additionally the Debug interface has special access registers in the 0x20 - 0x22 range
that allow special QSPI accesses such as FLASH erase and program, SRAM program-
ming, FLASH status read, etc. In fact the Debug controller can send any arbitrary
command to a target device, using access that either provide an associated address
(such as erase sector) or no address. The proceedure for this is:

1. Program Debug register 0x19 with the special 8-bit command to be sent
2. Set the 9-th bit (reg19[8]) to 1 if a 16/24 bit address needs to be sent)
3. Perform a read / write operation to debug address 0x21 to perform the action.

Simple QSPI data reads/write are accomplished via the Debug interface by setting the
desired address in Debug config register 0x10 and 0x11, then performing read or write
to address 0x20 to perform the request. Reading from Debug config register 0x22 will
perform a special mode read of QSPI register 0x05 (the FLASH status register).
Data access to the QSPI arbiter come from the Data CACHE interface (described later),
enabling a 32K address space for data. However the design has a CACHE disable mode
that directs all Data accesses directly to the internal 128 Byte RAM, thus eliminating
the need for external SRAM (and limiting the data bus to 128 bytes).

Programming the QSPI Controller Before the LISA microcontroller can be used
in any meaningful manner, a SPI / QSPI SRAM (and optionally a NOR FLASH) must
be connected to the Tiny Tapeout PCB. Alternately, the RP2040 controller on the
board can be configured to emulate a single SPI (the details for configuring this are
outside the scope of this documentation … search the Tiny Tapeout website for details.).
For the CE signals, there are two operating modes, fixed CE output and Mux Mode 3
“latched” CE mode. Both will be described here. The other standard SPI signals are
routed to dedicated pins as follows:
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Pin SPI QSPI Notes
uio[0] CE0 CE0
uio[1] MOSI DQ0 Also MOSI prior to QUAD mode DQ0
uio[2] MISO DQ1 Also MISO prior to QUAD mode DQ1
uio[3] SCLK SCLK
uio[4] CE1 CE1 Must be enabled via uio MUX bits
uio[6] - DQ2 Must be enabled via uio MUX bits
uio[7] - DQ3 Must be enabled via uio MUX bits

For Special Mux Mode 3 (Debug register 0x1C uio_mux[7:6] = 2’h3), the pinout is
mostly the same except the CE signals are not constant. Instead they are “latched”
into an external 7475 type latch. This mode is to support a PMOD board connected
to the uio PMOD which supports a QSPI Flash chip, a QSPI SRAM chip, and either
Debug UART or I2C. For all of that functionality, nine pins would be required for
continuous CE0/CE1, however only eight are available. So the external PMOD uses
uio[0] as a CE “latch” signal and the CE0/CE1 signals are provided on uio[1]/uio[2]
during the latch event. This requires a series resistor as indicated to allow CE updates
if the FLASH/SRAM is driving DQ0/DQ1. The pinout then becomes:

Pin SPI/QSPI Notes
uio[0] ce_latch ce_latch HIGH at beginning of cycle
uio[1] ce0_latch/MOSI/DQ0 Connection to FLASH/SRAM via series resistor
uio[2] ce1_latch/MISO/DQ1 Connection to FLASH/SRAM via series resistor
uio[3] SCLK
uio[6] -/DQ2 Must be enabled via uio MUX bits
uio[7] -/DQ3 Must be enabled via uio MUX bits

This leaves uio[4]/uio[5] available for use as either UART or I2C.
Once the SPI/QSPI SRAM and optional FLASH have been chosen and connected,
the Debug configuration registers must be programmed to indicate the nature of the
external device(s). This is accompilished using Debug registers 0x12 - 0x19 and 0x1C.
To programming the proper mode, follow these steps:

1. Program the LISA1, LISA2 and Debug CE Select registers (0x14, 0x15, 0x16)
indicating which CE to use.

• 0x14, 0x15, 0x16: {6’h0, ce1_en, ce0_en} Active HIGH

2. Program the LISA1 and LISA2 base addresses if they use the same SRAM:
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• 0x12: {LISA1_BASE, 8’h0} | {8’h0, PC}
• 0x13: {LISA2_BASE, 8’h0} | {8’h0, DATA_ADDR}

3. Program the mode for each Chip Enable (bits active HIGH)

• 0x17: {10’h0, is_16b[1:0], is_flash[1:0], is_quad[1:0]}

4. For Quad SPI, Special Mux Mode 3, or CE1, program the uio_mux mode:

• 0x1C:
– [7:6] = 2’h2: Normal QSPI DQ2 select
– [7:6] = 2’h3: Special Mux Mode 3 (Latched CE)
– [5:4] = 2’h2: Normal QSPI DQ3 select
– [5:4] = 2’h3: Special Mux Mode 3
– [1:0] = 2’h2: CE1 select on uio[4]

5. For RP2040, you might need to slow down the SPI clock / delay between suc-
cessive CE activations:

• 0x1E:
– [3:0] spi_clk_div: Number of clocks SCLK HIGH and LOW
– [10:4] ce_delay: Number clocks between CE activations
– [12:11] spi_mode: Per-CE FALLING SCLK edge data update

6. Set the number of DUMMY ready required for each CE:

• 0x18: {8’h0, dummy1[3:0], dummy0[3:0]

7. For QSPI FLASH, set the QSPI Write opcode (it is different for various Flashes):

• 0x19: {8’h0, quad_write_cmd}

NOTE: For register 0x1E (SPI Clock Div and CE Delay), there is only a single register,
meaning this register value applies to both CE outputs. Delaying the clock of one CE
will delay both, and adding delay between CE activations does not keep track of which
CE was activated. So if two CE outputs are used and a CE delay is programmed, it will
enforce that delay even if a different CE is used. This setting is really in place for use
when the RP2040 emulation is being used in a single CE SRAM mode only (i.e. you
have no external PMOD with a real SRAM / FLASH chip. In the case of real chips on
a PMOD, SCLK and CE delays (most likely) are not needed. The Tech Page on the
Tiny Tapeout regarding RP2040 SPI SRAM emulation indicates a delay between CE
activations is likely needed, so this setting is provided in case it is needed.
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Architecture Details

Below is a simplified block diagram of the LISA processor core. It uses an 8-bit
accumulator for most of its operations with the 2nd argument predominately coming
from either immediate data in the instruction word or from a memory location addressed
by either the Stack Pointer (SP) or Index Register (IX).
There are also instructions that work on the 15-bit registers PC, SP, IX and RA (Return
Address). As well as floating point operations. These will be covered in the sections
to follow.

Addressing Modes Like most processors, LISA has a few different addressing
modes to get data in and out of the core. These include the following:

Mode Data Description
Register Rx[n -: 8] Transfers between registers (ix, ra, facc, etc.).
Direct inst[n:0] N-bit data stored in the instruction word.
NextOp (inst+1)[14:0] Data stored in the NEXT instruction word.
Indirect mem[inst[n:0]] Address of the data is in the instruction word.
Periph periph[inst[n:0]] Accesses to the peripheral bus.
Indexed mem[sp/ix+inst[n:0]] The SP or IX register is added to a fixed offset.
Stack mem[sp] Stack pointer points to the data (push/pop).
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The Control Registers To run meaninful programs, the Program Counter (PC)
and Stack Pointer (SP) must be set to useful values for accessing program instructions
and data. The PC is automatically reset to zero by rst_n, so that one is pretty much
automatic. All programs start at address zero (plus any base address programmed by
the Debug Controller). But as far as the LISA core is concerned, it knows nothing of
base addresses and believes it is starting at address zero.
Next is to program the SP to point to a useful location in memory. The Stack is a
place where C programs store their local variable values and also where we store the
Return Address (RA) if we need to call nested routines, etc. The stack grows down,
meaning it starts at a high RAM address and decrements as things are added to the
stack. Therefore the SP should be programmed with an address in upper RAM. LISA
supports different Data bus modes through it’s CACHE controller, including CACHE
disable where it can only access 128 bytes. But for this example, let’s assume we have
a full range of 32K SRAM available. The LISA ISA doesn’t have an opcode for loading
the SP directly. Instead it can load the IX register directly with a 15-bit value using
NextOp addressing, and it supports “xchg” opcodes to exchange the IX register with
either the SP or RA. So to load the SP, we would write:

Example:
ldx 0x7FFF // Load IX with value in next opcode
xchg_sp // Exchange IX with SP

The IX register can be programmed as needed to access other data within the Data
Bus address range. This register is useful especially for accessing structures via a C
pointer. The IX then becomes the value of the pointer to RAM, and Indexed addressing
mode allows fixed offsets from that pointer (i.e. structure elements) to be accessed for
read/write.
Loading the PC indirectly can be done using the “jmp ix” opcode which does the
operation pc <= ix. Loading ix from the pc directly is not supported, though this can
be accomplished using a function call and opcodes to save RA (sra) and pop ix:

Example:
get_pc:
sra // Push RA to the stack (Save RA)
pop_ix // Pop IX from the stack
ret // Return. Upon return, IX is the same as PC
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Conditional Flow Processing Program flow is controlled using flags (zero, carry,
sign), arithemetic mode (amode) and condition flags (cond) to determine when pro-
gram branches should occur. Specific opcode update the flags and condition registers
based on results of the operation (AND, OR, IF, etc.). Then conditional branches are
made using bz, bnz and if (and variants ifte “if-then-else” and iftt “if-then-then”). Also
available are rc “Return if Carry” and rz “Return if Zero”, though these are less useful
in C programs as typically a routine uses local variables and the stack must be restored
prior to return, mandating a branch to the function epilog to restore the stack and
often the return address. Below is a list of the opcodes used for conditional program
processing:
Legend for operations below:

• acc_val = inst[7:0]
• pc_jmp = inst[14:0]
• pc_rel = pc + sign_extend(inst[10:0])

Opcode Operation Encoding Description
jal pc <= pc_jmp 0aaa_aaaa_aaaa_aaaa Jump And Link (call).

ra <= pc
ret pc <= ra 1000_1010_0xxx_xxxx Return
reti pc <= ra 1000_11xx_iiii_iiii Return Immediate.

acc <= acc_val
br pc <= pc_rel 1011_0rrr_rrrr_rrrr Branch Always
bz pc <= pc_rel 1011_1rrr_rrrr_rrrr Branch if Zero.

if zero=1
bnz pc <= pc_rel 1010_1rrr_rrrr_rrrr Branch if Not Zero.

if zero=0
rc pc <= ra 1000_1011_0xxx_xxxx Return if Carry

if carry=1
rz pc <= ra 1000_1011_1xxx_xxxx Return if Zero

if zero=1
call_ix pc <= ix 1000_1010_100x_xxxx Call indirect via IX

ra <= pc
jump_ix pc <= ix 1000_1010_101x_xxxx Jump indirect via IX
if cond <= ?? 1010_0010_0000_0ccc If. See below.
iftt cond <= ?? 1010_0010_0000_1ccc If then-then. See below.
ifte cond <= ?? 1010_0010_0001_0ccc If then-else. See below.

The IF Opcode The “if” opcode and it’s variants “if-then-then” and “if-then-else”
control program flow in a slightly different manner than the others. Instead of affecting
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the value of the PC directly, they set the two condition bits “cond[1:0]” to indicate
which (if any) of the two following opcodes should be executed. the cond[0] bit
represents the next instruction and cond[1] represents the instruction following that.
All three “if” forms take an argument that checks the current value of the FLAGS to set
the condition bits. The argument is encoded as the lower three bits of the instruction
word ard operate as shown in the following table:

Condition Test Encoding Description
EQ zflag=1 3’h0 Execute if Equal
NE zflag=0 3’h1 Execute if Not Equal
NC cflag=0 3’h2 Execute if Not Carry
C cflag=1 3’h3 Execute if Carry
GT ~cSigned & ~zflag 3’h4 Execute if Greater Than
LT cSigned & ~zflag 3’h5 Execute if Less Than
GTE ~cSigned zflag 3’h6
LTE cSigned zflag 3’h7

The “if” opcode will set cond[0] based on the condition above and the cond[1] bit
to HIGH. It only affects the single instruction following the “if” opcode. The “iftt”
opcode will set both cond[0] and cond[1] to the same value based on the condition
above. It means “if true, execute the next two opcodes”. And the “ifte” opcode will set
cond[0] based on the condition above and cond[1] to the OPPOSITE value, meaning
it will execute either the following instruction OR the one after that (then-else).

Example:
ldi 0x41 // Load A immediate with ASCII 'A'
cpi 0x42 // Compare A immediate with ASCII 'B'
ifte eq // Test if the compare was "Equal"
jal L_equal // Jump if equal
jal L_different // Jump if different

The above code will load the “jal L_equal” opcode but will not execute it since the
compare was Not Equal. Then it will execute the “jal L_different” opcode. Note that
if the compare were “ifte ne”, it would call the L_equal function and then upon return
would not execute the “L_different” opcode. This is because the cond[1] code is saved
with the Return Address (RA) during the call and restored upon return. This means
the FALSE cond[1] code would prevent the 2nd opcode from executing. As an opcode
gets executed, the cond[1] value is shifted into the cond[0] location, and the cond[1]
is loaded with 1’b1.

