
Tiny Tapeout 9 Datasheet
Project Repository

https://github.com/TinyTapeout/tinytapeout-09

November 12, 2024

Contents

1

https://github.com/TinyTapeout/tinytapeout-09

Chip map 12

Projects 15
Chip ROM [0] . 15
TinyTapeout Factory Test 1 . 17
Trubick - Tiny Tapeout Logic Gate 2 . 19
Andrew Vo - Repository [3] . 20
tinytapeout [4] . 21
Half adder [5] . 22
Samson’s Tiny Tapout Project [6] . 23
Jacks First Project [7] . 25
4 x 4 array multiplier NuKoP [8] . 26
MuxLED [9] . 28
Tiny Tapeout [10] . 29
halfadder+not [11] . 30
Yohan Tiny Tapeout Project [12] . 31
4-bit Multiplier [13] . 32
Yared Fente’s Tiny Tapeout [14] . 35
Metastable Chip [15] . 36
Secret Initial [32] . 37
Binary to 7 Segment Display Decoder [33] 38
Tahiti [34] . 39
Letter H [35] . 40
APTT [36] . 41
Two PFD [37] . 42
Zero to Nine Display Count [38] . 43
Redco [39] . 44
Light LED [40] . 46
Matmul System [41] . 48
Tiny Tapeout-Huerta [42] . 49
Light [43] . 50
TinyTapeOut [44] . 52
Nathan’s chip [45] . 53
OR gate [46] . 54
project [47] . 55
D_flipflop_hold_test [64] . 56
Dipankar’s first Wowki design [65] . 57
Bit Counter [66] . 58
Hamad’s design [67] . 59
Full bit adder [68] . 60
Encoder [69] . 61
Encoder [70] . 62

2

GDS [71] . 63
Big J’s Big Circuit [72] . 64
2 Bit Times 2 Bit Plus 4 Bit MAD and 5 Bit Binary to 7 Segment Display [73] 65
AndLogicPass [74] . 67
Not Good BCD Decoder [75] . 68
Half Adder [76] . 69
tinytapeoutkr [77] . 72
Jordan [78] . 73
My First ASIC [79] . 74
GJAA Design [96] . 75
8b10b decoder and multiplier [97] . 76
Logic Gates [98] . 78
Test Design 1 [99] . 79
My First TinyTapeout [100] . 81
Decimation Filter for Incremental and Regular Delta-Sigma Modulators [101] 83
1st [102] . 86
adder-accumulator [103] . 87
JCB First WOKWI Design [104] . 93
ECE 298A 8-Bit CPU Control Block [105] 94
Logic Gates 7-Segment Display [106] . 98
LFSR Encrypter [107] . 99
BadeTP [108] . 100
SkyKing Demo [109] . 102
Lynn’s TinyTapeout Design [110] . 103
Two LIF Neurons with STDP Learning [111] 104
4-bit-multiplier [128] . 107
ece2204_4x4_mult [129] . 109
my_4bit_multiplier [130] . 111
T3 (Tiny Ternary Tapeout) [131] . 113
Hybrid_Adder_8bit [132] . 117
3 Neuron ALIF [133] . 119
8-bit Carry Look-Ahead Adder [134] . 121
2bit adder [135] . 125
RISC-V Mini [136] . 126
4-1 mux [137] . 129
8-bit carry-skip [138] . 130
STDP Circuit [139] . 132
4 bit array multiplier [140] . 134
instrumented_ring_oscillator [141] . 135
Array Multiplier [142] . 137
Linear Feedback Shift Register [143] . 139
Frequency Encoder and Decoder [160] . 140

3

TT Test [161] . 142
carry skip adder [162] . 143
4-bit up/down binary counter [163] . 145
xor gate with registered output [164] . 147
Team 17’s 8 bit DAC [165] . 149
Multi-LFSR [166] . 150
ECE2204MultiplierProject [167] . 152
Micro tile container [168] . 155
4bit multiplier [169] . 157
Forward Pass Network for Simple ANN [170] 158
Tiny Registers [171] . 160
7-Segment Byte Display [172] . 166
Leaky Integrate Fire Neuron [173] . 169
znah_vga_ca [174] . 171
Tiny Tapeout Group 7 Lab D [175] . 172
4-bit Multiplier [192] . 174
FIREngine [193] . 176
4x4multiplier [194] . 178
Lab B Group 1 Array Multiplier [195] . 181
4-bit Multiplier [196] . 182
Array Multiplier [197] . 184
4x4 Multiplier [198] . 187
4x4 Array Multiplier [199] . 189
tt09 kathyhtt [200] . 191
4x4 Array Multiplier [201] . 193
TINY TAPE OUT [202] . 196
ECE2204 4x4 Array Multiplier [203] . 197
TinyTapeout1 [204] . 200
comparator [205] . 201
FB GDS [206] . 202
4x4 Array Multiplier [207] . 203
Semana UCU Verilog [224] . 206
4 by 4 Array Multiplier [226] . 212
4-bit multiplier [228] . 215
OpenRAM SRAM macro [229] . 218
Array Multiplier [230] . 220
VGA Pride [231] . 222
4-bit Array Multiplier [232] . 226
Noise test for a CDAC capacitor chain [233] 229
ECE-UY 2204 4x4 Array Multiplier [234] 230
Analog Switch [235] . 233
array_multiplier [236] . 235

4

Digital OTA [237] . 238
8-bit-CARRY_SKIP [238] . 240
Telephone hybrid [239] . 242
Array Multiplier [256] . 244
Array multiplier [258] . 247
Array Multiplier [260] . 250
1bit_am_sdr [261] . 253
Array Multiplier [262] . 257
Time to Digital Converter [263] . 260
Delta RNN and Leaky Integrate-and-Fire Nueron Circuit [264] 262
tt_um_tim2305_adc_dac [265] . 264
Verilog ring oscillator [266] . 266
2-bit Flash ADC [267] . 267
Adaptive Leaky Integrate and Fire Neuron [268] 269
pll [269] . 271
Matmul System [270] . 273
Analog MUX module [271] . 274
Steven’s Wokwi Test [288] . 276
2-Bit-Adder [289] . 277
8-Bit CPU [290] . 278
fulladder [291] . 294
RLE Video Player [292] . 295
Hopfield Network with Izhikevich-type RS and FS Neurons [293] 298
4-bit Multiplier [294] . 299
Perceptron [295] . 302
Histogramming [296] . 303
test_friday2 [297] . 306
Perceptron Neuron [298] . 310
carry_select [299] . 312
I2C and SPI [300] . 314
Lab C 4x4 Mult-Array [301] . 315
Configurable Logic Block [302] . 318
Tiny RAM DFF 2r1w [303] . 320
ECE-2204 4x4 Array Multiplier [320] . 324
Senol Gulgonul tt09 [321] . 326
ECE2204 4x4 Array Multiplier [322] . 327
Space Detective Maze Explorer [323] . 329
Array Multiplier [324] . 332
Hamming Code (7,4) [325] . 335
ece2204 project for tapeout [326] . 341
tiny-tapeout-8bit-GPTPrefixCircuit [327] 344
4x4 array multiplier [328] . 347

5

LIF on a Ring Topology [329] . 350
4-bit-array-multiplier [330] . 352
Delta-Sigma ADC Decimation Filter [331] 355
Array_Multiplier [332] . 356
an lfsr with synaptic neurons (excitatory or inhibitatory) [333] 358
Generador PWM multiproposito con frecuencia y ciclo de trabajo modulable

[334] . 360
Perceptron [335] . 362
2_bit_7seg [416] . 363
Adbe_Project [417] . 364
8 bit LFSR [418] . 365
Odd or even [419] . 366
Broken Two Bit Adder [420] . 367
Manchester Encoder [421] . 368
4 bit adder [422] . 369
Tiny_Tapeout_Adder! [423] . 370
TinyTapeout workshop - Wokwi 8 Bit LFSR [424] 371
Morse Code for J and R [425] . 372
3bitFullAdder [426] . 373
XorTree [427] . 374
Sigma-Delta ADC [428] . 375
tt09-4bit-adder-dhags [429] . 377
Mini-Adder and Clock Divider [430] . 378
7-seg display checker [431] . 379
Drew’s First Wokwi Design [448] . 380
Shadoff Test [449] . 381
Pseudo Random Generator Using 2 Ring Oscillators [450] 383
Tiny Tapeout Take 2 [451] . 384
JonsFirstTapeout [452] . 385
Speller [453] . 386
And Gates that don’t do much [454] . 387
RAYS FIRST TAPEOUT rev 2 [455] . 388
SimplePattern [456] . 389
6 Bit shift register [457] . 391
sphereinabox hello [458] . 392
Duffy [459] . 393
Input Counter [460] . 394
Will It NAND? [461] . 395
4 bit ALU [462] . 396
Bad Logic [463] . 398
Full Adder [481] . 399
2048 sliding tile puzzle game (VGA) [482] 400

6

TT-Farhad [483] . 402
Four Bit Adder [485] . 403
SPI Logic Analyzer with Charlieplexed Display [486] 404
2 bit adder [487] . 406
pio-ram-emulator example: Julia fractal [488] 407
AND and NOT gate testing [489] . 410
Analog 8 bit 3.3v R2R DAC [490] . 411
Kanoa’s first Wokwi deseign Tinytapeout 2024 Nonsense [491] 413
Ring Oscillators [492] . 414
add it [493] . 416
AMS Chip ITS [494] . 417
one [495] . 419
SIC-1 8-bit SUBLEQ Single Instruction Computer [518] 420
4-bit R2R DAC [520] . 423
Dickson Charge Pump [522] . 425
Analog double inverter [524] . 429
OpAmp 3stage [526] . 431
Counter [544] . 433
Shifter [545] . 434
7-bit arbiter [546] . 435
NAND Flip-Flop [547] . 436
LCA’s first Wokwi design [548] . 437
chip [549] . 438
Tinysynth [550] . 439
rhTinyTapeout [551] . 440
half adder [552] . 441
rand [553] . 442
Tiny Tapeout 9 Template [554] . 443
Ripple counter [555] . 444
four flip flops [556] . 445
adder-tt09 [557] . 446
Full Adder [558] . 448
NAND-Equ [559] . 449
Elevator Design [576] . 450
L display [578] . 451
S-R latch [580] . 453
Gabe’s Big AND [582] . 454
Secret Code [584] . 455
joes-first-tiny-tapeout [586] . 457
Abey’s 1st Chip Design [588] . 458
patrick’s project [590] . 459
tt09-pettit-wokproc-trainer [591] . 460

7

Full adder Design [608] . 465
seven [609] . 466
Vincent’s First Design [610] . 467
gatesoup [611] . 468
A Tale of Two NCOs [612] . 469
Tiny Tapeout 9 Template Version 1 Tata Luka [613] 471
Workshop demo [614] . 472
UART TX [615] . 473
LRC - Longitudinal Redundancy Check generator [616] 474
my First WokWi Design [617] . 475
print [618] . 476
Tiny Tapeout 9 [619] . 477
hello [620] . 478
tinydsp-lol [621] . 479
Full Adder [622] . 480
Leaky integrate and fire spiking neural network [623] 481
Stochastic Integrator [640] . 483
E2M0 x INT8 Systolic Array [642] . 485
VGA Nyan Cat [644] . 487
15 channels emission counter [646] . 489
Basic Oszilloscope and Signal Generator [648] 492
T3 (Tiny Ternary Tapeout) CSA [650] . 496
CORA-16 [652] . 500
ITS-RISCV [654] . 506
16 Bit Izhikevich Neuron [672] . 509
Giant Ring Oscillator (3853 inverters) [673] 512
dff_mem [674] . 514
Lab B Group 10 Array Multiplier [675] . 517
Verilog ring oscillator V2 [676] . 519
TwoChannelSquareWaveGenerator [677] 521
Basic model for Systollic array implementation of LIF [678] 523
RGB Mixer demo [679] . 525
mips.sv [680] . 526
VGA clock [681] . 527
gta6 [682] . 529
8-bit CBILBO [683] . 530
Name Speller [684] . 532
Michaels Tiny Tapeout ALU [685] . 533
2-bit Full Adder [686] . 535
ovl abc chip [687] . 536
Simon’s Caterpillar [704] . 537
tt6502 [706] . 539

8

Oscillating Bones [708] . 540
SoCET UART with FIFO buffers [710] . 543
VGA Drop (audio/visual demo) [712] . 545
Warp [714] . 546
Sequential Shadows [TT08 demo competition] [716] 548
achasen workshop validation [718] . 554
7-Segment Digital Desk Clock [736] . 555
TinySnake [737] . 557
Basic Perceptron + ReLU [738] . 559
Classic 8-bit era Programmable Sound Generator SN76489 [739] 560
Basic Matrix-Vector Multiplication [740] 568
Classic 8-bit era Programmable Sound Generator AY-3-8913 [741] 570
8 bit MAC Unit [742] . 579
Cgates [743] . 581
Programmable PWM Generator [744] . 583
eksdee [745] . 585
Verilog test project [746] . 586
ternary, E1M0, E2M0 decoders [747] . 587
Basic LIF Neuron [748] . 589
Dynamic Threshold Leaky Integrate-and-Fire [749] 591
Integrate-and-Fire Neuron Circuit [750] 592
tt09-C6-array-multiplier [751] . 594
Zilog Z80 [770] . 596
Spectrogram extractor, 2 channels [782] 600
Encoder [800] . 603
chip_fab [801] . 604
Clocked Display [802] . 605
YoshiTP [803] . 606
A simple leaky integrate and fire neuron [804] 608
Who knows what’s happening Tiny Tapeout [805] 610
VGA Tiny Logo (1 tile) [806] . 611
Tiniest of tapeouts [807] . 612
SK Test Workshop [808] . 613
Tian TT9 [809] . 614
2-bit 2x2 Matrix Multiplier [810] . 615
RISCV Processor Design [811] . 617
Verilog ring oscillator V3 [812] . 619
Test_project [813] . 620
4-Bit Toy CPU [814] . 621
RISCV Processor Design [815] . 623
APA102 to WS2812 Translator [832] . 625
Collatz conjecture brute-forcer [834] . 627

9

TT09 SKY130 ROM Test [836] . 629
TT09 SKY130 ROM Test (no LVT variant) [838] 631
PID Controller [840] . 633
Frequency Counter SSD1306 OLED [842] 635
Basys 3 Over UART Link [844] . 637
Tiny 1-bit AM Radio [846] . 639
Encoder [864] . 643
dummy [865] . 644
First Tapeout Chip - OCR [866] . 645
sarah’s first chip [867] . 647
Half Adder [868] . 648
tiny cipher 4 bit key [869] . 649
Kai’s Death Adder [870] . 650
2 input multiplexor [871] . 651
Kevin Project [872] . 652
Tutorial: Simple LIF Neuron [873] . 653
Leaky Neuron Network [874] . 655
Neuromorphic Hardware for SNN LSTM [876] 657
Project [878] . 660
Hardware UTF Encoder/Decoder [897] 661
BINCounterAndGates [899] . 667
Color Bars [901] . 670
Fuzzy Search Engine [903] . 672
TT09Ball GDS Art [905] . 679
Simon Says memory game [907] . 681
TT09Ball VGA Screensaver [909] . 684
ChatGPT-generated Spiking Neural Network with Delays [910] 686
32x8 LED Matrix Animation [911] . 688
8b10b decoder and multiplier [961] . 690
Styler [963] . 692
VGA Timing Experiments [965] . 697
Universal Binary to Segment Decoder [967] 700
INTERCAL ALU [969] . 709
Simple PWM Module [971] . 714
freqSweep [973] . 715
Atari 2600 [974] . 720
LED Bitserial Cipher [975] . 721

Pinout 724

The Tiny Tapeout Multiplexer 725
Overview . 725

10

Operation . 725
Pinout . 728

Sponsored by 731

Team 731

11

Chip map

Figure 1: Full chip map

12

Figure 2: GDS render

13

Figure 3: Logic density (local interconnect layer)

14

Projects

Chip ROM [0]

• Author: Uri Shaked
• Description: ROM with information about the chip
• GitHub repository
• HDL project
• Mux address: 0
• Extra docs
• Clock: 0 Hz

How it works

ROM memory that contains information about the Tiny Tapeout chip. The ROM is
8-bit wide and 256 bytes long.

The ROM layout The ROM layout is as follows:

Address Length Encoding Description
0 8 7-segment Shuttle name (e.g. “tt07”), null-padded
8 8 7-segment Git commit hash
32 96 ASCII Chip descriptor (see below)
248 4 binary Magic value:

&quot;TT\xFA\xBB&quot;
252 4 binary CRC32 of the ROM contents, little-endian

The chip descriptor The chip descriptor is a simple null-terminated string that
describes the chip. Each line is a key-value pair, separated by an equals sign. It
contains the following keys:

Key Description Example value
shuttle The identifier of the shuttle tt07
repo The name of the repository TinyTapeout/tinytapeout-07
commit The commit hash * a1b2c3d4

• The commit hash is only included for Tiny Tapeout 5 and later.

15

https://github.com/TinyTapeout/tt-chip-rom

Here is a complete example of a chip descriptor:

shuttle=tt07
repo=TinyTapeout/tinytapeout-07
commit=a1b2c3d4

How the ROM is generated The ROM is automatically generated by tt-support-
tools while building the final GDS file of the chip. Look at the rom.py file in the
repository for more details.

How to test

Read the ROM contents by setting the address pins and reading the data pins. The
first 16 bytes of the ROM are 7-segment encoded and contain the shuttle name and
commit hash. You can read them by toggling the first four DIP switches and observing
the on-board 7-segment display.

Pinout

Input Output Bidirectional
0 addr[0] data[0]
1 addr1 data1
2 addr2 data2
3 addr[3] data[3]
4 addr[4] data[4]
5 addr[5] data[5]
6 addr[6] data[6]
7 addr[7] data[7]

16

https://github.com/TinyTapeout/tt-support-tools
https://github.com/TinyTapeout/tt-support-tools
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

TinyTapeout Factory Test 1

• Author: Tiny Tapeout
• Description: Factory test module
• GitHub repository
• HDL project
• Mux address: 1
• Extra docs
• Clock: 0 Hz

How it works

The factory test module is a simple module that can be used to test all the I/O pins
of the ASIC.
It has three modes of operation:

1. Mirroring the input pins to the output pins (when rst_n is low).
2. Mirroring the bidirectional pins to the output pins (when rst_n is high sel is

low).
3. Outputing a counter on the output pins and the bidirectional pins (when rst_n

is high and sel is high).

The following table summarizes the modes:

rst_n sel Mode uo_out value uio pins
0 X Input mirror ui_in High-Z
1 0 Bidirectional mirror uio_in High-Z
1 1 Counter counter counter

The counter is an 8-bit counter that increments on every clock cycle, and resets when
rst_n is low.

How to test

1. Set rst_n low and observe that the input pins (ui_in) are output on the output
pins (uo_out).

2. Set rst_n high and sel low and observe that the bidirectional pins (uio_in)
are output on the output pins (uo_out).

3. Set sel high and observe that the counter is output on both the output pins
(uo_out) and the bidirectional pins (uio).

17

https://en.wikipedia.org/wiki/Collatz_conjecture
https://github.com/TinyTapeout/tt09-factory-test

Pinout

Input Output Bidirectional
0 sel / in_a[0] output[0] /

counter[0]
in_b[0] / counter[0]

1 in_a1 output1 /
counter1

in_b1 / counter1

2 in_a2 output2 /
counter2

in_b2 / counter2

3 in_a[3] output[3] /
counter[3]

in_b[3] / counter[3]

4 in_a[4] output[4] /
counter[4]

in_b[4] / counter[4]

5 in_a[5] output[5] /
counter[5]

in_b[5] / counter[5]

6 in_a[6] output[6] /
counter[6]

in_b[6] / counter[6]

7 in_a[7] output[7] /
counter[7]

in_b[7] / counter[7]

18

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Trubick - Tiny Tapeout Logic Gate 2

• Author: Zane Trubick
• Description: Code for 7-Segment
• GitHub repository
• Wokwi project
• Mux address: 2
• Extra docs
• Clock: 0 Hz

How it works

This chip has a secret code. Figure out the code to activate the “lock.” Success will
be indicated by a light.

How to test

Troubleshoot until you get the code.

External hardware

7-Segment Display, LED

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

19

http://www.ericr.nl/wondrous/pathrecs.html
https://github.com/ztrubick/Tiny-Tapeout
https://wokwi.com/projects/413919752282163201

Andrew Vo - Repository [3]

• Author: Andrew Vo
• Description: Repository WokWi
• GitHub repository
• Wokwi project
• Mux address: 3
• Extra docs
• Clock: 0 Hz

How it works

Using inverters to light up an 8 segment clock. Explain how your project works My
chip uses a variety of 3 different inverters, which also involves a flip-flop inverter.

How to test

Flipping the switches will light up its corresponding segment, however the flip flop
inverter has its energy stored with switch 3 and 4, which would alternate. Explain how
to use your project

External hardware

LED Display

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

20

https://github.com/ooftheloofer/Andrew-Vo---Repository
https://wokwi.com/projects/413919972072132609

tinytapeout [4]

• Author: Htun
• Description: Encoder
• GitHub repository
• Wokwi project
• Mux address: 4
• Extra docs
• Clock: 0 Hz

How it works

My project works by connecting the first few ins and outs using not gates. Following
that there are a few connections that go straight to the output. There is an And gate
and any not gates.

How to test

Press the run button and flip switches to see what lights light up.

External hardware

None.

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3
4 IN4
5 IN5
6 IN6
7 IN7

21

https://github.com/htunw07/tinytapeout
https://wokwi.com/projects/413923702485727233

Half adder [5]

• Author: Keyshon Howard
• Description: 2x2 Half adder
• GitHub repository
• Wokwi project
• Mux address: 5
• Extra docs
• Clock: 0 Hz

How it works

“The Project is a half adder that uses an Xor gate for the Sum on the inputs and an
and gate for the Carry bit”

How to test

“You change the inputs and see the output change based on the lights illuminating”

External hardware

“Two LED displays to see the output”

Pinout

Input Output Bidirectional
0 OUT0
1 IN1
2 IN2
3
4
5 OUT5
6
7

22

https://github.com/KeyshonHoward/Chip
https://wokwi.com/projects/413919492911554561

Samson’s Tiny Tapout Project [6]

• Author: Samson
• Description: A game to get the number to show up as 0
• GitHub repository
• Wokwi project
• Mux address: 6
• Extra docs
• Clock: 0 Hz

How it works

The inputs 0-7 will change how the LED will work. Some inputs use AND statements
and others use XOR. The user will try to find out how to get the number 0.

How to test

The user will input/guess to find the combination to get 0.

External hardware

7 segment display.

Pinout

Input Output Bidirectional
0 Connected to

an AND
statement
with 1 to
activate top
and top right
LEDs

Connected to
an AND
statement
with 1 to
activate top
and top right
LEDs

23

https://github.com/samsonlemma/Tiny-Tapeout
https://wokwi.com/projects/413920489444856833

Input Output Bidirectional
1 Connected to

an AND
statement
with 0 to
activate top
and top right
LEDs

Connected to
an AND
statement
with 1 to
activate top
and top right
LEDs

2 Goes to input
w/ the same
number

Goes to input
w/ the same
number

3 Goes to input
w/ the same
number

Goes to input
w/ the same
number

4 Goes to input
w/ the same
number

Goes to input
w/ the same
number

5 Goes to input
w/ the same
number

Goes to input
w/ the same
number

6 Connected to
an XOR
statement
with 7 to
activate top
and top right
LEDs

Connected to
an XOR
statement
with 7 to
activate top
and top right
LEDs

7 Connected to
an XOR
statement
with 6 to
activate top
and top right
LEDs

Connected to
an XOR
statement
with 6 to
activate top
and top right
LEDs

24

Jacks First Project [7]

• Author: Jack B
• Description: Jacks Frist Wokwi template
• GitHub repository
• Wokwi project
• Mux address: 7
• Extra docs
• Clock: 0 Hz

How it works

This project is a full adder.

How to test

Test inputs 0 and 1 as input bits, and input 2 as Carry in. Output 0 is the first digit
out, and output 1 as carry out.

External hardware

Used an LED to test the full adder.

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2
3
4
5
6
7

25

https://github.com/jackberkowitz2003/wokwi-template
https://wokwi.com/projects/413919458626244609

4 x 4 array multiplier NuKoP [8]

• Author: Aiden Li, Mahid Hosen
• Description: given two 4 bit unsigned binary numbers, outputs the product of

the two numbers
• GitHub repository
• HDL project
• Mux address: 8
• Extra docs
• Clock: 0 Hz

How it works

Using the 4 by 4 multiplier from the previous Lab, we implemented the design so that
it could be used by a TinyTapeout chip. The 4 by 4 multiplier uses a series of full
adders and AND gates, in order to multiply two 3 bit numbers together. In order to do
this, the module multiplies the top number by the bottom number, using the AND and
Full Adders, and repeats this over and over for each digit in the second binary number.
Each number created has a zero added as a least significant bit, and then when all
the four numbers are made, they are all added together to find the total product. The
Verilog design incorporates the design by using multiple modules to represent different
parts of the design. A full adder module is made to add two one digit bits together.
Using the full adder module, the part module uses this to multiply each digit of the first
number to one digit in the bottom number. Finally, the array_mult_generate module
uses the part module to repeat this process for every digit on the second number, using
generate to loop through each one. This final module outputs the 8 bit product of the
two 4 digit binary numbers.

How to test

The design works by having a set of 8 switches and 8 LEDs. The 8 switches represent
the four bits for one input, and the 4 bits for another. The LEDs are for the output
with it lighting up as a 1, and with it off being 0. Switching the switches changes the
inputs for the two binary numbers you want and the LEDs will correspond with the 8
digit product. In order to test to see that the design works, you can choose two 4 bit
numbers and see if the product displayed is correct. You can test for inputs such as
0000 and 0001 which should output 0000 and the other number respectively, because
they are identities. We don’t need to check for overflow because the largest product,
15 x 15 = 225 is able to be represented by the 8 digits. Other numbers can also be
used in order to test the functionality of the design.

26

https://github.com/NuKop/tt09-secD-6-array-multiplier

External hardware

The TinyTapeout chip has switches for the inputs and LEDs for the outputs.

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0]
1 ui_in1 uo_out1
2 ui_in2 uo_out2
3 ui_in[3] uo_out[3]
4 ui_in[4] uo_out[4]
5 ui_in[5] uo_out[5]
6 ui_in[6] uo_out[6]
7 ui_in[7] uo_out[7]

27

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

MuxLED [9]

• Author: Alex Moore
• Description: mulitplexor connected to LED
• GitHub repository
• Wokwi project
• Mux address: 9
• Extra docs
• Clock: 0 Hz

How it works

My project uses a mulitplexor to light up an LED as well as the display
module.

How to test

Check if the LED and display both light up by switching input 7 on/off
and inputs 4 and 6, if in7 is on then in 6 should turn the lights on. If in 7
is off then in4 will turn on the lights

External hardware

LED display & LED diode

Pinout

Input Output Bidirectional
0 OUT0
1 OUT1
2 OUT2
3 OUT3
4 IN4 OUT4
5 OUT5
6 IN6 OUT6
7 IN7 OUT7

28

https://github.com/AlexMooreEE/TINYTAPEOUT1
https://wokwi.com/projects/413918279810604033

Tiny Tapeout [10]

• Author: Andy
• Description: Using logic gates to determine sections on a 7 segment display
• GitHub repository
• Wokwi project
• Mux address: 10
• Extra docs
• Clock: 0 Hz

How it works

Have several input values with respective output values while using gates to control
different the inputs to have different outputs.

How to test

Switch on and off for the input gates, test around different value combinations and
options to see what you can create on the number display.

External hardware

none.

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3
4 IN4
5 IN5
6 IN6
7 IN7

29

https://github.com/a1diep/GDS
https://wokwi.com/projects/413919889872144385

halfadder+not [11]

• Author: Vincent Phan
• Description: My project has a half adder and not gate which turns the lightoff

and on for a clock.
• GitHub repository
• Wokwi project
• Mux address: 11
• Extra docs
• Clock: 0 Hz

How it works

My first two inputs go through an adder. The last input goes through an inverter. The
rest pass through.

How to test

Flip the switches in order to light up the clock.

External hardware

This requires the default seven segment display and dip switches.

Pinout

Input Output Bidirectional
0 connected to adder sum
1 connected to adder carry
2 pass through pass through
3 pass through pass through
4 pass through pass through
5 pass through pass through
6 pass through output to inverter
7 input to inverter

30

https://github.com/vgphan/tinytapeout
https://wokwi.com/projects/413919484652961793

Yohan Tiny Tapeout Project [12]

• Author: Juan
• Description: Mixed Logic Gate to control 7 segment display
• GitHub repository
• Wokwi project
• Mux address: 12
• Extra docs
• Clock: 0 Hz

How it works

“This is a project in work. The gates makes signals do funky things.”

How to test

“That is to be determined once the functionality is figured out.”

External hardware

“Seven segment display, input board, output board, switch panel”

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

31

https://github.com/NeuroCode333/Yohan-Tiny-Tapeout-Project
https://wokwi.com/projects/413918243645213697

4-bit Multiplier [13]

• Author: Nick Pham, Nathan Macapinlac
• Description: 4-bit multiplier for NYU’s digital logic course’s Lab 4
• GitHub repository
• HDL project
• Mux address: 13
• Extra docs
• Clock: 0 Hz

How it works

Figure 4: image

Above is a diagram that represents a 4-bit multiplier, which takes in two 4-bit integers
and outputs a single 8-bit integer.
This was created using a manual structural design. We utilized a 1-bit full adder module
in our implementation.

• AND-Gates are utilized to multiply each bit of input m with each bit of input q.

32

https://github.com/nasan016/tt09-secD-02-array-multiplier

• We align partial products diagonally to mimic that of manual binary multiplica-
tion.

• We use 1-bit Full Adders to add products and handle carries.
• The outputs of the Full Adders eventually went to the bits of our output p which

is an 8-bit integer.

How to test

Creating your own test cases:

• Go to the test folder and locate test.py.
• Edit test.py and add your own custom test cases.