265



Direct Operations To do any useful work, the LISA core must be able to load and
operate on data. This is done through the accumulator using the various addressing
modes. The diagram below details the Direct addressing mode where data is stored
directly in the opcode / instruction word:
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The instructions that use direct addressing are:

Opcode Operation Encoding Description
adc A <= A + imm + C 1001_00xx_iiii_iiii ADD immediate with Carry
ads SP <= SP + imm 1001_01ii_iiii_iiii ADD SP + signed immediate
adx IX <= IX + imm 1001_10ii_iiii_iiii ADD IX + signed immediate
andi A <= A & imm 1000_01xx_iiii_iiii AND immediate with A
cpi Z,C <= A >= imm 1010_01xx_iiii_iiii Compare A >= immediate
cpi Z,C <= A >= imm 1010_01xx_iiii_iiii Compare A >= immediate

Accumulator Indirect Operations The Accumulator Indirect operations use im-
mediate data in the instruction word to index indirectly into Data memory. That
memory address is then used to load, store or both load and store (swap) data with
the accumulator.

Opcode Operation Encoding Description
lda A <= M[imm] 1111_01pi_iiii_iiii Load A from Memory/Peripheral
sta M[imm] <= A 1111_11pi_iiii_iiii Store A to Memory/Peripheral
swapi A <= M[imm] 1101_11pi_iiii_iiii Swap Memory/Peripheral with A

M[imm] <= A

• p = Select Peripheral (1’b1) or RAM (1’b0)
• iiii = Immediate data

Indexed Operations Indexed operations use either the IX or SP register plus a
fixed offset from the immediate field of the opcode. The selection to use IX vs SP is
also from the opcode[9] bit. The immediate field is not sign extended, so only positive
direction indexing is supported. This was selected because this mode is typically used
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to access either local variables (when using SP) or C struct members (when using IX),
and in both cases, negative index offsets aren’t very useful. The following is a diagram
of indexed addressing:

Opcode Operation Encoding Description
add A <= A+ M[ind] 1100_00si_iiii_iiii ADD index memory to A
and A <= A & M[ind] 1101_00si_iiii_iiii AND A with index memory
cmp A >= M[ind]? 1110_10si_iiii_iiii Compare A with index memory
dcx M[ind] -= 1 1001_11si_iiii_iiii Decrement the value at index memory
inx M[ind] += 1 1110_01si_iiii_iiii Increment the value at index memory
ldax A <= M[ind] 1111_00si_iiii_iiii Load A from index memory
ldxx IX <= M[SP+imm] 1100_110i_iiii_iiii Load IX from memory at SP+imm
mul A <= A*M[ind]L 1100_10si_iiii_iiii Multiply index memory * A, keep LSB
mulu A <= A*M[ind]H 1000_01si_iiii_iiii Multiply index memory * A, keep MSB
or A <= A M[ind] 1101_10si_iiii_iiii
stax M[ind] <= A 1111_10si_iiii_iiii Store A to index memory
stxx M[SP+imm] <= IX 1100_111i_iiii_iiii Save IX to memory at SP+imm
sub A <= A-M[ind] 1100_10si_iiii_iiii SUBtract index memory from A
swap A <= M[ind] 1110_11si_iiii_iiii Swap A with index memory

M[ind] <= A
xor A <= A ^ M[ind] 1110_00si_iiii_iiii XOR A with index memory
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Legend for table above:

• ind = IX or SP + immediate
• s = Select IX (zero) or SP (one)
• iiii = Immediate data

The Zero and Carry flags are updated for most of the above operations. The Carry
flag is only updated for math operations where a Carry / Borrow could occur.

Carry Zero
adc add and
add or xor
sub cmp sub
cmp dcx inx
dcx swap ldax
inx mul mulu

Stack Operations Stack operations use the current value of the SP register to
PUSH and POP items to the stack in opcode. As items are PUSHed to the stack,
the SP is decremented after each byte, and as they are POPed, the SP is incremented
prior to reading from RAM.

Opcode Operation Encoding Description
lra RA <= M[SP+1] 1010_0001_0110_01xx Load {cond,RA} from stack

SP += 2
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Opcode Operation Encoding Description
sra M[SP] <= RA 1010_0001_0110_00xx Save {cond,RA} to stack

SP -= 2
push_ix M[SP] <= IX 1010_0001_0110_10xx Save IX to stack

SP -= 2
pop_ix IX <= M[SP+1] 1010_0001_0110_11xx Load IX from stack

SP += 2
push_a M[SP] <= A 1010_0000_100x_xxxx Save A to stack

SP -= 1
pop_a A <= M[SP+1] 1010_0000_110x_xxxx Load A from stack

SP += 1

How to test

You will need to download and compile the C-based assembler, linker and C compiler
I wrote (will make available) Also need to download the Python based debugger.

• Assembler is fully functional

– Includes limited libraries for crt0, signed int compare, math, etc.
– Libraries are still a work in progress

• Linker is fully functional
• C compiler is somewhat functional (no float support at the moment) but has

many bugs in the generated code and is still a work in progress.
• Python debugger can erase/program the FLASH, program SPI SRAM, start/stop

the LISA core, read SRAM and registers.
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Legend for Pinout
• pa: LISA GPIO PortA Input
• pb: LISA GPIO PortB Output
• b_div: Debug UART baud divisor sampled at reset
• b_set: Debug UART baud divisor enable (HIGH) sampled at reset
• baud_clk: 16x Baud Rate clock used for Debug UART baud rate generator
• ce_latch: Latch enable for Special Mux Mode 3 as describe above
• ce0_latch: CE0 output during Special Mux Mode 3
• ce1_latch: CE1 output during Special Mux Mode 3
• DQ1/2/3/4: QUAD SPI bidirection data I/O
• pc_io: LISA GPIO Port C I/O (direction controllable by LISA)

Pinout

# Input Output Bidirectional
0 pa[0]/b_div[0]/rx2 pb[0]/tx2 ce0/ce_latch
1 pa[1]/b_div[1]/rx2 pb[1]/tx2 mosi/dq1/ce0_latch
2 pa[2]/b_div[2]/rx2 pb[2]/tx2 miso/dq2/ce1_latch
3 pa[3]/b_div[3]/rx pb[3] sclk
4 pa[4]/b_div[4] pb[4]/tx rx /pc_io[0]/scl/ce1
5 pa[5]/b_div[5] pb[5] tx /pc_io[1]/sda
6 pa[6]/b_div[6] pb[6] scl /pc_io[2]/dq2/rx
7 pa[7]/b_set(autobaud_disable) pb[7]/baud_clk sda/pc_io[3]/dq3
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Simon Says memory game [897]

• Author: Uri Shaked
• Description: Repeat the sequence of colors and sounds to win the game
• GitHub repository
• HDL project
• Mux address: 897
• Extra docs
• Clock: 50000 Hz

Figure 44: Simon Says Game

How it works

Simon says is a simple electronic memory game: the user has to repeat a growing
sequence of colors. The sequence is displayed by lighting up the LEDs. Each color also
has a corresponding tone.
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In each turn, the game will play the sequence, and then wait for the user to repeat the
sequence by pressing the buttons according to the color sequence. If the user repeated
the sequence correctly, the game will play a “leveling-up” sound, add a new color at
the end of the sequence, and move to the next turn.
The game continues until the user has made a mistake. Then a game over sound is
played, and the game restarts.
Check out the online simulation at https://wokwi.com/projects/397436605640509441
(including wiring diagram).

How to test

You need four buttons, four LEDs, resistors, and optionally a speaker/buzzer and a
two digit 7-segment display for the score.
Ideally, you want to use 4 different colors for the buttons/LEDs (red, green, blue,
yellow).

1. Connect the buttons to pins btn1, btn2, btn3, and btn4, and also connect
each button to a pull down resistor.

2. Connect the LEDs to pins led1, led2, led3, and led4, matching the colors
of the buttons (so led1 and btn1 have the same color, etc.)

3. Connect the speaker to the speaker pin.
4. Connect the seven segment display as follows: seg_a through sev_g to individ-

ual segments, dig1 to the common pin of the tens digit, dig2 to the common
pin of the ones digit. Set seginv according to the type of 7 segment display
you have: high for common anode, low for common cathode.

5. Reset the game, and then press any button to start it. Enjoy!

Note: the game requires 50KHz clock input.

External Hardware

Four push buttons (with pull-down resistors), four LEDs, and optionally a
speaker/buzzer and two digit 7-segment display
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# Input Output Bidirectional

Pinout

# Input Output Bidirectional
0 btn1 led1 seg_a
1 btn2 led2 seg_b
2 btn3 led3 seg_c
3 btn4 led4 seg_d
4 seginv speaker seg_e
5 dig1 seg_f
6 dig2 seg_g
7
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Reversible logic based Ring-Oscillator Physically Unclonable
Function (RO-PUF) [899]

• Author: Syed Farah Naz, Shivam Bhardwaj, Ambika Prasad Shah
• Description: Reversible logic based Ring-Oscillator Physically Unclonable Func-

tion (RO-PUF)
• GitHub repository
• HDL project
• Mux address: 899
• Extra docs
• Clock: 0 Hz

How it works

We have introduced a fault-tolerant system featuring a ring-oscillator (RO) based
Physcially Unclonable Function (PUF), utilizing a reversible logic (RL) design. The pro-
posed system comprises of Fault-Tolerant RL-based inverter design and the Reversible
RO-PUF module. This RO-PUF design consists of several cascaded chains of DFGs
(functioning as inverter/buffer as and when required). We have used 64 ROs, divided
into groups of 32 ROs in our proposed RO-PUF architecture. Each of these 32 ROs is
connected to two 32×1 MUXs (Mux-1 and Mux-2), which select an RO according to
the bit combination given in the select lines. The output of the selected RO is fed to
the input of the counter, which counts the number of pulses generated by the RO until
a certain condition is reached, as specified in the comparator design. The comparator
takes input from the output of the two counters (Counter-1 and Counter-2), which are
continuously changing. When any of the two counters reaches its specified maximum
value of 32 bits, the current 32-bit count value of the slower counter is latched onto
the output of the PUF. The 5-bit challenges are randomly generated with the help of
a linear feedback shift register (LFSR). The select lines of both the 32×1 MUXs are
connected with challenge bits so that unique ROs are selected for comparison. Since
the frequency of each RO is different due to process variations, when one of the two
chosen ROs attains its specified maximum count value, the frequency count of the
other RO will be different, and we will get a unique response for each challenge.

How to test

We have tested the design on Vivado and OpenRoad Flow Script.
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External hardware

Default

Pinout

# Input Output Bidirectional
0 rst_n Respose_1
1 ena Respose_2
2 Challenge_1 Respose_3
3 Challenge_2 Respose_4
4 Challenge_3 Respose_5
5 Challenge_4 Respose_6
6 Respose_7
7 Respose_8

276



CRC-8 CCITT [901]

• Author: Aiden Fox Ivey
• Description: A simple parallel implementation of CRC-8 following CCITT specs.

This implies 0x00 is the start value.
• GitHub repository
• HDL project
• Mux address: 901
• Extra docs
• Clock: 0 Hz

How it works

ui should have the two bytes you want added to the CRC8. If you want to restart the
internal CRC value, then pull rst_n low. That will set it back to the default 0x00.
enable should be high unless you want to ignore the new calculated value from the
specific clock cycle. You can add any number of two byte combinations to it and it
will calculate the CRC8 CCITT value for the given combination.
https://crccalc.com can help you calculate the CRC8 if you want.
The specific polynomial in this case is 1+x1+x2+x^8.

How to test

Run make in the /test directory.

External hardware

None required! The design is combinational, requiring only a small buffer to store the
current CRC value. As a result, it’s quite simple.

Pinout

# Input Output Bidirectional
0 CRC input

pin 0.
CRC output
pin 0.

Represents whether or
not to ingest the values
on ui to the CRC.
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# Input Output Bidirectional
1 CRC input

pin 1.
CRC output
pin 1.

2 CRC input
pin 2.

CRC output
pin 2.

3 CRC input
pin 3.

CRC output
pin 3.

4 CRC input
pin 4.

CRC output
pin 4.

5 CRC input
pin 5.

CRC output
pin 5.

6 CRC input
pin 6.

CRC output
pin 6.

7 CRC input
pin 7.

CRC output
pin 7.
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VGA clock [903]

• Author: Matt Venn
• Description: Shows the time on a VGA screen
• GitHub repository
• HDL project
• Mux address: 903
• Extra docs
• Clock: 31500000 Hz

How it works

Races the beam! Font is pre generated and loaded into registers. 6 bit colour keeps
register count low.
Every minute the colours cycle.

How to test

Hook up a VGA monitor to the outputs and provide a clock at 31.5 MHz.
Adjust time with the inputs[2:0], and choose the type of VGA PMOD with the in-
put[3].

External hardware

VGA PMOD - you can use one of these VGA PMODs:

• https://github.com/mole99/tiny-vga
• https://github.com/TinyTapeout/tt-vga-clock-pmod

Set input[3] low to use tiny-vga and high to use vga-clock
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# Input Output Bidirectional

Pinout

# Input Output Bidirectional
0 adjust hours hsync / R1
1 adjust minutes vsync / G1
2 adjust seconds B0 / B1
3 PMOD type select B1 / VS
4 G0 / R0
5 G1 / G0
6 R0 / B0
7 R1 / HS
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Padlock [905]

• Author: J. Rosenthal & htfab
• Description: Set a code for your precious safe
• GitHub repository
• Wokwi project
• Mux address: 905
• Extra docs
• Clock: 0 Hz

How it works

Set a code for your precious safe! Controls

• Pin 1 is used to reset the safe.
• Pin 7 is used to set your code (ON = set, OFF = locked)
• Pins 2 to 4 are used to set the code.
• The clock button is used to enter your code.

How to test

Set the clock to manual mode. Set your desired code using pins 2 to 4. Once you’ve
done so, toggle pin 7 to ON, press the clock button then toggle pin 7 back OFF–the
safe is now set! Turn ON pin 1, and press the clock button. The seven segment display
should show “L” (for locked). Next turn OFF pin 1 to begin entering codes.

External hardware

None

Pinout

# Input Output Bidirectional
0 segment a
1 reset segment b
2 code bit 0 segment c
3 code bit 1 segment d
4 code bit 2 segment e
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# Input Output Bidirectional
5 segment f
6 segment g
7 set code
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7-Seg ‘Tiny Tapeout’ Display [907]

• Author: J. Rosenthal & htfab
• Description: This circuit will output a string of characters (’tiny tapeout’) to

the 7-segment display.
• GitHub repository
• Wokwi project
• Mux address: 907
• Extra docs
• Clock: 0 Hz

How it works

The logic to light the characters appears in the bottom half of the simulation window.
The top half of the simulation window implements a modulo-12 counter. In other
words, the counter increments up to 11 then resets. This counter is used to determine
which character we should output to the 7-segment display. The truth table for the
design can be found in the Design Spreadsheet.

How to test

Turn all pins OFF, keep the clock running and watch the rolling text on the 7-segment
display. Or turn pin 3 ON and manually select a letter using pins 4 to 7.

External hardware

None

Pinout

# Input Output Bidirectional
0 segment a
1 reset (sync) segment b
2 segment c
3 clock override segment d
4 clock bit 3 segment e
5 clock bit 2 segment f
6 clock bit 1 segment g
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# Input Output Bidirectional
7 clock bit 0
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clock [909]

• Author: ender
• Description: a clock usb digital tube
• GitHub repository
• HDL project
• Mux address: 909
• Extra docs
• Clock: 32768 Hz

this is a clock

How it works

pcb will be public at :https://github.com/ender110/tiny-tape-out-clock-pcb 3d shell
will be public at:https://github.com/ender110/tiny-tape-out-clock-shell

How to test

follow How it works

External hardware

pcb�shell�Digital tube

Pinout

# Input Output Bidirectional
0 addr[0] data[0]
1 addr[1] data[1]
2 addr[2] data[2]
3 addr[3] data[3]
4 addr[4] data[4]
5 addr[5] data[5]
6 addr[6] data[6]
7 addr[7] data[7]
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Tiniest GPU [910]

• Author: Matt Pongsagon
• Description: A GPU that can render only a triangle
• GitHub repository
• HDL project
• Mux address: 910
• Extra docs
• Clock: 50000000 Hz

What is it

• This is a tiniest ASIC GPU. It can render a quad using two triangles with texture
mapped.

• The chip comes with two texture ROM images. (My schools’ logo)
• The transformation, lighting and rasterization are done in the GPU.
• It support solid shading with one directional light source and affine texture map-

ping.
• All 3D data (coordinates, transformation, render mode) are sent from the PC

each frame via a COM port.
• The output is sent to the VGA monitor using TinyVGA. The output resolution

is 640x480 pixels, 6-bit RGB.
• The clock fequency is 50 Mhz.

Folders

https://github.com/pongsagon/tt07-tiniest-gpu

1. src: ASIC Verilog version
2. Basys3: Verilog version targeted Basys3 FPGA board
3. Verilator_sim: Verilog simulation version using Verilator and SDL
4. test_software: PC app used to sending data to the GPU

How to use

Plugin a TinyVGA PMOD, connect at the port uio.
Send UART command to control the GPU via serial console, ui_in[3] - RX
Please go to https://github.com/pongsagon/tt07-tiniest-gpu/tree/main/test_software
to get the testing app.
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ASIC GPU testing app written in C run on Windows.
To be able to run on different OS, you may need to use different UART library.
The app will send these data, 60 bytes, each frame @11520 baud rate to the GPU

• 4 vertices world coordinate that form a quad
• 1 normalize normal
• 1 normalize light direction
• 3x4 ModelViewProjection matrix. (third row is not used)
• 1 byte render mode

– solid shading, texture, alpha masked

The data are in the format of fixed point Q8.8 except for the 1-byte render mode.
The code has been successfully tested with the Basys3 board, sending data at 60fps.

Run/Edit the code

1. The code rely on SFML library for the input and windows. https://www.sfml-
dev.org/tutorials/2.6/start-vc.php.
Please install SFML first.

2. Change the COM port number in C code to match with the ASIC/FPGA port
(main_serial.cpp, line number 330)

3. short cut keys

• arrow key: yaw pitch
• as: zoom
• df: change model size
• er: X translation
• 012: render mode
• 34: change texture
• 6789: change triangle 1 color
• uiop: change triangle 2 color

4. You can also changes the vertices coordinate, quad normal and light direction
using code. I have not write short cut keys for setting them.

How it work

• Fixed point

– All of the calculation are done in fixed point.
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– The format of the fixed point is depend on the type of variables to save
register space as much as possible. Thus, they are a lot of bit operation
in the code to transiton between fixed point formats.

• Modules
– ia.v (input assembly)

∗ manage reading data (60 bytes each frame) from UART and save to
the registers

– vs.v (vertex stage)
∗ transform vertices from world space to screen space
∗ compute lighting intensity color for each triangle
∗ compute triangles’ edge parameters and barycentric coordinates

– raster.v
∗ rasterization two triangles, interpolate color, texture mapping

• No framebuffer or linebuffer
– Each pixel color has to be computed in 2 clock cycles.
– the rasterization is running in parallel with the vertex stage.
– Using incremental edge function to do pixel-triangle inside test.

• Computation steps
1. read data from the PC via UART (in project.v, ia.v)
2. for each frame (in vs.v)

– transform vertices to screen space and compute lighting
– (done during VBlank) compute triangles’ edge parameters and

barycentric coordinates
– all of these calculation are done in 82 states and use around 2,000

clock cycles.
3. for each scanline (in vs.v, raster.v)

– done in 1 clock cycle
– increment edge functions parameters of each scanline
– increment barycentric parameters of each scanline

4. for each pixel (in raster.v)
– 1st clock cycle:

∗ check pixel inside/outside of which triangles
∗ compute interpolated (u,v) of this pixel, get texel color from this
(u,v)

– 2nd clock cycle:
∗ color the pixel using texel color or light intensity color
∗ actually the texture ROM is monochorme, the color is hardcoded

using (u,v) coordinate.
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Pinout

# Input Output Bidirectional
0 R1
1 G1
2 B1
3 RX vsync
4 R0
5 G0
6 B0
7 hsync
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SUBNEG CPU [911]

• Author: Pawel Bialic
• Description: SUBNEG CPU requiring external parallel SRAM
• GitHub repository
• HDL project
• Mux address: 911
• Extra docs
• Clock: 1000 Hz

How it works

Implementation of a simple 8-bit SUBNEG CPU. The CPU interfaces to external SRAM
memory through address output latch. CPU output can be implemented using a second
output latch. The program to be executed has to be written to the SRAM by external
means (e.g. a microcontroller) prior to setting CPU enable pin high. 3 inputs are
provided for this purpose (CPU enable, External SRAM address latch CLK, External
SRAM WEn).

External hardware

3.3V SRAM memory (e.g. AS6C6264). Memory address latch (e.g. 74HC574). CPU
output latch (e.g. 74HC574). Device capable of displaying 8-bit output value.

Pinout

# Input Output Bidirectional
0 CPU enable SRAM address latch CLK CPU bi-directional bus
1 External SRAM address latch CLK SRAM OEn CPU bi-directional bus
2 External SRAM WEn SRAM WEn CPU bi-directional bus
3 CPU output latch CLK CPU bi-directional bus
4 Internal CPU state bit 0 CPU bi-directional bus
5 Internal CPU state bit 1 CPU bi-directional bus
6 Internal CPU state bit 2 CPU bi-directional bus
7 Internal CPU state bit 3 CPU bi-directional bus
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Stopwatch Project [961]

• Author: A.J. Stein
• Description: A TinyTapeout project to display a stopwatch counter one digit at

a time
• GitHub repository
• HDL project
• Mux address: 961
• Extra docs
• Clock: 20000000 Hz

How it works

This is a Tiny Tapeout project (designed to start for Tiny Tapeout 7 in May 2024)
to use the 20 MHz of the ASIC chip to make a stopwatch that can count seconds in
decimal format for ten second increments (from 0 to 9 and loops back to 0).

How to test

This is a simple project and has limited testing infrastructure. To test in simulation
and analyze changes to the logic with a waveform analyzer, you can use the published
MakerChip project associated with this GitHub repo and check the clock_speed to
have smaller clock speeds and increment the decimal stopwatch much quicker than the
necessary hardware clock speed.
To test this with a Tiny Tapeout 3 Demo Board (v 2.2.5) and the ASIC Simulator
(v1.2) using this test harness repo and use dfu-util to flash it on this device.

External hardware

This project is a simple first experiment that does not require additional external inputs
or outputs.

Pinout

# Input Output Bidirectional
0 N/A N/A N/A
1 N/A N/A N/A
2 N/A N/A N/A
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# Input Output Bidirectional
3 N/A N/A N/A
4 N/A N/A N/A
5 N/A N/A N/A
6 N/A N/A N/A
7 N/A N/A N/A
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calculator [963]

• Author: ZHU QUANHAO
• Description: input two number and do all kinds of calculation base on it
• GitHub repository
• HDL project
• Mux address: 963
• Extra docs
• Clock: 100 Hz

How it works

Adding, and, or, xor numbers

How to test

By viewing the input and predict the output to see if it match with the display

External hardware

4Nixie tube

Pinout

# Input Output Bidirectional
0 bit1_XOR display display
1 bit2_OR display display
2 bit3_AND display display
3 bit4_ADD display display
4 numbersel_NOT display display
5 positionsel_dispB display display
6 signsel_dispA display power13
7 modesel display power24
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Mini Light Up Game [965]

• Author: Dyrick Williams
• Description: This is a small game where the objective is to light up the segments

to form a ‘0’ by toggling a switch at the correct moment.
• GitHub repository
• Wokwi project
• Mux address: 965
• Extra docs
• Clock: 10 Hz

How it works

The underlying selector is controlled by a circular buffer composed of D Flip-Flops
which acts as a circular bit shifter. The clock signal performs the shift every clock
rising edge. The selection is done by toggling the state of the input switch and rising
edges and falling edges are turned into pulses. The memory component of what the
player selects is also implemented with D Flip-Flops. The rest of the output logic for
the segment display is combinational logic. The reset signal sets only one of the bits in
the circular buffer and clears the memory component that is controlled by the player.

How to test

First perform a reset. As this is designed within Wokwi, the testing can be done by
trying to light up the segments and form the ‘0’ at a low clock frequency. Once the
‘0’ is formed, the next clock cycle should then display only the dot segment.

Clock configuration

The generated clock frequency from the RP2040 may be lowered to a reasonable,
visually observable frequency (3-20Hz).

Pinout

# Input Output Bidirectional
0 select S1
1 S2
2 S3
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# Input Output Bidirectional
3 S4
4 S5
5 S6
6
7 SDOT
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Basilisc-2816 v0.1a CPU [967]

• Author: Toivo Henningsson
• Description: Small 2-bit serial 8/16 bit CPU
• GitHub repository
• HDL project
• Mux address: 967
• Extra docs
• Clock: 50000000 Hz

Overview

Basilisc-2816 v0.1 is a small 2-bit serial 2/8/16 bit processor that fits into one Tiny
Tapeout tile. It has been designed around the constraints of

• small area,
• 4 pin serial memory interface to a RAM emulator implemented in an RP2040

microcontroller (which can be supported by the RP2040 microcontroller on the
Tiny Tapeout 7 Demo Board),

• to be suitable to be included in in the next version of the AnemoneGrafx-
8 retro console https://github.com/toivoh/tt06-retro-console, which motivates
the other constraints.