Example
TEST CASE #0 -> 0 * 1
dut.ui_in.value = 0b00000001
await ClockCycles(dut.clk, 1)
assert dut.uo_out.value = 0b00000000

• Run the test with make and check the tests passed.

• If you’ve forked the repository
• Commit and push your changes to your forked repository
• Check Github Actions to check if your tests have passed

External hardware

N/A

Pinout

Input Output Bidirectional
0 m[0] p[0]
1 m1 p1
2 m2 p2
3 m[3] p[3]
4 q[0] p[4]

33

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
5 q1 p[5]
6 q2 p[6]
7 q[3] p[7]

34

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Yared Fente’s Tiny Tapeout [14]

• Author: Yared Fente
• Description: Adder Circuit
• GitHub repository
• Wokwi project
• Mux address: 14
• Extra docs
• Clock: 0 Hz

How it works

It performs addition of numbers.

How to test

Use 7 on-switch material to test.

External hardware

7-segment display.

Pinout

Input Output Bidirectional
0 Input to an XOR Output from xor2
1 Input to an XOR Output from or1
2 Input to an AND
3
4
5
6
7

35

https://github.com/yfente/tiny_tapeout_yf
https://wokwi.com/projects/413921849611724801

Metastable Chip [15]

• Author: Patrick McDermott
• Description: Metastable Multiplier w/ 4 inputs
• GitHub repository
• Wokwi project
• Mux address: 15
• Extra docs
• Clock: 0 Hz

How it works

The metastable multiplier violates the timing delay needed by logic gates to accurately
manipulate binary bits the way they’re supposed to which causes cases of logic gates
outputting a 1 and a 0 at the same time.

How to test

First set all inputs to logic 0 and then set all of them to 1. Observe the metastable of
the circuit befure it resolves itself to either a logic 1 or 0.

External hardware

4 switches are used to control the input along with an external clock and reset 4 Leds
are used on the output to display which combination of binary you are using at the
input

Pinout

Input Output Bidirectional
0 A0 Out0
1 A1 Out1
2 B0 Out2
3 B1 Out3
4
5
6
7

36

https://github.com/pattymills02/tt_Patrick
https://wokwi.com/projects/413919794360480769

Secret Initial [32]

• Author: Kiarash
• Description: A certain set of inputs will display a secret initial.
• GitHub repository
• Wokwi project
• Mux address: 32
• Extra docs
• Clock: 0 Hz

How it works

Still to be decided, but I am planning on making a certain combination of inputs that
will spell the letter F.

How to test

will fill in.

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

37

https://github.com/Michael21000/tinytapeout
https://wokwi.com/projects/413920089540972545

Binary to 7 Segment Display Decoder [33]

• Author: Robert McLintock
• Description: This is a binary to 7 segment display decoder
• GitHub repository
• Wokwi project
• Mux address: 33
• Extra docs
• Clock: 0 Hz

How it works

This decoder uses 4 inputs that represent a binary number determined by the switches.
In turn the number will then be decoded into decimal and displayed on the 7 segment
display.

How to test

Play around, FLIP A SWITCH or 2, or 3, or 4:)

External hardware

None :)

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7

38

https://github.com/Ramblitz/TinyTapeOut
https://wokwi.com/projects/413960876763056129

Tahiti [34]

• Author: Harrison
• Description: Wokwi Design by Harrison
• GitHub repository
• Wokwi project
• Mux address: 34
• Extra docs
• Clock: 0 Hz

How it works

Wokwi design

How to test

Switch buttons on and off

External hardware

Wokwi

Pinout

Input Output Bidirectional
0 NOTin0 NOTout0
1 ANDin1 ANDout1
2 ANDin2
3 NOT2in3 NOT2out3
4 HALF ADDER in4
5 SUMout5
6 CARRYout6
7 HALF ADDER in7

39

https://github.com/harrisonvo1/harrison
https://wokwi.com/projects/413919777312727041

Letter H [35]

• Author: Hannah Thoreson
• Description: Letter H
• GitHub repository
• Wokwi project
• Mux address: 35
• Extra docs
• Clock: 0 Hz

How it works

turning on all switches draws the letter H

How to test

turning on all switches draws the letter H

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

40

https://github.com/brickstackr/11.7.workshop.hannah
https://wokwi.com/projects/413919454138338305

APTT [36]

• Author: Andy
• Description: lights up depending on action
• GitHub repository
• Wokwi project
• Mux address: 36
• Extra docs
• Clock: 0 Hz

How it works

My project works by, allowing the user to turn on or off switches to turn on lights

How to test

To use my project,

External hardware

I used logic gates and LED’S

Pinout

Input Output Bidirectional
0
1 IN1 Out1
2 IN2
3 IN3
4 IN4 Out5
5 IN5
6 IN6
7 IN7 Out7

41

https://github.com/aphan41/TinyTapeout
https://wokwi.com/projects/413919565287453697

Two PFD [37]

• Author: Soumobrata Ghosh
• Description: A zero Dead zone PFD and a basic PFD
• GitHub repository
• Wokwi project
• Mux address: 37
• Extra docs
• Clock: 0 Hz

A zero blind spot phase frequency Detector

How it works

A basic phase frequency Dtector

How to test

If VCO is leading DN would be high and if REF is leading UP would be high

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 REF UP
1 VCO DN
2 Logic 1 UP2
3 Ref Reset
4 VCO DN2
5
6
7

42

https://github.com/Soumobrata/Zero-blindspot-PFD-
https://wokwi.com/projects/413849515516143617

Zero to Nine Display Count [38]

• Author: Mariano
• Description: First Design. Display numbers on seven segment display using flip

flop counter.
• GitHub repository
• Wokwi project
• Mux address: 38
• Extra docs
• Clock: 0 Hz

How it works

Binary counter using flip flops connected to clock line. Displays numbers on the seven
segment display.

How to test

Use the step button to count from zero to nine.

External hardware

number led array and step button

Pinout

Input Output Bidirectional
0 OUT0
1 OUT1
2 OUT2
3 OUT3
4 OUT4
5 OUT5
6 OUT6
7 OUT7

43

https://github.com/MarianoMunoz/tt00-wowki-design
https://wokwi.com/projects/413923150973445121

Redco [39]

• Author: Shrikrishna Kaje
• Description: Reconfigurable DCO
• GitHub repository
• Wokwi project
• Mux address: 39
• Extra docs
• Clock: 0 Hz

How it works

This design is targetted to be used as

1. Ring oscillator
2. Clock divider
3. Digitally controlled oscillator

Basically it is a ring oscillator which is connected clock divider ckt. The clock divider
can be muxed out for different frequencies

1. Ring oscillator Five inverters are used in chain. By shorting out0 pin to in0 and
in4, the design can be configured as a ring oscillator Frequency = 1/(5*inverter
cell delay)

2. Clock divider network Dff chain is used to introduce clock division. By using
combination between s0(in1), s1(in2) , s2(in3) below we can different division
at out1 fs - frequency of the clock signal

How to test

Pin description

1. clk (in4) - clock input, input the clock signal to this pin if the chip is to be used
as a clock divider, out1 is the output of the clock divider. Short it to in0 and
out0 if used as a Oscillator

2. in(in0) - Short it with clk pin and out0 if used as a ring oscillator
3. s0(in1) - LSB of the binary input (DCO input or clock divider select)
4. s1(in2) - second binary input (DCO input or clock divider select)
5. s2(in3) - MSB of the binary input (DCO input or clock divider select)
6. out0 - ring oscillator output
7. out1 - clock divider and DCO

44

https://github.com/Shrikris630/Redco
https://wokwi.com/projects/413407859783959553

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 in out0
1 s0 out1
2 s1
3 s2
4 clk
5
6
7

45

Light LED [40]

• Author: Baruas
• Description: Set the switches to get the last led to light up
• GitHub repository
• Wokwi project
• Mux address: 40
• Extra docs
• Clock: 0 Hz

How it works

–> Tiny Tapeout Puzzles
In this puzzle you have to work out how to set the switches to get the last led to light
up.
Your friend has been working hard to plan a vacation. (Un)fortunately, they love digital
logic, so rather than print you an itinerary, they drew you the following digital circuit.

How to test

Two vacations are possible: can you use the switches to figure out where you’ll go,
what you’ll eat, and what souvenir you’ll return with?

External hardware

Switch #
1 Beach
2 Mountains
3 Ski
4 Swim
5 Ice Cream
6 Fondue
7 Tacos
8 Sun Burn

46

https://github.com/Beazy4real/My_First-_Tapeout_-Project
https://wokwi.com/projects/413923202390383617
https://tinytapeout.com/digital_design/holidays/

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1
2 IN2
3 IN3
4 IN4
5 IN5
6 IN6
7 IN7

47

Matmul System [41]

• Author: Abarajithan
• Description: Matmul System
• GitHub repository
• HDL project
• Mux address: 41
• Extra docs
• Clock: 0 Hz

How it works

This is a simple system that performs matrix-vector multiplication. The matrix K[R,C]
and vector X[R] is sent from outside through UART. They are decoded by a UART
RX module, and sent into the matrix-vector multiplication core as AXI-Stream. The
core performs the multiplication and outputs the result as AXI-Stream. The result is
then packed into UART format by the UART TX module and sent outside.

How to test

iverilog -g2012 -o compiled src/mvm_uart_system.v src/uart_rx.v src/uart_tx.v src/axis_matvec_mul.v src/matvec_mul.v src/skid_buffer.v test/mvm_uart_system_tb.sv test/simple_axis_tb.sv src/project.v && ./compiled

External hardware

None

Pinout

Input Output Bidirectional
0 RX TX
1
2
3
4
5
6
7

48

https://github.com/SkillSurf/tt09-matmul-system

Tiny Tapeout-Huerta [42]

• Author: Fernando Huerta
• Description: My project displays my initials on a seven segment display
• GitHub repository
• Wokwi project
• Mux address: 42
• Extra docs
• Clock: 0 Hz

How it works

Create and edit a code for the seven segment dislay to create my initials

How to test

Trouble shoot on and of switches in order to utilize seven segment display

External hardware

seven segment display, AND/OR Gates, input an output connections

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

49

https://github.com/fhuerta20/tapeout
https://wokwi.com/projects/413920033033205761

Light [43]

• Author: Natnael Atnafu
• Description: Enables the light when the correct combination of switches are on
• GitHub repository
• Wokwi project
• Mux address: 43
• Extra docs
• Clock: 0 Hz

How it works

Put the correct combination of switches to make the light turn on

How to test

Turn some switches on or off to see which ones make the light turn on

External hardware

LED light, 7 segment display

Pinout

Input Output Bidirectional
0 goes to

output w
same number

comes from
input w same
number

1 goes to
output w
same number

comes from
input w same
number

2 goes to
output w
same number

comes from
input w same
number

3 goes to or
gate, goes to
output 3 and
4

comes from or
gate, from 3
or 4

50

https://github.com/NatnaelA30/tinytapeout
https://wokwi.com/projects/413920340558577665

Input Output Bidirectional
4 goes to or

gate, goes to
output 3 and
4

comes from or
gate, from 3
or 4

5 goes to
output w
same number

comes from
input w same
number

6 goes to not
gate w same
number

comes from
not gate w
same number

7

51

TinyTapeOut [44]

• Author: Siyem Russom
• Description: Tiny Tapeout
• GitHub repository
• Wokwi project
• Mux address: 44
• Extra docs
• Clock: 0 Hz

How it works

If sel is high, then a counter is output on the output pins and the bidirectional pins
(data_o = counter_o = counter). If sel is low, the bidirectional pins are mirrored to
the output pins (data_o = data_i).

How to test

Set sel high and observe that the counter is output on the output pins (data_o) and
the bidirectional pins (counter_o). Set sel low and observe that the bidirectional pins
are mirrored to the output pins (data_o = data_i)

External hardware

No external hardware used in my project.

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

52

https://github.com/siyemrussom/TinyTapeOut
https://wokwi.com/projects/413920442846133249

Nathan’s chip [45]

• Author: Nathineal
• Description: 1 0 outcome
• GitHub repository
• Wokwi project
• Mux address: 45
• Extra docs
• Clock: 0 Hz

How it works

If sel is high, then a counter is output on the output pins and the bidirectional pins
(data_o = counter_o = counter). If sel is low, the bidirectional pins are mirrored to
the output pins (data_o = data_i).

How to test

Set sel high and observe that the counter is output on the output pins (data_o) and
the bidirectional pins (counter_o). Set sel low and observe that the bidirectional pins
are mirrored to the output pins (data_o = data_i).

External hardware

sdfsf List external hardware used in your project (e.g. PMOD, LED display, etc), if any
There is none

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

53

https://github.com/Nathan2007-ui/Tiny-Tapeout-Nathan
https://wokwi.com/projects/413923521595851777

OR gate [46]

• Author: Joe Merriam
• Description: makes seven segment spell J
• GitHub repository
• Wokwi project
• Mux address: 46
• Extra docs
• Clock: 10000 Hz

How it works

We use the OR gate to generate the letter J on the seven segment LED.

How to test

Flip the switches to generate the letter J

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

54

https://github.com/joeusmc2004/Joe-Merriam
https://wokwi.com/projects/413919465666386945

project [47]

• Author: ahmad
• Description: diagram
• GitHub repository
• Wokwi project
• Mux address: 47
• Extra docs
• Clock: 0 Hz

How it works

dsign contain four inverts .four inputs are directly connected to outputs and rest to
outputs and rest of them are inverted.

How to test

just toggle the inputs.

External hardware

no external hardware

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

55

https://github.com/aalhusainii/ahmad
https://wokwi.com/projects/413929752291913729

D_flipflop_hold_test [64]

• Author: Nicole Ramirez
• Description: hold time violated for D Flip_flop NAND Logic
• GitHub repository
• Wokwi project
• Mux address: 64
• Extra docs
• Clock: 0 Hz

How it works

NAND logic circuit for flipflop violates hold time and set time (theortically) with the
resistor

How to test

flipping switches

External hardware

Switches List external hardware used in your project (e.g. PMOD, LED display, etc),
if any LEDs(6)

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7

56

https://github.com/nicoleramirez26/Test_D_Flipflop_hold
https://wokwi.com/projects/413925554587918337

Dipankar’s first Wowki design [65]

• Author: Dipankar Shakya
• Description: Certain combination of switches produces a D or O
• GitHub repository
• Wokwi project
• Mux address: 65
• Extra docs
• Clock: 0 Hz

How it works

It uses 4 invertors, XOR, OR gates with 8 inputs, and 6 outputs, producing 6 out of 8
segments that can be lit up or not.

How to test

Switches 1 & 2 turn the top segment on or off depending on if only one switch is on.
Switch 3 turns on or off the top right segment, switch 4 turns on or off the bottom
right segment, switch 6 turns on or off the bottom left segment, switch 7 turns on or
off the bottom segment, switch 8 turns on or off the top left segment.

External hardware

LED display

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6
7 IN7

57

https://github.com/dipankar-s/tinytapeout
https://wokwi.com/projects/413919970097662977

Bit Counter [66]

• Author: Philip Measor
• Description: Three bit binary counter from 0-7 shown on a segment display
• GitHub repository
• Wokwi project
• Mux address: 66
• Extra docs
• Clock: 0 Hz

How it works

This is a three bit binary counter that is shown on the segment display. Counts from
0 to 8 with binary input.

How to test

Use the input pins (only pins 6-8) to count from 0 to 7.

External hardware

Used segment display and 8 pin switch.

Pinout

Input Output Bidirectional
0 top segment
1 right top segment
2 right bot segment
3 bottom segment
4 left bottom segment
5 bit 3 left top segment
6 bit 2 middle segment
7 bit 1 dot segment

58

https://github.com/phimea/bitcounter
https://wokwi.com/projects/413919500942601217

Hamad’s design [67]

• Author: Hamad Alwaqayan
• Description: microtapeout design
• GitHub repository
• Wokwi project
• Mux address: 67
• Extra docs
• Clock: 0 Hz

How it works

The project simply uses an AND gate to power A,B,C and D of the 7 segment display,
and the other inputs power the remainder of the display.

How to test

Test each input and check which lights trigger on the 7-segment display

External hardware

Just the 7 segment display and switches

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 OUT2
3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

59

https://github.com/Hamad2605/Hamad-ALwaqayan
https://wokwi.com/projects/413923245817165825

Full bit adder [68]

• Author: Alan
• Description: 2 bit adder
• GitHub repository
• Wokwi project
• Mux address: 68
• Extra docs
• Clock: 1000 Hz

is

How it works

Input 0-1 are input A and B respectively, if A and B are one, the output should be
reflected in Output 1 for 2, and if A or B are 1 while the other is, output is reflected
in Output0

How to test

turn on A or B and cross check

External hardware

PMOD.LED display

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

60

https://github.com/Alans-Stack/tapeout
https://wokwi.com/projects/413919666547418113

Encoder [69]

• Author: Hoang Le
• Description: 8x3 Encoder
• GitHub repository
• Wokwi project
• Mux address: 69
• Extra docs
• Clock: 0 Hz

How it works

This works by utilizing only one AND gate and one OR gate.

How to test

To test, turn on each input except for input 6 and 7, for 6 and 7, only turn one of
them on as they uilize an OR gate, meaning one of them have to be on to recieve an
output, to ensure its working correctly, it should output the number 8 with a dot at
the end.

External hardware

None

Pinout

Input Output Bidirectional
0
1
2
3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

61

https://github.com/hoangkle/GDS
https://wokwi.com/projects/413919502227108865

Encoder [70]

• Author: Mohammad Almutair
• Description: 8x3 decoder
• GitHub repository
• Wokwi project
• Mux address: 70
• Extra docs
• Clock: 0 Hz

How it works

This is a encoder design.

How to test

just toggle the design.

External hardware

‘no external hardware. Encoder

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1
2
3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

62

https://github.com/aalmutair/Mohammad
https://wokwi.com/projects/413920825278643201

GDS [71]

• Author: Ben
• Description: 8x3 encoder
• GitHub repository
• Wokwi project
• Mux address: 71
• Extra docs
• Clock: 0 Hz

How it works

My project changes the light of the LED when the switches are turned on and off.

How to test

My circuit has NOT, MUX, and AND gates that turn on the LED’s. When you turn
on the LED’s correctly, it should form the letter A.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

63

https://github.com/b10tran/GDS
https://wokwi.com/projects/413923188546028545

Big J’s Big Circuit [72]

• Author: Jonathan Miller
• Description: 0 and 1: xor, or. 2 and 3: nand, and
• GitHub repository
• Wokwi project
• Mux address: 72
• Extra docs
• Clock: 0 Hz

How it works

my project shows the similarities and differences between nand and and, and also or
and xor

How to test

in0 and in1 are connected to the or(out1) and xor(out0). in2 and in3 are connected
to and(out3) and nand(out2)

External hardware

This project uses a 7 seg display, but any indicator will work

Pinout

Input Output Bidirectional
0 in0 xor(in0, in1)
1 in1 or(in0, in1)
2 in2 Nand(in2,in3)
3 in3 And(in2,in3)
4 in4 in4
5 in5 in5
6 in6 in6
7 in7 in7

64

https://github.com/jmiller02/Jonathan-TinyTapeOut
https://wokwi.com/projects/413919543420439553

2 Bit Times 2 Bit Plus 4 Bit MAD and 5 Bit Binary to 7
Segment Display [73]

• Author: Nathan
• Description: Bit 1 = A1, Bit 2 = A0, Bit 3 = B1, Bit 4 = B0, Bit 5 = C3, Bit

6 = C2, Bit 7 = C1, Bit 8 = C0
• GitHub repository
• Wokwi project
• Mux address: 73
• Extra docs
• Clock: 0 Hz

How it works

The first 2 bits represent A, the next 2 bits represent B, and the last 4 bits represent
C.
Bit 1 = A1, Bit 2 = A0, Bit 3 = B1, Bit 4 = B0, Bit 5 = C3, Bit 6 = C2, Bit 7 =
C1, Bit 8 = C0
A is multiplied by B and added to C. The output is shown on the 7 segment display,
with the decimal representing “add 16”.

How to test

• Set the switches to your desired numbers in binary
• For example A = 11b = 3d, B = 11b = 3d, C = 1111b = 15d
• The result will be shown on the 7 segment display
• For example 3 * 3 + 15 = 24 (showing an 8 and decimal adds 16 (8+16 = 24))

External hardware

There is no external hardware required or used.

65

https://github.com/N8rBeans/TinyTapeout
https://wokwi.com/projects/413920370058172417

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

66

AndLogicPass [74]

• Author: James Nguyen
• Description: Password to turn on light
• GitHub repository
• Wokwi project
• Mux address: 74
• Extra docs
• Clock: 0 Hz

How it works

My circuit uses And & NOT logic gates to make a password

How to test

You can test by turning on the 3145 levers

External hardware

No externals…

Pinout

Input Output Bidirectional
0 OR
1
2 OR
3 OR
4 OR
5
6
7

67

https://github.com/JanguOso/Jangu
https://wokwi.com/projects/413919927206703105

Not Good BCD Decoder [75]

• Author: Erik Shimizu
• Description: Supposed to be a binary decoder
• GitHub repository
• Wokwi project
• Mux address: 75
• Extra docs
• Clock: 0 Hz

How it works

BCD Decoder that displays a 0 when pin 1 is off.

How to test

Plug in, and 7-segment should display 0.

External hardware

None.

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 OUT1
2 OUT2
3 OUT3
4 OUT4
5 OUT5
6 OUT6
7

68

https://github.com/shimizuerik/TinyTapeOut
https://wokwi.com/projects/413918244906651649

Half Adder [76]

• Author: Janani P Srinivasan
• Description: 1 bit Half Adder
• GitHub repository
• Wokwi project
• Mux address: 76
• Extra docs
• Clock: 0 Hz

How it works

A Half adder is used to perform a single bit addition where the sum and carry is
displayed in the output.
The sum of the adder is given by XORing the inputs A and B
The carry of the adder is given by performing an AND operation between A and B

How to test

Half adder can be tested and expressed by
Sum (S) = A XOR B Carry (C) = A . B
The Truth table is given by

69

https://github.com/JananiPSrinivasan/Adder
https://wokwi.com/projects/413920640800531457

| A | B | S | C |

| 0 | 0 | 0 | 0 |

| 0 | 1 | 1 | 0 |

| 1 | 0 | 1 | 0 |

| 1 | 1 | 0 | 1 |

External hardware

Two LED bulbs are connected at the output of sum and carry The LED will blink when
the respective values are high

(When A=0 and B=0, S=OFF and C= OFF)

(When A=0/1 or B=0/1, S=ON and C= OFF)
(When A=1 and B=1, S=OFF and C=ON)

70

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2
3
4
5
6
7

71

tinytapeoutkr [77]

• Author: kamila ramirez
• Description: This is the tinytapeout chip project
• GitHub repository
• Wokwi project
• Mux address: 77
• Extra docs
• Clock: 0 Hz

How it works

It turns on a blue and purple light with different connecting factors.

How to test

Turn on the switch that is in the corner of the project

External hardware

LED Light

Pinout

Input Output Bidirectional
0 INO OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

72

https://github.com/kr-2025/tinyt
https://wokwi.com/projects/413919507057902593

Jordan [78]

• Author: Jordan Medina
• Description: 2 bit adder
• GitHub repository
• Wokwi project
• Mux address: 78
• Extra docs
• Clock: 0 Hz

How it works

ADDS TWO INPUTS AND OUTPUTS NUMBER TO TWO LED’S

How to test

INPUT TWO NUMBERS AND VERIFY OUTPUT IS CORRECT

External hardware

DIPSWITCH-8 2 LED’S

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

73

https://github.com/Jordanjmedina/jordanj
https://wokwi.com/projects/413917903548951553

My First ASIC [79]

• Author: Michael A. Enright
• Description: My very first ASIC design
• GitHub repository
• Wokwi project
• Mux address: 79
• Extra docs
• Clock: 0 Hz

How it works

This is a simple digital circuit that was designed beginning November 7, 2024 with
TinyTapeout and UCSD in La Jolla.

How to test

The test process is very simple and TBD

External hardware

A logic analyzer is helpful.

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2
3 IN3
4
5
6
7

74

https://github.com/theLimaceGuy/tt09-wokwi-template
https://wokwi.com/projects/413920096493033473

GJAA Design [96]

• Author: Guadalupe de Jesus Avelar Anguiano
• Description: To be determine
• GitHub repository
• Wokwi project
• Mux address: 96
• Extra docs
• Clock: 0 Hz

How it works

It uses 7 pins input and give 7 pin output to Dsiplay in a 7 display segement.

How to test

Set the outputs to 7 segment Display

External hardware

7 segemnt display

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

75

https://github.com/GJAA1GJAA/GJAADesign
https://wokwi.com/projects/413919675346023425

8b10b decoder and multiplier [97]

• Author: Mike Bell
• Description: 8b10b decoder and multiplier (HD version)
• GitHub repository
• HDL project
• Mux address: 97
• Extra docs
• Clock: 0 Hz

What is it?

This project decodes incoming 8b10b encoded data and optionally multiplies the two
decoded bytes.

How it works

After reset, the 8b10b decoders look for the K.28.5 symbol 001111 1010 or 110000
0101. Once this sequence is detected the decoder indicates the stream is valid and
then sets its input byte after each data symbol is received.
If a K.28.5 symbol is received when the stream is valid, then the decoder remains in
the valid state but does not update its output.
If any symbol other than a data symbol or K.28.5 is received the decoder returns to
the reset state until a new K.28.5 symbol is sent.
The remaining inputs allow the decoded data, or the result of multiplying the decoded
data to be presented on the outputs.

How to test

Send 8b10b encoded data streams, check the outputs.
While in reset, the inputs are presented on the outputs and bidirs as differential pairs,
with out[0] = in[0], out[1] = ~in[0], out[2] = in[1], etc.
If not in reset, the output enables on the bidirectional pins are controlled by in[7].

External hardware

None required

76

https://github.com/MichaelBell/tt09-8b10b-decoder-hd

Pinout

Input Output Bidirectional
0 A 8b10b in Out 0 Out 8
1 B 8b10b in Out 1 Out 9
2 Decoder status Out 2 Out 10
3 Multiply result Out 3 Out 11
4 Multiply result (update gated) Out 4 Out 12
5 Decoded values (registered) Out 5 Out 13
6 Decoded values (unregistered) Out 6 Out 14
7 Bidir output enable Out 7 Out 15

77

Logic Gates [98]

• Author: Adonai Cruz
• Description: Very simple logic gates made with Wokwi
• GitHub repository
• Wokwi project
• Mux address: 98
• Extra docs
• Clock: 0 Hz

How it works

Simple 4 logic gates made with Wokwi

How to test

Use input pins 1-7 and see gates output on pins 1-4

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 IN1 OUT_INV
1 IN2 OUT_AND
2 IN3 OUT_OR
3 IN4 OUT_XOR
4 IN5
5 IN6
6 IN7
7

78

https://github.com/adonairc/tinytapeout-workshop-wokwi
https://wokwi.com/projects/413919847886104577

Test Design 1 [99]

• Author: Evan Armoogan
• Description: Test design, not sure what it does yet
• GitHub repository
• HDL project
• Mux address: 99
• Extra docs
• Clock: 0 Hz

How it works

This project implements a synchronous 4 bit counter. There are 3 control signals
described below.

• Cp: Indicates that the counter value should be incremented on the current clock
cycle

• Ep: Outputs the enable signal on the uo_out wire
• Lp: Indicates that the value on the bus should be loaded into the counter.

The counter will enumerate all values between 0 and F (15) before looping back to 0
and starting again. The counter will clear back to 0 whenever the chip is reset.

Signal TinyTapeout I/O
Cp ui_in1
Ep ui_in2
Lp ui_in[0]
Load Input ui_in[7:4]
Counter Output uo_out[3:0]

Note: All control signals (Cp, Ep, and Lp) are active high.

How to test

Connect any probe that allows you to read 4 bits from the hardware to uo_out. Now
generate a sequence of operations that tests all of the following operations:

• Enable the output by asserting Ep
• Start counting by asserting Cp
• Pause counting by deasserting Cp

79

https://github.com/Evan-Armoogan/8BitCpuPC
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

• Disable the output by deasserting Ep. Should see high impedence on the output
wire

• Load a new value into the counter while paused
• Load a new value while the counter is incrementing
• Reset the chip and verify the counter is reset to 0

Some example test waveforms are attached:

• test_count: Counts from 0 up to F
• test_load: Counts and loads the value of 5 after 9 clock periods
• test_pause: Counts and pauses for 2 clock periods after 7 clock periods
• test_pause_load: Counts and pauses after 7 clock periods then loads
• test_disable: Disables counter output for 2 cycles after 9 clock periods
• test_loop: Counts from 0 up to F then loops back to 0

External hardware

No external hardware is required to run the counter. It may be helpful to have tools
that allow you to easily view the output of the counter.

Pinout

Input Output Bidirectional
0 in_0 out_0 bidir_0
1 in_1 out_1 bidir_1
2 in_2 out_2 bidir_2
3 in_3 out_3 bidir_3
4 in_4 out_4 bidir_4
5 in_5 out_5 bidir_5
6 in_6 out_6 bidir_6
7 in_7 out_7 bidir_7

80

My First TinyTapeout [100]

• Author: Case Kirk
• Description: This is an 8:3 encoder with a bit to flip default low/high output
• GitHub repository
• Wokwi project
• Mux address: 100
• Extra docs
• Clock: 1 Hz

How it works

This tile design is an active high 7:3 encoder, capable of inverting its output. Reference
both the gate diagram and logic table below.

IN 0 IN 1 IN 2 IN 3 IN 4 IN 5 IN 6 OUT 0 OUT 1 OUT 3
1 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 1 1 0
0 0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 1 0 0 1 1
0 0 0 0 0 0 1 1 1 1

How to test

Provide 7 togglable signals to the input lines (0/3.3V) and connect the first 3 output
lines to LEDs. When you toggle each line, you should see the LED change and show
its binary representation.

External hardware

TTBoard and LED’s should do just fine.