Features:

• 2-bit serial execution:
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– ALU results etc are calculated at 2 bits/cycle
– 2-bit-serial register file with two read/write ports
– Addresses and data are sent to/from memory at 2 bits/cycle

∗ The processor starts to operate on each bit of incoming read data as
it arrives

– Saves area compared to processing 8/16 bits per cycle / using a parallel
access register file

– No point in calculating faster than the memory interface allows

• 8x 8-bit general purpose registers that can be paired into 4x 16-bit general
purpose registers, plus an 8 bit stack register

• 8 bit and 16 bit versions of almost all instructions
• 64 kB address space
• 16 bits/instruction
• Quite regular and orthogonal instruction encoding, most instructions can use

most addressing modes

– op reg, src and op src, reg instruction forms

• Instructions:

– mov, swap
– binop: add/adc/sub/sbc/and/or/xor/cmp/test

∗ for register-to-register also: neg/negc/revsub/revsbc/and_not/
or_not/xor_not/not,

– shl/shr/sar/rol/ror with variable or immediate shift count,
– mul: 8x8 and 8x16 bit multiply instructions, producing 2 result bits per

cycle like everything else,
– branch cc, offset: relative branch

∗ unconditional/call/12 conditions including signed/unsigned compar-
isons,

– jump/call: absolut direct/indirect jump/call,
– additional functionality through combination with addressing modes, e g,

ret = jump [pop]

• Addressing modes:

– [imm7] / [imm7*2]: zero page
– [r16 + imm2]
– [r16 + r8]
– [r16] with postincrement/predecrement
– [push] / [pop] / [top-of-stack] depending on whether the operand

is written/read/modified
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– [imm16]

• Sign/zero extension of any 8 bit register as source operand to 16 bit instructions
• imm16 / [imm16] operands supported using extra instruction word
• 2-4 word instruction prefetch queue

Contents:

• Basilisc-2816 v0.1 variants in Tiny Tapeout 7
• Interface / pins
• Programmer’s view
• Execution timing
• How it works

Basilisc-2816 v0.1 variants

Basilisc-2816 v0.1 has been taped out in three variants for Tiny Tapeout 7:

mul Prefetch Hardened Uses Mux
instruction queue size with latches address

v0.1a yes 2 OpenLane 1 no 967
v0.1b no 3 OpenLane 2 no 202
v0.1c yes 4 OpenLane 2 yes 72

successively more experimental. Longer prefetch queue should help contribute to better
performance, especially with long memory access latencies.
The target clock frequency is 40 MHz for v0.1a, and 50 MHz for the others, but the
max frequency may be higher or lower in practice. It is unknown how the use of latches
will affect max clock frequency (and correctness). Reducing the memory access latency
may be more important to performance than using a high clock frequency.
The three variants are availble at

• v0.1a: https://github.com/toivoh/tt07-basilisc-2816-cpu
• v0.1b: https://github.com/toivoh/tt07-basilisc-2816-cpu-OL2
• v0.1c: https://github.com/toivoh/tt07-basilisc-2816-cpu-experimental

This is the v0.1a version.
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Interface / pins

The TX/RX interface is used to send commands to the RAM/RAM emulator, and
to receive read data. Start bits are used to let each side initiate a message when
appropriate, with subsequent bits sent on subsequent clock cycles. The tx_out and
rx_in pins must remain low when no messages are sent, to avoid being interpreted as
start bits.
The TX channel / tx_out[1:0] pins are used for messages from the CPU:

• a message is initiated with one cycle of tx_out[1:0] = 1 (low bit set, high
bit clear/don’t care),

• during the next cycle, tx_out[1:0] contains the 2 bit TX header, specifying
the message type,

• during the following 8 cycles, a 16 bit payload is sent through tx_out[1:0],
from lowest the bits to the highest.

The RX channel / rx_in[1:0] pins are used for messages to the console:

• a message is initiated with one cycle when rx_in[1:0] != 0, specifying the
RX header, i e, the message type,

• the value of rx_in during the next cycle is ignored,
• during the following 8 cycles, a 16 bit payload is sent through rx_in[1:0],

from lowest bits to highest.

All TX messages use the same start bit and the same length, to make them easier
to receive for the RAM emulator. The RX message has been prolonged to the same
length as the TX messages so that the CPU can respond to an incoming RX message
with an outgoing TX message without any delay.
TX message types:

• 0: 16 bit read request: Read 16 bit data. Payload is the byte address (can be
uneven).

• 2: 8 bit write request: Write bottom 8 bits of payload to last read address.
• 3: 16 bit write request: Write payload to last read address.

There is only one RX message type: 1: 16 bit read response. Payload is 16 bit data.
Each read request must get exactly one read response, in the same order as the requests.
Write requests must not get any response.
The two remaining output pins give additional information about the current TX mes-
sage:

• tx_fetch is high when the current TX message is a read request for an instruc-
tion word,
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• tx_jump is high when tx_fetch is high and the current fetch is for a jump
destination.

The RAM emulator does not need to use these pin values to operate correctly, but they
give additional information about what the CPU is doing. They are used by the gate
level test.
The 2-bit serial RAM interface is motivated by the AnemoneSynth synth in
https://github.com/toivoh/tt06-retro-console, which needs to be able to read and
write 2 bits/cycle to and from memory for fast enough context switching between
voices. The 2-bit serial interface in turn shapes the design of the rest of the
processor.

Programmer’s view

Registers The CPU has the following registers:

• 8 general purpose 8 bit registers a - h,

– also available as four general purpose 16 bit register pairs ba / dc / fe
/ hg.

• 16 bit program counter pc, keeping the adress of the current instruction.
• Stack pointer register pair sp:

– bottom half p is an 8 bit register,
– top half s always reads as 1, making all stack operations work on the

address range 0x100 - 0x1ff (actually, 0xfe - 0x1ff, see below).

• Flags register flags:

– zero flag z, (bit 0)
– sign flag s, (bit 1)
– signed carry flag v, (bit 2)
– carry flag c (bit 3).

At reset, the pc register starts at 0xfffc, which is just enough to fit a jump imm16
instruction before the pc wraps around. All other registers are uninitialized at reset.
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Instructions Most instructions operate on one general purpose register and one
additional operand, which can be, e g, a register, memory, or an immediate value.
The branch / jump / call / ret instructions are always 16 bit; all others have
corresponding 8/16 bit forms. Generally, 8 bit instructions operate on 8 bit registers
while 16 bit instructions operate on register pairs.
In the instruction descriptions below,

• reg is a general purpose register (pair) operand to an 8 (16) bit instruction.
• dest/src can be a general purpose register (/pair), a memory location, an

immediate value (for src), among other things (see addressing modes below).
• imm4/imm6/imm8 is a 4/6/8 bit immediate value, usually sign extended.
• [zp] is a zero page memory location (see addressing modes below).

The following types of instructions are supported:

mov dest, src Copy value from src to dest. Supported forms:

mov reg, src
mov dest, reg
mov reg, imm8 // imm8 is sign extend if reg is 16 bit
mov reg, [zp]
mov [zp], reg

swap dest, reg Swap the value of dest and reg. Supported forms:

swap dest, reg
swap [zp], reg

binop dest, src Perform a binary operation on dest and src, write the result
to dest, and update flags to reflect the result.
For the binary operations

add dest, src // dest = dest + src
sub dest, src // dest = dest - src
adc dest, src // dest = dest + src + c
sbc dest, src // dest = dest - src + c - 1
and dest, src // dest = dest & src
or dest, src // dest = dest | src
xor dest, src // dest = dest ^ src
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the following forms are supported:

binop reg, src
binop dest, reg
binop reg, imm6 // imm6 is sign extend
binop reg, [zp]
binop [zp], reg

There are additional binary operations

revsub dest, src // dest = src - dest
revsbc dest, src // dest = src - dest + c - 1
cmp dest, src // Update flags according to dest - src,

don't update dest
test dest, src // Update flags according to dest & src

don't update dest

which support fewer forms:

revsub reg, imm6 // replaces sub dest, imm6
revsub reg1, reg2

revsbc reg, imm6 // replaces sbc dest, imm6
revsbc reg1, reg2

cmp reg, src
cmp reg, imm6
cmp reg, [zp]

test reg, src
test reg, [zp]

To get a non-reverse sub reg, imm6, use add reg, -imm6 instead.
The binop reg1, reg2 form is also supported for the additional operations

neg dest, src // dest = -src
negc dest, src // dest = -src + c - 1
and_not dest, src // dest = dest & ~src
or_not dest, src // dest = dest | ~src
xor_not dest, src // dest = dest ^ ~src
not dest, src, // dest = ~src
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The binary operations add/adc/sub/sbc/revsub/revsbc/cmp/neg/negc update
the c, v flags. The v flag is set calculated so that signed and unsigned comparisons
using cmp work the same, except that signed comparisons rely on the v flag instead of
the c flag. All binary operations update the s, z flags.

shift reg, src8 Perform a shift operation on reg using shift count from src.
The shift operation can be

shl reg, src8 // reg = reg << src
shr reg, src8 // reg = reg >> src, unsigned shift
sar reg, src8 // reg = reg >> src, signed shift
rol reg, src8 // rotate reg left
ror reg, src8 // rotate reg right

Supported forms:

shift reg, src8
shift reg, imm4

The src8 argument is always taken to be 8 bit even for 16 bit shifts. 16 bit shifts
always use the bottom 4 bits of the shift count. shr and sar use the bottom 4 bits
also for 8 bit shifts, while the others use the bottom 3 bits. (Timing wise, right shifts
use the bottom 4 bits and left shifts use the bottom 3 bits for 8 bit shifts).

mul reg, src Unsigned multiply of 8/16 bit reg and 8 bit src, producing a 16/24
bit result. Store the bottom part of the result in reg, and store the top 8 bits in h,
unless reg is h or hg. (Instruction takes 4 cycles less to execute if top 8 bits are not
stored). Supported forms:

mul reg, src8
mul reg, imm6 // imm6 is unsigned

reg can not be a, b, or ba.
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branch cc, imm8 Relative conditional branch: if the specified condition is true,
jump imm8 instruction words ahead of the current instruction. imm8 is signed. branch
cc, 0 jumps to itself. The encoding for branch always, 0 is 0, so if the processor
encounters a zero instruction word, it enters an infinite loop. (This might be explicitly
designated as an illegal instruction in future versions.)
Supported conditions:

always
call // like always, but push address

of next instruction before branching

z / e // zero / equal
nz / ne // not zero / not equal
s // signed
ns // not signed

// unsigned comparisons:
c / ae / nb // carry / above equal / not below
nc / nae / b // not carry / not above equal / below
a / nbe // above / not below
na / be // not above / below

// signed comparisons:
v / ge / nl // signed carry / greater equal / not less
nv / nge / l // not signed carry / not greater equal / less
g / nle // greater / not less
ng / le // not greater / less

jump src16, call src16, ret jump src16 performs an absolute unconditional
jump to pc = src16.
Supported forms:

jump src16
jump [zp]

call src16

call is like jump, but pushes address of the next instruction before jumping. It can
be used for calling a subroutine.
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ret is a pseudoinstruction for jump [pop], which pops a pc value from the stack
and jumps to it. It can be used for returning from a subroutine.

Additional pseudoinstructions Some more useful pseudoinstructions that can be
realized using the existing instructions:

push reg // mov [push], reg
pop reg // mov reg, [pop]

rlc1 reg // adc reg, reg // rotate left one step through carry flag

There are probably more.

Addressing modes For instructions that use a dest operand, dest can be one
of

reg // 8/16 bit general purpose register,
depending on size of the operand.

sp/p // Stack pointer.
Read LSB p for 8 bit operands.
Write only LSB p for any operand.

flags // Only for 8 bit operands. Not for shift/mul.
[r16 + zext(r8)] // r16 and r8 can not overlap.
[r16++] // Postincrement: increase r16 after calculating

the address. Increase by 2 for 16 bit operands.
[--r16] // Predecrement: decrease r16 before calculating

the address. Decrease by 2 for 16 bit operands.
[r16 + zext(imm2)]// imm2 is multiplied by 2 for 16 bit operands.
[imm16] // imm16 value follows in next instruction word.
[push] / [--sp] // Push the result onto the stack.

Only for operations that don't depend on
the value of dest.
Decreases sp by 2 for 16 bit operands.

[sp] // Top of stack. Only for operations that depend
on the value of dest.

For instructions that use a src operand, src can be anything that dest can be except
[pop], [sp], and can also be
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sext(r8) // Sign extend r8, only for 16 bit operations.
zext(r8) // Zero extend r8, only for 16 bit operations,

not for cmp or test.
imm16 // imm16 value follows in next instruction word.
[pop] / [sp++] // Pop the source from the stack.

Increases sp by 2 for 16 bit operands.

The [push] and [pop] operands do not play well with each other when sp wraps
around. It is recommended to initialize sp to 0x1ff or 0x1fe when the stack is
empty (by writing 0xff or 0xfe to the p register). The [push] operand will write
a byte to [sp - 1] or two bytes to [sp - 2], [sp - 1], which can reach as low
as 0xfe. 8-bit wraparound will only affect the updated value of sp after the [push]
operation.
Some instructions can use a [zp] operand, indicating a 7 bit memory adress [imm7],
which allows reaching the first 128 bytes in the address space. For 16 bit operands,
[2*imm7] is used instead, which can reach the first 256 bytes in the address space, as
aligned 16 bit words.