Pinout

81

https://github.com/CalciumSelenide/TinyTapeout
https://wokwi.com/projects/413921288682183681

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5
6 IN6
7 IN7

82

Decimation Filter for Incremental and Regular Delta-Sigma
Modulators [101]

• Author: Andrea Murillo Martinez & Jaeden Chang
• Description: Decimation filter that efficiently reduces oversampled data from in-

cremental and regular delta-sigma modulators, while preserving signal accuaracy.
• GitHub repository
• HDL project
• Mux address: 101
• Extra docs
• Clock: 50000000 Hz

Overview

The decimation filter efficiently reduces the sample frequency of Incremental and
Regular Delta-Sigma Modulators (DSMs) by a factor of 16. This process min-
imizes high-frequency noise and downsamples data, supporting effective and accurate
signal processing of oversampled ADC outputs.

Specifications

• Inputs: 3 total

– Input 1 (1 bit): ADC data input
– Input 2 (1 bit): Decimation mode selection (0 = Incremental DSM, 1

= Regular DSM)
– Input 3 (1 bit): Global reset

• Output: 16 bits total

– Most Significant 8 bits (MSBs): Routed to dedicated output pins
– Least Significant 8 bits (LSBs): Routed to general-purpose IO pins

• Clock Frequency: 50 MHz (standard operation)

Mode Selection

The decimation mode can be configured based on the DSM type:

• Incremental DSM: Set Input 2 to low.
• Regular DSM: Set Input 2 to high.

83

https://github.com/bmurmann/tt09-decimation_filter

How It Works

1. Noise Reduction and Downsampling: The decimation filter reduces high-
frequency quantization noise from DSM oversampling, delivering a downsampled
output with preserved signal quality.

2. Adaptive Output Rate:

• Incremental DSM (Input 2 Low): The output updates after accumu-
lating 16 input samples.

• Regular DSM (Input 2 High): The output updates based on an inter-
nal timing controlled by the reset signal.

3. Output Simplification: The filter converts a high data rate from the over-
sampled ADC into a manageable downsampled rate, optimizing data processing.

Operation

The decimation filter requires an initialization pulse on the global reset input upon
start-up.

1. Incremental DSM Mode (Input 2 Low):

• Use the ADC’s oversampling frequency as the input clock for the filter.
• Set the main reset signal to match the desired decimation rate.
• For example, with a 50 MHz ADC frequency, setting the reset signal to 25

MHz achieves a decimation factor of 2.

2. Regular DSM Mode (Input 2 High):

• The default decimation factor is set to 16.
• For customized decimation factors, follow the configuration steps in Incre-

mental DSM mode.

Testing Procedure

1. Hardware Setup:

• Connect a 1-bit ADC output to Input 1.
• Set Input 2 to low for Incremental DSM or high for Regular DSM.

2. Verification:

• Incremental DSM: Set Input 2 low, connect a clock to the reset input,
and observe decimated output changes.

84

• Regular DSM: Set Input 2 high, then observe the decimated output,
which updates at a rate of 16 samples.

Output Configuration

The decimation filter’s 16-bit output is divided as follows:

• Most Significant 8 Bits (MSBs): Directed to dedicated output pins.
• Least Significant 8 Bits (LSBs): Directed to general-purpose IO pins.

Compatibility

This filter is compatible with 1-bit output ADCs, either Incremental or Regular
Delta-Sigma Modulator (DSM) types.

Pinout

Input Output Bidirectional
0 X decimation_output[8]decimation_output[0]
1 type_dec decimation_output[9]decimation_output1
2 global_reset decimation_output[10]decimation_output2
3 decimation_output[11]decimation_output[3]
4 decimation_output[12]decimation_output[4]
5 decimation_output[13]decimation_output[5]
6 decimation_output[14]decimation_output[6]
7 decimation_output[15]decimation_output[7]

85

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

1st [102]

• Author: HUSSAIN
• Description: circuit
• GitHub repository
• Wokwi project
• Mux address: 102
• Extra docs
• Clock: 0 Hz

How it works

Design contains four inverters. Four inputs are directly connected to outputs and rest
of them are inverted.

How to test

Just toggle the inputs then it will be reflecgted in the output.

External hardware

Do not have any external harware.

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

86

https://github.com/hhussain94/hussain
https://wokwi.com/projects/413919524873217025

adder-accumulator [103]

• Author: Damir Gazizullin, Owen Golden
• Description: 8-bit ripple adder and the complementary accumulator register
• GitHub repository
• HDL project
• Mux address: 103
• Extra docs
• Clock: 50000000 Hz

How it works

This repository contains the circuit for a basic 8-bit ripple adder and its complementary
accumulator register. The adder assumes 2s complement inputs and thus supports
addition and subtraction. It pushes the result to the bus via tri-state buffer. It also
includes a zero flag to support conditional operation as well as a carry flag. These
flags are synchronized to the rising edge of the clock and are updated when the adder
outputs to the bus.
The accumulator register functions to store the output of the adder. It is synchronized
to the positive edge of the clock. The accumulator loads and outputs its value from
the bus and is connected via tri-state buffer. The accumulator’s current value is always
available as an ouput (and usually connected to the Register A input of the ALU)
These two modules work in tandem and are a part of a larger project which includes
peripheral and control blocks to ultimately create a functioning, basic, 8-bit CPU.

IO Table: Accumulator (A) Register

Name Verilog Description I/O
Width
(bits) Active

clk clk Clock Signal Input 1 Rising edge
bus bus Connection to

bus
IO 8 NA

load nLa Load from Bus Input 1 0
enable_out Ea Output to Bus Input 1 1
Register
A

regA Accumulator
Register

Output 8 NA

reset rst_n Reset Signal Input 1 0

87

https://github.com/sathworld/tt09-adder-damir

IO Table: ALU (Adder/Subtractor)

Name Verilog Description I/O
Width
(bits) Active

clk clk Clock Signal Input 1 Rising edge
enable_out Eu Output to Bus Input 1 1
Register
A

reg_a Accumulator
Register

Input 8 NA

Register
B

reg_b Register B Input 8 NA

subtract sub Perform
Subtraction

Input 1 1

bus bus Connection to
bus

Output 8 NA

Carry Out CF Carry-out flag Output 1 1
Result
Zero

ZF Zero flag Output 1 1

Tests and Expected Functionality

The waveform in Figure 1 shows the loading and output functionality of the accumulator
(RegA). The yellow marker displays the load functionality of the accumulator: On the
rising edge of the clock, when nLa is low, the value from the bus is loaded onto the
RegA.
The red marker displays the output functionality of the accumulator: On the rising
edge of the clock, when Ea becomes high, the value from the accumulator is pushed
onto the bus.

88

Figure 1: Accumulator Load onto bus and push onto bus
The waveform in Figure 2 demonstrates basic addition done by the adder. Note that
at the red marker, Sub is low, thus addition is being performed. The addition is done
asynchronously, and the value of Sum goes from 60 (60 + 0) to -10 (60 + -70). At
the yellow marker, Ea is high, and thus the result of the addition is pushed onto the
bus. Note that the Sum signal is internal.
Similarly, the waveform in Figure 3 demonstrates basic subtraction by the adder. Note
that at the red marker, Sub is high, thus subtraction is being performed. In this case,
the rest 9-11 is calculated asynchronously resulting in -2. At the yellow marker, when
Eu is set high, the result is pushed onto the bus.

Figure 2: Addition and Output onto Bus

89

Figure 3: Subtraction and Output onto Bus
The waveform in Figure 4 demonstrates the functionality of ZF (zero flag). As described
above, at the red marker, the subtraction 42-42 is performed, resulting in 0. The result
is the pushed to the bus when Ea is set high. At the rising edge of the clock, when Ea
remains high, ZF is also made high, indicating that the result of the operation (in this
case, subtraction), was zero.

Figure 4: Zero Flag Functionality of Adder

90

Description of Testbenches

These modules have been tested under six Testbenches. For the purposes of the tests,
all random numbers are between 0 and 255. The tests are briefly detailed below:

Adder Tests:

adder_test_addition_range: This test computes the addition of 50 random pairs
of numbers and checks to see if the addition was correct.

adder_test_subtraction_range: This test computes the subtraction of 50 ran-
dom pairs of numbers and checks to see if the subtraction was correct.

adder_test_addsub_range: This test computes either addition or subtraction
(randomly determined before each operation) of 50 random pairs of numbers and
checks to see if the result is correct.

Accumulator Tests:

accumulator_test_randint: This test loads a random number from the bus onto
the accumulator, and checks whether the values on the bus and in the accumulator
match.

accumulator_test_randint_out: This test loads a random number from the bus
onto the accumulator and checks whether the values on the bus and in the accumulator
match. It then outputs the value of the accumulator onto the bus and checks whether
the values on the bus and in the accumulator match as expected.

accumulator_test_shuffled_range: This test performs the accumula-
tor_test_randint_out test consequently with 25 randomly chosen non-repeating
values

Pinout

91

Input Output Bidirectional
0 bus[0] if ~(Ea Eu) bus[0]/regA[0], bus_regA_sel = 1/0
1 bus1 if ~(Ea Eu) bus1/regA1, bus_regA_sel = 1/0
2 bus2 if ~(Ea Eu) bus2/regA2, bus_regA_sel = 1/0
3 bus[3] if ~(Ea Eu) bus[3]/regA[3], bus_regA_sel = 1/0
4 bus[4] if ~(Ea Eu) bus[4]/regA[4], bus_regA_sel = 1/0
5 bus[5] if ~(Ea Eu) bus[5]/regA[5], bus_regA_sel = 1/0
6 bus[6] if ~(Ea Eu) bus[6]/regA[6], bus_regA_sel = 1/0
7 bus[7] if ~(Ea Eu) bus[7]/regA[7], bus_regA_sel = 1/0

92

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

JCB First WOKWI Design [104]

• Author: Jared Bruce
• Description: Display Letter When A Code Is Entered
• GitHub repository
• Wokwi project
• Mux address: 104
• Extra docs
• Clock: 0 Hz

How it works

It uses not/and gates to display the first character of my name.

How to test

It should display a J when entering the code 6531

External hardware

Requires Single digit Seven-Segment display for displaying output

Pinout

Input Output Bidirectional
0 IN0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5
6 IN6
7 IN7

93

https://github.com/dreamsofhabit/tiny_tapeout_first_template
https://wokwi.com/projects/413919454053401601

ECE 298A 8-Bit CPU Control Block [105]

• Author: Siddharth Nema & Gerry Chen
• Description: Generates the control signals required for other CPU sub blocks
• GitHub repository
• HDL project
• Mux address: 105
• Extra docs
• Clock: 50000000 Hz

How it works

This project implements the control block of an 8-bit CPU design building off the
SAP-1.
The control block is implemented using a 6 stage sequential counter for sequencing
micro-instructions, and a LUT for corresponding op-code to operation(s).

Supported Instructions

Mnemonic Opcode Function
HLT 0x0 Stop processing
NOP 0x1 No operation
ADD
{address}

0x2 Add B register to A register, leaving result in A

SUB
{address}

0x3 Subtract B register from A register, leaving result in A

LDA
{address}

0x4 Put RAM data at {address} into A register

OUT 0x5 Put A register data into Output register and display
STA
{address}

0x6 Store A register data in RAM at {address}

JMP
{address}

0x7 Change PC to {address}

Instruction Notes
• All instructions consist of an opcode (most significant 4 bits), and an address

(least significant 4 bits, where applicable)

94

https://github.com/SiddharthN16/TT09-Control-Block

Control Signal Descriptions

Control
Signal Array Component Function
CP 14 PC Increments the PC by 1
EP 13 PC Enable signal for PC to drive the bus
LP 12 PC Tells PC to load value from the bus
nLma 11 MAR Tells MAR when to load address from the

bus
nLmd 10 MAR Tells MAR when to load memory from the

bus
nCE 9 RAM Enable signal for RAM to drive the bus
nLr 8 RAM Tells RAM when to load memory from the

MAR
nLi 7 IR Tells IR when to load instruction from the

bus
nEi 6 IR Enable signal for IR to drive the bus
nLa 5 A Reg Tells A register to load data from the bus
Ea 4 A Reg Enable signal for A register to drive the bus
Su 3 ALU Activate subtractor instead of adder
Eu 2 ALU Enable signal for Adder/Subtractor to

drive the bus
nLb 1 B Reg Tells B register to load data from the bus
nLo 0 Output Reg Tells Output register to load data from the

bus

Sequencing Details

• The control sequencer is negative edge triggered, so that control signals can be
steady for the next positive clock edge, where the actions are executed.

• In each clock cycle, there can only be one source of data for the bus, however
any number components can read from the bus.

• Before each run, a CLR signal is sent to the PC and the IR.

Instruction Micro-Operations

Stage HLT NOP STA JMP
T0 Ep, nLma Ep, nLma Ep, nLma Ep, nLma

95

Stage HLT NOP STA JMP
T1 Cp Cp Cp Cp
T2 nCE, nLi nCE, nLi nCE, nLi nCE, nLi
T3 ** - nEi, nLma nEi, Lp
T4 - Ea, nLmd -
T5 - nLr -

Stage LDA ADD SUB OUT
T0 Ep, nLma Ep, nLma Ep, nLma Ep, nLma
T1 Cp Cp Cp Cp
T2 nCE, nLi nCE, nLi nCE, nLi nCE, nLi
T3 nEi, nLma nEi, nLma nEi, nLma Ea, nLo
T4 nCE, nLa nCE, nLb nCE, nLb -
T5 - Eu, nLa Su, Eu, nLa -

Instruction Micro-Operations Notes
• First three micro-operations are common to all instructions.
• NOP instruction executes only the first three micro-operations.
• HLT instruction transitions to a holding stage after T3, preventing the system

for continuing

IO Table

Name Description I/O Width Trigger
clk Clock signal I 1 Edge

Transition
rst_n Set stage to 0 I 1 Active Low
ui_in[3:0] Opcode I 4 NA
uo_out[7] If 1, the system is halted O 1 Active High
uo_out[6:0] control_signals[14:8] O 7 NA
uio_out[7:0] control_signals[7:0] O 8 NA
ui_oe[7:0] All Bidirectional pins are outputs O 8 NA
uio_in[7:0] Unused I 8 NA
ena Unused I 1 Active High

96

IO Table Notes
• See Control Signal Descriptions for the list of output control signals, and their

correspondance in the control_signal vector

How to test

The control block can be tested by:

• Providing an opcode through the ui_in[3:0] input pins.
• Monitoring the uo_out[7:0] and uio_out[7:0] output pins for the control

signals and halt status
• For a given opcode, follow its Instruction Micro-Operation table to validate the

control signal sequences
• Consider using a logic analyzer to generate a waveform and analyze the stages,

or slow down the clock to manually observe the control signals at various times

Pinout

Input Output Bidirectional
0 opcode[0] SIG_RAM_LOAD_N SIG_OUT_LOAD_N
1 opcode1 SIG_RAM_EN_N SIG_REGB_LOAD_N
2 opcode2 SIG_MAR_MEM_LOAD_N SIG_REGB_EN
3 opcode[3] SIG_MAR_ADDR_LOAD_N SIG_ADDER_SUB
4 SIG_PC_LOAD SIG_REGA_EN
5 SIG_PC_EN SIG_REGA_LOAD_N
6 SIG_PC_INC SIG_IR_EN_N
7 halted SIG_IR_LOAD_N

97

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Logic Gates 7-Segment Display [106]

• Author: Abdul Karim Tamim
• Description: Logic Gates (AND, NAND, OR, XOR, NOT) Control the Output

of a 7-Segment Display
• GitHub repository
• Wokwi project
• Mux address: 106
• Extra docs
• Clock: 0 Hz

How it works

The project uses Logic Gates (AND, NAND, OR, XOR, NOT) to Control the Output
of a 7-Segment Display

How to test

The project uses a Switch containing 8 electrical switches that control the input de-
pending on which switch is on or off. Then the input will go to the logic gate which
will result in an output that will be displayed on the 7-segment display

External hardware

Switch, Buttons

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

98

https://github.com/abdultamim02/Tiny-Tapeout-Project
https://wokwi.com/projects/413923045171059713

LFSR Encrypter [107]

• Author: Mitchell Tansey
• Description: Simple LFSR data encrypter. Takes data in and xor’s it with an

lfsr output to encrypt data.
• GitHub repository
• HDL project
• Mux address: 107
• Extra docs
• Clock: 0 Hz

How it works

Takes in data in, and xor’s it with a random number generated from a LFSR.

How to test

In order to test functionality of this physically, you can take the LFSR value from the
bidirectional I/O and XOR it with the encryption. This will decrypt the output which
you can check to see if it was the same as the input. As for my testbench, I manually
calculated the LFSR value for certain clock cycles and checked the expected encrypted
value.

External hardware

N/A

Pinout

Input Output Bidirectional
0 ui_in[0] ui_out[0] uio_out[0]
1 ui_in1 ui_out1 uio_out1
2 ui_in2 ui_out2 uio_out2
3 ui_in[3] ui_out[3] uio_out[3]
4 ui_in[4] ui_out[4] uio_out[4]
5 ui_in[5] ui_out[5] uio_out[5]
6 ui_in[6] ui_out[6] uio_out[6]
7 ui_in[7] ui_out[7] uio_out[7]

99

https://github.com/MitchTansey/tt09-LFSR-Encrypter
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

BadeTP [108]

• Author: Brandon D
• Description: Makes the letter b with a period at the end.
• GitHub repository
• Wokwi project
• Mux address: 108
• Extra docs
• Clock: 0 Hz

How it works

How this work when the switches 1 or 2 either both on or just one the light on the
bottom right will turn on but if both are off the light will turn off, swithes 3 and 4 both
need to be on in order to turn on the light at the bottom if either are off then the light
turns off. The rest of the switches control their own light. 5 controls the bottom left
light, 6 controls top left, 7 controls the light in the middle, and 8 controls the period.
If they are all on then it creates this “b.”

How to test

In order to test it you can turn on and off each individual switch. As I said in the how
it works the switches 1 or 2 control the bottom right light either or can be on and
switches 3 and 4 both need to be on in order to turn on the light at the bottom.

External hardware

• Led display
• The “or” Switch
• The “and” Switch

Pinout

Input Output Bidirectional
0 IN0
1 IN1
2 IN2 OUT2
3 IN3 OUT3

100

https://github.com/Brand0n7/badeTP
https://wokwi.com/projects/413919767806333953

Input Output Bidirectional
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

101

SkyKing Demo [109]

• Author: Nicklaus Thompson
• Description: Types some text over an image of a plane flying into the sunset
• GitHub repository
• HDL project
• Mux address: 109
• Extra docs
• Clock: 25200000 Hz

How it works

If you’re seeing this, I couldn’t the Clock Domain Crossing project running. This is just
a TT08 demo again.

How to test

Runs automaticaly.

External hardware

VGA PMOD on UO.

Pinout

Input Output Bidirectional
0 HS
1 R0
2 G0
3 B0
4 VS
5 R1
6 G1
7 B1

102

https://github.com/FangameEmpire/tt09-CDC-test

Lynn’s TinyTapeout Design [110]

• Author: Lynn Francis
• Description: Blinking Letter E
• GitHub repository
• Wokwi project
• Mux address: 110
• Extra docs
• Clock: 2 Hz

How it works

If switch pins 1 and 7 are powered and the clock is on, the sevseg display will flash the
letter E

How to test

Power switch pins 1 and 7 and the clock.

External hardware

On your signal outputs, hook up either a 7 segment display or leds.

Pinout

Input Output Bidirectional
0 AND3:A sevseg1:A
1 OUT1 sevseg1:B
2 OUT2 sevseg1:C
3 sevseg1:D
4 sevseg1:E
5 sevseg1:F
6 AND2:A sevseg1:G
7 sevseg1:DP

103

https://github.com/lfrancis01/tinytapeout
https://wokwi.com/projects/413919428470231041

Two LIF Neurons with STDP Learning [111]

• Author: Sebastian Hernandez
• Description: A compact spiking neural network implementation featuring: - Two

Leaky Integrate-and-Fire (LIF) neurons connected via plastic synapse - Spike-
timing-dependent plasticity (STDP) for dynamic weight adjustment - 8-bit fixed-
point arithmetic for state and weight representation - Real-time monitoring of
spikes and synaptic weight

• GitHub repository
• HDL project
• Mux address: 111
• Extra docs
• Clock: 50000000 Hz

How it works

This design implements a simple spiking neural network using two Leaky Integrate-and-
Fire (LIF) neurons connected by a spike-timing-dependent plasticity (STDP) synapse.
The system consists of:
Two LIF Neurons:
Basic integrate-and-fire dynamics with leaky integration 8-bit resolution for state and
current Configurable threshold (default: 150) Slower decay rate (state » 2) for better
temporal integration First neuron receives direct current input Second neuron receives
weighted input from first neuron
STDP Synapse:
Connects the two neurons with plastic weight Initial weight: 100 Potentiation: +20
when pre-spike precedes post-spike Depression: -10 when post-spike precedes pre-spike
Timing window: 10 clock cycles Weight bounded between 0 and 255
Implementation Features:
Simple fixed-point arithmetic Synchronous design with clock and reset Bounded calcu-
lations to prevent overflow Modular design with separate neuron and STDP modules

How to test

he design can be tested in several ways:
Basic Functionality:

104

https://github.com/jhern424/tt09-sebastianhernandez

Apply current through ui_in[7:0] Monitor second neuron’s state on uo_out[7:0] Observe
spikes on uio_out[7:6] View synapse weight on uio_out[5:0]
Spike Generation Test:
verilogCopy// Example test sequence ui_in = 8’h60; // Apply strong current #100;
// Wait for first neuron to spike ui_in = 8’h00; // Remove current #100; // Observe
reset and decay
STDP Learning:
Generate regular spikes in first neuron with steady current Observe weight changes on
uio_out[5:0] Monitor second neuron’s response on uo_out[7:0]

External hardware

No external hardware is required for basic operation. For analysis, consider:
Logic Analyzer:
Monitor spike timing Track synaptic weight changes Verify state transitions
Signal Generator (optional):
Generate precise current injection patterns Test different input frequencies Analyze
neuron response characteristics

Target Performance

The design aims to achieve:
State Resolution: 8-bit (0-255) Threshold: 150 (configurable) Weight Range: 0-255
STDP Window: 10 clock cycles Decay Rate: state » 2 (75% retention per cycle)

Resource Usage

The implementation utilizes:
Minimal combinational logic for state updates Three 8-bit registers per neuron (state,
threshold) 8-bit register for synaptic weight Two 4-bit counters for STDP timing Basic
arithmetic operations (addition, multiplication, shift)

105

Future Improvements

Possible enhancements: 1.Multiple neurons with configurable connectivity 2.Variable
thresholds and decay rates 3.More sophisticated STDP rules 4.Inhibitory connections
5.Configurable timing windows 6.Additional input/output neurons 7.Parameter runtime
configurability 8.More complex neural dynamics (e.g., adaptive thresholds)

Pinout

Input Output Bidirectional
0 Input current

bit 0 (LSB)
Neuron 2
state bit 0
(LSB)

Synapse weight bit 0
(LSB)

1 Input current
bit 1

Neuron 2
state bit 1

Synapse weight bit 1

2 Input current
bit 2

Neuron 2
state bit 2

Synapse weight bit 2

3 Input current
bit 3

Neuron 2
state bit 3

Synapse weight bit 3

4 Input current
bit 4

Neuron 2
state bit 4

Synapse weight bit 4

5 Input current
bit 5

Neuron 2
state bit 5

Synapse weight bit 5

6 Input current
bit 6

Neuron 2
state bit 6

Neuron 2 spike output

7 Input current
bit 7 (MSB)

Neuron 2
state bit 7
(MSB)

Neuron 1 spike output

106

4-bit-multiplier [128]

• Author: Eric Cheung, Bethel Sisay
• Description: 4X4 array multiplier
• GitHub repository
• HDL project
• Mux address: 128
• Extra docs
• Clock: 0 Hz

How it works

implements a 4x4 array multiplier, as shown in the schematic below

Figure 5: Block Diagram

107

https://github.com/ecccc0/tt09-secC-2-array-multiplier

How to test

follow test/README.md
use test/test.py to add test cases

External hardware

None

Pinout

Input Output Bidirectional
0 m[0] p[0]
1 m1 p1
2 m2 p2
3 m[3] p[3]
4 q[0] p[4]
5 q1 p[5]
6 q2 p[6]
7 q[3] p[7]

108

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

ece2204_4x4_mult [129]

• Author: Eric Wang, Alan Zhu
• Description: 4x4 structural array multiplier
• GitHub repository
• HDL project
• Mux address: 129
• Extra docs
• Clock: 0 Hz

How it works

Figure 6: 4x4mult

A 4x4 array multiplier multiplies two 4-bit binary numbers by arranging AND gates
and adders in a grid-like pattern. Each bit of the first 4-bit number (multiplicand)
is ANDed with each bit of the second 4-bit number (multiplier), creating 16 “partial
products.” As shown in the image, each bit of “q” is ANDed with each bit of “m” for
four rows. These products are organized in rows, with each row shifted to the left to

109

https://github.com/NyanCar/tt09-secA-11-array-multiplier

represent the binary place values for multiplication. Each column of partial products is
then added vertically using full adders where columns without carries remain the same
and others pass carry bits to the next column. The output for each column results in
each bit of “p”, which is the 8-bit product in this case.

How to test

Input a 4-bit number for the input “q” and a 4-bit number for the input “m”. The
outcome of the array will be an 8-bit binary product of the two input numbers.

External hardware

N/A

Pinout

Input Output Bidirectional
0 q[0] p[0]
1 q1 p1
2 q2 p2
3 q[3] p[3]
4 m[0] p[4]
5 m1 p[5]
6 m2 p[6]
7 m[3] p[7]

110

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

my_4bit_multiplier [130]

• Author: Terry Mu, Omobolaji Alabi
• Description: This is our 4-bit multiplier
• GitHub repository
• HDL project
• Mux address: 130
• Extra docs
• Clock: 0 Hz

How it works

It accepts two 4-bit unsigned integer: m and q, and calculate the product, p.

How to test

Provide several pairs of m and q (for example, (0, 1), (12, 13), (3, 4), (0, 0), (15, 15)).
Then check whether the output is equal to the product of the two numbers.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 q[0] p[0]
1 q1 p1
2 q2 p2
3 q[3] p[3]
4 m[0] p[4]
5 m1 p[5]
6 m2 p[6]
7 m[3] p[7]

111

https://github.com/Heterohabilis/tt09-secC-1-array-multiplier
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Figure 7: alt text

112

T3 (Tiny Ternary Tapeout) [131]

• Author: Arnav Sacheti & Jack Adiletta
• Description: Ternary Matmul Processor
• GitHub repository
• HDL project
• Mux address: 131
• Extra docs
• Clock: 50000000 Hz

Tiny Ternary Tapeout Project Documentation

Inspiration The inspiration for this Tiny Tapeout project comes from the “Scalable
MatMul-free Language Modeling” paper, which explores a novel approach to language
modeling that bypasses traditional matrix multiplication (MatMul) operations. Stan-
dard neural network models, especially those used for language processing, rely heavily
on matrix multiplications to handle complex data transformations. However, these
operations can be computationally expensive and power-intensive, especially at large
scales.
The key insight of this research is to leverage alternative mathematical structures and
sparse representations, reducing the need for resource-heavy MatMul operations while
still enabling efficient language processing. By reimagining the model architecture
to avoid these multiplications, it opens up possibilities for more energy-efficient, scal-
able models, particularly in hardware-constrained environments like microchips. This
Tiny Tapeout project aims to implement and experiment with these principles on a
small scale, designing circuitry that emulates the core ideas of this MatMul-free ap-
proach. This can pave the way for more efficient and compact language models in
embedded systems, potentially transforming real-time, on-device language processing
applications.

How it works The tt_um_tiny_ternary_tapeout.v module is designed to per-
form matrix multiplication using a pipelined architecture. Here’s a step-by-step expla-
nation of how it works:
Loading the Weights (tt_um_load.v):

The module starts by loading the weights for the matrix. These weights
are stored in an internal register array and are used for the matrix multi-
plication operations.

Matrix Multiplication (tt_um_mult.v):

113

https://github.com/arnavsacheti/tt09-tiny-ternary-tapeout

The module performs matrix multiplication by iterating over the columns
of the weight matrix and calculating the temporary output values based on
the weights and input vectors. For each column, the module multiplies the
input vector elements by the corresponding weights and sums the results
to produce the output values.

Pipelined Architecture:

The module is pipelined, meaning that it can continuously accept new
input vectors while performing computations on the previous inputs. As
new inputs are driven into the module, the current computations are com-
pleted, and the results are stored in a pipeline register. During the next
clock cycle, the outputs are produced as 8-bit integers, allowing for con-
tinuous data processing without interruption.

Outputting Results:

After driving all the inputs, the outputs are produced as 8-bit integers.
These outputs represent the result of the matrix multiplication operation.
By leveraging a pipelined architecture, the tt_um_mult.v module ensures
efficient and continuous data processing, allowing for high-throughput ma-
trix multiplication operations.

Example: Using a Ternary Array for Efficient Computation In this example,
we’ll create a 4x2 ternary array and demonstrate how it can be used to process a 1x4
input vector.
Step 1: Define a Ternary Array
A ternary array is one where each element can take on one of three possible values,
commonly -1, 0, or +1. These values simplify calculations because instead of perform-
ing complex multiplications, you can use additions, subtractions, or ignore the zero
entries altogether.
Let’s create a sample 4x2 ternary array:

Array = [+1 0 − 1 +1 0 −1 + 1 +1]

Step 2: Define the Input Vector
Let’s assume we have a 1x4 input vector:

Input = [2 −1 3 0]

114

Step 3: Compute the Output without Matrix Multiplication
Instead of performing a matrix multiplication, we’ll calculate the output using simpler
operations based on the ternary values.
For each column in the ternary array:

• Multiply +1 entries by the corresponding input values.
• Subtract the values for -1 entries.
• Ignore the 0 entries.

Step 4: Calculate Each Column’s Output
Let’s compute each column separately:

• Column 1 Calculation:

– Row 1: (+1 ×2 = 2)
– Row 2: (-1 ×-1 = +1)
– Row 3: (0 ×3 = 0)
– Row 4: (+1 ×0 = 0)

Sum of Column 1: (2 + 1 + 0 + 0 = 3)
• Column 2 Calculation:

– Row 1: (0 ×2 = 0)
– Row 2: (+1 ×-1 = -1)
– Row 3: (-1 ×3 = -3)
– Row 4: (+1 ×0 = 0)

Sum of Column 2: (0 - 1 - 3 + 0 = -4)

Final Output Vector
Combining the results from each column, we get the final output vector:

Output = [3 −4]

115

How to test To test the Matrix Multiplier with an external MCU like a Raspberry
Pi, follow these steps:

1. Setup:

• Connect the Raspberry Pi to the Matrix Multiplier hardware using appropriate
GPIO pins.

• Ensure that the Raspberry Pi has the necessary libraries installed for GPIO ma-
nipulation.

Pinout

Input Output Bidirectional
0 A1 Q1 B1
1 A2 Q2 B2
2 A3 Q3 B3
3 A4 Q4 B4
4 A5 Q5 B5
5 A6 Q6 B6
6 A7 Q7 B7
7 A8 Q8 B8

116

Hybrid_Adder_8bit [132]

• Author: James Xie, Cameron Bedard
• Description: 8-bit hybrid adder (using CLA and KSA)
• GitHub repository
• HDL project
• Mux address: 132
• Extra docs
• Clock: 0 Hz

How it works

The 8-bit Hybrid Adder combines the gate efficency of a 4-bit Kogge Stone and the
low latency of a 4-bit Carry Look Ahead Adder. The resultant 8-bit Hybrid Adder is
faster than the an 8-bit Kogge Stone Adder and more gate efficent than a 8-bit Carry
Look Ahead Adder.

How to test

The first number you want to add, use the eight inputs for ui_in for the input number
A and the eight inputs for uio_in for the input number B. The output of the two
numbers added together will be outputs on the eight outputs on uo_out.

External hardware

The only external hardware needed is applying the 3.3v on the inputs and reading the
output.

Pinout

Input Output Bidirectional
0 a[0] sum[0] b[0]
1 a1 sum1 b1
2 a2 sum2 b2
3 a[3] sum[3] b[3]
4 a[4] sum[4] b[4]
5 a[5] sum[5] b[5]
6 a[6] sum[6] b[6]

117

https://github.com/cameronbed/tt09-hybrid-adder
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
7 a[7] sum[7] b[7]

118

3 Neuron ALIF [133]

• Author: Andrew Smith
• Description: TODO
• GitHub repository
• HDL project
• Mux address: 133
• Extra docs
• Clock: 0 Hz

How it works

3 Adaptive Leaky Integrate and Fire Neurons

1. Receives an 8-bit input signal (ui_in) with small offset variations
2. Processes the signal through the LIF model which simulates biological neuron

behavior by:

• Integrating (accumulating) input current over time
• Applying a leak factor to gradually decrease membrane potential
• Generating a spike when membrane potential exceeds threshold
• Adjusting a moving threshold based on periods of past inputs

3. Outputs:

• Spike signals on uio_out[7:5]:

– uio_out[7]: Neuron 1 spike output
– uio_out[6]: Neuron 2 spike output
– uio_out[5]: Neuron 3 spike output

• Internal state of Neuron 1 on uo_out[7:0] for debugging/testing

How to test

1. Basic Functionality Test:

• Apply a constant input value through ui_in
• Monitor uio_out[7:5] to observe spike patterns
• Check uo_out to monitor Neuron 1’s internal state

2. Threshold Response Test:

119

https://github.com/and-rewsmith/tt09-verilog-template-andrewsmith

• Gradually increase ui_in value
• Observe spike behavior on uio_out[7:5]
• Verify neurons spike when input exceeds threshold

3. Reset Test:

• Assert rst_n (active low)
• Verify all spike outputs (uio_out[7:5]) go low
• Verify internal state (uo_out) resets to initial value

External hardware

No external hardware required. The design uses only the built-in TinyTapeout inputs
and outputs:

• 8 input pins (ui_in[7:0])
• 8 output pins (uo_out[7:0])
• 8 bidirectional pins (uio_out[7:0])
• Clock (clk)
• Reset (rst_n)

Pinout

Input Output Bidirectional
0 Input current

bit [0]
State variable
bit [0]

1 Input current
bit 1

State variable
bit 1

2 Input current
bit 2

State variable
bit 2

3 Input current
bit [3]

State variable
bit [3]

4 Input current
bit [4]

State variable
bit [4]

5 Input current
bit [5]

State variable
bit [5]

6 Input current
bit [6]

State variable
bit [6]

7 Input current
bit [7]

State variable
bit [7]

Spike bit

120

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

8-bit Carry Look-Ahead Adder [134]

• Author: Seongwan Jeon and Michael Zeng
• Description: Fast 8-bit adder
• GitHub repository
• HDL project
• Mux address: 134
• Extra docs
• Clock: 0 Hz

How it works

A carry-lookahead adder (CLA) is a type of adder designed for fast speeds. First, it
calculates the propagate and generate signals. The propagate signal determines if a
carry bit can propagate through to the next bit, and the generate signal bit determines if
there is a carry bit. As the name implies, a carry-lookahead adder works by generating
a carry bit for every bit in the sum. This works by determining every possible way
a carry bit can be generated by combining the generate and propagate signal from
previous bits. The equations for the propagate, generate, sum, and carry bit are shown
below:

Figure 8: image

The calculations for the propagate, generate, and sum signals are trivial, but the cal-
culation for the carry bit is dependent on its value in the previous bit, which makes it
more complicated to solve. For example, all of the carry bits in a 4-bit CLA adder can
be seen in the equation and diagram below:
By calculating the carry bits by using combinatorial logic, a CLA is able to calculate
all of the carry bits of the sum without relying on sequential operations, unlike a rip-
ple carry adder. The main time complexity of the ripple carry adder is based on the

121

https://github.com/sej3939/Carry-Lookahead-Adder

Figure 9: image

Figure 10: image

122

implementation of the last (and largest) AND gate of the most significant carry bit
in the combinatorial equation. This AND gate has n+1 inputs, where n is the bits
of the input. The implementation of multiple input AND gates in hardware consists
of multiple smaller input AND gates organized in a tree structure, which inherently
has a logarithmic time complexity. This logic extends to the CLA which possesses
a logarithmic time complexity, and it makes CLAs viewed as one of the fastest im-
plementations of digital adders due to its combinatorial nature. CLAs that calculate
large bit-widths can also be designed by using multiple CLAs with smaller bit-widths in
parallel to calculate intermediate values. This implementation using a tree structure of
adders allows CLAs to also possess a modular design which can be scaled up to handle
large bit-widths. However, this tree-like design is an implementation that other parallel
prefix adders such as the Kogge-Stone adder utilize to a greater effect. Although CLAs
are praised for their speed, it comes at the cost of a large area, as the components
needed to calculate the carry bits for larger bit-widths become exponentially larger.
The CLA in this project is an 8-bit adder that does not utilize the implementation
using smaller CLAs; rather, it is a fully combinatorial circuit to calculate all 8 bits of
the carry signal.

How to test

ui_in[7:0] is addend 1, and uio_in[7:0] is addend 2. ui_out[7:0] is sum.
The adder was tested using all possible pairs of integers from 0 to 255 as inputs, which
resulted in 25536 test cases total. For example, the adder would use 0x25 and 0xD7
as inputs, add them up to 0xFC, and the result would be checked to make sure it was
the correct output. Carry out was not checked as there is no output pin for a carry
out on the board.

External hardware

No external hardware needed.

Pinout

Input Output Bidirectional
0 a[0] sum[0] b[0]
1 a1 sum1 b1
2 a2 sum2 b2
3 a[3] sum[3] b[3]

123

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
4 a[4] sum[4] b[4]
5 a[5] sum[5] b[5]
6 a[6] sum[6] b[6]
7 a[7] sum[7] b[7]

124

2bit adder [135]

• Author: Ya-Chin, Hu
• Description: shows the sum of in0 and in1
• GitHub repository
• Wokwi project
• Mux address: 135
• Extra docs
• Clock: 0 Hz

How it works

Takes input from in0 and in1. Assumes bit = 1 if input is ON, else bit = 0. Shows
sum as decimal integer.

How to test

Connect in0 and in1 to ON-OFF switches.

External hardware

One 7 pad display, connected to output as in template.

Pinout

Input Output Bidirectional
0 in0 out0
1 in1 out1
2 out2
3 out3
4 out4
5 out5
6 out6
7 out7

125

https://github.com/Beer-and-Skittles/mini_tapeout_test
https://wokwi.com/projects/413872016164217857

RISC-V Mini [136]

• Author: RickGao
• Description: RISC-V Mini 8 Bit
• GitHub repository
• HDL project
• Mux address: 136
• Extra docs
• Clock: 100000 Hz

How it works

This project aims to design and implement a compact 8-bit RISC-V processor core op-
timized for Tiny Tapeout, a fabrication platform for small-scale educational IC projects.
The processor employs a customized, compressed RISC-V instruction set (RVC) to re-
duce instruction width to 16 bits, leading to a more compact design suited to Tiny
Tapeout’s area and resource constraints. Developed in Verilog, this processor will
handle computational, load/store and control-flow operations efficiently and undergo
verification through simulation and testing.
Processor Components The processor comprises the following core components, opti-
mized to meet Tiny Tapeout’s area requirements:

1. Control Unit Generates control signals for instruction execution based on opcode
and other instruction fields.

2. Register File Contains 8 general-purpose, 8-bit-wide registers. Register x0 will
always return zero when read, adhering to RISC-V convention.

3. Arithmetic Logic Unit (ALU) Performs basic arithmetic (addition, subtraction)
and logical (AND, OR, XOR, SLT) operations as specified by the decode stage.
Supports custom compressed RISC-V instructions.

4. Datapath Single-cycle execution, optimized for minimal hardware complexity,
reducing the processor’s area and power consumption.

How to test

Simply set the input to the instruction and clock once to receive the output.
R-Type, I-Type, and L-Type instructions will output 0.
The S-Type instruction will output the value of the register.
The B-Type instruction will output 1 if the branch is taken and 0 if it is not taken.

126

https://github.com/RickGao/RISC-V-Mini

Instructions List
R-Type
Name | funct3 [15:13] | funct2 [12:11] | rs2 [10:8] | rs1 [7:5] | rd [4:2] | Opcode(00)
AND | 000 | 00 | XXX | XXX | XXX | Opcode(00)
OR | 001 | 00 | XXX | XXX | XXX | Opcode(00)
ADD | 010 | 00 | XXX | XXX | XXX | Opcode(00)
SUB | 011 | 00 | XXX | XXX | XXX | Opcode(00)
XOR | 001 | 01 | XXX | XXX | XXX | Opcode(00)
SLT | 111 | 00 | XXX | XXX | XXX | Opcode(00)
I-Type
Name | funct3 [15:13] | Imm [12:8] (5-bit unsigned) | rs1 [7:5] | rd [4:2] | Opcode(01)
SLL | 100 | XXXXX | XXX | XXX | Opcode(01)
SRL | 101 | XXXXX | XXX | XXX | Opcode(01)
SRA | 110 | XXXXX | XXX | XXX | Opcode(01)
ADDI | 010 | XXXXX | XXX | XXX | Opcode(01)
SUBI | 011 | XXXXX | XXX | XXX | Opcode(01)
L-Type
Load | Imm [15:8] (8-bit signed) | 000 | rd [4:2] | Opcode(10)
S-Type
Store | 00000 | 000 | rs1 [7:5] | 000 | Opcode(11)
B-Type
Name | funct3 [15:13] | funct2 [12:11] | rs2 [10:8] | rs1 [7:5] | 000 | Opcode(11)
BEQ | 011 | 00 | XXX | XXX | 000 | Opcode(11)
BNE | 011 | 10 | XXX | XXX | 000 | Opcode(11)
BLT | 111 | 00 | XXX | XXX | 000 | Opcode(11)

External hardware

No External Hardware

127

Pinout

Input Output Bidirectional
0 instruction[0] result[0] instruction[8]
1 instruction1 result1 instruction[9]
2 instruction2 result2 instruction[10]
3 instruction[3] result[3] instruction[11]
4 instruction[4] result[4] instruction[12]
5 instruction[5] result[5] instruction[13]
6 instruction[6] result[6] instruction[14]
7 instruction[7] result[7] instruction[15]

128

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

4-1 mux [137]

• Author: zhengfeng wu
• Description: 4-1 mux
• GitHub repository
• Wokwi project
• Mux address: 137
• Extra docs
• Clock: 0 Hz

4-1 mux, a,b,c,d as four inputs, use s1,s2 to select one to output

Pinout

Input Output Bidirectional
0 a
1 b
2 c
3 d out
4 s1
5 s2
6
7

129

https://github.com/zwu23/41mux
https://wokwi.com/projects/413871526879619073

8-bit carry-skip [138]

• Author: Dennis_Du
• Description: two 8-bit input adder
• GitHub repository
• HDL project
• Mux address: 138
• Extra docs
• Clock: 0 Hz

How it works

This project implements an 8-bit carry-skip adder using a combination of ripple-carry
and skip logic for enhanced performance. The adder is divided into two 4-bit sections.
The lower 4 bits compute the initial partial sum and generate a carry-out, which is then
either passed directly to the upper 4-bit section or skipped, depending on the carry-
propagate signal. This design reduces the delay associated with carry propagation,
making it more efficient than a conventional ripple-carry adder. The final 8-bit sum is
registered and outputted in sync with the clock signal.

How to test

To test the carry-skip adder:

1. Load the design into your simulation environment.
2. Set the ui_in and uio_in inputs with the desired 8-bit values for addition.
3. The result of the addition will appear on uo_out after each rising edge.
4. Verify that the output matches expected values by comparing uo_out with the

sum of the inputs.

For more extensive testing, a testbench can be used to automate input combinations
and check results across various cases.

External hardware

No external hardware is required for this project.

Pinout

130

https://github.com/dennisduu/Carry_skip_adder

Input Output Bidirectional
0 a[0] sum[0] b[0]
1 a1 sum1 b1
2 a2 sum2 b2
3 a[3] sum[3] b[3]
4 a[4] sum[4] b[4]
5 a[5] sum[5] b[5]
6 a[6] sum[6] b[6]
7 a[7] sum[7] b[7]

131

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

STDP Circuit [139]

• Author: Mariah Regalado
• Description: STDP Circuit using a trace to model exponential behavior
• GitHub repository
• HDL project
• Mux address: 139
• Extra docs
• Clock: 0 Hz

How it works

The point of this circuit is to detect spikes and measure the time interval between
them. My code uses delta_t to measure the time. If a pres-synaptic spike happens,
if no spike was detected before, my pre_spike_detected signal is set to 1 and delta_t
is set to. If there has been a post synaptic spike, and post_spike_detected has been
triggered, delta_t decrements to measure the time difference. Delta_t accumulates
otherwise.
If pre_spike_detected and post_spike_detected are both high, both spikes have been
detected and the sign of delta_t is used to determine if depression or potentiation
should occur. I used a trace to model the exponential behavior of STDP. I modified the
trace depending on whether it was necessary to depress or potentiate the weight. I also
included edge cases to ensure the newly calculated weight doesn’t cause overflow.

How to test

I am stil working on it.

External hardware

N/A

Pinout

Input Output Bidirectional
0 Input Current

Bit [0]
State Variable
bit[0]

132

https://github.com/mariahregalado1/tt09-regalado-ece110

Input Output Bidirectional
1 Input Current

Bit 1
State Variable
bit1

2 Input Current
Bit 2

State Variable
bit2

3 Input Current
Bit [3]

State Variable
bit[3]

4 Input Current
Bit [4]

State Variable
bit[4]

5 Input Current
Bit [5]

State Variable
bit[5]

6 Input Current
Bit [6]

State Variable
bit[6]

7 Input Current
Bit [7]

State Variable
bit[7]

Spike bit

133

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

4 bit array multiplier [140]

• Author: Abdulrahman Albaoud, Joe Leighthardt
• Description: Takes in 2 four-bit inputs and multiplies them into one eight-bit

value
• GitHub repository
• HDL project
• Mux address: 140
• Extra docs
• Clock: 0 Hz

How it works

Takes in one 8bit binary array and breaks it into two 4bit arrays. It then multiplies
these arrays by each other.

How to test

Use various numbers to test the multiplicative values.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 q[0] p[0]
1 q1 p1
2 q2 p2
3 q[3] p[3]
4 m[0] p[4]
5 m1 p[5]
6 m2 p[6]
7 m[3] p[7]

134

https://github.com/joe-leighthardt/tt09-secB-16-array-multiplier
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

instrumented_ring_oscillator [141]

• Author: Jeremy Mickelsen
• Description: A ring oscillator with a selectable number of stages and initial state.
• GitHub repository
• HDL project
• Mux address: 141
• Extra docs
• Clock: 0 Hz

How it works

Preface: This is probably not a component you want if you want a reliable end device.
This is intended to allow studying the decay (or persistence) of high-frequency “modes”
which are generally very undesirable.
This project uses ring oscillators with muxes on the inputs to allow setting an initial
state or “seed”. This can be configured using a clock (in3) and data (in2) similar
to SPI (positive edge clocks the data in. The in0 line is the enable to start the
oscillator running, and in1 is a HOLD line that blocks one stage so that the normal
long period can be obtained. in7:in4 select the number of stages (2*n + 5). In order
to have selectable stages without a really big mux (which would have a very different
propagation speed than the other stages), two muxes per stage are used, some of them
bypassing some of the chain to get the desired number of muxes. This diagram shows
the short mux paths as pipes (“|”).
Note that when less than 25 stages are used, all inverters are still driven, but some
outputs are not used. Note that the seed state is a FIFO fed in at the little end - it’s
always updatable (though it’s state should not impact operation).

How to test

0. Hook up an analyzer / scope to the output & bidirectional channels.16 phases
are driven out.

1. Select the number of stages (in7:in4).
2. If desired, seed the initial state using in3, in2. It’s a
3. Drive enable (in0) high and watch the chaos to see if it stabilizes to the longest

frequency, or if high frequency modes persist.
4. The hold (in1) can be briefly drivent to get to the longest frequency.

135

https://github.com/AnotherPseudonym/intstrumented_ring_oscillator

External hardware

A logic analyzer will probably be the most useful tool for this - For FPGA testing, I used
a Digilent Digital Discovery (DD) with this projects outputs going to DD channels 0-15,
and using DD channels 24-31 to drive the project inputs. A multi-channel oscilloscope
might also be interesting to use with this.

Pinout

Input Output Bidirectional
0 enable phase[0] phase[8]
1 hold phase1 phase[9]
2 bdat phase2 phase[10]
3 bclk phase[3] phase[11]
4 n_stages[0] phase[4] phase[12]
5 n_stages1 phase[5] phase[13]
6 n_stages2 phase[6] phase[14]
7 n_stages[3] phase[7] phase[15]

136

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Array Multiplier [142]

• Author: Noah Rivera & Filip Bukowski
• Description: 4x4 Structural Array Multiplier
• GitHub repository
• HDL project
• Mux address: 142
• Extra docs
• Clock: 0 Hz

4x4 Array Multiplier Block Diagram

Figure 11: 4x4 Array Multiplier Block Diagram

How it works

The 4x4 array multiplier operates by multiplying two 4-bit binary numbers to produce
an 8-bit number. The process is performed by generating partial products through a
series of AND operations between each bit of the first 4-bit binary number (X) and the
second 4-bit binary number (Y). This results in a total of 16 partial products, which
correspond to the multiplicative contributions of each bit in X with each bit in Y. Once
the partial products are generated, they are aligned according to their significance in
the binary numeral system, to achieve the proper placement of each product. The
result is achieved by summing up these aligned partial products by using a series of full
adders to manage the addition and carry bits.

How to test

To test the 4x4 array multiplier, a variety of 4-bit binary inputs need to be created for
both multiplicates X and Y. After establishing various proper inputs, the selected binary
numbers can be entered into the multiplier using a proper simulation environment.

137

https://github.com/noahrivera/tt09-secB-15-array-multiplier

When the inputs are assigned, the simulation can be run, and the product of the two
4-bit binary inputs can be achieved.

External hardware

N/A

Pinout

Input Output Bidirectional
0 q[0] p[0]
1 q1 p1
2 q2 p2
3 q[3] p[3]
4 m[0] p[4]
5 m1 p[5]
6 m2 p[6]
7 m[3] p[7]

138

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Linear Feedback Shift Register [143]

• Author: Steve Jenson <stevej@gmail.com>
• Description: An implementation of a Linear Feedback Shift Register for TT09
• GitHub repository
• HDL project
• Mux address: 143
• Extra docs
• Clock: 0 Hz

How it works

Read the ui_out pins, each read should be different than the last. To reset the shift
register, reset the chip, or set the ‘write_enable’ pin high after offering a value on
ui_in as a seed.

How to test

Read several bytes from ui_in, they should each be different.

External hardware

No external hardware needed other than to read the pins.

Pinout

Input Output Bidirectional
0 Seed Bit 1 LFSR Bit 1 Write Enable
1 Seed Bit 2 LFSR Bit 2
2 Seed Bit 3 LFSR Bit 3
3 Seed Bit 4 LFSR Bit 4
4 Seed Bit 5 LFSR Bit 5
5 Seed Bit 6 LFSR Bit 6
6 Seed Bit 7 LFSR Bit 7
7 Seed Bit 8 LFSR Bit 8

139

https://github.com/stevej/tt09-lfsr-stevej

Frequency Encoder and Decoder [160]

• Author: Miguel Robles
• Description: Simple implementation of an 8-bit frequency encoder/decoder for

a 1 bit frequency channel
• GitHub repository
• HDL project
• Mux address: 160
• Extra docs
• Clock: 10000000 Hz

How it works

Takes an 8-bit input voltage and treats it as a current injection to a LIF neuron

How to test

Do something

External hardware

NA

Pinout

Input Output Bidirectional
0 Input

frequency
channel for
decoder OR
input bit for
encoder [0]

LSB output of
decoder [0]
OR output
frequency
channel for
encoder

Input selector bit to
choose between encoder or
decoder

1 Input encoder
bit 1

Output
encoder bit 1

2 Input encoder
bit 2

Output
encoder bit 2

140

https://github.com/mroblesh1/tt09-ece-110
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
3 Input encoder

bit [3]
Output
encoder bit
[3]

4 Input encoder
bit [4]

Output
encoder bit
[4]

5 Input encoder
bit [5]

Output
encoder bit
[5]

6 Input encoder
bit [6]

Output
encoder bit
[6]

Input configuration bit for
encoder sample rate [0]

7 Input encoder
bit [7]

Output
encoder bit
[7]

Input configuration bit for
encoder sample rate 1

141

https://en.wikipedia.org/wiki/Collatz_conjecture

TT Test [161]

• Author: Austin
• Description: 8-bit shift register.
• GitHub repository
• Wokwi project
• Mux address: 161
• Extra docs
• Clock: 0 Hz

How it works

This just works2

How to test

This just works2

External hardware

This just works

Pinout

Input Output Bidirectional
0 input output0
1 set output1
2 output2
3 output3
4 output4
5 output5
6 output6
7 output7

142

https://github.com/ajb497stanford/tt_test_ex
https://wokwi.com/projects/413471588783557633

carry skip adder [162]

• Author: Dron Sankhala
• Description: two 8-bit input adder
• GitHub repository
• HDL project
• Mux address: 162
• Extra docs
• Clock: 0 Hz

How it works

This project implements an 8-bit carry-skip adder using a combination of ripple-carry
and skip logic for enhanced performance. The adder is divided into two 4-bit sections.
The lower 4 bits compute the initial partial sum and generate a carry-out, which is then
either passed directly to the upper 4-bit section or skipped, depending on the carry-
propagate signal. This design reduces the delay associated with carry propagation,
making it more efficient than a conventional ripple-carry adder. The final 8-bit sum is
registered and outputted in sync with the clock signal.

How to test

To test the carry-skip adder:

1. Load the design into your simulation environment.
2. Set the ui_in and uio_in inputs with the desired 8-bit values for addition.
3. The result of the addition will appear on uo_out after each rising edge.
4. Verify that the output matches expected values by comparing uo_out with the

sum of the inputs.

For more extensive testing, a testbench can be used to automate input combinations
and check results across various cases.

External hardware

No external hardware is required for this project.

Pinout

143

https://github.com/dronsankhala2605/TinyTapeout

Input Output Bidirectional
0 a[0] sum[0] b[0]
1 a1 sum1 b1
2 a2 sum2 b2
3 a[3] sum[3] b[3]
4 a[4] sum[4] b[4]
5 a[5] sum[5] b[5]
6 a[6] sum[6] b[6]
7 a[7] sum[7] b[7]

144

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

4-bit up/down binary counter [163]

• Author: claudiotalarico
• Description: 4-bit up/down binary counter with enable and test mode
• GitHub repository
• HDL project
• Mux address: 163
• Extra docs
• Clock: 50000000 Hz

How it works

4 bit up/down binary counter with enable

Pin Mapping

direction | pin name | function
----------+--------------+-------------------
in | clk | clk
in | rst_n | rst_n
in | ui_in[0] | test (test mode)
in | ui_in[1] | ud (up/down)
in | ui_in[2] | en (enable)
out | ui_out[3:0] | cnt[3:0] (count)

How to test

Connect input pin EN to VDD
Connect input pin TEST to GND
Connect input pin UD to VDD or GND through a switch
Connect input pin RST_N to an R-C startup circuit
Connect input pin CLK to a 50 MHz square waveform
Connect the output pins CNT[3:0] to 4 LEDs

External hardware

switch 4 LEDs R-C startup circuit

145

https://github.com/claudiotalarico/tt-count

Pinout

Input Output Bidirectional
0 test cnt[0]
1 ud cnt1
2 en cnt2
3 cnt[3]
4
5
6
7

146

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

xor gate with registered output [164]

• Author: claudiotalarico
• Description: xor gate
• GitHub repository
• Wokwi project
• Mux address: 164
• Extra docs
• Clock: 50000000 Hz

How it works

XOR gate with output registered by a FF. The FF has active high Set and Reset. The
Set is unused (stuck at GND).

How to test

IN0 IN1 OUT0

0 0 0
0 1 1
1 0 1
1 1 0

External hardware

push button (for Reset) DIP switch 8 LED

Pinout

Input Output Bidirectional
0 CLK OUT0
1 RST_N
2 IN0
3 IN1
4
5
6

147

https://github.com/claudiotalarico/tt-xor
https://wokwi.com/projects/413923639862662145

Input Output Bidirectional
7

148

Team 17’s 8 bit DAC [165]

• Author: Vance Wiberg
• Description: This 8 bit digital to analogue converter uses a SAR to convert

signals from Digial into Analoge
• GitHub repository
• HDL project
• Mux address: 165
• Extra docs
• Clock: 0 Hz

How it works

Uses nonlinear sampling to convert a input coming from a comparator to a digital
signal

How to test

In put comparator values, check for desired digital outputs

External hardware

Analog comparator and resistor array

Pinout

Input Output Bidirectional
0 A[0] Z[0] O[0]
1 A1 Z1
2 A2 Z2
3 A[3] Z[3]
4 A[4] Z[4]
5 A[5] Z[5]
6 A[6] Z[6]
7 A[7] Z[7]

149

https://github.com/VanceWiberg/8bitSAR
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Multi-LFSR [166]

• Author: Kevin W. Rudd
• Description: variable-length 2-tap and 4-tap LFSR with hold & step
• GitHub repository
• HDL project
• Mux address: 166
• Extra docs
• Clock: 1000 Hz

How it works

The LFSR taps are produced via a length => mask table which is selected by n_taps;
valid indicates that there is an LFSR as confibured.. Each clock cycle produces a
new LFSR value. hold prevents the LFSR from generating a new cycle and every
step cycle produces a new value while holding.

How to test

There is no included test (yet). The design was tested using hand-generated top-level
test modules (lfsr and logic) and both embedced $display invocations and GTK signal
evaluation.

External hardware

This circuit can be run (input) by setting length and n_taps for the desired config-
uration and by using hold and step as desired to control LFSR value generation.
LFSR state is driven by the clock (internal) and exposed (output and bidirectional out-
put) by observing valid to see if there is an LFSR for the specified configuration and
value provides the low-order 15b of the LFSR; invalid LFSR configurations produce
no output.

Pinout

Input Output Bidirectional
0 length_0 value_00 value_08
1 length_1 value_01 value_09
2 length_2 value_02 value_10

150

https://github.com/overeducated/tt09-um--kwr-lfsr

Input Output Bidirectional
3 length_3 value_03 value_11
4 length_4 value_04 value_12
5 n_taps value_05 value_13
6 step value_06 value_14
7 hold value_07 valid

151

ECE2204MultiplierProject [167]

• Author: CaoKeHanMax
• Description: ECE2204MultiplierProject
• GitHub repository
• HDL project
• Mux address: 167
• Extra docs
• Clock: 0 Hz

How it works

4 by 4 Arrary Structural Multiplier This is a class project designated to design a 4 by
4 arrary multiplier using logic gates and 1 bit full adders. Verilog codes were used in
this projec t to implement this multiplier. The structural of the design is shown below.

152

https://github.com/Maximum-Developer/tt09-sec-D-15-array-multiplier

The project fully implements this structure by replicating the logic gates and the con-
nections to the repective components one by one. The adder module is included in
the “project.v” file in the “src” folder. It is named as “black_box”, because we used
it for our first lab experiment and it was provided to us to see what it does and how it
is implemented. The idea used in making this multiplier is partial product and adding
together the products. This means that the product of each digits of the binary number
is multiplied, shifted, and added with next line just like the way we did multiplication
in decimal. Here is an example of binary product, and you can see how the idea of
multipling (partial produuct), shifting, and adding is done.

For example:
The Credit of this picture to Wikipedia, and you can read more about this idea here:
Binary multiplier
This means that the multiplier support only unsigned binary numbers, so you should
not expect to multiply signed decimal, 1’s complemet, or 2’s complement to work with
this multiplier. Overall, this is a simple 4 by 4 multiplier.