Instruction encoding Each instruction is encoded into one of five major forms a
/ A / b / B / M):

where

• a/A) forms are mostly used for 8/16 bit binops,
• m/M) forms are used for 8/16 bit moves and other things, and
• B) form is used for branches.
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The mdz bits are used togther with the major form to choose instruction form:

where

• The form of the instruction’s operands is decided by the mdz value, except for
the cases mov reg, imm8, shift reg, src8, and mul/jump/call.

• The o bit chooses between the m0/M0 (o = 0) and m1/M1 (o = 1) columns.
• A) and M) form instructions are 16 bit while a) and m) form instructions are 8

bit, except for jump/call which are all 16 bit.

Most instructions encode one general purpose register in r2r1/r2r1r0, and a
source/destination in imm6. The interpretation of the imm6/dest/src bits depend
on the form of the instruction, including whether it is a source or a destination.
Zero page instructions use the z bit to extend the imm6 field to a 7 bit immediate
address, and mov reg. imm8 instructions use the dz bits to extend it to an 8 bit
immediate.
The registers a - h are represented with the numbers 0 - 7; ba - hg with the numbers
0 - 3 (stored in a 2 bit field such as r2r1). For A/M) form instructions, reg encoded
in r2r1. For a/m) form instructions, reg encoded in r2r1r0, but the r0 bit is stored
in different places in a) and m) form instructions.
The binop field in the a/A) forms selects which binary operation to use:

binop operation alternate
0 add neg
1 sub revsub
2 adc negc
3 sbc revsbc
4 and and_not
5 or or_not
6 xor xor_not
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7 cmp/test

The alternate form is used in for binop instructions with mdz = 110 and two register
operands (use mdz = 100 for the regular form). In the same way, not is the alternate
form of mov, and is used under the same circumstances. sub reg, imm6 is replaced
by revsub reg, imm6 (use add reg, -imm6 for sub reg, imm6). cmp is replaced
by test when d=1, but the form is kept as cmp reg, src.
The binop field is also used to specify the shift operation in shift reg, src8:

binop shift operation

0 ror
2 sar
4 shr
6 shl
7 rol

For shift reg, imm4, the top two bits of binop are stored in the top two bits of
imm6 (the bottom bit is implicitly zero), while the bottom 4 bits store the shift count.
rol reg, imm4 should be encoded as

ror reg, 16 - imm4 // for 16 bit reg
ror reg, (8 - imm4) & 7 // for 8 bit reg

Multiplication instructions are encoded in the mul/jump/call case with r2r1 != 0
(which excludes the use of a/b/ba for the reg operand). When r2r1 = 0, absolute
jumps and calls are encoded instead:

111111
5432109876543210
0010000000iiiiii jump src16
0010000001iiiiii call src16
000100000ziiiiii jump [zp]

For branches, offset is the imm8 offset, which is sign extended and multiplied by 2
and added to the address of the branch instruction to get the target pc value. The
cond field selects the branch condition according to
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cond branch condition

0 always
1 call // like always, but push address

of next instruction before branching

4 z / e // zero / equal
5 nz / ne // not zero / not equal
6 s // signed
7 ns // not signed

8 c / ae / nb // carry / above equal / not below
9 nc / nae / b // not carry / not above equal / below

10 a / nbe // above / not below
11 na / be // not above / below

12 v / ge / nl // signed carry / greater equal / not less
13 nv / nge / l // not signed carry / not greater equal / less
14 g / nle // greater / not less
15 ng / le // not greater / less

When dest/src is used in an instruction, it is encoded into the imm6/dest/src field
according to
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The d bit chooses between sext(r8) (d=0) and zext(r8) (d=1), except that the
test instruction uses sext(r8) even though it is encoded with d=1. For the imm16
and [imm16] cases, the imm16 value follows the instruction word. For 8 bit instruc-
tions, imm16 still takes 16 bits, but only the lower 8 bits are used by the instruction.

Execution timing

The that it takes to execute differemt instructions is influenced by 4 main factors:

• the number of execution cycles needed for a given instruction,
• cycles needed to wait for access to the TX channel, for instructions that send

read/write requests to memory,
• cycles needed to wait for read response data, for instructions that read memory,

and
• availability of new instructions to execute from the prefetch queue (which is

flushed by jumps).

See the Inferface / Pins section for details of the memory interface. In the processor,
the memory interface is shared between

• the prefetcher, which tries to fetch new instruction words a few steps ahead of
the current program position, and

• the scheduler, which executes instructions, including making any memory ac-
cesses that they need to perform.

If the TX channel is idle and both try to start a new message TX message at the same
time, the scheduler has priority.

Instruction stages The scheduler divides the execution of a given instruction into
a subset of the following stages:

ror1 stage -> rotate stage
address stage -> data stage ->

mul1 stage -> mul2 stage

executed in the above order (the top and bottom tracks are mutually exclusive),
where

• the address stage is used by instructions that need to send a memory address to
RAM,
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• the data stage is the main stage, and is used by most instructions to calculate
and store their result,

• the ror1 and rotate stages are used by shift instructions, and
• the mul1 and mul2 stages are used by mul instructions.

Stages that are not needed for the current instruction are skipped, and when the last
stage that is needed is done, the instruction finishes. No extra cycles are needed to
skip the address stage or to finish an instruction, but otherwise it takes one cycle to
skip an unused stage.
The address stage always sends a read request on the TX channel, and takes 10 cycles
starting from when the scheduler gains access to the channel.
The data stage takes a different number of cycles depending on the instruction:

• 4/8 cycles are needed to calculate and/or store an 8/16 bit result.
• If the instruction reads memory, the data stage needs to wait for the read re-

sponse data to start arriving.

– It does not need to wait for the read message to finish before finishing
(when reading 16 bits but only needing 8).

• If the instruction writes memory, the data stage needs 6/10 cycles to send a
write message on the TX channel (this includes two cycles to send a message
header and 4/8 cycles to calculate and send the payload data, for 8/16 bit data).

• For read-modify-write instructions, the write request message will be initiated in
the same cycle as the start bit for the read response is received for the read sent
during the address stage.

• If the data stage reads and/or writes the pc register, (calls read from pc, all
kinds of jumps write pc) it needs to wait for the prefetcher to be idle first.

– The prefetcher is blocked while reading from the pc.
– Writing to the pc is combined with sending the first read request to start

prefetching from the jump destination, and is also combined with reading
from pc for branches.

• Branches use only the data stage, and untaken branches finish after one cycle
in the data stage.

Read-modify-write instructions send a read command on the TX channel, and reply
with a write command when the read response is received, updating the data at the
address just read. Since they need to be able to respond with a TX message as soon
as an RX message arrives, and because the destination address for the write is given by
the last read address, read-modify-write instructions block the prefetcher from sending
read requests while waiting for their read response.
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mov and swap are not considered to be read-modify-write instructions. They send a
read request to specify the address, immediately followed by a write request to write
the data. swap instructions need to wait for the read response before they can finish,
but the prefetcher is allowed read access during the wait.
shift and mul instructions with immediate second operand skip the address and data
stages completely. Other shift and mul instructions use the data stage (and address
stage if needed) to load the shift count / multiplication factor from the second operand,
which is always treated as 8 bit, also timing wise.
The ror1 stage is used by most shifts. It rotates the destination register right by a
single bit if needed, clears the needed bits for shl, and finds the value of the sign bit
for sar. It takes 4-5/8-9 cycles for 8/16 bit shifts (the extra cycle is a rotate right one
step is needed). The ror1 stage is skipped if either

• the shift count is zero (the shift instruction is finished immediately from the ror1
stage), or

• the shift count is even, except for sar and shl instructions.

The rotate stage is used by all shifts except when the shift count is zero. It rotates the
destination register right by 2 bits/cycle, taking as many cycles as needed to produce
the desired rotation. It also feeds in zero/sign bits for shr and sar instructions.
The mul1 stage is used by all mul instructions. It calculates the bottom part of the
product (the part that is stored into the first operand), and takes 4/8 cycles for 8/16
bit operands. The mul2 stage is used to write the top 8 bits of the product to the h
register. It takes 4 cycles, but the instruction is finished after the mul1 stage if the h
register overlaps with the destination.

The prefetcher The objective of the prefetcher is to try to keep the decoder and
scheduler fed with instruction words, even though it might take some time between
the point when a read request is sent and the read response data is received. The
prefetcher has a prefetch queue of 2 - 4 instruction words (see Basilisc-2816 v0.1
variants above).
When the current instruction is finished (or there is no currently executing instruction),
the decoder tries to load the next instruction from the head of the prefetch queue to
start executing it. Instructions that use an imm16 operand (including [imm16]) wait
for and load an additional instruction word from the prefetch queue before they can
start. This takes at least one cycle.
An instruction word is considered to be in the prefetch queue from the point when it
the read request is sent to when it is loaded into the instruction and/or immediate
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register, or is flushed due to a jump. As long as the prefetch queue is not full, the
prefetcher tries to send new read requests to fill it.
When a read response for a prefetch arrives, the instruction word is stored in the 2
- 4 prefetch queue buffers (same number as the size of the prefetch queue) waiting
to be consumed by the decoder and/or scheduler. The whole instruction word must
arrive into the first buffer before it is considered valid. Even if the other prefetch queue
buffers are empty, it takes on cycle for an instruction word to traverse each one.

Jumps Whenever a jump is taken, the current contents of the prefetch queue are
flushed, meaning that they will not be used (including responses to read requests that
have already been sent, but where the response has not yet arrived).
Jumps update the pc register during the data stage. At the same time, they send the
first read request to prefetch from the jump destination.
Calls (whether relative or absolute) are special in that they are scheduled like two
instructions in sequence: push pc+2 / push pc+4 followed by the corresponding
jump instruction.

Performance considerations Performance characteristics of different types of in-
structions:

• Instructions that operate on only registers and immediates are generally fast,
don’t need to wait for memory access, and allow the prefetcher to work in
parallel.

– 8/16 bit mov/swap/binop with only register (including sp/p/flags/
sext(r8)/zext(r8)) and immediate operands generally take 4/8 cycles.

– shift and mul instructions usually take more cycles (see above), but still
allow the prefetcher to work in parallel, except for in the address stage (if
any).
∗ shift and mul instructions with immediate second operand are faster

since they don’t need to spend time on loading the shift count/factor.
∗ For shift instructions, the ror1 stage can be skipped under certain

circumstances, and the length of the rotate stage depends on the shift
count: small right shifts / big left shifts are faster (see above).

• mov/binop reg, mem instructions need to send a read request and wait for
the response, but allow the prefetcher to work while waiting for the response.
Likely, the prefetcher has a chance to get ahead while waiting.

• mov mem, reg instructions need to send a read request and a write request,
but don’t need to wait for a response.
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• swap mem, reg instructions need to send a read request and a write request,
and wait for the read response, but allow the prefetcher to run while waiting.

• Read-modify-write instructions binop mem, reg need to send a read request
and a write request, and block the prefetcher while waiting for the read response.

• (Taken) jumps flush the prefetch queue, causing execution to stall until new
instructions can arrive at the decoder.

• imm16 / [imm16] operands require an extra instruction word to be prefetched
(and require one additional cycle to load). They still allow the data to be
prefetched, unlike with reads initiated by the instruction.

The things to be most careful about performance wise are probably read-modify-write
instructions and jumps. On the other hand, read-modify-write instructions can help
relieve register pressure, and jumps are often necessary and sometimes save more time
than they cost.

How it works

The CPU consists of a number of parts:

• The memory interface communicates with the external memory (RAM emulator)
to send and receive serial messages.

• The memory arbiter

– arbitrates memory command transmission between the prefetcher and
scheduler, and

– keeps track of outstanding responses, directing incoming responses to the
intended recepient.

• The prefetcher
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– keeps track of and updates the program counter (PC) register,
– tries to fetch instruction words a few steps ahead of the currently executing

instruction,
– buffers prefetched instruction words in the prefetch queue buffer, and
– keeps track of the currently executing instruction in the instruction register

and the immediate register.
• The decoder

– recieves the current instruction from the prefetcher/instruction register,
and

– decodes it into control signals for the scheduler.
• The scheduler

– evaluates branch conditions,
– divides instructions into stages,
– runs the stages needed for each instruction in order, and
– sets control and data signals to the ALU and other parts of the CPU as

needed to execute each stage.
• The ALU (arithmetic logic unit)

– calculates ALU operations (binary operations add/sub/adc/sbc/and/or/xor
etc), shifts, and multiplies,

– breaks down operations on 16 bit register pairs into back-to-back opera-
tions on 8 bit registers,

– breaks down and schedules calculations into 2-bit serial steps,
– updates the flags based on the results of a computation,
– reads external inputs and produces an external result when needed, and
– reads and updates the register file.

• The register file
– holds most of the CPUs registers: general purpose registers a-h and sp,

and
– mediates access to the flags as the flags register.

2-Bit serial operation The CPU uses 2-bit-serial operation wherever it can. This
means that instead of operating on all bits of a value in parallel, it operates on 2 bits
per cycle. Since the memory interface can only send/reveive 2 bits/cycle, there is little
point in making most other things operate faster. Serial operation saves area compared
to parallel operation for both computions and registers.
Consider adding two values that are stored in separate registers. Addition starts from
the least significant 2 bits (lsbs), and proceeds upwards, 2 bits/cycle. To facilitate this,
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the registers are organized as shift registers, which can be right-shifted two bits per
cycle, feeding out the 2 bottom bits. At the same time, two new bits are fed into the
top.
The two lsbs from each register respresent a value between 0 and 3, and the sum has
a value between 0 and 6. With a carry bit coming in, the sum can be between 0 and
7. The bottom 2 bits of the sum are used as the result at the current 2-bit position,
while the top bit is used as the carry into the next 2-bit position. A flip-flop is needed
to store the carry from one cycle to the next. At each step (cycle), the registers are
shifted right by two bits, so that the 2 bits to be operated on are always at the bottom
of each register.
The addition can be performed in place, replacing the value in one of the registers with
the result: The result bits are just shifted into the top of the register. If a register
should keep its value after the operation, the lsb bits shifted out are shifted back into
the top at the same time. When the register contents have been shifted around to the
starting position, the addition is completed.

Memory arbiter The memory arbiter keeps track of which block is currently using
the TX channel, if any. If both the prefetcher and scheduler try to start a transaction at
the same time, the scheduler gets priority. The scheduler has been designed under the
assumption that it will get priority whenever it raises the reserve_tx signal, which
also blocks the prefetcher from sending any new TX messages. This is needed for
read-modify-write instructions, which send a read request followed by a write request,
where the read address is reused as write address for the write request.
The memory arbiter has a FIFO that keeps track of outstading requests (reads), which
have been started but where the response has not yet finished. The FIFO keeps track
of whether a given read response should be handled by the prefetcher or the scheduler,
or if it should be ignored completely. The ignore feature is used for write instructions
(mov mem, reg, push pc+2/4 during calls), where the read message is just used
to set the write address. This allows the scheduler to move on without waiting for a
read response. The scheduler is designed to have only one outstanding (non-ignored)
read, so that when it receives a read response, there is no doubt about what the data
is for.

Prefetcher The prefetcher holds the 16 bit program counter register pc, and updates
it using 2-bit serial operations, which can add a delta to the pc or set a new value.
The least significant bit of pc is always expected to be zero, but the storage space is
still needed since 2-bit serial addition causes the pc value to rotate around through the
pc bits.
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Except when jumping, the pc register is incremented by 2 for each prefetch. When the
prefetcher sends a read message on the TX channel, it scans through the pc register
and increments it at the same time, sending the incremented pc value as the read
address. The bits of the incremented pc value are sent as soon as they are calculated,
starting from the lsbs.
The prefetcher also keeps track of the number of prefetched and flushed instruction
words. The pc register does not store the address of the currently executing in-
struction, instead it stores the address of the last instruction that was prefetched,
curr_inst_addr + 2*num_prefetched.
An instruction word is considered prefetched between when a read request is first sent
for it and when it leaves the prefetch queue to enter the instruction and/or immediate
register, or is considered flushed by updating the num_flushed register. The prefetcher
has space to store 2-4 prefetched instruction words that have been read but not yet
executed. It takes a cautious approach, and will not send prefetch read transactions
unless there is currently space to store the read response data in the prefetch queue
buffers when it arrives. The first buffer stage is a serial shift register to receive incoming
serial data. Each remaining buffer stage is loaded in parallel from the previous stage.
This occurs when one stage has valid data and the next one does not, making the
instruction words fall through the prefetch queue buffers until there is no free space to
fall into.
The prefetcher also holds the instruction and immediate registers. When loading a new
value into the instruction register, the same value is loaded into the immediate register
as well. For instructions that use an imm16 or [imm16] argument, the immediate
register is loaded with the next value from the prefetch queue.
The instruction register is used as the input to the decoder. The immediate register is
used to feed the ALU with an immediate value, typically shifting out 2 bits per cycle.
This works since the immediate field is always placed in the least significant bits of
an instruction. The bottom half of the immediate register is also used to store the
shift count of shift instructions and 2nd operand of mul instructions. shift/mul
instructions that don’t have these stored as immediates shift the needed data into the
immediate register during the data stage. The top half of the immediate register is
also used as scratch space by the mul instruction.
When reading out the pc (for branches and calls), the adder that is normally used to
increment it is used to subtract 2*num_prefetched to compute the address of the
current instruction. The prefetcher must be blocked from sending new read requests to
allow reading out the pc register. In the case of branches, the pc is read out, adjusted,
updated, and used to send a prefetch read request for the jump destination, all at the
same time: The adjusted pc value is sent to the ALU, which adds the offset from the
branch, and sends the branch target pc value to be sent as prefetch address and stored
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in the pc register. Jumps are similar to branches, but don’t need to read the current
value of the pc, just to set it to the value output from the ALU.
The reason that the prefetcher outputs the incremented pc value as read address is
so that the same target address can be stored into the pc register and output in a
prefetch read request when jumping, saving an adder.
When jumping, the prefetcher also sets num_prefetched = 1, to reflect that
the jump is started with a single prefetch. Before that, num_flushed is set to
num_prefetched, to flush all instruction words prefetched after the the jump
instruction that was executed. As long as num_flushed is nonzero, instruction
words that arrive at the output of the prefetch queue are discarded immediately,
instead of feeding the instruction or immediate registers, or waiting to be consumed.
The num_flushed register is decreased by one for each time an instruction word is
discarded in this way.

Prefetch queue using latches instead of flip flops The experimental v0.1c
version of the CPU uses latches instead of flip flops in the prefetch queue buffers and
instruction register. This saves space, but is a bit more tricky to work with. Hopefully,
it works as intended.
To try to make the latches behave as desired, the design

• avoids glitches on the gate input of each latch by feeding it directly from a flip
flop, and

• makes sure that the input data to each latch stays stable one cycle after the
gate was closed.

Each buffer stage includes 16 latches, a valid flag register, and a write enable register.
The cycle-by-cycle transfer of data from one stage to the next proceeds as follows:

1. When one buffer stage has valid data and the next stage does not, the write
enable signal of the second stage is raised.

2. The second stage’s write enable register goes high, opening the latch gates in
the second stage to read the data from the first stage.

• At the same time, the second stage’s valid register goes high, indicating
that the output data is valid, since the latch is transparent. This causes
the write enable signal to go low.

3. The valid flag of the first stage goes low, due to the write enable that was high
during the previous cycle.

4. The first stage may change its data during this cycle, since the valid flag was
low during the previous cycle.
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Compared to using flip flops for the prefetch queue buffers, the concern is mostly about
keeping the input data to each latch stage stable for one cycle after the gate goes low.
Instruction words can still propagate through the queue at one stage per cycle, if there
is space.
The instructon register works much like the final stage of the prefetch queue buffer,
and can be treated in the same way. The last stage in the prefetch queue buffer can
also feed the immediate register or be flushed, but this mostly adds some logic for
when to clear its valid flag.

Decoder The decoder decodes instruction words according to instruction type, in-
struction form, and addressing mode, and instructs the scheduler which operations need
to be performed: which operation, sources, and destination to use for the data stage,
which operation and sources to use for the address stage (if any source or destination
in the data stage needs one), whether to update flags, if special features like swapping,
condition codes, shifting, and multiplication should be activated, etc.
The decoder also schedules a push pc+2 or push pc+4 as the first stage of execut-
ing a call (including branch call) instruction, which is otherwise executed just like a
jump/branch, calculating the size of the instruction already at the push stage. Philo-
sophically, this falls into the domain of the scheduler, but practically, it was simpler
to let the decoder take care of this scheduling task to avoid complicating the stage
structure of the scheduler.

Register file The register file is indexed using 4 bit register indices. The first 8
indices are connected to the general register file, while additional indices are used for
the s, p, and flags registers. The general register file is implemented using a bank
of addressable shift registers; the additional registers are implemented with some extra
glue logic and storage.
The general register file has two read/write ports, with separate 3 bit register indices,
enable signals, inputs and outputs. It is implemented as 8 addressable 8 bit shift
registers. Registers that are addressed through a read/write port that is enabled are
shifted, shifting in the input value for the appropriate port. The input from port 1 has
priority.
If a value should be read out without being modified, the user of the register file
(the ALU) needs to recirculate the bits that are read out from the port back to its
input. Each port is generally expected to be enabled 4 times in sequence with the
same register index, so that values can circulate back to their original bit positions.
The exception is shift operations, which vary the number of enable cycles to achieve
different bit shifts.
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Addressing modes When sending a read/write address using a read request on the
TX channel, the address bits need to be retrieved/computed 2 bits at a time. The
ALU and register file have nothing else to do at this time, and are used to calculate
the address. Either the ALU’s second argument is used as the result (just like in a mov
instruction, which ignores the destination’s value), or an addition is used, sometimes
exploiting the ALU’s feature to multiply the second argument by two (used only for
address computations, branches, and calls). The ALU can also sign/zero extend the
second argument to different lengths, which is used by various addressing modes.
Postincrement/predecrement addressing modes (including [pop] and [push]) write
the result of the computation back to the ALU’s first register argument, just like
instructions that write to registers. For the postincrement case, the ALU result is
written to the register, while the value read out from it is used as the address.
There are more options that make sense for src operands than dest operands. This
fact is used to differentiate between the sext(r8) and zext(r8) source forms;
zext(r8) is sext(r8) with the d bit set to 1, which would normally mark it as
a destination. (Except for the test instruction, which also uses the d bit to distin-
guish it from the cmp instruction, but retains sext(r8) behavior.)

swap instructions swap reg1, reg2 instructions work like mov reg1, reg2 in-
structions, but feed the second register file port’s input with the output from the
first.
swap mem, reg instructions use a special trick to be able to start reading out the
register data immediately and start shifting in the new data later, when it arrrives.
First, for 16 bit swap instructions, the two register ports are connected as one big shift
register, to avoid having to switch between lower and upper halves of a register pair;
reading and writing would not agree on when to switch.
The write request is started as soon as possible after sending the read request, and the
ALU is allowed to shift out bits from the register file to feed as write payload, but the
ALU does not start counting cycles to finish the operation. The bits shifted into the
target register at this point may be garbage. When the read response payload arrives,
the ALU starts counting cycles. The payload bits are shifted into the target register
and the instruction is finished. This may partially overlap with the cycles used to read
out the original register contents.
This setup allows the register file to take care of read response data without sending a
write message in response (it has already been sent), which means that the scheduler
doesn’t have to block the prefetcher while waiting for the read response data.
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shift instructions shift instructions rely on the register file’s ability to
shift/rotate values in place, rotating right 2 bits per cycle. For this reason, all shift
operations operate in place on register values. Some complications arise since

• the only supported shift step is 2 bits (how to handle odd shift counts?),
• the only supported shift direction is right shift,
• the sign bit (top bit) of the registers in the register file is not readily available,

but needed by sar.

For the 16 bit case, both register file ports are connected together to form a 16 bit
shift register.
To work witin the restrictions:

• Odd shift amounts are handled by the ror1 stage, which needs 5/9 cycles to
rotate an 8/16 bit value right one step by rotating it right 5/9 cycles in steps of
2 bits, through a 1 bit delay.

• sar records the sign bit at the end of the ror1 stage.
• Left shifts and rotates are implemented using right rotation with 8 -

shift_count or 16 - shift_count number of steps.

Also:

• shr and sar instructions replace the topmost bits with zeros/the sign during
the final rotate stage (and the final ror1 cycle, for odd shifts).

• shl replaces bits with zeros during the ror1 stage - the bit positions to be
cleared are exactly those that will not be rotated through the lsbs during the
final rotate stage.

• The shift count for rol / shl is negated while loading it into the immediate
register during the data stage.

– rol reg, imm4 must be encoded a a ror instruction, with a negated
shift count.

mul instructions mul instructions use the immediate register for two purposes:

• The bottom half, which we will call the factor register in this context, holds
the 8 bit unsigned factor from the second operand.