How to test

To test if this project works, two ways are presented. The first way is to check the
automatic test of the project, which is shown in the “Actions” bar. A green checkmark
will show saying “test” if the project is working properly. You can modify the values
of the tests by changing the “test.py” code. Here is how you can change to different
values: Find the line that says “assert dut.uo_out.value”, and change the value of
the designated test value after the two equal sign. Then change the “dut.ui_in.value”
value below the variable you just modified before this to the two binary numbers that
you want to multiply. This variuable has eight bits, so that means the first 4 and last
4 bits each contributes to unsigned binary numbers respectively. Change this value so
that when you calculate yourself, it matches with the valuee you entered above. The
numbers you entered in “dut.uo_out.value” can be in decimal.

153

https://en.wikipedia.org/wiki/Binary_multiplier

Another way to test this is to make the circuit for this structure according to the
pictures provided and the codes in this project. You should get the same answer with
the output of this project.

External hardware

No External Hardware is used in this project, and it does not support external hardware
for now.

Pinout

Input Output Bidirectional
0 ui[0] uo[0]
1 ui1 uo1
2 ui2 uo2
3 ui[3] uo[3]
4 ui[4] uo[4]
5 ui[5] uo[5]
6 ui[6] uo[6]
7 ui[7] uo[7]

154

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Micro tile container [168]

• Author: Arna
• Description: Example Experimental microtile TDC container
• GitHub repository
• HDL project
• Mux address: 168
• Extra docs
• Clock: 20000000 Hz

How it works

Four micro tiles were combined into a single Tiny Tapeout tile to analyze power coupling
within the Power Distribution Network.

Selecting the active project Use uio[1:0] to see the output of the micro-tile
projects.

Project 1 - Sensor

• Repo:https://github.com/Secure-Embedded-Systems/tt09-microtile-sensor-
example

• Author: Arna Roy
• Description: A sensor

How it works The project generates a delayed clock signal utilizing eight distinct
delay lines

How to test Nothing to test here.

Project 2 - Time to Delay Converters (TDC)

• Repo:https://github.com/Secure-Embedded-Systems/tt09-microtile-tdc-
example

• Author: Arna Roy
• Description:Delay line based TDC to measure timing effects

155

https://github.com/Secure-Embedded-Systems/tt09-microtile-final_TDC

How it works A Time-to-Digital Converter (TDC) is embedded in one tile and
interfaced with the sensor. It measures the time interval between the clock signal from
the sensor and the delayed clock signal generated by the sensor.

How to test Nothing to test here, an experimental basis.

Project 3 - Ring Oscillator (RO)

• Repo:https://github.com/Secure-Embedded-Systems/tt09-microtile-RO-tile1
• Author: Arna Roy
• Description: 32 ROs in one tile to add power stress

How it works It includes an activation signal capable of enabling 16 ring oscillators
simultaneously, primarily to induce power stress for monitoring the Power Distribution
Network (PDN).”

Project 4 - Ring Oscillator (RO)

• Repo: https://github.com/Secure-Embedded-Systems/tt09-microtile-RO-tile2
• Author: Arna Roy
• Description: 32 ROs in one tile to add power stress

How it works Same as the previous design of ROs, just placed in another tile to
add power stress

Pinout

Input Output Bidirectional
0 in[0] out[0] sel[0]
1 in1 out1 sel1
2 in2 out2
3 in[3] out[3]
4 in[4] out[4]
5 in[5] out[5]
6 in[6] out[6]
7 in[7] out[7]

156

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

4bit multiplier [169]

• Author: Kylian Yan
• Description: tiny tapeout
• GitHub repository
• HDL project
• Mux address: 169
• Extra docs
• Clock: 0 Hz

a 4 bit adder

How it works

we split the input into two portions and assign them to be q and m. The output is p,
we then use full adder to achieve the purpose of multiplcaton

How to test

we use idle to tst our cases

External hardware

None

Pinout

Input Output Bidirectional
0 q[0] p[0]
1 q1 p1
2 q2 p2
3 q[3] p[3]
4 m[0] p[4]
5 m1 p[5]
6 m2 p[6]
7 m[3] p[7]

157

https://github.com/dadadadasdaxacw/tt09-sec-c---4--array-multiplier
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Forward Pass Network for Simple ANN [170]

• Author: Arian Heidari
• Description: ANN that takes in a 4-bit value, and completes a forward pass.
• GitHub repository
• HDL project
• Mux address: 170
• Extra docs
• Clock: 50000000 Hz

How it works

The circuit takes in a 4-bit number, with each bit of the input representing an input
neuron. It then completes the forward pass for the network, while also calculating the
loss function (MSE). Network consists of 4 input neurons, 8 hidden neurons, and 1
output neuron.

How to test

To physically test the circuit, input a 4 bit-number into ui_in[3:0]. Use ui_in[7] to
start the forward pass. The final output calculation can be seen through the output
pins {uio_out[1:0], uo_out[7:0]}. The current state can be seen through the output
pins uio_out[7:5].
To simulate the circuit, change the input value of ui_un on line 30 of “test.py”. Using
the .vcd file, analyze the output of the circuit using any waveform viewer.

External hardware

Use switches to connect to ui_in[3:0] (allowing for you to input a value). Connect a
switch/button to ui_in[7] (allowing you to begin the forward pass).

Pinout

Input Output Bidirectional
0 Input bit [0] Output Calculation [0]
1 Input bit 1 Output Calculation 1
2 Input bit 2 Output Calculation 2
3 Input bit [3] Output Calculation [3]

158

https://github.com/arheidar/tt09-chip-tapeout-110
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
4 Output Calculation [4]
5 Output Calculation [5]
6 Output Calculation [6]
7 Output Calculation [7]

159

Tiny Registers [171]

• Author: Roni Kant, Jeremy Kam
• Description: Various Registers for 8-bit CPU
• GitHub repository
• HDL project
• Mux address: 171
• Extra docs
• Clock: 50000000 Hz

How it works

The various registers used for a basic 8-bit CPU design. Consists of a simple general
purpose register, a memory address register, and an instruction register. The 3 registers
are selected using the 6th and 7th uio pins. | uio[7] | uio[6] | Selected Register | |——
——–|————–|——————-| | 0 | 0 | General Purpose Register | | 0 | 1 | Memory
Address Register | | 1 | 0 | Instruction Register |

Design Specifications

Instruction Register

Label Input/OutputDescription
CLK [1 bit] Input Clock signal. Executes actions on rising edges.
W bus [8 bit] Input Takes 8 bits with the most significant 4 bits representing

the opcode and the least significant 4 bits representing
any other necessary value. Write them to the instruction
register.

I [1 bit] Input Control signal that decides whether to read from the bus.
I [1 bit] Input Control signal that decides tri-state buffer output to bus

(drive register value if enabled, Z if disabled).
CLR [1 bit] Input Clears the instruction register’s data.
Instruction
register[3:0] [4
bit]

Output Output to W bus

Instruction
register[7:4] [4
bit]

Output Output to controller/sequences

160

https://github.com/Penguronik/TinyRegisters

Pinouts when instruction register is selected

Test Input Name Description
clk CLK
ui_in[7:0] W bus
uio_in [4] I
uio_in [5] I
rst_n CLR
uio_out[3:0] Instruction register[7:4]
uo_out[3:0] Instruction register[3:0]

Figure 12: instruction_register

• Note: All simulations pictured in this document were run using a 10 ns clock.
The actual design will have a 100 ns clock.

Test Input Connections (as seen in waveform)

Test Input Name Description
clk CLK
ui_in[7:0] W bus
uio_in 1 I
uio_in 2 I
uio_in [0] CLR
uio_out[3:0] Instruction register[7:4]
uo_out[3:0] Instruction register[3:0]

Output Register

161

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Label Input/OutputDescription
CLK [1 bit] Input Clock signal. Executes actions on rising edges.
W bus [8 bit] Input Data from the bus lines that are to be written to the

Output register.
O [1 bit] Input Control signal that decides whether to read from the bus

and load onto the output register.
Output
register [8 bit]

Output Register data that will be written to the binary display.

Pinouts when output register is selected

Test Input Name Description
clk CLK
ui_in[7:0] W bus
uio_in [4] O
uo_out[7:0] Output register

Figure 13: register

Test Input Connections (as seen in waveform)

Test Input Name Description
clk CLK
ui_in[7:0] W bus
uio_in [0] O
uo_out[7:0] Output register

B Register

Label Input/OutputDescription
CLK [1 bit] Input Clock signal. Executes actions on rising edges.

162

Label Input/OutputDescription
W bus [8 bit] Input Data from the bus lines that are to be written to the B

register.
B [1 bit] Input Control signal that decides whether to read from the bus

and load onto the B register.
B register [8
bit]

Output Register data that will be written to adder/subtractor.

Pinouts when b register is selected

Test Input Name Description
clk CLK
ui_in[7:0] W bus
uio_in [4] B
uo_out[7:0] B register

Figure 14: register

Test Input Connections (as seen in waveform)

Test Input Name Description
clk CLK
ui_in[7:0] W bus
uio_in [0] B
uo_out[7:0] B register

Input and MAR

Label Input/OutputDescription
CLK [1 bit] Input Clock signal. Executes actions on rising edges.
W bus [8 bit] Input Data from the bus lines that are to be written either Input

or MAR register.

163

Label Input/OutputDescription
MD [1 bit] Input Control signal that decides if W bus data is to be written

to the Input register. Should not be active at the same
time as the MA control signal.

MA [1 bit] Input Control signal that decides if W bus data is to be written
to the MAR register. Should not be active at the same
time as the MD control signal.

Input register
[8 bit]

Output Register data to be written to memory.

MAR [4 bit] Output Register data taken by RAM that controls where the data
is to be written.

Pinouts when input and mar register is selected

Test Input Name Description
clk CLK
ui_in[7:0] W bus
uio_in [4] MD
uio_in [5] MA
uo_out[7:0] Input register
uio_out[3:0] MAR

Figure 15: input_mar_register

Test Input Connections (as seen in waveform)

Test Input Name Description
clk CLK
ui_in[7:0] W bus
uio_in [0] MD
uio_in 1 MA
uo_out[7:0] Input register
uio_out[3:0] MAR

164

https://en.wikipedia.org/wiki/Collatz_conjecture

Pinout

Input Output Bidirectional
0 in_0 out_0 extra_output_0
1 in_1 out_1 extra_output_1
2 in_2 out_2 extra_output_2
3 in_3 out_3 extra_output_3
4 in_4 out_4 extra_input_0
5 in_5 out_5 extra_input_1
6 in_6 out_6 register_select_0
7 in_7 out_7 register_select_1

165

7-Segment Byte Display [172]

• Author: Mike Goelzer
• Description: Drives a single hex digit 7-segment display based on the value of a

1-byte input
• GitHub repository
• HDL project
• Mux address: 172
• Extra docs
• Clock: 0 Hz

How it works

A two digit 7-segment display shows a hex representation of the 8-bit value provided
on ui[7:0]. Byte ui[7:0] is latched when the write enable signal on uio[0] is
high at a rising clock edge. The display is driven continuously by uo[6:0] with uo[7]
controlling which digit is being driven (0=left digit, 1=right digit).

How to test

Connect the 7-segment display to the uo[6:0] outputs (segment ‘a’ is uo[0], …,
segment ‘g’ is uo[6]). Connect the uo[7] signal to a switch to control which digit is
being driven.
Connect wires to the ui[7:0] and uio[0] inputs. Ground all of ui[7:0] and set
uio[0] low and verify that the display is 00. Pull ui[0] high and briefly pull uio[0]
high and the display value should change to 01.
Pull ui[0] low again and displayed value should not change; now also pull uio[0]
high and the display should return to 00.

External hardware

Use this two digit 7-segment display (or this one) to test the project.

Pinout

166

https://github.com/mikegoelzer/tinytapeoutverilog2024
https://github.com/mikegoelzer/7seg-2digit/
https://digilent.com/shop/pmod-ssd-seven-segment-display/

Input Output Bidirectional
0 Byte to

display on
7-segment
display
(rightmost /
low order bit)

7-segment
display
(segment a)

write enable (1=latch byte
value on ui[7:0] and
display it, 0=ignore ui[7:0]
and keep displaying the
current value)

1 Byte to
display on
7-segment
display (next
bit)

7-segment
display
(segment b)

2 Byte to
display on
7-segment
display (next
bit)

7-segment
display
(segment c)

3 Byte to
display on
7-segment
display (next
bit)

7-segment
display
(segment d)

4 Byte to
display on
7-segment
display (next
bit)

7-segment
display
(segment e)

5 Byte to
display on
7-segment
display (next
bit)

7-segment
display
(segment f)

6 Byte to
display on
7-segment
display (next
bit)

7-segment
display
(segment g)

167

Input Output Bidirectional
7 Byte to

display on
7-segment
display
(leftmost /
high order bit)

168

Leaky Integrate Fire Neuron [173]

• Author: Rocky Lim
• Description: Simulates a Leaky Integrate Fire Neuron based on snnTorch’s im-

plementation
• GitHub repository
• HDL project
• Mux address: 173
• Extra docs
• Clock: 0 Hz

How it works

This chip takes in an 8-bit number voltage to simulate a Leaky Fire Integrate (LIF)
Network. The 8-bit number is split into two different neurons in which they have
their respective layers, and it takes that voltage to act as an input current to the LIF
neurons. Each neuron generates a spike when the threshold, defined to be 8, is reached
or surpassed. Once an input current is passed through, each neuron will decay the value
over each clock cycle by shifting the bits of the current state once as it constantly takes
the input current. The idea behind the layers is for more significant spikes to be able
to reach the output states while less significant events would not affect the output.

How to test

N/A

External hardware

N/A

Pinout

Input Output Bidirectional
0 Input Current

Bit [0] (Input
Neuron 1)

State Variable
Bit [0]
(Output
Neuron 1)

Spike Bit (Output Layer,
Neuron 2)

169

https://github.com/bluemeaniez/tt09-chip4lyfe

Input Output Bidirectional
1 Input Current

Bit 1 (Input
Neuron 1)

State Variable
Bit 1 (Output
Neuron 1)

Spike Bit (Output Layer,
Neuron 1)

2 Input Current
Bit 2 (Input
Neuron 1)

State Variable
Bit 2 (Output
Neuron 1)

Spike Bit (Inner Layer 2,
Neuron 2)

3 Input Current
Bit [3] (Input
Neuron 1)

State Variable
Bit [3]
(Output
Neuron 1)

Spike Bit (Inner Layer 2,
Neuron 1)

4 Input Current
Bit [4] (Input
Neuron 2)

State Variable
Bit [4]
(Output
Neuron 2)

Spike Bit (Inner Layer 1,
Neuron 2)

5 Input Current
Bit [5] (Input
Neuron 2)

State Variable
Bit [5]
(Output
Neuron 2)

Spike Bit (Inner Layer 1,
Neuron 1)

6 Input Current
Bit [6] (Input
Neuron 2)

State Variable
Bit [6]
(Output
Neuron 2)

Spike Bit (Input Layer,
Neuron 2)

7 Input Current
Bit [7] (Input
Neuron 2)

State Variable
Bit [7]
(Output
Neuron 2)

Spike Bit (Input Layer,
Neuron 1)

170

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

znah_vga_ca [174]

• Author: Alexander Mordvintsev
• Description: Simple VGA 1D cellular automata generator
• GitHub repository
• HDL project
• Mux address: 174
• Extra docs
• Clock: 25175000 Hz

How it works

VGA signal generator iterates through a number of 1D elementary cellular automata

How to test

Plug and play

External hardware

VGA PMOD

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VSync
4 R0
5 G0
6 B0
7 HSync

171

https://github.com/znah/tt09-vga-ca

Tiny Tapeout Group 7 Lab D [175]

• Author: Will and Andrea
• Description: Our project implements a 4x4 array multiplier
• GitHub repository
• HDL project
• Mux address: 175
• Extra docs
• Clock: 0 Hz

How it works

Our program works by using a 4x4 array multiplier computes the product of two 4-bit
binary numbers, m and q, through bitwise multiplication and summing partial products.
Each bit of q is multiplied by every bit of m, generating partial products that are shifted
based on their significance. Full adders (FA) then sum these partial products. At each
stage, the full adders combine two partial product bits and any carry from the previous
stage. As the process progresses through the rows, the number of bits to sum increases,
which is managed by additional full adders. The final output is an 8-bit product p, with
the least significant bit produced by the sum of the first row and the most significant
bit formed by the final carry after all additions.

How to test

To test the 4x4 multipler feed the multiplier two 4 bit inputs. From here the partial
products will be calculated and the remaining product should be a binary representation
of the decimal product. To verify you can convert final products between binary and
decimal and compare expected values.

External hardware

Tiny Tapeout design

Pinout

Input Output Bidirectional
0 m[0] p[0]
1 m1 p1

172

https://github.com/WillPelech/tt09-secD7-array-multiplier
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Input Output Bidirectional
2 m2 p2
3 m[3] p[3]
4 q[0] p[4]
5 q1 p[5]
6 q2 p[6]
7 q[3] p[7]

173

http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

4-bit Multiplier [192]

• Author: Asfaq Fahim & Sreeja Ghose
• Description: Multiplies 2 4-bit binary numbers.
• GitHub repository
• HDL project
• Mux address: 192
• Extra docs
• Clock: 0 Hz

How it works

It works by multiplying two 4-bit binary numbers using full adders and outputing the
product.

Figure 16: Block Diagram

How to test

To test, you open the test.py file and input two 4-bit binary numbers. The first 4 are
the first number and the last 4 are the second number. The expected value should be
the product of the two numbers.

174

https://github.com/Electric-man/tt09-secC-7-array-multiplier

External hardware

None

Pinout

Input Output Bidirectional
0 n[0] p[0]
1 n1 p1
2 n2 p2
3 n[3] p[3]
4 m[0] p[4]
5 m1 p[5]
6 m2 p[6]
7 m[3] p[7]

175

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

FIREngine [193]

• Author: Hao Wang, Andrew Malnicof
• Description: FIR Filter for Audio PMOD
• GitHub repository
• HDL project
• Mux address: 193
• Extra docs
• Clock: 50000000 Hz

How it works

FIREngine is a Digital FIR filter that filters inputs from an I2S2 PMOD ADC and
DAC module. The purpose of this design is to filter audio from an I2S2 PMOD device
found here: https://digilent.com/shop/pmod-i2s2-stereo-audio-input-and-output/.
Although the number of taps the filter is not adjustable and must be determined before
synthesis, the coefficients of each tap are programmable. This allows for different low,
band, and high pass filters to be constructed for multiple audio filtering configurations.
If is a parametrizable filter with symmetric or antisymmetric coefficients, odd number
of taps. Uses 2s complement and fixed-point data. Coefficients are set via an SDI
Interface.

How to test

Use TinyTapeout Demo board to connect PMOD to Tiny Tapeout project, program
filter coefficients serially, and experience the results!

External hardware

• I2S2 PMOD device: https://digilent.com/shop/pmod-i2s2-stereo-audio-input-
and-output/

• Serial programmer

Pinout

Input Output Bidirectional
0 SPI CS DAC MCLK
1 SPI MOSI DAC LRCK

176

https://github.com/amalnicof/tt09-firEngine

Input Output Bidirectional
2 DAC SCLK
3 SPI SCLK DAC Data
4 ADC MCLK
5 ADC LRCK
6 ADC SCLK
7 ADC Data

177

4x4multiplier [194]

• Author: hirod nazari, samarth pusegaonkar
• Description: A multiplier that takes in 2 4-bit inputs and outputs a 8-bit result
• GitHub repository
• HDL project
• Mux address: 194
• Extra docs
• Clock: 0 Hz

How it works

The code takes in two 4-bit inputs, and multiplies them, outputting the 8-
bit result. The way this is done is by utilizing multiple layers of full adders,
with each layer of full adders acting as a multiplication. Four layers indi-
cate the four multiplications, each bit of the second input being multiplied
by the first input. Each layer is additionally offset, to correct for bit placement.

178

https://github.com/Samarth-SP/tt09-secC-10-array-multiplier

How to test

Put inputs in test.py, with input 1 being the left 4 bits of dut.ui_in.value, and input 2
being the right 4 bits of dut.ui_in.value. The corresponding output is compared with
dut.uo_out.value, which should be the correct result of the multiplication.

External hardware

N/A

Pinout

179

Input Output Bidirectional
0 ui_in[0] uo_out[0] 1b’0
1 ui_in1 uo_out1 1b’0
2 ui_in2 uo_out2 1b’0
3 ui_in[3] uo_out[3] 1b’0
4 ui_in[4] uo_out[4] 1b’0
5 ui_in[5] uo_out[5] 1b’0
6 ui_in[6] uo_out[6] 1b’0
7 ui_in[7] uo_out[7] 1b’0

180

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Lab B Group 1 Array Multiplier [195]

• Author: MarcAnthony Williams & Ivy Zheng
• Description: 4x4 Structural Array Multiplier
• GitHub repository
• HDL project
• Mux address: 195
• Extra docs
• Clock: 0 Hz

How it works

There will be two 4-bit inputs that represents the binary factors and an 8-bit output
for the product. With the use of Full Adders, it combines the partial products and
produces the final binary multiplication result.

How to test

To test this project, there are two inputs. You would set one of them to a negative in
2’s complement form, in binary. You would then multiply both these inputs in binary
and should have a signed integer that accurately represents the multiplication.

External hardware

N/A

Pinout

Input Output Bidirectional
0 q[0] p[0]
1 q1 p1
2 q2 p2
3 q[3] p[3]
4 m[0] p[4]
5 m1 p[5]
6 m2 p[6]
7 m[3] p[7]

181

https://github.com/MarcAnthonyWilliams/tt09-secB-1-array-multiplier
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

4-bit Multiplier [196]

• Author: Jeremy Kang, Idris Al-Wazani
• Description: 4x4 Multiplier using structural verilog
• GitHub repository
• HDL project
• Mux address: 196
• Extra docs
• Clock: 0 Hz

How it works

4x4 multiplier using structural verilog. The structure of the 4x4 multiplier array that
the exercise should emulate is shown below in the diagram. This multiplies two 4-
bit inputs, ‘m’ and ‘q’ in this case, to an 8-bit product, ‘p’. The code takes each
consecutive bit of q and cascades it along the first bit of m. From there, full adders
are used to combine each bit’s value.

Figure 17: Block Diagram

182

https://github.com/jjk9914/tt09-secC-13-array-multiplier

How to test

Test cases for inputs m and q should result in the expected product value of p. The
test cases in the test python compilation essentially declare two values that should
be multiplied and the predicted correct output of the multiplication. To test the
functionality, access the test/README.md file.

External hardware

N/A

Pinout

Input Output Bidirectional
0 q[0] p[0]
1 q1 p1
2 q2 p2
3 q[3] p[3]
4 m[0] p[4]
5 m1 p[5]
6 m2 p[6]
7 m[3] p[7]

183

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Array Multiplier [197]

• Author: Jaden Daily
• Description: 4x4 Structural Array Multiplier
• GitHub repository
• HDL project
• Mux address: 197
• Extra docs
• Clock: 0 Hz

How it works

Explain how an array multiplier works, as well as partial products:
An array multiplier is a combinational circuit that multiplies two binary numbers to-
gether. The partial products are generated for each bit of the second operand and
then adding them together using full adders. Each bit of the multiplier, in this case Q,
produces partial products by using an AND-gate with every bit of M. Since this is a
4x4 multiplier, there will be 4 rows of 4-bit partial products. The partial products are
then added together using full adders, with carry bits being moved to the next column
as needed.

Block diagram

graph TD;
M["Input M (4 bits)"] -->|"Partial Products"| PP["Partial Product Creation"]
Q["Input Q (4 bits)"] -->|"Partial Products"| PP
PP -->|"Partial Products"| FA["Full Adders"]
FA -->|"Product (8 bits)"| P["Output Product (p)"]
CL["Control Logic"] -->|"Control signals"| PP
CL -->|"Control signals"| FA
FA -->|"Cout signals"| C["Carry Outputs (c1, c2, c3, c4, c5, c6, c7, c8)"]
C -->|"Final Carry"| P
E["Enable Signal (ena)"] -->|"Active High"| OE["Output Enable (uio_oe)"]
OE -->|"Enable Control"| P
U["Unused inputs (ena, clk, rst_n)"] -->|"Handles unused"| W["Rest of Inputs"]
W -->|"Included for completeness"| OE

184

https://github.com/jadaily/tt09-b-2-array-multiplier

Figure 18: 4x4 Array Multiplier Block Diagram

Block diagram PDF

How to test

Explain how you know that your hardware is working when you get it:
There are numerous ways of testing the hardware. One method is to use a simulation
window with a provided testbench to verify that the output matches the inputs for
each of the test cases. In this scenario, we have five separate test cases to ensure the
hardware functions as needed. A separate check for minimum and maximum values to
guarantee correct carry propagation is also required to ensure proper functionality.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any:
No external hardware was used in this project. The design functions purely on the
FPGA.

Pinout

185

Input Output Bidirectional
0 m[0] p[0]
1 m1 p1
2 m2 p2
3 m[3] p[3]
4 q[0] p[4]
5 q1 p[5]
6 q2 p[6]
7 q[3] p[7]

186

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

4x4 Multiplier [198]

• Author: Fajr Baig, Sahana Long
• Description: 4-by-4 Bit Multiplier, Lab 3
• GitHub repository
• HDL project
• Mux address: 198
• Extra docs
• Clock: 0 Hz

How it works

This is a 4 by 4 bit multiplier designed in Verilog using structural designs.

How to test

To run test, refer to test/README.md. To add new test, modify test/test.py.

External hardware

None.

Pinout

187

https://github.com/fajr-baig/tt09-verilog-adder

Input Output Bidirectional
0 q[0] p[0]
1 q1 p1
2 q2 p2
3 q[3] p[3]
4 m[0] p[4]
5 m1 p[5]
6 m2 p[6]
7 m[3] p[7]

188

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

4x4 Array Multiplier [199]

• Author: Marisol and Shahran
• Description: 4x4 structural Array Multiplier
• GitHub repository
• HDL project
• Mux address: 199
• Extra docs
• Clock: 0 Hz

How it works

Our implementation of the multiplier took in two 4-inputs, m and q, and produced
an 8-bit output, p, representing their product. We then genereated partial products
by ANDing each bit of m with all bits of q and used a series of full adders, to sum
these partial products. Each adder handled the addition of bits and carry-out/carry-in
signals from the previous stage, ensuring proper alignment of the products.

How to test

We parse in an 8-bit value which is split into 2 4-bit values to generate m(bits 8 to 5),
and q(bits 4 to 1). These two values are then multiplied to produce our product p.

External hardware

N/A

Pinout

Input Output Bidirectional
0 q[0] p[0]
1 q1 p1
2 q2 p2
3 q[3] p[3]
4 m[0] p[4]
5 m1 p[5]
6 m2 p[6]
7 m[3] p[7]

189

https://github.com/marisolpark/tt09-labb-6-array-multiplier
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Figure 19: 4x4 array multiplier

190

tt09 kathyhtt [200]

• Author: kathyh
• Description: sample design from tiny tapeout
• GitHub repository
• Wokwi project
• Mux address: 200
• Extra docs
• Clock: 0 Hz

How it works

IEEE is proud to sponsor the Tiny Tapeout Workshop in San Diego this November
2024, in collaboration with UCSD and Tiny Tapeout, founded by Matt Venn. This
workshop offers students worldwide a hands-on experience in semiconductor design,
guiding them through the complete workflow all the way to tapeout. Making this
process accessible empowers the next generation of engineers and technologists to
understand and participate in semiconductor innovation. We extend our gratitude to
UCSD and Tiny Tapeout for creating this incredible learning opportunity.
This tile will turn the various line segments of a a digital number, including a period.
By toggling the inputs, the segments will turn on and off.

How to test

Toggle the inputs and see the segments turn on and off. This can be extended to larger
displays and uses.

External hardware

Digital Display - segmants plus a period

Pinout

Input Output Bidirectional
0 in0 out0 ui0
1 in1 out1 ui1
2 in2 out2 ui2
3 in3 out3 ui3

191

https://github.com/kathyh/tt09-mywokwi
https://wokwi.com/projects/413916532008126465

Input Output Bidirectional
4 in4 out4 ui4
5 in5 out5 ui5
6 in6 out6 ui6
7 in7 out7 ui7

192

4x4 Array Multiplier [201]

• Author: Dominic Iafrate
• Description: Multiplies 2 4bit Arrays
• GitHub repository
• HDL project
• Mux address: 201
• Extra docs
• Clock: 0 Hz

How it works

This project utilizes full adders to create a 4x4 array multiplier. It takes an input of
2 4-bit signals (call them m and q) and multiplies them together to produce an 8-bit
product (call it p). Firstly, each bit of m is ANDed with each bit of q, which creates
a set of partial products. These partial products are then grouped into rows for each
bit of q, making the diagram far more readable and organized. The partial products
are aligned based on their binary place values, and each column corresponds to a bit
position in the final 8-bit product, with the columns further to the left representing
more significant bits. Then, the full adders are used to sum the bits in each column
along with any carry-in from the column before. Logically, the adding of the partial
products begins with the rightmost column, allowing for any carry to be passed up to
a more significant bit. Because each column represents a bit in the final product, the
sum of each column is simply the bit in the product, and once all columns are added,
the final 8-bit product is obtained. The schematic diagram is shown below.

How to test

The easiest way to test this design would be to input binary test values and compare
them to their known product. Using edge cases and arbitrary values would ensure that
all areas are addressed in the testing process, and once the module outputs a value,
comparing it to the known product of the two inputted values would ensure that the
module is working properly. This can be done by cd’ing into the test folder on Git,
opening test.py, and editing the test values.
As for internal testing, changes to the Verilog module can be made such that internal
values can be outputted such as the partial products or the carry-overs. This is similar
to debugging in, say, a Python script, as it ensures that each value at each step of
the process is as it should be, not just the output. If the test value ouptuts are not
equivalent to their known product, this step should be performed to find the logical

193

https://github.com/dom-iafrate/tt09-b-array-multiplier

1 2 3 4

m0m3 m2 m1

q0

5 7 8 9

m0m3 m2 m1

q1

1011 12 13 14

m0m3 m2 m1

q2

1516 17 18 19

m0m3 m2 m1

q3

FA1FA2FA3FA4

FA5FA6FA7FA8

FA9FA10FA11FA12

p4p7 p6 p5 p0p3 p2 p1

Figure 20: Array Multiplier

194

error in the Verilog module. Using these testing methods will make sure that the
multiplier circuit works as expected.