• The top half, which we will call the partial register in this context, holds a
partial sum.
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For mul reg, imm6 instructions, the imm6 factor is loaded into the factor register
when loading the instruction. For mul reg, src instructions, the data stage loads
the factor register, in the same way as shift reg, src instructions load the same
register with the shift count.
A mul instruction multiplies an 8/16 bit destination register with the 8 bit factor
register, producing a 16/24 bit product. Every cycle, it consumes 2 bits from the
original value of the destination register and produces two bits of the product.
Consider multiplying an 8 bit factor dcba with an 8 bit value hgfe, where each letter
denotes 2 bits. The needed computation can be written as

dcba * h
dcba * g
dcba * f

+ dcba * e
--------

The basic algorithm starts by calculating dcba * e, the first term in the sum, forming
the current partial sum. This is the only term that affects the bottom 2 bits of the
result, which can be output as the first 2 result bits. The remaining bits are shifted 2
steps right to align with the next level. In the second step, dcba * f is added to the
partial sum from the last step, producing a new partial sum, and everything proceeds
as before, etc.
The basic algorithm still requires the multiplication of an 8 bit factor by a 2 bit number
every cycle. Multiplication by 0 and 1 are easy, and multiplication by 2 is just a left
shift, but multiplication by 3 would require an extra adder. Instead, the multiplier
multiplies by -1. This produces the same result for the lowest 2 bits. At the same
time, it sets a carry to add one to the incoming 2 bit value during the next cycle. This
results in the need to multiply by a number between 0 and 4, but 4 can be handled in
a similar way 3, in this case: multiply by zero, set a carry for the next step.
In total, the multiplier requires

• 9 bits of scratch space for the partial sum (the partial register and a sign bit,
reusing the ALUs temporary sign bit (not the sign flag)),

• an 11 bit adder,
• a one step shifter, and provisions to multiply the factor by zero or invert its bits.

How to test

TODO

322



External hardware

Requires the RP2040 microcontroller on the Tiny Tapeout 7 demo board or similar to
serve as RAM emulator, adhering to the memory interface protocol described above.

Pinout

# Input Output Bidirectional
0 rx_in[0] tx_out[0]
1 rx_in[1] tx_out[1]
2 tx_fetch
3 tx_jump
4
5
6
7
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RLE Video Player [969]

• Author: Mike Bell
• Description: Reads run length encoded data from QSPI flash, displays on VGA
• GitHub repository
• HDL project
• Mux address: 969
• Extra docs
• Clock: 25175000 Hz

How it works

A 6bpp run length encoded image or video is read from a W25Q128JV or similar QSPI
flash, and output to 640x480 VGA.
This is perfect for displaying the Bad Apple music video.

Figure 45: A frame from Bad Apple, rendered by the FPGA version of this design

Run Length Encoding The encoding uses 16-bit words. Most words are a run
length in the top 10 bits, and a colour in the bottom 6 bits. A run must come to the
end at the end of each row.
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A row can be repeated by encoding a word 0xF800 + number of repeats at the end
of a row.
A run must be at least 2 pixels, and any group of 3 consecutive runs within a row must
be at least 24 pixels, otherwise the data buffer will empty. This could definitely be
improved!
If input 3 is high, each frame is repeated once, so playback is 30Hz instead of 60Hz.
The data is read starting at address 0. The special word 0xFFC0 causes the player
to stop and restart from address 0 at the beginning of the next frame, restarting the
video. This could also be used to display a still image.

How to test

Create a RLE binary file (docs/scripts to do this TBD) and load onto the flash. The
pinout matches the QSPI PMOD. Connect that to the bidi pins. Note the flash must
support the h6B Fast Read Quad Output command, with 8 dummy cycles between
address and data.
Connect the Tiny VGA PMOD to the output pins.
Inputs 2-0 set the read latency for the SPI in half clock cycles, it’s likely that will need
to be set to 2 (set input 1 high and inputs 0 and 2 low). This latency depends on the
total round trip time through the mux and out to the flash and back. Valid values are
1 to 4.
Run with a 25MHz clock (or ideally 25.175MHz).

External hardware

• QSPI PMOD
• Tiny VGA PMOD

Pinout

# Input Output Bidirectional
0 SPI latency[0] R[1] CS
1 SPI latency[1] G[1] SD0
2 SPI latency[2] B[1] SD1
3 30Hz select vsync SCK
4 R[0] SD2
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# Input Output Bidirectional
5 G[0] SD3
6 B[0] Unused CS
7 hsync Unused CS
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secret L [971]

• Author: stuart childs
• Description: basic first test - secret code on input displays a letter as output
• GitHub repository
• Wokwi project
• Mux address: 971
• Extra docs
• Clock: 0 Hz

How it works

Uses a pair of inverters and a pair of AND gates

How to test

Use the DIP switches to input a secret code - then the display will show a letter. Basic
test in order to learn more about the TT process

External hardware

Not needed

Pinout

# Input Output Bidirectional
0 input0
1 input1
2 input2
3
4
5
6
7
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Send Receive [973]

• Author: Michael Ogata, Nelson Hastings, Samson Melamed
• Description: A dual use project where you can set a project to either a sender

or receiver and send bits
• GitHub repository
• HDL project
• Mux address: 973
• Extra docs
• Clock: 0 Hz

How it works

Send Recieve Project Description

A simple 4-value send/receive chip
This project realizes a very simple 4-value sender and receiver chip. The mode of the
chip is determined by input 7: sender low, receiver high. Currently, the protocol
only supports 1 sender and 1 receiver.

Sender Mode Sender mode is enabled when Input[7] is set low. In sender mode,
the chip looks for a rising value on bits 0:4 of the input bus. This can be achieved
through the use of a 4-button PMOD module, or by toggling the corresponding DIP
switch on the carrier board.
Sender Mode Input:

# Input Description
0 input[0] bit[0] to send
1 input[1] bit[1] to send
2 input[2] bit[2] to send
3 input[3] bit[3] to send
4 unused N/A
5 unused N/A
6 unused N/A
7 input[7] Sender/Receiver indicator

To send data, the sender pulls Output[0] high and relays the corresponding input
bit (i) on Output[i+1] (Note: currently only one bit can be sent at a time). The
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Sender also sets Output[7] to indicate to the connected chip that it should operate
in receiver mode.
Finally, The sender keeps Output[0] high long enough to prevent the receiver’s de-
bounce filtering from masking the signal before setting it low again.
Sender Mode Output:

# Output Description
0 Transmit Signal receiver to read data
1 x_bit[0] Transmit bit[0]
2 x_bit[1] Transmit bit[1]
3 x_bit[2] Transmit bit[2]
4 x_bit[3] Transmit bit[3]
5 unused N/A
6 unused N/A
7 Mode_of_connected_chip Sender/Receiver indicator

Receiver Mode Receiver mode is enabled when Input[7] is set high. In receiver
mode, the chip listens on Input[0:5]. It waits until the positive edge of Input[0]
before registering an input.
Receiver Mode Input:

# Input Description
0 Read Read input bits
1 input[0] recv_ bit[0]
2 input[1] recv_ bit[1]
3 input[2] recv_ bit[2]
4 input[3] recv_ bit[3]
5 unused N/A
6 unused N/A
7 input[7] Sender/Receiver indicator

The chip utilizes the carrier chip’s 7 segment display to echo a value corresponding to
the input data:

Input[1:4] Output Value Display Value
1000 0000_0110 1
0100 0101_1011 2
0010 0110_0110 4
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Input[1:4] Output Value Display Value
0001 0111_1111 8

The receiver initially displays zero (on the 7-segment display) until it receives the read
signal from the sender. The receiver then displays the value received or an E when the
value is not 1, 2, 4, and 8. The last value received, or E is displayed until the receives
gets the signal to read the next value.

How to test

To connect two chips, configure them as follows:

• Sender

– Inputs: (Choose One)
∗ None (i.e. the chip will read data from the carrier chip’s DIP switches)
∗ 6-pin, 4-button PMOD keypad plugged into Input[0-5] (top row)

– Outputs:
∗ Connect all 12 output pins to the inputs on the receiver

• Receiver

– Inputs
∗ Power, ground, and all 8 data pins from the sender must be connected

to the receiver’s corresponding inputs. This requires the use of a
specially crafted cross-over cable to ensure the correct connections.

Figure 46: picture of two chips connected as sender-receiver
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External hardware

• PMOD 4 button keypad

Pinout

# Input Output Bidirectional
0 Input[0]/Message

Ready
Transmit/LCD
Display
Value[0]

1 Input[1]/recv_bit[0]input[0]/LCD
Display
Value[1]

2 Input[2]/recv_bit[1]Input[1]/LCD
Display
Value[2]

3 Input[3]/recv_bit[2]Input[2]/LCD
Display
Value[3]

4 unused/recv_bit[3]Input[3]/LCD
Display
Value[4]

5 unused unused/LCD
Display
Value[5]

6 unused unused/LCD
Display
Value[6]

7 Sender/Receiver
Mode Select
(0/1)

Mode of
connected
chip//LCD
Display
Value[7]
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RISCV32I with spi wrapper [974]

• Author: Devin Macy
• Description: A mostly support riscv32i CPU with a bare bones spi wrapper

allowing you to upload programs to instruction memory and echo information
sent through SPI

• GitHub repository
• HDL project
• Mux address: 974
• Extra docs
• Clock: 50000000 Hz

How it works

My project is a 5-stage riscv32i cpu core supporting most of the bare bones instruction
set. The instructions that are not supported are any instructions dealing with csr’s,
harts, memory fences, or modes of operation. The cpu core has 16 words (64 bytes)
of instruction memory and registers and 8 words (32 bytes) of data memory.
For programmability, a spi wrapper has been added that starts in boot mode, requiring
you to upload a program and entering echo mode before the cpu can do anything.
When the exit boot command is given to the spi it will enter echo mode, releasing the
cpu from reset, and repeat back any byte given to it as a sort of health check.
In its current state, there is no way to observe the status of the cpu not in simulation,
since the spi doesn’t hand over control of itself to the cpu to output data. However
the passed/failed signals on uo_out[6] and uo_out[7] respectively, check to see if
register 10 is equal to 45. Which you can upload a simple program that adds numbers
from 1-10 and stores them into register 10 to test functionality.

Impact This project was developed in part with the Microelectronics Security Train-
ing Center (MEST) through the class “ChipCraft: The Art of Chip Design for Non-
Experts” deveoped and taught by Efabless and Redwood EDA. The class is designed
for non-experts in the field and covers the entire microelectronics ecosystem including
RTL design, Verification, GDS generation, tape-out process, and fabrication.
During the class, you get hands on experience and learn concepts of microelectronics
design by designing a calculator and prototyping on the first time use of the TT FPGA
demo board before moving to designing a 5-stage riscv32i cpu using Makerchip and
TL-Verilog.
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How to test

Have prepared a riscv32i binary of up to 16 instructions here is a pretty good rescource
for putting together binaries The cpu has 3 control and status registers (csr’s) in data
memory, taking up the first 3 entries and giving the user 5 words to work with.

data memory csr usage
dmem[0] 32-bit cycle counter
dmem[1] spi wrapper csr - bits 7-0 is the last

byte recieved and bit 8 is a recieved
byte valid signal. the rest are
unused

dmem[2] the last 32-bit instruction written
to instruction memory. populated
when command 0xC5 is issued

Connect the spi signals SCLK, CS, MOSI, and MISO to their respective pins. The spi
commands are as follows:

command code description
load ll_byte 0xC0 load bits 7-0 of the instruction word
load lh_byte 0xC1 load bits 15-8 of the instruction word
load hl_byte 0xC2 load bits 23-16 of the instruction word
load hh_byte 0xC3 load bits 31-24 of the instruction word
load imem_addr 0xC4 load what 3-bit address you want to

write the previously built instruction
word to

write to
imem[imem_addr]

0xC5 write built instruction to address
loaded into imem_addr

exit boot mode 0xC6 enter echo mode, echoing back any
byte given afterwards

re-enter boot mode 0xC7 re-enter boot mode, holding cpu in
reset

command error default invalid command was given, throw
cmd_error on uo_out[5] high
requiring a reset to clear

*The spi commands require 2-bytes per command, even if the command doesnt use
the second byte
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**The current mode can be observed on uo_out[4]. Mode is low when in boot and
high when in echo
Toggle CS high then low after power on. Program the cpu through spi by following a
cmd,data,cmd,data cadence loading all the bytes of the instruction word, then loading
the address to write to, then writing to imem until finish writing your program to
instruction memory. Send the exit boot command to release the cpu and observe the
results.
Here is an example (in verilog syntax) of a buffer used to program the instruction word
addi x10, x0, 45 into address 5 then echo 0xAA

buff[14*8] = {8'hc0, 8'h13, 8'hc1, 8'h05, 8'hc2, 8'hd0, 8'hc3, 8'h02,
8'hc4, 8'h05, 8'hc5, 8'hxx, 8'hc6, 8'haa}

Transmitted MSB of the buffer first, and in words is

buff[14*8] = {load, ll_byte, load, lh_byte, load, hl_byte, load, hh_byte,
load, imem_addr, write imem[imem_addr], dont care, exit boot, echo data}

You will need to program more than 5 instructions to really see any results, since it is a
5-stage pipeline and takes 5-cycles to see a write-back to the register file. An example
program that adds up numbers 1-10 and stores them into register 10, in assembly, is
as follows:

.text
reset:

ADD x10, x0, x0 # Initialize r10 (a0) to 0
ADD x14, x10, x0 # Initialize sum register a4 with 0x0
ADDI x12, x10, 10 # Store count of 10 in register a2
ADD x13, x10, x0 # Initialize intermediate sum register a3 with 0

loop:
ADD x14, x13, x14 # Incremental addition
ADDI x13, x13, 1 # Increment count register by 1
BLT x13, x12, loop # If a3 is less than a2, branch to label named <loop>

done:
ADD x10, x14, x0 # Store final result to register a0 so that it can be read by main program
JAL x1, done # Infinite loop storing result to register a0 to not let PC run off into lala land
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External hardware

male-to-male connectors and a arduino

Pinout

# Input Output Bidirectional
0 sclk
1 cs
2 mosi
3 miso
4 mode
5 cmd_error
6 passed
7 failed
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ALU 74181 [975]

• Author: Caio Alonso da Costa
• Description: SPI peripheral and an 8-bit ALU implemented with 2x 4-bit slice

arithmetic logic unit 74181
• GitHub repository
• HDL project
• Mux address: 975
• Extra docs
• Clock: 50000000 Hz

How it works

Replica of the famous 4-bit slice arithmetic logic unit (ALU). https://en.wikipedia.org/wiki/74181
The project instantiate two times the replica of the 74818 to perform mathematical
and logical operations on 8 bit words.
A multiplex is used to taps different parts of the user logic and map them to the 7
segment display to support debug.
Due to I/O constraints, a SPI slave peripheral has been created to load/read data into
the design.
SPI Slave peripheral implementation supports all 4 SPI modes of operation. 8 Config-
urable (Read/Write) registers. 8 Status (Read only) registers.
RP2040 SPI1 is used to communicate with the device. Map SPI1 IOs to GPIOs 24 to
27.