External hardware

N/A

Pinout

Input Output Bidirectional
0 m[0] p[0]
1 m1 p1
2 m2 p2
3 m[3] p[3]
4 q[0] p[4]
5 q1 p[5]
6 q2 p[6]
7 q[3] p[7]

195

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

TINY TAPE OUT [202]

• Author: Slaiman
• Description: Xand gate
• GitHub repository
• Wokwi project
• Mux address: 202
• Extra docs
• Clock: 0 Hz

How it works

BY USING INPUT AND OUTPUTS.

How to test

BY RUNNING THE SIMULATION

External hardware

LOGIC GATES

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

196

https://github.com/slaimansafar/s
https://wokwi.com/projects/413919522908184577

ECE2204 4x4 Array Multiplier [203]

• Author: Jack Li Bill Li
• Description: 4x4 Structural Array Multiplier
• GitHub repository
• HDL project
• Mux address: 203
• Extra docs
• Clock: 0 Hz

How it works

This is a array multiplier to multiply two 4-bit binaries. It uses full adders
to process bitwise multiplications, the circuit diagram is as shown below:

197

https://github.com/JackLCHN/tt-09-secB-12-array-multiplier

How to test

a testbench called test.py is given. where tests can be given to the project, to create a
new test, change the value for dut.ui_in.value to 0x(any two integers), the product of
the two integers will be calculated in the multiplier, and for assert dut.uo_out.value,
change it to the expected output of the two integers you just inserted, if the program
runs properly, no error should occur.

External hardware

N/A

198

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0] 1b’0
1 ui_in1 uo_out1 1b’0
2 ui_in2 uo_out2 1b’0
3 ui_in[3] uo_out[3] 1b’0
4 ui_in[4] uo_out[4] 1b’0
5 ui_in[5] uo_out[5] 1b’0
6 ui_in[6] uo_out[6] 1b’0
7 ui_in[7] uo_out[7] 1b’0

199

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

TinyTapeout1 [204]

• Author: Matthew H
• Description: Change Display Segments
• GitHub repository
• Wokwi project
• Mux address: 204
• Extra docs
• Clock: 0 Hz

How it works

LED display to show letter H

How to test

turn on 2,3,4, 6,7,8

External hardware

what is that

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

200

https://github.com/mhedayat777/Proj1
https://wokwi.com/projects/413923260134423553

comparator [205]

• Author: prtx
• Description: comparator
• GitHub repository
• Wokwi project
• Mux address: 205
• Extra docs
• Clock: 0 Hz

How it works

Will deal with this later

How to test

Will deal with this later

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 A_IN A_OUT
1 B_IN B_OUT
2
3
4 LT
5 GT
6 EQ
7

201

https://github.com/prtx/tiny-tapeout
https://wokwi.com/projects/413686101237123073

FB GDS [206]

• Author: Fahad Bastaki
• Description: Toggle the pins to turn on the LED display
• GitHub repository
• Wokwi project
• Mux address: 206
• Extra docs
• Clock: 0 Hz

How it works

Seven segment with switches

How to test

Turn on switches

External hardware

SSD, switches

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

202

https://github.com/fbastaki/FB
https://wokwi.com/projects/413919531169918977

4x4 Array Multiplier [207]

• Author: Adrian Lopez and Jack Verdis
• Description: 4x4 Structural Array Multiplier
• GitHub repository
• HDL project
• Mux address: 207
• Extra docs
• Clock: 0 Hz

How it works

A 4-bit array multiplier is a combinational circuit that multiplies two 4-bit binary num-
bers using AND gates and full adders. Each bit of one number is multiplied by each
bit of the other to create partial products. These products are aligned in a grid, with
each row shifted one position to the left, like multiplication. These partial products
are then added together using half-adders and full adders. Each takes three inputs and
creates a sum resulting in an 8-bit binary number.

203

https://github.com/Adrian-E-L/tt09-B-14-array-multiplier

Figure #1 4x4 Mutipler Array

How to test

In order to test the product, two binary inputs need to be inputted into the code: the
first four bits being the first number and the last four bits being the last number. These
numbers are then run through the code, which outputs an 8-bit number that is the
result of multiplying the two given numbers.

External hardware

N/A

204

Pinout

Input Output Bidirectional
0 q[0] p[0]
1 q1 p1
2 q2 p2
3 q[3] p[3]
4 m[0] p[4]
5 m1 p[5]
6 m2 p[6]
7 m[3] p[7]

205

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Semana UCU Verilog [224]

• Author: Universidad Católica del Uruguay
• Description: Union of proyects done in class
• GitHub repository
• HDL project
• Mux address: 224
• Extra docs
• Clock: 0 Hz

Summary

This project is a compilation of designs created by students with little to no knowledge
in electronics, as a part of a hands-on learning course during * SEMANA UCU* , with
their outputs multiplexed so we can test all. There were 15 total projects submitted,
based on 3 different guidelines. Select the project using mux_in[0:3].

Guidelines

1- Basic Project
• Description: A shift register with ui_in[0] as input and ui_in1 as external clock.

When the shift register contains a specific key chosen by the students, ui_out[0]
is driven to 1.

• How to test: Connect ui_in1 with an external clock and insert the key via ui_in1
form MSB to LSB

2- Advanced Project N°1
• Description: Decoder from 3 bits to 7 segment display with ui_in[2:0] as inputs.

Some groups upped it to 4 bits
• How to test: Input a 3 bit number through ui_in[2:0] and check if the output

lights up the correct number (Watch out, most groups made ui_in[0] be the
MSB and ui_in2 be the LSB of your input)

206

https://github.com/Franco-Barto/Semana_UCU_verilog
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

3- Advanced Project N°2
• Description: A 3 bit counter, driven by an external clock through ui_in[0], con-

nected to the 3 bits to 7 segment display decoder from Advanced Project N°1.
Once again some groups upped both the counter and the decoded to 4 bits.

• How to test: Connect ui_in[0] to an external clock and check if the 7 segment
display lights up correctly.

Projects (Ordered by mux value)

Group 0
• Member(s): Locatelli, Roldós
• Wokwi: https://wokwi.com/projects/410732069226456065
• Guideline chosen for project: Advanced Project N°1
• Details: Uses 4 bits as input, and a common cathode display

Group 1
• Member(s): Giacometti, Salvo, Varela
• Wokwi: https://wokwi.com/projects/410463015062285313
• Guideline chosen for project: Advanced Project N°2
• Details: Uses a common cathode display, and counts up to 10 and overflows.

Group 2
• Member(s): Raposo
• Wokwi: https://wokwi.com/projects/410724169008053249
• Guideline chosen for project: Advanced Project N°1
• Details: Uses 3 bits as input, and a common cathode display

Group 3
• Member(s): Bava, Perez
• Wokwi: https://wokwi.com/projects/410732939207035905
• Guideline chosen for project: Advanced Project N°1
• Details: Uses 3 bits as input, and a common cathode display

207

Group 4
• Member(s): Firpo, Pursals
• Wokwi: https://wokwi.com/projects/410570046815176705
• Guideline chosen for project: Advanced Project N°1
• Details: Uses 3 bits as input, and a common cathode display

Group 5
• Member(s): Martinez
• Wokwi: https://wokwi.com/projects/410640428205329409
• Guideline chosen for project: Advanced Project N°2
• Details: Uses a common cathode display, and counts up to 8 and overflows.

Group 6
• Member(s): Nasso, Juarez
• Wokwi: https://wokwi.com/projects/410553650788005889
• Guideline chosen for project: Advanced Project N°2
• Details:Uses a common cathode display, and counts up to 16 and overflows.

(Only displays correctly up to 9)

Group 7
• Member(s): Lenzuen, Gauthier
• Wokwi: https://wokwi.com/projects/410463710171875329
• Guideline chosen for project: Advanced Project N°2
• Details:Uses a common anode display, and counts up to 8 and overflows. In this

case, clock is driven by ui_in1, and ui_in[0] sets the counter to 7

Group 8
• Member(s): Mendez, Vago
• Wokwi: https://wokwi.com/projects/410463176068023297
• Guideline chosen for project: Advanced Project N°2
• Details:Uses a common cathode display, and counts up to 16 and overflows.

(Only displays correctly up to 9)

208

https://en.wikipedia.org/wiki/Collatz_conjecture

Group 9
• Member(s): Albín
• Wokwi: https://wokwi.com/projects/410462842465590273
• Guideline chosen for project: Basic Project
• Details: Key is 0x11

Group 10
• Member(s): Muniz
• Wokwi: https://wokwi.com/projects/410463191701250049
• Guideline chosen for project: Basic Project
• Details: Key is 0xB2

Group 11
• Member(s): Cerizola, Mesa
• Wokwi: https://wokwi.com/projects/410555856765101057
• Guideline chosen for project: Basic Project
• Details: Key is 0x80

Group 12
• Member(s): Romano, Ventós
• Wokwi: https://wokwi.com/projects/410463349567547393
• Guideline chosen for project: Basic Project
• Details: Both 0x7F and 0xFF work as key

Group 13
• Member(s): Locatelli, Roldós
• Wokwi: https://wokwi.com/projects/410639448686247937
• Guideline chosen for project: Basic Project
• Details: Key is 0x49

Group 14
• Member(s): Hernández, Pedron
• Wokwi: https://wokwi.com/projects/410643958389030913
• Guideline chosen for project: Basic Project
• Details: Key is 0x55

209

Schematic

External hardware

7 segment displays (common anode and common cathode) LEDs

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0]
1 ui_in1 uo_out1
2 ui_in2 uo_out2
3 ui_in[3] uo_out[3]
4 mux_in[0] uo_out[4]
5 mux_in1 uo_out[5]
6 mux_in2 uo_out[6]
7 mux_in[3]

210

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Figure 21: block diagram

211

4 by 4 Array Multiplier [226]

• Author: Hanyuan (Bob) Huang
• Description: 4x4 Structural Array Multiplier
• GitHub repository
• HDL project
• Mux address: 226
• Extra docs
• Clock: 0 Hz

How it works

The structural 4 by 4 binary array multiplier generates four partial products by ANDing
each bit of one 4-bit input with each bit of the other. Each partial product is then
shifted according to its significance (based on bit position). The shifted rows are
summed using binary adders, yielding an 8-bit product. This structured approach is
called an array multiplier.

How to test

To test a 4x4 binary multiplier, apply a set of 4-bit input pairs, covering typical, edge,
and corner cases. For each pair, verify that the output matches the expected 8-bit
product. Automate tests to check all possible inputs (total of 256 combinations) if
feasible, or focus on key cases to ensure accuracy and catch potential design errors.

External hardware

N/A

Pinout

Input Output Bidirectional
0 q[0] p[0]
1 q1 p1
2 q2 p2
3 q[3] p[3]
4 m[0] p[4]
5 m1 p[5]

212

https://github.com/BHMCRK1016/tt09-b-8-array-multiplier
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture

Input Output Bidirectional
6 m2 p[6]
7 m[3] p[7]

213

http://www.ericr.nl/wondrous/pathrecs.html

Figure 22: 4x4 Array Multiplier

214

4-bit multiplier [228]

• Author: Annie Huang and Sharon Chi
• Description: This project takes in two 4-bit numbers to produce an 8 bit product
• GitHub repository
• HDL project
• Mux address: 228
• Extra docs
• Clock: 0 Hz

How it works

The project takes in two 4-bit numbers and performs multiplication to produce a prod-
uct p. For each bit in the 4-bit inputs, the partial product was calculated by performing
bitwise AND between the two inputs, resulting in 4 different partial products. Then
the partial product would be shifted according to their multiplication process by shift-
ing them in bits. Lastly, the partial products would be summed up to find the 8-bit
product.

215

https://github.com/Sharonc03/tt09-secC-8-array-multiplier

How to test

We tested the code by creating a test bench giving it different inputs and the product
it should get for each set of inputs after multiplication. If the result after running the
code is the same as what was entered in the test bench, then the code would pass the
test.

External hardware

None

216

Pinout

Input Output Bidirectional
0 a[0] c[0]
1 a1 c1
2 a2 c2
3 a[3] c[3]
4 b[0]
5 b1
6 b2
7 b[3]

217

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

OpenRAM SRAM macro [229]

• Author: K.Makise
• Description: test OpenRAM sram macro, 32x16
• GitHub repository
• HDL project
• Mux address: 229
• Extra docs
• Clock: 0 Hz

Introduction

This project is aim to test the OpenRAM macros(modified) in tt.

Structure

This project caontains 1 32x16 sram macrp, 1 sram controller, 1 UART port(RX &
TX).

How to test

This project relies on the UART to communicate with. There are 2 phases to control
the sram, one is the address phase, which tells the sram controller which address and
which operation you want to do; Another is the data phase, depending on the operation,
it could be the data being read out or the data you want to write into the sram. When
transfering the address to the sram controller, in order to make ” write ” operation,
the [5] Bit needs to be set to ” 0 “, and vice versa, the [5] Bit needs to be set to” 1 ”
to do the ” read ” operation.
There’s a dpu inside it, the [7] is used to activate the dpu, which will read the data in
sram, do some operation, and then write back to the sram.
Just to make sure uart cmd timing. Suggest to transfer the first cmd only when
uart_ready == 1

218

https://github.com/FriedrichWu/tt09-sram

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 uart_ready
1
2
3 rx_in
4 tx_out
5
6 overrun
7 error

219

Array Multiplier [230]

• Author: Theodore Hua
• Description: Implementing a 4x4 multiplier using structural logic
• GitHub repository
• HDL project
• Mux address: 230
• Extra docs
• Clock: 0 Hz

How it works

Github Link: https://github.com/th3474/tt09-array-multiplier.git
Given two 4-bit inputs of m and q. We multiply m and q to produce the 8-bit output
of p.
Figure 1: Diagram of a 4-bit multiplier: https://github.com/th3474/tt09-array-
multiplier/blob/main/Multiplier%20Diagram%201.png
We implemetented a 4x4 array of row q and column m. Using logic AND gate, we
fill each index of the arrays to contain the product of m[i]q[j] with i and j is the
corresponding index of m and q.
We draw diagonal lines in the array as shown in the below diagram to see that every
summation of all terms included in each diagonal lines is equal to each bit of the output
p, starting from m[0]q[0] = p[0], m1q[0]+m1q1 = p[0],…,m[3]q[3] = p[6], with the
carryout of p[6] = p[7].
To obtain each bit of the 8-bit output p, we use the 1-bit fulladder module to slowly
all up the term included in each diagonal line. An 1-bit fulladder module requires 3
inputs of x, y, carry in and outputs the sum of x + y with its carryout.
Figure 2: Breakdown Diagram to implement a 4-bit multiplier: https://github.com/th3474/tt09-
array-multiplier/blob/main/Multiplier%20Breakdown.png

How to test

Enter an 8-bit octaldecimal value input, with the first 4 bits represent the value of the
first term m, and the last 4 bits represent the value of the second term q. The output
is the 8-bit product of the first 4 bits and last 4 bits of the input.

220

https://github.com/th3474/tt09-array-multiplier
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

External hardware

N/A

Pinout

Input Output Bidirectional
0 q[0] p[0]
1 q1 p1
2 q2 p2
3 q[3] p[3]
4 m[0] p[4]
5 m1 p[5]
6 m2 p[6]
7 m[3] p[7]

221

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

VGA Pride [231]

• Author: Rebecca G. Bettencourt
• Description: A VGA demo for showing pride flags
• GitHub repository
• HDL project
• Mux address: 231
• Extra docs
• Clock: 0 Hz

How it works

Displays pride flags on the screen.
To add another flag, create a flag.v file and add it to src/flag_index.v,
test/Makefile, and info.yaml, using the existing flags as examples.

How to test

Connect to a VGA monitor. Set the following inputs to change the displayed flag:

• ui_in[7] to display the first flag
• ui_in[6] to display the next flag
• ui_in[5] to display the previous flag
• ui_in[4] to display the flag whose index is on uio_in

Index Flag
0 Rainbow flag, 6 stripes
1 Rainbow flag, 7 stripes
2 Rainbow flag, 8 stripes
3 Rainbow flag, 9 stripes
4 Philadelphia rainbow flag
5 Progress rainbow flag
6 Progress rainbow flag 2021 version
7 Trans pride flag
8 Abrosexual pride flag
9 Aceflux pride flag
10 Aegosexual pride flag
11 Agender pride flag
12 Androgyne pride flag
13 Androsexual pride flag

222

https://github.com/RebeccaRGB/tt-vga-pride

Index Flag
14 Aporagender pride flag
15 Aroace pride flag
16 Aroflux pride flag
17 Aromantic pride flag
18 Asexual pride flag
19 Aspec pride flag
20 Bigender pride flag (pink purple white purple blue)
21 Bigender pride flag (blue white purple white pink)
22 Bigender pride flag (pink yellow white purple blue)
23 Bisexual pride flag
24 Ceterosexual pride flag
25 Demiandrogyne pride flag (pink purple blue)
26 Demiandrogyne pride flag (green white green)
27 Demiboy pride flag
28 Demifluid pride flag
29 Demiflux pride flag
30 Demigender pride flag
31 Demigirl pride flag
32 Demiromantic pride flag
33 Demisexual pride flag
34 Disability rights flag (gold silver bronze tricolor)
35 Disability rainbow flag
36 Gender-neutral pride flag
37 Genderfluid pride flag
38 Genderflux pride flag
39 Genderqueer pride flag
40 Greygender pride flag
41 Greysexual pride flag
42 Gynosexual pride flag
43 Intersex pride flag (purple circle)
44 Intersex pride flag (blue/pink gradient)
45 Thislesbianlife lesbian pride flag (pink and red)
46 Sadlesbeandisaster lesbian pride flag, 7 stripes (orange and pink)
47 Sadlesbeandisaster lesbian pride flag, 5 stripes (orange and pink)
48 Lydiandragon lesbian pride flag (violet crocus dill rose)
49 Maya Kern lesbian pride flag (violet rose crocus dill)
50 RebeccaRGB femme lesbian pride flag (violet lavender pink rose)
51 Littleender pride flag
52 Maverique pride flag
53 Leonis Ignis MLM pride flag (brown and blue)

223

Index Flag
54 Vincian MLM pride flag, 7 stripes (green and blue)
55 Vincian MLM pride flag, 5 stripes (green and blue)
56 Vincian MLM pride flag (light blue and light green)
57 Multigender pride flag
58 Multisexual pride flag
59 Neptunic pride flag
60 Neutrois pride flag
61 Nonbinary pride flag
62 Objectum pride flag
63 Omnisexual pride flag
64 Pangender pride flag
65 Pansexual pride flag
66 Polyamory pride flag (blue, red, black with yellow pi)
67 Polyamory pride flag (blue, magenta, purple with yellow heart)
68 Polygender pride flag
69 Polysexual pride flag
70 Pomosexual pride flag
71 Proculsexual pride flag
72 IBM PS/2 pride flag
73 Queer pride flag
74 Trains pride flag (Train Landscape, Ellsworth Kelly, 1953)
75 Transfeminine pride flag
76 Transmasculine pride flag
77 Transneutral pride flag
78 Trigender pride flag
79 Unlabeled pride flag
80 Uranic pride flag
81 Voidpunk pride flag

External hardware

TinyVGA PMOD

Pinout

Input Output Bidirectional
0 address mode R1 A0
1 G1 A1

224

https://github.com/mole99/tiny-vga

Input Output Bidirectional
2 B1 A2
3 VSync A3
4 set R0 A4
5 prev G0 A5
6 next B0 A6
7 reset HSync A7

225

4-bit Array Multiplier [232]

• Author: Minjae Kim, Jiawei Ding
• Description: 4-bit array multiplier using structural Verilog
• GitHub repository
• HDL project
• Mux address: 232
• Extra docs
• Clock: 0 Hz

How it works

This project implements a 4-bit array multiplier using structural Verilog. It takes
two 4-bit binary inputs (m and q) and computes their product, outputting the result
as an 8-bit binary number. The multiplication is performed using an array multiplier
architecture, which generates partial products for each bit of the inputs and sums them
using a series of adders.
Partial products are calculated based on the bits of each 4-bit input. The summation
of partial products is arranged in stages, and the final result is accumulated through
these stages, producing an 8-bit result (uo_out[7:0]).

How to test

1. Input Setup: Connect the first 4-bit input m through ui_in[3:0] and the
second 4-bit input q through uio_in[3:0].

2. Observing Output: The 8-bit product of m and q will be output on
uo_out[7:0].

3. Clock and Reset: Although there are clk and rst_n signals in the design,
they are not utilized in this version of the array multiplier, which operates as a
combinational circuit.

Example Test Case
• Inputs: Set m to 4'b0011 (decimal 3) and q to 4'b0010 (decimal 2).
• Expected Output: uo_out should be 8'b00000110 (decimal 6).

Testing can be performed on a simulation platform (such as Verilog testbenches in
ModelSim or other simulation tools) by assigning values to ui_in and uio_in and
verifying the uo_out output.

226

https://github.com/MinjaeKim09/tt09-sec-Section-D-Group-3-array-multiplier

External hardware

This project does not require any external hardware. All inputs and outputs are man-
aged internally within the module, which can be tested in simulation environments or
FPGA-based hardware setups.

Circuit Diagram

Figure 23: Circuit Diagram

Pinout

227

Input Output Bidirectional
0 m[0]
1 m1
2 m2
3 m[3]
4 q[0]
5 q1
6 q2
7 q[3]

228

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Noise test for a CDAC capacitor chain [233]

• Author: Venkadesh Eswaranandam & Allan Huang
• Description: This project was made to answer the question of ow much does

bad layout affect performance of a SAR ADC
• GitHub repository
• Analog project
• Mux address: 233
• Extra docs
• Clock: 0 Hz

How to test

This is a test of a C2C array of MIM capacitors to determine how suceptible they are
to noise. Clock the digital pins to see what areas are most suceptible to noise. This
layout was done intentionaly bad to determine as to what degree layout matters.

External hardware

No external hardware used.

Pinout

Input Output Bidirectional
0 DAC bit 0
1 DAC bit 1
2 DAC bit 2
3 DAC bit 3
4 DAC bit 4
5 DAC bit 5
6 DAC bit 6
7 DAC bit 7

Analog pins

ua# analog# Description
0 5 Analog output

229

https://github.com/TinyTinfoil/tt09-sar-dac-noise

ECE-UY 2204 4x4 Array Multiplier [234]

• Author: Jane Manalu, Isabella Menshouse, KJ Moses
• Description: Performs a 4x4 structural array multiplier using fulladder
• GitHub repository
• HDL project
• Mux address: 234
• Extra docs
• Clock: 0 Hz

How it works

This project will receive two four-bit numbers, where both will be multiplied by the
4x4 array multiplier. The multiplier executes using combinations of full adders (FAs)
and two-input AND gates, linked together as shown in the attached circuit diagram.
Each row represents partial products generated by the AND gates, where each bit of
one number is ANDed with each bit of the other number. The results are then added
column by column using full adders, with carries propagated to the next stage. The
final outputforms the product of the two four-bit input numbers

How to test

To test this 4x4 array multiplier, provide an 8-bit number, which then will be split
into two 4-bit inputs by the multiplier’s design source. The circuit will calculate the
product, displayed on output. It will compare this output to the expected result to
verify the answer. Testing with different 8-bit values will ensure reliable functionality
across various inputs.

External hardware

N/A

230

https://github.com/janemanalu/tt09-secd-4-array-multiplier

Figure 1: Logic Diagram for 4X4 Array Multiplier.

Pinout

Input Output Bidirectional
0 q[0] p[0]
1 q1 p1
2 q2 p2
3 q[3] p[3]
4 m[0] p[4]
5 m1 p[5]
6 m2 p[6]

231

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
7 m[3] p[7]

232

Analog Switch [235]

• Author: Andrew Dona-Couch
• Description: A simple analog switch.
• GitHub repository
• Analog project
• Mux address: 235
• Extra docs
• Clock: 0 Hz

How it works

This is a basic analog switch. When the control input is high, the X and Y analog
inputs are connected. When the control input is low, they are not connected.

How to test

Connect X to digital high. Connect a pull-down resistor from Y to ground.
Change the value of the control input. Verify that the inverse of the control input is
correct. Verify that the voltage at Y matches.

Pinout

Input Output Bidirectional
0 Control Input Inverse of Control
1
2
3
4
5
6
7

Analog pins

233

https://github.com/couchand/tt09-analog-switch

ua# analog# Description
0 4 X
1 1 Y

234

array_multiplier [236]

• Author: xg2523_cw4483
• Description: a 4-bit multiplier
• GitHub repository
• HDL project
• Mux address: 236
• Extra docs
• Clock: 0 Hz

Array Multiplier

A 4-bit multiplier that outputs 8-bit result. Author: Xiaoyu Guan, Andy Wu xg2523
cw4483 Lab D 8

How it works

Partial Product Generation: The m and q inputs are both 4-bit binary numbers. To
perform multiplication, partial products are generated by performing AND operations
between each bit of m and each bit of q. These partial products are assigned to wires
mp0, mp1, mp2, and mp3.
Summing Partial Products Using Full Adders: The first row of partial products (mp0)
is directly assigned to s0, representing the first sum. There is no carry-in for this
row. The partial products are added together using a series of full adders (full_adder
module). A full adder takes three inputs: two data bits and a carry-in and outputs a
sum and a carry-out. The subsequent rows of partial products (mp1, mp2, and mp3)
are added together row by row using the full adders, and the resulting sums and carry
bits are propagated forward to the next stage.
Final Product: After the partial products are added in the stages using the
full adders, the final product is formed. The final result, p, is an 8-bit num-
ber that represents the product of the 4-bit multiplicand and the 4-bit multiplier.

235

https://github.com/gguan1/tt09-D-8-array-multiplier

How to test

The 8-bit input represents two 4_bit inputs, the 8-bit output should be the prod-
uct(all unsigned binary numbers) For example: input:00010010 This means the input
m=0001,q=0010. The operation is (in decimal) 12, result p=12=2. So output P
should be 00000010.

External hardware

N/A

Pinout

Input Output Bidirectional
0 m[0] p[0]

236

Input Output Bidirectional
1 m1 p1
2 m2 p2
3 m[3] p[3]
4 q[0] p[4]
5 q1 p[5]
6 q2 p[6]
7 q[3] p[7]

237

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Digital OTA [237]

• Author: UABC
• Description: Low_Voltage operational transconductance amplifier
• GitHub repository
• Analog project
• Mux address: 237
• Extra docs
• Clock: 10000 Hz

How it works

The following circuit amplifies transconductance, high output impedance

How to test

Use a function generator

External hardware

No external hardware used

Pinout

Input Output Bidirectional
0
1
2
3
4
5
6
7

Analog pins

238

https://github.com/Kokko00/dgiota

ua# analog# Description
0 5 Vo
1 0 VA
2 4 VB

239

8-bit-CARRY_SKIP [238]

• Author: Aaquil Kasham, Temiloluwa Omomuwasan
• Description: 8 bit input adder
• GitHub repository
• HDL project
• Mux address: 238
• Extra docs
• Clock: 0 Hz

How it works

This project implements an 8-bit carry-skip adder using a combination of ripple-carry
and skip logic for enhanced performance. The adder is divided into two 4-bit sections.
The lower 4 bits compute the initial partial sum and generate a carry-out, which is then
either passed directly to the upper 4-bit section or skipped, depending on the carry-
propagate signal. This design reduces the delay associated with carry propagation,
making it more efficient than a conventional ripple-carry adder. The final 8-bit sum is
registered and outputted in sync with the clock signal.

How to test

To test the carry-skip adder:

Load the design into your simulation environment.
Set the ui_in and uio_in inputs with the desired 8-bit values for addition.
The result of the addition will appear on uo_out after each rising edge.
Verify that the output matches expected values by comparing uo_out with the sum of the inputs.

For more extensive testing, a testbench can be used to automate input combinations
and check results across various cases.

External hardware

No external hardware is required for this project. List external hardware used in your
project (e.g. PMOD, LED display, etc), if any

240

https://github.com/thekashmasher/CarSkipAdd

Pinout

Input Output Bidirectional
0 a[0] sum[0] b[0]
1 a1 sum1 b1
2 a2 sum2 b2
3 a[3] sum[3] b[3]
4 a[4] sum[4] b[4]
5 a[5] sum[5] b[5]
6 a[6] sum[6] b[6]
7 a[7] sum[7] b[7]

241

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Telephone hybrid [239]

• Author: htfab
• Description: Converts two unidirectional wires to a bidirectional one
• GitHub repository
• Analog project
• Mux address: 239
• Extra docs
• Clock: 0 Hz

How it works

To be added later. In the meanwhile, see the Wikipedia page for Telephone hybrid.

How to test

Add a wire between LINE1 and LINE2 (or LINE1 and the line pin of another hybrid).
Voltage signals sent to IN1 should appear on OUT2 while those sent to IN2 should
appear on OUT1.

External hardware

Analog test equipment (e.g. function generator and oscilloscope)

Pinout

Input Output Bidirectional
0 divider bit 0 debug out 0 debug out 8
1 divider bit 1 debug out 1 debug out 9
2 divider bit 2 debug out 2 debug out 10
3 divider bit 3 debug out 3 debug out 11
4 pass gate / debug in 0 debug out 4 debug out 12
5 debug in 1 debug out 5 debug out 13
6 debug in 2 debug out 6 debug out 14
7 debug in 3 debug out 7 debug out 15

242

https://github.com/htfab/telephone-hybrid
https://en.wikipedia.org/wiki/Telephone_hybrid

Analog pins

ua# analog# Description
0 5 IN1
1 0 OUT1
2 4 LINE1
3 1 LINE2
4 3 OUT2
5 2 IN2

243

Array Multiplier [256]

• Author: Jeryl Ho & Justin Park
• Description: 4x4 Structural Array Multiplier
• GitHub repository
• HDL project
• Mux address: 256
• Extra docs
• Clock: 0 Hz

How it works

An array multiplier is a combinational circuit that performs binary multiplication by
generating and summing partial products. Here’s how a 4x4 array multiplier operates:

1. Binary Multiplicand and Multiplier: A 4x4 multiplier takes two 4-bit binary
numbers (e.g., (A = A_3 A_2 A_1 A_0) and (B = B_3 B_2 B_1 B_0))
as inputs. Each bit in (A) is multiplied by each bit in (B), creating 16 partial
products.

2. Partial Product Generation: Each bit in (A) is ANDed with each bit in (
B), forming a matrix of partial products. For instance, if (A = 1011) and (B
= 1101), then (A_3 ×B_3), (A_3 ×B_2), and so forth are calculated.

3. Shifting and Summing: Each row of partial products corresponds to a shifted
version based on the position of the bits in (B). For example, the row generated
by (A_3) will be shifted three places to the left.

4. Adding Partial Products: The shifted partial products are summed column
by column, similar to traditional addition in binary, often using full adders or half
adders.

5. Final Product: The result is an 8-bit product that represents the multiplication
of the two 4-bit inputs.

Here’s a visual representation of how an array multiplier works:

graph TD
A[Multiplicand A - Bits A3 A2 A1 A0]
B[Multiplier B - Bits B3 B2 B1 B0]

subgraph Partial_Products
A3B0[A3 * B0] --> A3B1[A3 * B1] --> A3B2[A3 * B2] --> A3B3[A3 * B3]
A2B0[A2 * B0] --> A2B1[A2 * B1] --> A2B2[A2 * B2] --> A2B3[A2 * B3]

244

https://github.com/Lasermasterluke/2209-a-4-array-multiplier

A1B0[A1 * B0] --> A1B1[A1 * B1] --> A1B2[A1 * B2] --> A1B3[A1 * B3]
A0B0[A0 * B0] --> A0B1[A0 * B1] --> A0B2[A0 * B2] --> A0B3[A0 * B3]

end

Sum[Sum of Partial Products]
Output[Final Product]

A --> Partial_Products
B --> Partial_Products
Partial_Products --> Sum
Sum --> Output

How to test

To test the array multiplier:

1. Set up the multiplier by providing binary inputs for both the multiplicand (A)
and the multiplier (B).

2. Run the simulation or test in hardware to verify that each partial product is
calculated correctly.

3. Ensure that the partial products are properly shifted and summed to produce
the final product.

4. Compare the final output with the expected result from standard binary multi-
plication to confirm accuracy.

External hardware

No external hardware is required for this project. The array multiplier can be tested
within a simulation environment or with an FPGA setup if hardware verification is
needed.

Pinout

Input Output Bidirectional
0 q[0] p[0]
1 q1 p1
2 q2 p2
3 q[3] p[3]
4 m[0] p[4]

245

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
5 m1 p[5]
6 m2 p[6]
7 m[3] p[7]

246

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Array multiplier [258]

• Author: Wyte wu ,Xintong Hu
• Description: 4x4 Structural Array multiplier
• GitHub repository
• HDL project
• Mux address: 258
• Extra docs
• Clock: 0 Hz

Figure 24: alt text

247

https://github.com/wyteeee/tt09-sec-A---3--array-multiplier

How it works

When multiplying two 4-bit numbers, m = 1011 (11 in decimal) and q = 1101 (13 in
decimal), the multiplier first generates partial products (m0, m1, m2, and m3) by AND-
ing each bit of q with all bits of m. For instance, m0 results from q[0] &amp;
m, producing 1101, and similarly, m2 and m3 are also 1101, while m1 is 0000 since
q[1] is zero. These partial products are then summed column-wise using full adders,
combining overlapping bits and propagating carries. For example, in the first column,
p[0] is directly assigned from m0[0], which is 1. Moving to the second column, we
add m0[1] and m1[0] with any carry (which is zero in this case), giving a sum of
1 and a carry of zero, resulting in p[1] = 1. In the third column, adding m0[2],
m1[1], and the carry results in a sum of 0 and a carry of zero, making p[2] = 0. In
the fourth column, adding m0[3] and m1[2] with zero carry gives a sum of 1 and no
carry, so p[3] = 1. Continuing this process for all columns and partial products, the
final 8-bit product p is formed as 10011111 (143 in decimal), representing the correct
product of 11 and 13.

How to test

The Cocotb testbench for your project sets up a clock running at 100 KHz and initializes
the design by asserting and de-asserting a reset signal (rst_n). It tests our Verilog
module by setting various input values (ui_in, uio_in) and checking the resulting
output (uo_out) using assertions to ensure correctness. For each test case, like Test
Case 3, the test sets specific input values (e.g., 0x2_6), waits for one clock cycle to
allow the inputs to propagate through the design, and verifies that the output matches
an expected value (in this case, 12). This structured approach allows us to efficiently
validate the behavior of our module for different input scenarios and edge cases.

External hardware

N/A List external hardware used in your project (e.g. PMOD, LED display, etc), if
any

Pinout

Input Output Bidirectional
0 q[0] p[0]
1 q1 p1
2 q2 p2

248

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
3 q[3] p[3]
4 m[0] p[4]
5 m1 p[5]
6 m2 p[6]
7 m[3] p[7]

249

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Array Multiplier [260]

• Author: Rebecca Boadu & Sarah Herrera
• Description: 4x4 Structural Array Multiplier
• GitHub repository
• HDL project
• Mux address: 260
• Extra docs
• Clock: 0 Hz

How it works

Our 4x4 array multiplier multiplies two 4-bit binary numbers to produce an 8-bit product
by breaking down the process into partial products. Each bit of one input is ANDed
with each bit of the other input, creating a 4x4 grid of partial products. These partial
products are organized into rows and shifted leftward, simulating the alignment process
in traditional multiplication. Full adders within each “box” of the grid add these partial
products, managing both the sum and the carry bits. Each carry moves to the next
box, allowing us to systematically add all rows and carry values. Once all additions
are complete, the result is an accurate 8-bit binary product of the two inputs. A block
diagram is also included to illustrate the structure of partial products, adders, and carry
management within the multiplier.

How to test

Testing the 4x4 array multiplier is handled with a Verilog testbench that instantiates
the module, wiring inputs and outputs, along with a Python script for validation. The
Python script applies specific input values, then checks output correctness using as-
sertions to verify expected multiplication results. For each test, values are set for the
inputs, clock cycles are awaited, and the output is asserted to match the expected
product, making it easy to identify any errors.

External hardware

N/A

Pinout

250

https://github.com/sarahherrera/tt09-sec1-group2-array-multiplier

Figure 25: 4x4 Multiplier Diagram

251

Input Output Bidirectional
0 q[0] p[0]
1 q1 p1
2 q2 p2
3 q[3] p[3]
4 m[0] p[4]
5 m1 p[5]
6 m2 p[6]
7 m[3] p[7]

252

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

1bit_am_sdr [261]

• Author: James Sharp
• Description: 1bit AM software defined radio
• GitHub repository
• HDL project
• Mux address: 261
• Extra docs
• Clock: 50000000 Hz

How it works

This project is a Software Defined Radio pipeline for AM radio reception written in
verilog. It works using an external comparator as a 1-bit ADC frontend which is
oversampled and decimated 4096 times to give an extra 6 bits of precision. It is based
on this Hackaday Project: https://hackaday.io/project/170916-fpga-3-r-1-c-mw-and-
sw-sdr-receiver by Alberto Garlassi.
Although this is a fully digital core, but there are plans to make an analog frontend
circuit as an analog design in future Tiny Tapeouts, so both designs would be hooked
up together to create a radio with few external components.
Also, this core is very big - 3x2 Tiny Tapeout tiles (@ 64% utilisation). An area of future
development could be to simplify the demodulation pipeline to reduce gate count.

How to test

You need to connect an external comparator and RC network. You will probably need
a simple RF amplifier as well. See below for more information.
The core has a SPI interface for setting the demodulation frequency and gain. It
consists of a single 32-bit shift register. It has the following format:-

Bits 31 - 30 Bits 29 - 26 Bits 25 - 0
Unused Gain NCO Phase incr.

The gain can take on the following values:

“Gain” value Actual Gain
0 x1

253

https://github.com/jamesrosssharp/tt09-am-sdr
https://hackaday.io/project/170916-fpga-3-r-1-c-mw-and-sw-sdr-receiver
https://hackaday.io/project/170916-fpga-3-r-1-c-mw-and-sw-sdr-receiver

“Gain” value Actual Gain
1 x2
2 x4
3 x8
4 x16
5 - 7 x32

If the gain is set too high, the demodulated signal will wrap and sound distorted, so
adjust the gain down to the minimum needed to hear the station clearly.
The “NCO Phase increment” is the value that is added to the NCO phase every clock
cycle. Use the following python code to calculate the value to write, based on the
desired carrier frequency:

hex(int((1<<26) * <carrier frequency> / <chip clock frequency>))

E.g., for 936kHz (ABC Radio national Hobart) at 50MHz clock frequency, it would
be:

> hex(int((1<<26) * 936000 / 50000000))
'0x132b55'

External hardware

• External comparator
• Resistor bias network
• RC network
• External SPI microcontroller to set station
• RF amplifier

Pinout

Input Output Bidirectional
0 COMP_IN COMP_OUT
1 SPI_MOSI PWM
2 SPI_SCK
3 SPI_CSb
4

254

Input Output Bidirectional
5
6
7

255

Figure 26: Schematic diagram of external circuitry

256

Array Multiplier [262]

• Author: Will Shang, Tyler Huynh
• Description: 4x4 Array Multiplier that multiplies two four-bit numbers
• GitHub repository
• HDL project
• Mux address: 262
• Extra docs
• Clock: 0 Hz

How it works

This project uses a 4x4 Array Multiplier to multiplies two four-bit numbers together,
using a series of full adders to result in an 8 bit product (figure 1). The multiplier
works by systematically multiplying each bit of the first number with each bit of the
second number. These partial products are then combined using a series of full adders
to form the final result.

257

https://github.com/GnahsLliw/tt09-A-1-array-multiplier

Figure 1: 4x4 Array Multiplier

How to test

Input two 4-bit binary numbers and manually verify the output. For example: 1st num:
1001 2nd num: 1011 Output: 1100011 (binary), or 0x63 (hexadecimal) The format of
the output can be adjusted in test.py, but the value they represent should be accurate
to the product of the two 4-bit binary numbers.

Pinout

Input Output Bidirectional
0 m[0] p[0]

258

Input Output Bidirectional
1 m1 p1
2 m2 p2
3 m[3] p[3]
4 q[0] p[4]
5 q1 p[5]
6 q2 p[6]
7 q[3] p[7]

259

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Time to Digital Converter [263]

• Author: Jeremiasz Hauck
• Description: Phase difference measuring circuit with digital output
• GitHub repository
• Analog project
• Mux address: 263
• Extra docs
• Clock: 0 Hz

How it works

A Pseudo-Differential Time to Digital Converter (TDC)

How to test

The TDC has one analog input that is then split into start and stop signals. Because
this TDC has a resolution of around 80 ps, it would be difficult to provide signals with
such a small phase difference, that is why there is an extra variable delay circuit that
delays the stop signal relative to the start signal. You can change the stop signal delay
by configuring the digital input. To test the circuit drive the stop signal for a given
configuration of delay.

External hardware

No external hardware needed.

Pinout

Input Output Bidirectional
0 stop fine delay 0 tdc bit 0 stop coarse delay 4
1 stop fine delay 1 tdc bit 1 start fine delay 0
2 stop fine delay 2 tdc bit 2 start fine delay 1
3 stop fine delay 3 tdc bit 3 start fine delay 2
4 stop coarse delay 0 tdc bit 4 start fine delay 3
5 stop coarse delay 1 tdc bit 5 start enable
6 stop coarse delay 2 tdc bit 6
7 stop coarse delay 3 tdc bit 7

260

https://github.com/13hihi31/tt09-analog-tdc

Analog pins

ua# analog# Description
0 11 stop

261

Delta RNN and Leaky Integrate-and-Fire Nueron Circuit
[264]

• Author: Katherine Rogacheva
• Description: A physical representation of a delta recurrent neural network (Delta

RNN) and a leaky integrate-and-fire (LIF) neuron, that creates an artificial spike
when the difference in the previous and current state is greater than a set delta
threshold.

• GitHub repository
• HDL project
• Mux address: 264
• Extra docs
• Clock: 0 Hz

How it works

Takes inputput voltages and treats that as the input current injection into the LIF
neuron

How to test

N/A

External hardware

N/A

Pinout

Input Output Bidirectional
0 Input current

bit [0]
State variable
bit [0]

Difference in states bit 1

1 Input current
bit 1

State variable
bit 1

Difference in states bit 2

2 Input current
bit 2

State variable
bit 2

Difference in states bit [3]

3 Input current
bit [3]

State variable
bit [3]

Difference in states bit [4]

262

https://github.com/katrogacheva/tt09-LIAFN-chip-design
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
4 Input current

bit [4]
State variable
bit [4]

Difference in states bit [5]

5 Input current
bit [5]

State variable
bit [5]

Difference in states bit [6]

6 Input current
bit [6]

State variable
bit [6]

Difference in states bit [7]

7 Input current
bit [7]

State variable
bit [7]

Difference in states bit [8]

263

tt_um_tim2305_adc_dac [265]

• Author: Timonas Juonys
• Description: 8bit dac and 4bit flash adc
• GitHub repository
• Analog project
• Mux address: 265
• Extra docs
• Clock: 50000000 Hz

How it works

8 bit r2r dac inputs are connected directlly to the digital input pins. its output can
be connected to the analog pin by setting the dac_connect pin high. the connection
is made by a transmission gate. 4bit flash adc has an input range of 0-1 volts, it
refference voltages are set by a resistive voltage divider. the upper bound (the top
voltage) used by the divider can be connected to the analog pin for calibration by
setting adc_cal_connect pin high. The output of the adc is multiplexed on 3 4 bit
busses, this way the frequency on the digital outputs pins is 3 times lower than the
clock.

How to test

to test the dac: set adc_connect = 1 and adc_cal_connect = 0 put your number on
the 8 input pins and read the analog voltage
to test the adc just clock the design and read the bus pins. you can use the internal
dac or you can disconnect the dac and connect an external voltage source.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 dac0 bus0[0] bus2[0]
1 dac1 bus01 bus21
2 dac2 bus02 bus22

264

https://github.com/Timonas04/adc_dac2
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
3 dac3 bus0[3] bus2[3]
4 dac4 bus1[0] dac_conn
5 dac5 bus11 adc_cal_conn
6 dac6 bus12 sti_conn
7 dac7 bus1[3] sti_dac_conn

Analog pins

ua# analog# Description
0 10 a

265

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Verilog ring oscillator [266]

• Author: algofoogle (Anton Maurovic)
• Description: Simple ring oscillator by instantiating a sky130 inv_2 inverter ring
• GitHub repository
• HDL project
• Mux address: 266
• Extra docs
• Clock: 0 Hz

What is this?

Everyone has done a ring oscillator using inverter cells. Now it’s my turn!
This simple example uses verilog to instantiate a ring of (an odd number of)
sky130_fd_sc_hd__inv_2 cells.
It produces its output on uo_out[0].
Assuming each inverter introduces a delay of ~70ps, and there are 1001 of them, then
hopefully this will oscillate at ~14MHz?

Pinout

Input Output Bidirectional
0 osc_out
1
2
3
4
5
6
7

266

https://github.com/algofoogle/tt09-ring-osc

2-bit Flash ADC [267]

• Author: Brandon S. Ramos
• Description: Flash ADC that outputs 2-bit encoded data
• GitHub repository
• Analog project
• Mux address: 267
• Extra docs
• Clock: 0 Hz

How it works

Converts a 1.8v to 0v analog signal into an encoded 2-bit digital signal

How to test

You can test by taking a voltage of 0 to 1.8v to the analog pin 0 and the encoded bits
come out to the dedicated outputs 0 and 1

External hardware

N/A

Pinout

Input Output Bidirectional
0 encoded_out_0
1 encoded_out_1
2
3
4
5
6
7

Analog pins

267

https://github.com/J0NTrollston/tt08-analog-adc

ua# analog# Description
0 9 analog_pin_in
1 8

268

Adaptive Leaky Integrate and Fire Neuron [268]

• Author: Sydnie Figuerres
• Description: Simulates an adaptive leaky integrate and fire neuron
• GitHub repository
• HDL project
• Mux address: 268
• Extra docs
• Clock: 0 Hz

How it works

This neuron model is an adaptive leaky integrate and fire neuron. It behaves similarly
to a traditional leaky integrate and fire neuron(LIF), but takes into consideration the
frequency of spikes occurring. In other words, if a simple LIF were to spike at a
consistent rate, the adaptive LIF model will spike less often over time.

How to test

The file test.py shpuld be used to test this model. By applying varying input values
with an expected output, you can measure the accuracy of this implementation of an
adaptive leaky integrate and fire neuron.

External hardware

There is no external hardware for this model.

Pinout

Input Output Bidirectional
0 Input current

bit[0]
State variable
bit[0]

1 Input current
bit1

State variable
bit1

2 Input current
bit2

State variable
bit2

3 Input current
bit[3]

State variable
bit[3]

269

https://github.com/sfiguerr/tt09-ECE210
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
4 Input current

bit[4]
State variable
bit[4]

5 Input current
bit[5]

State variable
bit[5]

6 Input current
bit[6]

State variable
bit[6]

7 Input current
bit[7]

State variable
bit[7]

Spike bit

270

pll [269]

• Author: Mickey Cheah
• Description: 100 Mhz PLL
• GitHub repository
• Analog project
• Mux address: 269
• Extra docs
• Clock: 0 Hz

How it works

100MHz VCO, vary vctrl to change frequency from ~100MHz to 180Mhz

How to test

Apply vctrl=1.0V, observe vo or vo_dig pins

External hardware

none

Pinout

Input Output Bidirectional
0 up
1 vosc_16
2 down
3
4
5
6
7 vref vo_dig

Analog pins

271

https://github.com/mcheah/tt09-mcheah-pll

ua# analog# Description
0 10 vo
1 11 vstart
2 6 vctrl

272

Matmul System [270]

• Author: Abarajithan
• Description: Matmul System
• GitHub repository
• HDL project
• Mux address: 270
• Extra docs
• Clock: 0 Hz

How it works

This is a simple system that performs matrix-vector multiplication. The matrix K[R,C]
and vector X[R] is sent from outside through UART. They are decoded by a UART
RX module, and sent into the matrix-vector multiplication core as AXI-Stream. The
core performs the multiplication and outputs the result as AXI-Stream. The result is
then packed into UART format by the UART TX module and sent outside.

How to test

iverilog -g2012 -o compiled src/mvm_uart_system.v src/uart_rx.v src/uart_tx.v src/axis_matvec_mul.v src/matvec_mul.v src/skid_buffer.v test/mvm_uart_system_tb.sv test/simple_axis_tb.sv src/project.v && ./compiled

External hardware

None

Pinout

Input Output Bidirectional
0 RX TX
1
2
3
4
5
6
7

273

https://github.com/SkillSurf/tinytapout-matmul-system

Analog MUX module [271]

• Author: Pat Deegan
• Description: Pipe 4 or 8 analog signals around through switchable passgates,

useful for adding debug and inspection to analog projects without wasting many
pins

• GitHub repository
• Analog project
• Mux address: 271
• Extra docs
• Clock: 0 Hz

How it works

This is a package that gives two different mulitplexers a spin. The core is a set of 4
passgates (letting signals pass between A and Z sides) which are “one-hot”, so one of
them is enabled at a time. If you tie all the Zs together, you have a simple 4:1 mux.
The 8 passgate version is an extension of this, and it may be used as 8 analog switches
(only one on at a time) or an 8:1 mux.
In order to give it a good run, numerous test scenarios were implemented that allow
charactirizing the passgates themselves, as well as chaining the muxes together.
This system has, in addition to the muxes, a ring oscillator and driver (created by Matt
Venn), a manually laid out digital block to convert bits to the one-hot signals needed
to control the passgates, and an openlane generate simple counter, that is clocked
directly from the ring oscillator, such that we can drive it at hundreds of megahertz,
divide down the clocking and shoot it through the mux over an analog pin.

How to test

Watch my video.

External hardware

Analog stuff.

Pinout

274

https://github.com/psychogenic/tt09-analogmux

Input Output Bidirectional
0 RSEL0
1 RSEL1
2 RSEL2
3 SEL0
4 SEL1
5 enable_counter
6 enable_ringosc
7

Analog pins

ua# analog# Description
0 10 VRES
1 7 RINGOUT
2 9 MUXOUT
3 8 LADDEROUT

275

Steven’s Wokwi Test [288]

• Author: Steven Abrego
• Description: Switch to 7-Segment Display
• GitHub repository
• Wokwi project
• Mux address: 288
• Extra docs
• Clock: 0 Hz

How it works

Switch number N (1-8) will display digit “N” on the 7-segment display

How to test

Flip switch N, where N is switch 1-8, and the corresponding digit will appear on the
displau

External hardware

8-Switch array, 7-Segment Display (common cathode)

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

276

https://github.com/stevenabrego/TT-Workshop-StevenAbrego
https://wokwi.com/projects/414107691971107841

2-Bit-Adder [289]

• Author: Jamin
• Description: 2 Bit Adder
• GitHub repository
• Wokwi project
• Mux address: 289
• Extra docs
• Clock: 0 Hz

How it works

Serves as a 2-bit adder with IN1-4 as inputs and OUT1-3 as outputs. IN0 is connected
to OUT0 via an inverter, and this is not part of the 2-bit adder.

How to test

Toggle IN1-4 between HIGH and LOW and observe the OUT1-3, which should follow
a 2-bit adder.

External hardware

LED display

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4
5
6
7

277

https://github.com/jmx1e/tt09-wokwi-jamin
https://wokwi.com/projects/414120357164073985

8-Bit CPU [290]

• Author: University of Waterloo - Fall 2024 ECE 298A
• Description: A basic 8-bit CPU design building off the SAP-1
• GitHub repository
• HDL project
• Mux address: 290
• Extra docs
• Clock: 50000000 Hz

How it works

This project is a basic 8-bit CPU design building off the SAP-1. It is a combination
of various modules developed as a part of the ECE298A Course at the University of
Waterloo.
The control block is implemented using a 6 stage sequential counter for sequencing
micro-instructions, and a LUT for corresponding op-code to operation(s).
The program counter enumerates all values between 0 and F (15) before looping back
to 0 and starting again. The counter will clear back to 0 whenever the chip is reset.
The Instruction register stores the current instructions and breaks it up into the opcode
and address, which are passed into corresponding locations
The 16 Byte memory module consists of 16 memory locations that store 1 byte each.
The memory allows for both read and write operations, controlled by input signals, as
well as data supplied by the MAR.
The MAR is a register which handles RAM interactions, namely specifying the address
for store/load, as well as the data to be stored.
The 8-bit ripple carry adder assumes 2s complement inputs and thus supports addition
and subtraction. It pushes the result to the bus via tri-state buffer. It also includes a
zero flag and a carry flag to support conditional operation using an external microcon-
troller. These flags are synchronized to the rising edge of the clock and are updated
when the adder outputs to the bus.
The Accumulator register functions to store the output of the adder. It is synchronized
to the positive edge of the clock. The accumulator loads and outputs its value from
the bus and is connected via tri-state buffer. The accumulator’s current value is always
available as an output (and usually connected to the Register A input of the ALU)
The B register stores the second operand for ALU operations which is loaded from
RAM.

278

https://github.com/gjrchen/8-Bit-CPU-top

The Output register outputs the value from register A onto the uo_out pins.
The 8 Bit Bus is driven by various blocks. We allow multiple blocks that are able to
write using tri-state buffers.

Supported Instructions

Mnemonic Opcode Function
HLT 0x0 Stop processing
NOP 0x1 No operation
ADD
{address}

0x2 Add B register to A register, leaving result in A

SUB
{address}

0x3 Subtract B register from A register, leaving result in A

LDA
{address}

0x4 Put RAM data at {address} into A register

OUT 0x5 Put A register data into Output register and display
STA
{address}

0x6 Store A register data in RAM at {address}

JMP
{address}

0x7 Change PC to {address}

Instruction Notes
• All instructions consist of an opcode (most significant 4 bits), and an address

(least significant 4 bits, where applicable)

Control Signal Descriptions

Control
Signal Array Component Function
Cp 14 PC Increments the PC by 1
Ep 13 PC Enable signal for PC to drive the bus
Lp 12 PC Tells PC to load value from the bus
nLma 11 MAR Tells MAR when to load address from the

bus
nLmd 10 MAR Tells MAR when to load memory from the

bus
nCE 9 RAM Enable signal for RAM to drive the bus

279

Control
Signal Array Component Function
nLr 8 RAM Tells RAM when to load memory from the

MAR
nLi 7 IR Tells IR when to load instruction from the

bus
nEi 6 IR Enable signal for IR to drive the bus
nLa 5 A Reg Tells A register to load data from the bus
Ea 4 A Reg Enable signal for A register to drive the bus
Su 3 ALU Activate subtractor instead of adder
Eu 2 ALU Enable signal for Adder/Subtractor to

drive the bus
nLb 1 B Reg Tells B register to load data from the bus
nLo 0 Output Reg Tells Output register to load data from the

bus

Sequencing Details

• The control sequencer is negative edge triggered, so that control signals can be
steady for the next positive clock edge, where the actions are executed.

• In each clock cycle, there can only be one source of data for the bus, however
any number components can read from the bus.

• Before each run, a CLR signal is sent to the PC and the IR.

Instruction Micro-Operations

Stage HLT NOP STA JMP
T0 Ep, nLma Ep, nLma Ep, nLma Ep, nLma
T1 Cp Cp Cp Cp
T2 nCE, nLi nCE, nLi nCE, nLi nCE, nLi
T3 ** - nEi, nLma nEi, Lp
T4 - - Ea, nLmd
T5 - - nLr

Stage LDA ADD SUB OUT
T0 Ep, nLma Ep, nLma Ep, nLma Ep, nLma
T1 Cp Cp Cp Cp

280

Stage LDA ADD SUB OUT
T2 nCE, nLi nCE, nLi nCE, nLi nCE, nLi
T3 nEi, nLma nEi, nLma nEi, nLma Ea, nLo
T4 nCE, nLa nCE, nLb nCE, nLb -
T5 - Eu, nLa Su, Eu, nLa -

Instruction Micro-Operations Notes
• First three micro-operations are common to all instructions.
• NOP operation executes only the first three micro-operations.
• Cp signal is not asserted during the HLT instruction in T2.
• ** Halt internal register is set to 1. More on this later

Programmer

Stage Control Signals Programmer specific signals
T0 Ep, nLMA ready = 1
T1 Cp ready = 0
T2 - -
T3 nLmd read_ui_in = 1
T4 nLr read_ui_in = 0, done_load = 1
T5 - done_load = 0

Detailed Overview T0: Control Signals the same as the typical default microin-
struction – load the MAR with the address of the next instruction. Assert ready signal
to alert MCU programmer (off chip) that CPU is ready to accept next line of RAM
data.
T1: Increment the PC, the same as the typical default microinstruction. De-assert
ready signal since the MCU programmer is polling for the rising edge.
T2: Do nothing to allow an entire clock cycle for programmer to prepare the data.
T3: Load the MAR with the data from the bus. Also, assert the read_ui_in signal
which controls a series of tri-state buffers, attaches the ui_in pins straight to the bus.
T4: Load the RAM from the MAR. De-assert the read_ui_in signal (disconnect the
ui_in pins from driving the bus since the ui_in pin data might be now inaccurate).
Assert the done_load signal to indicate to the MCU that the chip is done with the
ui_in data.

281

T5: De-assert done_load signal.

Programmer Notes The MCU must be able to provide the data to the ui_in pins
(steady) between receiving the ready signal (assume worst case end of T0), and the
bus needing the values (assume worst case beginning of T3).
Therefore, the MCU must be able to provide the data at a maximum of 2 clock
periods.

IO Table: CB (Control Block)

Name Verilog Description I/O Width Trigger
clk clk Clock signal I 1 Edge

Transition
resetn rst_n Set stage to 0 I 1 Active Low
opcode opcode Opcode from IR I 4 NA
out control_signals Control Signal Array O 15 NA
programmingprogramming Programming mode I 1 Active High
done_load done_load Executed Load during

prog
O 1 Active High

read_ui_in read_ui_in Push ui_in onto bus O 1 Active High
ready ready_for_ui Ready to prog next

byte
O 1 Active High

HF HF Halting flag O 1 Active High

IO Table: PC (Program Counter)

Name Verilog Description I/O Width Trigger
bus bus[3:0] Connection to bus IO 4 NA
clk clk Clock signal I 1 Falling Edge
clr_n rst_n Clear to 0 I 1 Active Low
cp Ep Allow counter increment I 1 Active High
ep Cp Output to bus I 1 Active High
lp Lp Load from bus I 1 Active High

282

PC (Program Counter) Notes
• Counter increments only when Cp is asserted, otherwise it will stay at the current

value.
• Ep controls whether the counter is being output to the bus. If this signal is low,

our output is high impedance (Tri-State Buffers).
• When CLR is low, the counter is cleared back to 0, the program will restart.
• The program counter updates its value on the falling edge of the clock.
• Lp indicates that we want to load the value on the bus into the counter (used for

jump instructions). When this is asserted, we will read from the bus and instead
of incrementing the counter, we will update each flip-flop with the appropriate
bit and prepare to output.

• The least significant 4 bits from the 8-bit bus will be used to store the value on
the program counter (0-15). Will be read from (JMP asserted) and written to
(Ep asserted).

• clr_n has precedence over all.
• Lp takes precedence over Cp.