Limitations on SPI:

• Single register access per SPI transaction.
• SPI transaction is limited to 16 bits transfer at a time (Addr + Data). Please

refer to Protocol for timing diagrams.
• Design tested for 8 configuration registers + 8 status registers.
• Even though the number of configuration registers and status registers is config-

urable, design only supports equal number of configuration and status registers
for now.

• Writes targeting Read Only address are dropped, i.e., no configuration registers
gets updated.

336

https://github.com/calonso88/tt07_alu_74181


Address Space:

Address Type of register
0 Configurable Read/Write register [0] -

Data A (8 bits)
1 Configurable Read/Write register [1] -

Data B (8 bits)
2 Configurable Read/Write register [2] -

{c_in, M, S3, S2, S1, S0} [5:0] (6 bits)
3 Configurable Read/Write register [3] -

Select for 7 segment display [2:0] (3
bits)

4 Configurable Read/Write register [4]
5 Configurable Read/Write register [5]
6 Configurable Read/Write register [6]
7 Configurable Read/Write register [7]
8 Status Read Only register [0] - Data F

(8 bits)
9 Status Read Only register [1] - {c_out0,

equal0, p0, g0, c_out1, equal1, p1, g1}
[7:0] (8 bits)

10 Status Read Only register [2] - Output
of debug Multiplexer [3:0] (4 bits) and
Zeros [7:4] (4 bits)

11 Status Read Only register [3] - Output
of bin_to_7seg_decoder (8 bits)

12 Status Read Only register [4] - Fixed
data 8’hC4 (8 bits)

13 Status Read Only register [5] - Fixed
data 8’h10 (8 bits)

14 Status Read Only register [6] - Fixed
data 8’h66 (8 bits)

15 Status Read Only register [7] - Output
of bin_to_7seg_decoder delayed by 1
clock cycle (8 bits)

Connection

RP2040 SPI Master <–SPI–> SPI_WRAPPER <–regaccess–> User logic
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• SPI: MOSI MISO SCLK CS
• regaccess: config_regs (used to drive/control user logic), status_regs (used to

read/monitor user logic)

Protocol

SPI settings
• Address Bits = 4 and Databits = 8, MSB First
• Tested SPI frequency: spi_clk <= clk / 20

SPI commands
• Write data cmd = 0x80+addr, addr = 0 ~ 7

Bit: | <15> <14> <13> <12> <11> <10> <9> <8> <7> <6> <5> <4> <3> <2> <1> <0> |
MOSI: | 1 | Don't Care | Don't Care | Don't Care | addr[3] | addr[2] | addr[1] | addr[0] | data[7] | data[6] | data[5] | data[4] | data[3] | data[2] | data[1] | data[0] |
MISO: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CS: 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1

Wavedrom for Write data transfer:

{signal: [
{name: 'spi_cs', wave: '10................1'},
{name: 'spi_clk', wave: '0.P..............P0'},
{name: 'spi_mosi', wave: 'z1x..333344444444zz', data: ['Addr[3]', 'Addr[2]', 'Addr[1]', 'Addr[0]', 'Data[7]', 'Data[6]', 'Data[5]', 'Data[4]', 'Data[3]', 'Data[2]', 'Data[1]', 'Data[0]']},
{name: 'spi_miso', wave: '0..................'}],

head: {text:
['tspan',
['tspan', {class:'error h3'}, 'Write transfer '],

]
},
config: { hscale: 2 },
}

• Read data cmd = 0x00+addr, addr = 0 ~ 15

Bit: | <15> <14> <13> <12> <11> <10> <9> <8> <7> <6> <5> <4> <3> <2> <1> <0> |
MOSI: | 0 | Don't Care | Don't Care | Don't Care | addr[3] | addr[2] | addr[1] | addr[0] | Don't Care | Don't Care | Don't Care | Don't Care | Don't Care | Don't Care | Don't Care | Don't Care |
MISO: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | data[addr][7] | data[addr][6] | data[addr][5] | data[addr][4] | data[addr][3] | data[addr][2] | data[addr][1] | data[addr][0] |
CS: 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1

Wavedrom for Read data transfer:
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{signal: [
{name: 'spi_cs', wave: '10................1'},
{name: 'spi_clk', wave: '0.P..............P0'},
{name: 'spi_mosi', wave: 'z0x..3333xxxxxxxxzz', data: ['Addr[3]', 'Addr[2]', 'Addr[1]', 'Addr[0]']},
{name: 'spi_miso', wave: 'z0.......33333333zz', data: ['Data[7]', 'Data[6]', 'Data[5]', 'Data[4]', 'Data[3]', 'Data[2]', 'Data[1]', 'Data[0]']}],

head: {text:
['tspan',
['tspan', {class:'error h3'}, 'Read transfer '],

]
},
config: { hscale: 2 },
}

How to test

Use SPI1 Master peripheral in RP2040 to start communication on SPI interface towards
this design. Remember to configure the SPI mode using the switches in DIP switch (if
you’d like to have CPOL=1 and CPHA=1). Alternatively, don’t use the DIP switches
and use the RP2040 GPIOs to configure the SPI mode in the desired mode.
Example code to initialize SPI in REPL:

spi_miso = tt.pins.pin_uio3
spi_cs = tt.pins.pin_uio4
spi_clk = tt.pins.pin_uio5
spi_mosi = tt.pins.pin_uio6
spi_miso.init(spi_miso.IN, spi_miso.PULL_DOWN)
spi_cs.init(spi_cs.OUT)
spi_clk.init(spi_clk.OUT)
spi_mosi.init(spi_mosi.OUT)
spi = machine.SoftSPI(baudrate=10000, polarity=0, phase=0, bits=8, firstbit=machine.SPI.MSB, sck=spi_clk, mosi=spi_mosi, miso=spi_miso)
spi_cs(1)

Example code to Write to Addres[0] Data 0xA5:

spi_cs(0); spi.write(b'\x80\xa5'); spi_cs(1)

Example code to Read from Addres[12]:

spi_cs(0); spi.write(b'\x0C'); spi.read(1); spi_cs(1)
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External hardware

Not required.

Pinout

# Input Output Bidirectional
0 cpol decod_reg[0]
1 cpha decod_reg[1]
2 decod_reg[2]
3 decod_reg[3] spi_miso
4 decod_reg[4] spi_cs_n
5 decod_reg[5] spi_clk
6 decod_reg[6] spi_mosi
7 decod_reg[7]
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Pinout

The chip is packaged in a 64-pin QFN package. The pinout is shown below.
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1 16
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Figure 47: Pinout

Note: you will receive the chip mounted on a breakout board. The pinout is provided
for advanced users, as most users will not need to solder the chip directly.
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The Tiny Tapeout Multiplexer

Overview

The Tiny Tapeout Multiplexer distributes a single set of user IOs to multiple user
designs. It is the backbone of the Tiny Tapeout chip.
It has the following features:

• 10 dedicated inputs
• 8 dedicated outputs
• 8 bidirectional IOs
• Supports up to 512 user designs (32 mux units, each with up to 16 designs)
• Designs can have different sizes. The basic unit is a called a tile, and each design

can occupy up to 16 tiles.

Operation

The multiplexer consists of three main units:

1. The controller - used to set the address of the active design
2. The spine - a bus that connects the controller with all the mux units
3. Mux units - connect the spine to individual user designs

The Controller

The mux controller has 3 inputs lines:

Input Description
ena Sent as-is (buffered) to the downstream mux units
sel_rst_n Resets the internal address counter to 0 (active low)
sel_inc Increments the internal address counter by 1

It outputs the address of the currently selected design on the si_sel port of the spine
(see below).
For instance, to select the design at address 12, you need to pulse sel_rst_n low,
and then pulse sel_inc 12 times:
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Figure 48: Mux Diagram
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Figure 49: Mux Controller Diagram

Figure 50: Mux signals for activating the design at address 12

Internally, the controller is just a chain of 10 D flip-flops. The sel_inc signal is
connected to the clock of the first flip-flop, and the output of each flip-flop is connected
to the clock of the next flip-flop. The sel_rst_n signal is connected to the reset of
all flip-flops.
The following Wokwi projects demonstrates this setup: https://wokwi.com/projects/364347807664031745.
It contains an Arduino Nano that decodes the currently selected mux address and
displays it on a 7-segment display. Click on the button labeled RST_N to reset the
counter, and click on the button labeled INC to increment the counter.

The Spine

The controller and all the muxes are connected together through the spine. The spine
has the following signals going on it:
From controller to mux:

• si_ena - the ena input
• si_sel - selected design address (10 bits)
• ui_in - user clock, user rst_n, user inputs (10 bits)
• uio_in - bidirectional I/O inputs (8 bits)
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From mux to controller:

• uo_out - User outputs (8 bits)
• uio_oe - Bidirectional I/O output enable (8 bits)
• uio_out - Bidirectional I/O outputs (8 bits)

The only signal which is actually generated by the controller is si_sel (using
sel_rst_n and sel_inc, as explained above). The other signals are just going
through from/to the chip IO pads.

The Multiplexer (The Mux)

Each mux branch is connected to up to 16 designs. It also has 5 bits of hard-coded
address (each unit gets assigned a different address, based on its position on the die).
The mux implements the following logic:
If si_ena is 1, and si_sel matches the mux address, we know the mux is active.
Then, it activates the specific user design port that matches the remaining bits of
si_sel.
For the active design:

• clk, rst_n, ui_in, uio_in are connected to the respective pins coming from
the spine (through a buffer)

• uo_out, uio_oe, uio_out are connected to the respective pins going out to
the spine (through a tristate buffer)

For all others, inactive designs (including all designs in inactive muxes):

• clk, rst_n, ui_in, uio_in are all tied to zero
• uo_out, uio_oe, uio_out are disconnected from the spine (the tristate buffer

output enable is disabled)

Pinout

mprj_io pin Function Signal QFN64 pin
0 Input ui_in[0] 31
1 Input ui_in[1] 32
2 Input ui_in[2] 33
3 Input ui_in[3] 34
4 Input ui_in[4] 35
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mprj_io pin Function Signal QFN64 pin
5 Input ui_in[5] 36
6 Input ui_in[6] 37
7 Analog analog[0] 41
8 Analog analog[1] 42
9 Analog analog[2] 43
10 Analog analog[3] 44
11 Analog analog[4] 45
12 Analog analog[5] 46
13 Input ui_in[7] 48
14 Input clk † 50
15 Input rst_n † 51
16 Bidirectional uio[0] 53
17 Bidirectional uio[1] 54
18 Bidirectional uio[2] 55
19 Bidirectional uio[3] 57
20 Bidirectional uio[4] 58
21 Bidirectional uio[5] 59
22 Bidirectional uio[6] 60
23 Bidirectional uio[7] 61
24 Output uo_out[0] 62
25 Output uo_out[1] 2
26 Output uo_out[2] 3
27 Output uo_out[3] 4
28 Output uo_out[4] 5
29 Output uo_out[5] 6
30 Output uo_out[6] 7
31 Output uo_out[7] 8
32 Analog analog[6] 11
33 Analog analog[7] 12
34 Analog analog[8] 13
35 Analog analog[9] 14
36 Analog analog[10] 15
37 Analog analog[11] 16
38 Mux Control ctrl_ena 22
39 Mux Control ctrl_sel_inc 24
40 Mux Control ctrl_sel_rst_n 25
41 Reserved (none) 26
42 Reserved (none) 27
43 Reserved (none) 28
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† Internally, there’s no difference between clk, rst_n, and ui_in pins. They are all
just bits in the pad_ui_in bus. However, we use different names to make it easier to
understand the purpose of each signal.
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