IO Table: Instruction Register (IR)

Name Verilog Description I/O Width Trigger
bus bus Connection to bus IO 8 NA
clk clk Clock signal I 1 Rising Edge
clear ~rst_n Clear to 0 I 1 Active High
opcode opcode Opcode from IR O 4 NA
n_load nLi Load from Bus I 1 Active Low
n_enable nEi Output to bus O 1 Active Low

Instruction Register (IR) Notes
• The A Register updates its value on the rising edge of the clock.
• nEi controls whether the instruction is being output to the bus[3:0]. If this signal

is high, our output is high impedance (Tri-State Buffers).
• nLi indicates that we want to load the value on the bus into the IR. When this

is low, we will read from the bus and write to the register.
• When clear is high, the opcode is cleared back to NOP.
• IR always outputs the current value of the register to CB.

283

IO Table: RAM

Name Verilog Description I/O Width Trigger
addr mar_to_ram_addrAddress for read/write I 4 NA
data_in mar_to_ram_dataData for write I 8 NA
data_out bus Connection to bus O 8 NA
lr_n nLr Load data from MAR I 1 Active Low
ce_n nCE Output to bus I 1 Active Low
clk clk Clock Signal I 1 Rising edge
rst_n ‘1’ Clear RAM I 1 Active Low

RAM Notes
• Addressing: The memory is 4-bit addressable, where the address specifies which

register (out of 16) is being accessed for reading or writing.
• Write operation: A byte of data is written to specific register in RAM, where

the location is determined by the address. Requires write enable lr_n signal as
active (low) and the clock edge to occur.

• Read operation: Data can be read from a specific register in RAM determined
by the input address. Requires chip enable ce_n signal as active (low). The
data is output on the bus, and it is updated on the clock edge.

• Output: Data is presented on the bus line when the chip is enabled for reading,
and high-impedance (Z) otherwise.

• RAM is never reset, rather, we always flash it.

IO Table: MAR

Name Verilog Description I/O Width Trigger
bus bus Connection to bus IO 8 NA
clk clk Clock signal I 1 Rising Edge
addr mar_to_ram_addrAddress for read/write O 4 NA
data mar_to_ram_dataData for write O 8 NA
n_load_datanLmd Load data from Bus I 1 Active Low
n_load_addrnLma Load address from

Bus
I 1 Active Low

MAR Notes
• The MAR updates its value on the rising edge of the clock.

284

• nLmd indicates that we want to load the value on the bus into the data register.
When this is low, we will read from the bus and write to the register.

• nLma indicates that we want to load the value on the bus[3:0] into the address
register. When this is low, we will read from the bus and write to the register.

• MAR always outputs the current value of the data and address registers to the
RAM module.

IO Table: ALU (Adder/Subtractor)

Name Verilog Description I/O Width Trigger
clk clk Clock Signal I 1 Rising edge
enable_out Eu Output to bus I 1 Active High
Register A reg_a Accumulator

Register
I 8 NA

Register B reg_b Register B I 8 NA
subtract sub Perform

Subtraction
I 1 Active High

bus bus Connection to
bus

O 8 NA

Carry Out CF Carry-out flag O 1 Active High
Result
Zero

ZF Zero flag O 1 Active High

ALU (Adder/Subtractor) Notes
• Eu controls whether the counter is being output to the bus. If this signal is low,

our output is high impedance (Tri-State Buffers).
• A Register and B Register always provide the ALU with their current values.
• When sub is not asserted, the ALU will perform addition: Result = A + B
• When sub is asserted, the ALU will perform subtraction by taking 2s complement

of operand B: Result = A - B = A + !B + 1
• Carry Out and Result Zero flags are updated on rising clock edge.

IO Table: Accumulator (A) Register

Name Verilog Description I/O Width Trigger
clk clk Clock Signal I 1 Rising edge

285

Name Verilog Description I/O Width Trigger
bus bus Connection to

bus
IO 8 NA

load nLa Load from bus I 1 Active Low
enable_out Ea Output to bus I 1 Active High
Register A reg_a Accumulator

Register
O 8 NA

clear rst_n Clear Signal I 1 Active Low

Accumulator (A) Register Notes
• The A Register updates its value on the rising edge of the clock.
• Ea controls whether the counter is being output to the bus. If this signal is low,

our output is high impedance (Tri-State Buffers).
• nLa indicates that we want to load the value on the bus into the A Register.

When this is low, we will read from the bus and write to the register.
• When CLR is low, the register is cleared back to 0.
• (Register A) always outputs the current value of the register to the ALU.

IO Table: B Register

Name Verilog Description I/O Width Trigger
bus bus Connection to

bus
IO 8 NA

clk clk Clock Signal I 1 Rising edge
n_load nLb Load from bus I 1 Active Low
value reg_b B Register value O 8 NA

B Register Notes
• The B Register updates its value on the rising edge of the clock.
• nLb indicates that we want to load the value on the bus into the B Register.

When this is low, we will read from the bus and write to the register.
• B Register always outputs the current value of the register to the ALU.

IO Table: Output Register

286

Name Verilog Description I/O Width Trigger
bus bus Connection to

bus
IO 8 NA

clk clk Clock Signal I 1 Rising edge
n_load nLo Load from bus I 1 Active Low
value uo_out B Register value O 8 NA

Output Register Notes
• The Output Register updates its value on the rising edge of the clock.
• nLo indicates that we want to load the value on the bus into the B Register.

When this is low, we will read from the bus and write to the register.

How to test

Provide input of op-code. Check that the correct output bits are being asserted/de-
asserted properly.

Setup
1. Power Supply: Connect the chip to a stable power supply as per the voltage

specifications.
2. Clock Signal: Provide a stable clock signal to the clk pin.
3. Reset: Ensure the rst_n pin is properly connected to allow resetting the chip.

Testing Steps
1. Initial Reset:

• Perform a sync reset by pulling the rst_n pin low, waiting for 1 clock
signal, and then pulling pulling the rst_n high to initialize the chip.

2. Load Program into RAM:

• Use the ui_in pins to load a test program into the RAM. Ensure the
programming pin is high during this process.

• Perform a sync reset by pulling the rst_n pin low, waiting for 1 clock
signal, and then pulling pulling the rst_n high to initialize the chip.

287

• Wait for the ready_for_ui signal to go high, indicating that the CPU is
ready to accept data.

• Provide the first byte of data on the ui_in pins.
• Wait for the done_load signal to go high, indicating that the data has been

successfully loaded into the RAM.
• Repeat the process for each byte of data:

– Wait for ready_for_ui to go high.
– Provide the next byte of data on the ui_in pins.
– Wait for done_load to go high.

• Example program data:

0x10, # NOP
0x73, # JMP 0x3
0x00, # HLT
0x4F, # LDA 0xF
0x2E, # ADD 0xE
0x6D, # STA 0xD
0x50, # OUT
0x3F, # SUB 0xF
0x50, # OUT
0x4D, # LDA 0xD
0x50, # OUT
0x72, # JMP 0x2
0x10, # NOP
0x00, # Padding/empty instruction
0x02, # Constant 2 (data)
0x01 # Constant 1 (data)

3. Run Test Program:

• Set the programming pin low to exit programming mode.
• Perform a sync reset by pulling the rst_n pin low, waiting for 1 clock

signal, and then pulling pulling the rst_n high to initialize the chip.
• Monitor the uo_out and uio_out pins for expected outputs.
• Verify the control signals and data outputs at each clock cycle.

4. Functional Tests:

• Perform specific functional tests for each instruction (e.g., ADD, SUB,
LDA, STA, JMP, HLT).

288

• Verify the correct execution of each instruction by checking the output and
control signals.

Example Test Cases
• HLT Instruction: Example program data:

0x4E, # LDA 0xE
0x50, # OUT
0x00, # HLT
0x4F, # LDA 0xF
0x50, # OUT
0x00, # HLT
0x00, # Padding/empty instruction
0x00, # Padding/empty instruction
0x00, # Padding/empty instruction
0x00, # Padding/empty instruction
0x00, # Padding/empty instruction
0x00, # Padding/empty instruction
0x00, # Padding/empty instruction
0x00, # Padding/empty instruction
0x09, # Constant 9 (data)
0xFF # Constant 255 (data)

This program should first output 9 and then NOT change that to 255. HF
should be set to 1

• NOP Instruction: Example program data:

0x42, # LDA 0x2
0x50, # OUT
0x10, # NOP / Constant 16 (data)
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x4E, # LDA 0xF
0x50, # OUT

289

0x1F, # NOP
0x1F, # NOP / Constant 31 (data)

This program should flash the lower 4 bits of the output register on and off with
different on/off times

• NOP Instruction: Example program data:

0x42, # LDA 0x2
0x50, # OUT
0x10, # NOP / Constant 16 (data)
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x4E, # LDA 0xF
0x50, # OUT
0x1F, # NOP
0x1F, # NOP / Constant 31 (data)

This program should flash the lower 4 bits of the output register on and off with
different on/off times

• ADD Instruction Example program data:

0x50, # OUT
0x2E, # ADD 0xE
0x70, # JMP 0x0
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction

290

0x01, # Constant 1 (data)
0xFF, # Padding/empty instruction

This program should add 1 to the A register, display it and loop back to the
start. The output should be a counter from 0 to 255, then repeat.
CF should be set to 1 when the A register overflows, and 0 when it doesn’t.
CF=1 happens when the A register is 255 and 1 is added to it.
ZF should be set to 1 when the A register is 0, and 0 otherwise.

• SUB Instruction Example program data:

0x50, # OUT
0x3E, # SUB 0xE
0x70, # JMP 0x0
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0x01, # Constant 1 (data)
0xFF, # Padding/empty instruction

This program should subtract 1 to the A register, display it and loop back to the
start. The output should be a counter from 255 to 0, then repeat.
CF should be set to 1 when the A register overflows, and 0 when it doesn’t.
CF=0 happens when the A register is 0 and 1 is subtracted from it.
ZF should be set to 1 when the A register is 0, and 0 otherwise.

• LDA Instruction
See above for example program data.

• OUT Instruction
See above for example program data.

• STA Instruction
Example program data:

291

0x4E, # LDA 0xE
0x2F, # ADD 0xF
0x5F, # OUT
0x6E, # STA 0xF
0x2F, # ADD 0xE
0x5F, # OUT
0x00, # HLT
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0x09, # Constant 9 (data)
0xFF # Constant 255 (data) -> Constant 8 (data)

This program should load 9 to the A register, add 255 to it, resulting in 8 (CF
should set to 1) display it, store it in 0xF, add 9 to it, resulting in 17 (CF should
set to 0) and display it. Then, it should halt, and set HF to 1.

• JMP Instruction
Example program data:

0x44, # LDA 0x4
0x5F # OUT
0x7D, # JMP 0xD
0x0F, # HLT
0x00, # Constant 0 (data)
0xFF, # Constant 5 (data)
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0x45, # LDA 0x5
0x5F # OUT
0x0F, # HLT

292

This program should load 0x4 (0) to the A register, display it, NOT HALT, jump
to 0xD, then load 0x5 (255) to the A register, display it, and halt. HF should
be set to 1.

Acknowledgements

• Darius Rudaitis, Eshann Mehta: RAM
• Evan Armoogan, Catherine Ye: PC
• Damir Gazizullin, Owen Golden: ALU, Accumulator
• Roni Kant, Jeremy Kam: MAR, B Register, Output Register, Instruction Regis-

ter
• Gerry Chen, Siddharth Nema: Control Block and Programmer
• ECE 298A Course Staff: Prof. John Long, Prof. Vincent Gaudet, Refik Yalcin

Pinout

Input Output Bidirectional
0 prog_in_0 output_register_0 in_programming
1 prog_in_1 output_register_1 out_ready_for_ui
2 prog_in_2 output_register_2 out_done_load
3 prog_in_3 output_register_3 out_CF
4 prog_in_4 output_register_4 out_ZF
5 prog_in_5 output_register_5 out_HF
6 prog_in_6 output_register_6
7 prog_in_7 output_register_7

293

fulladder [291]

• Author: Keoni Gandall
• Description: A full adder made with wokwi
• GitHub repository
• Wokwi project
• Mux address: 291
• Extra docs
• Clock: 0 Hz

How it works

This implements a full adder on IN0, IN1, and IN2 switches (for A, B, and Carry). It
uses 2 XOR gates, 2 AND gates, and an OR gate.

How to test

Output will be LEDs on OUT0 and OUT1. The output will be the binary sum of
IN0+IN1+IN2.

External hardware

LEDs are used on OUT0 and OUT1.

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3
4
5
6
7

294

https://github.com/Koeng101/TinyTapeoutFullAdder
https://wokwi.com/projects/414120207283716097

RLE Video Player [292]

• Author: Mike Bell
• Description: Reads run length encoded data from QSPI flash, displays on VGA
• GitHub repository
• HDL project
• Mux address: 292
• Extra docs
• Clock: 24000000 Hz

How it works

A 6bpp run length encoded image or video is read from a W25Q128JV or similar QSPI
flash, and output to 640x480 VGA.
This is perfect for displaying the Bad Apple music video.

Figure 27: A frame from Bad Apple, rendered by the FPGA version of this design

Run Length Encoding The encoding uses 16-bit words. Most words are a run
length in the top 10 bits, and a colour in the bottom 6 bits. A run must come to the
end at the end of each row.

295

https://github.com/MichaelBell/tt09-rle-vga

A run must be at least 2 pixels, and any group of 3 consecutive runs within a row must
be at least 12 pixels, otherwise the data buffer will empty.
8-bit mono audio data can be interleaved into the video stream. The PWM output
value is updated by the value 0xC000 + sample, these must be at the end of a row,
but do not have to be present on every row. With a 24MHz project clock the row
clock is exactly 30kHz.
To compress the audio slightly, sample deltas can also be used, packing 2, 3 or 4
samples into one command. These add a signed offset to the current sample value at
the end of the next 2, 3 or 4 rows:

• 0xD000 + (offset1 &lt;&lt; 6) + offset2 with 2 6-bit
signed offsets

• 0xE000 + (offset1 &lt;&lt; 8) + (offset2 &lt;&lt;
4) + offset3 with 3 4-bit signed offsets

• 0xF000 + (offset1 &lt;&lt; 9) + (offset2 &lt;&lt;
6) + (offset3 &lt;&lt; 3) + offset4 with 4 3-bit signed
offsets

This means that quieter audio takes less space!
Note that row and frame repeat, which were supported on the TT07 and TT IHP
0p2 versions are not supported here because audio data is interleaved into the video
data.
The data is read starting at address 0. The special word 0xBFC0 causes the player
to stop and restart from address 0 at the beginning of the next frame, restarting the
video. This could also be used to display a still image.

How to test

Create a RLE binary file (docs/scripts to do this TBD) and load onto the flash. The
pinout matches the QSPI Pmod. This should be plugged into the audio Pmod, and
then the audio Pmod plugged into the bidir pins. Note the flash must support the h6B
Fast Read Quad Output command, with 8 dummy cycles between address and data.
Connect the Tiny VGA PMOD to the output pins.
Inputs 2-0 set the read latency for the SPI in half clock cycles, it’s likely that will need
to be set to 2 (set input 1 high and inputs 0 and 2 low). This latency depends on the
total round trip time through the mux and out to the flash and back. Valid values are
1 to 4.
Run with a 24MHz clock.

296

https://github.com/mole99/qspi-pmod
https://github.com/MichaelBell/tt-audio-pmod
https://github.com/mole99/tiny-vga

Maximum file size The 16MB flash is only enough for the first minute of Bad Apple.
But because the flash read is just one very long read it would be straightforward to
supply the data stream from the RP2040 or other external source. To make it easier
to do this from the demo board RP2040, the QSPI pin configuration can be modified
by setting in3 high so that the 4 data pins are contiguous.

External hardware

• QSPI PMOD plugged into Audio PMOD
• Tiny VGA PMOD

Pinout

Input Output Bidirectional
0 SPI latency[0] R1 CS
1 SPI latency1 G1 SD0 / SCK
2 SPI latency2 B1 SD1 / SD0
3 Select QSPI pinout vsync SCK / SD1
4 R[0] SD2
5 G[0] SD3
6 B[0] Unused CS
7 hsync PWM audio

297

https://github.com/mole99/qspi-pmod
https://github.com/MichaelBell/tt-audio-pmod
https://github.com/mole99/tiny-vga
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture

Hopfield Network with Izhikevich-type RS and FS Neurons
[293]

• Author: Daniel Solis
• Description: An on-chip implementation of a Hopfield neural network using

Izhikevich-type regular spiking (RS) and fast spiking (FS) neurons with on-chip
Hebbian learning for pattern storage and retrieval.

• GitHub repository
• HDL project
• Mux address: 293
• Extra docs
• Clock: 16000000 Hz

How it works

It is a leaky Integrated Neuron

How to test

Just Test

External hardware

No

Pinout

Input Output Bidirectional
0 learning_enable spikes[0]
1 pattern_input[0] spikes1
2 pattern_input1 spikes2
3 pattern_input2 spikes[3]
4 pattern_input[3] spikes[4]
5 spikes[5]
6 spikes[6]
7

298

https://github.com/cellular-alchemist/tt09-danielsolis
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

4-bit Multiplier [294]

• Author: Sarp Sevil
• Description: A 4x4 array multiplier that multiplies two 4-bit numbers to produce

an 8-bit product.
• GitHub repository
• HDL project
• Mux address: 294
• Extra docs
• Clock: 0 Hz

How it works

Figure 28: image

Above is a diagram that represents a 4-bit multiplier, which takes in two 4-bit integers
and outputs a single 8-bit integer.
This was created using a manual structural design. We utilized a 1-bit full adder module
in our implementation.

• AND-Gates are utilized to multiply each bit of input m with each bit of input q.

299

https://github.com/SarpHS/tt09-secD5-array-multiplier

• We align partial products diagonally to mimic that of manual binary multiplica-
tion.

• We use 1-bit Full Adders to add products and handle carries.
• The outputs of the Full Adders eventually went to the bits of our output p which

is an 8-bit integer.

How to test

Creating your own test cases:

• Go to the test folder and locate test.py.
• Edit test.py and add your own custom test cases.

Example
TEST CASE #0 -> 0 * 1
dut.ui_in.value = 0b00000001
await ClockCycles(dut.clk, 1)
assert dut.uo_out.value = 0b00000000

• Run the test with make and check the tests passed.

• If you’ve forked the repository
• Commit and push your changes to your forked repository
• Check Github Actions to check if your tests have passed

External hardware

N/A

Pinout

Input Output Bidirectional
0 m[0] p[0]
1 m1 p1
2 m2 p2
3 m[3] p[3]
4 q[0] p[4]

300

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
5 q1 p[5]
6 q2 p[6]
7 q[3] p[7]

301

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Perceptron [295]

• Author: Mimi Rapoport
• Description: Simulates a perceptron
• GitHub repository
• HDL project
• Mux address: 295
• Extra docs
• Clock: 0 Hz

How it works

The perceptron takes in three inputs, multiplies them by weights and then sums the
products. It then weighs the sum against a threshold to decide whether to outpur 1 or
0. The perceptron also takes in a desired output and performs a weight update when
the desired output and actual output don’t match. .

How to test

Make sure that the clock and reset are working.

External hardware

None

Pinout

Input Output Bidirectional
0 Input bit [0] Output bit [0]
1 Input bit 1 Output bit 1
2 Input bit 2
3 Input bit [3]
4 Input bit [4]
5 Input bit [5]
6 Input bit [6]
7 Input bit [7]

302

https://github.com/Rapoport-Mimi/Mimi-Rapoport-ECE-210
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Histogramming [296]

• Author: isil isiksalan
• Description: histogramming unit
• GitHub repository
• HDL project
• Mux address: 296
• Extra docs
• Clock: 0 Hz

Histogramming on Chip for Short Luminescence Signals

Isil Isiksalan

09 November 2024

Background To measure the lifetime of short luminescence signals effectively, Time-
Correlated Single Photon Counting (TCSPC) is commonly used. TCSPC measures the
time intervals between photon pulse detections and a synchronized reference signal,
usually from a laser. This data is used to create a histogram of photon arrival times,
which helps in calculating luminescence lifetimes.

This module is useful in TCSPC systems, particularly after a Time-to-Digital Converter (TDC)
or other time-tagging components. It processes 6-bit time-tagged data by sorting these events into
bins. Designed for systems capable of supporting up to 64 bins, our module uses only the odd-
numbered bins, mapping data into 32 bins to save space. This approach allows the estimation of
missing bins after the decay fitting process.

Main Idea

The main idea is to integrate histogramming functionality within a digital chip to simplify data
processing.

Overview of thettumhistogrammingModule

Thettumhistogrammingmodule is designed for digital signal processing, particularly for tasks
that require data binning based on their values. Implemented in Verilog, this module handles
an 8-bit input stream, using the last 6 bits to classify values, and communicates the status and

303

https://github.com/isiksalan/tt09-histogramming

results of its operations through a finite state machine with states IDLE, OUTPUTDATA, and
RESETBINS.

Description of the Module

Inputs and Outputs:

- Inputs:
- uiin[7:0]: Main 8-bit input where binning is derived from the last 6 bits.
- uioin[7:0]: Auxiliary input, not used in the current logic.
- clk: Clock input for synchronization.
- rstn: Active-low reset signal.
- ena: Enable signal to activate histogramming.

- Outputs:
- uoout[7:0]: Outputs the count of the current bin.
- uioout[7:0]: Provides status flags including data validity, last bin output, and readi-

ness for new data.
- uiooe[7:0]: Output enable signal foruioout.

Working Principle:

1.Initialization and Resetting:Clears bins to zero and sets the module for new data
intake.

2.Data Handling and Binning:Receives data, determines the bin index, and updates bin
counts according to the input conditions.

3.State Management:Manages data output and resets based on binning outcomes.

Module Testing

The module underwent thorough testing using a testbench that simulated various operational sce-
narios, including:

- Initial reset and setup.
- Ignoring even-numbered inputs.

304

- Filling multiple odd bins and managing overflow conditions.
- Checking reset functionality after data output.

- Testing operational robustness with manipulated enable signals.

All tests verified the module’s functionality.

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0]
1 ui_in1 uo_out1
2 ui_in2 uo_out2
3 ui_in[3] uo_out[3]
4 ui_in[4] uo_out[4]
5 ui_in[5] uo_out[5]
6 ui_in[6] uo_out[6]
7 ui_in[7] uo_out[7]

305

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

test_friday2 [297]

• Author: Niles Peter
• Description: class
• GitHub repository
• HDL project
• Mux address: 297
• Extra docs
• Clock: 0 Hz

8-bit KoggeStone Adder

Author: Niles Villaverde, Joshua Cho Language: Verilog

How it works

The KoggeStone Adder computes in parallel, first the sum from the two different inputs
and then computes the carry-out for each bit. Then uses the calculated carry-out and
sum of each bit to compute the final result of the adder. Note: No carry-out so values
greater than 255 can not be outputted
In the project.v file, there are 5 different modules: BigCircle, SmallCircle, Square,
Triangle, and tt_um_koggestone_adder8.
Shown in figure 1 below is the block diagram for the flow for the KoggeStone Adder

306

https://github.com/nuv203/KoggeStoneAdder_TinyTapeout

Figure 1: KoggeStone Adder Block Diagram

BigCirle Module The BigCircle module represents the carry generator for the
KoggeStone Adder. It calculates the generated and propagated signal in each bit
stage in the Adder. In comparison to carry-ripple adders, the KoggeStone adder allows
for the carry information to propagate efficiently to multiple bit positions. This allows
for the number of sequential steps in calculating the final carry-out to be reduced.
The BigCircle takes in the generate and propagate signals from the current position in
the adder and the previous position in the adder. Using these signals, BigCircle updates
the generate signal for the bit position to reflect if the carry is generated from this bit
position or propagated from the previous. Then calculates the propagation signal to
decide whether if a carry can be passed through this position.

SmallCircle Module The SmallCircle module passes the carry in signal and gener-
ated carry signal to the next position

Square Module The Square module calculates the current generate and propagate
signal by ANDing the inputs A and B as well as XORing the inputs A and B respec-
tively.

307

Triangle Module The Triangle module calcualtes the sum bit by XORing the prop-
agate bit with the previous carry-in bit.

tt_um_koggestone_adder8 Module The tt_um_koggestone_adder8 module
takes in two 8-bit inputs, ui_in and uio_in. The module also outputs an 8-bit output,
uo_out. Input Signals: Two 8-bit, a and b which are mapped to ui_in and uio_in,
respectively. Cin, carry-in for the addition which is set to zero. g and p, generate and
propagation signal for each bit. c, carries for each bit position.
The first sequence is to use the Square Module to create the initial generate and
progagate calculations. Then uses the BigCircle Module to calculate the intermediate
generate and propagation signals of each bit. In the second stage of the BigCircle
Module, by combining the signals over groups of 4 bits, it further propagates the carry.
In the third stage of the BigCircle Module, it continues the carry propagation over
an even wider spans of bits. Then using the SmallCircle Module, the final Carry-Out
signals for each position are calculated. Then the final sum is calculated using the
Triangle Modules.

How to test

The two different inputs, ui_in[7:0] and uio_in[7:0] are iterated through each possible
combination of 8-bit numbers to test all corner cases. The outputs are set to the
calculated values calculated by the KoggeStone Adder. If the sum between the two
values are greater than 255, the test is skipped as limitations on the hardware prevent
us from having a carry-out value.

External hardware

no external hardware

Pinout

Input Output Bidirectional
0 a[0] sum[0] b[0]
1 a1 sum1 b1
2 a2 sum2 b2
3 a[3] sum[3] b[3]
4 a[4] sum[4] b[4]
5 a[5] sum[5] b[5]

308

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
6 a[6] sum[6] b[6]
7 a[7] sum[7] b[7]

309

Perceptron Neuron [298]

• Author: Michael Chun
• Description: Makes a NAND gate with a perceptron neuron
• GitHub repository
• HDL project
• Mux address: 298
• Extra docs
• Clock: 0 Hz

How it works

Placeholder

How to test

Placeholder

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 Input current

bit [0]
State variable
bit [0]

1 Input current
bit 1

State variable
bit 1

2 Input current
bit 2

State variable
bit 2

3 Input current
bit [3]

State variable
bit [3]

4 Input current
bit [4]

State variable
bit [4]

5 Input current
bit [5]

State variable
bit [5]

310

https://github.com/mtchun1/tt09-ECE210_mtchun
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
6 Input current

bit [6]
State variable
bit [6]

7 Input current
bit [7]

State variable
bit [7]

Output bit

311

carry_select [299]

• Author: Juan, Leyang
• Description: This project designs a 8-bit carry select adder.
• GitHub repository
• HDL project
• Mux address: 299
• Extra docs
• Clock: 0 Hz

How it works

The 8-bit carry select adder works through the full adder and mux. The Carry Select
Adder works by essentially using two ripple adders, with one having cin = 0 and the
other cin = 1. Through this procedure, we are able to speed up the calculation of
selecting which sum depending on our cin.
The ripple adder works by using a cascade of several full adders connected in series
with each other. Each full adder is resposible for their adding their corresponding
bits from both inputs and outputs their carryout to the carryin of the next full adder
until both inputs have been fully added together. The ripple adder, and by extension
the carry select adder is simple to implement and requires minimal logic gates to
implement, making it inexpensive and space-efficient compared to other methods of
addition. However, there is a delay due to the carry propagation which limits the ripple
adder (and therefore the carry-select adder) in its effective speed with larger bitwidth
inputs. However, for this application (8-bits), this adder is very efficient in both space
and speed.
This project uses ‘https://github.com/FCHXWH823/Verilog-Adders’ as reference.

How to test

We tested all the combinations. This means two 8 bits input sum to a 8 bit output,
and we ignore the carry out bit.
Therefore, we expect both the input and the output to be in the range of 0 to 255.

External hardware

We did not use any external hardware.

312

https://github.com/JuanGGil/tt09-carryselect8bit

Pinout

Input Output Bidirectional
0 a[0] sum[0] b[0]
1 a1 sum1 b1
2 a2 sum2 b2
3 a[3] sum[3] b[3]
4 a[4] sum[4] b[4]
5 a[5] sum[5] b[5]
6 a[6] sum[6] b[6]
7 a[7] sum[7] b[7]

313

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

I2C and SPI [300]

• Author: Vidyamol and Arun A V
• Description: Design of I2C and SPI communication protocols
• GitHub repository
• HDL project
• Mux address: 300
• Extra docs
• Clock: 400000 Hz

How it works

I2C and SPI protocol

How to test

send data enable clk

External hardware

No external hardware

Pinout

Input Output Bidirectional
0 i2c_data_in sck_o
1 i2c_clk_in mosi_o
2 miso_i i2c_data_out
3 i2c_clk_out
4 i2c_data_oe
5 i2c_wb_err_i i2c_clk_oe
6 i2c_wb_rty_i
7

314

https://github.com/arunav321/tt09-i2c

Lab C 4x4 Mult-Array [301]

• Author: Justin Morris, Alexa
• Description: This focuses on designing a 4x4 multiplier array with simple parallel

multiplier that calculates the product of two 4-bit binary numbers.The final
design will be used as a Tiny Tapeout project for the purpose of a multiplier.

• GitHub repository
• HDL project
• Mux address: 301
• Extra docs
• Clock: 0 Hz

How it works

In this lab, the functionality of a 4x4 multiplier array utilizing full adders to perform
binary multiplication. The process began with two 4-bit binary numbers, A and B,
from which we generated four partial products by multiplying each bit of B with the
entirety of A.These partial products binary are then aligned for addition.To sum the
partial products, we use full adders, which combined the bits from each partial product
while managing carries through each bit position. This systematic addition ultimately
yielded an 8-bit result, representing the product of the two original 4-bit numbers.
This experiment demonstrates the principles of binary multiplication and the role of
full adders in digital circuit design.

How to test

To test a 4x4 multiplier, apply different combinations of 4 bit input signals while varying
the select lines to ensure the correct input is routed to the output.The output for each
combination should be recorded and compared against the expected output based on
the select line values.Any discrepancies will indicate a fault in the multiplier design or
implementation, allowing for troubleshooting.

External hardware

N/A

Pinout

315

https://github.com/Justin-tech10/tt09-c-1-array-multiplier

Figure 29: 4x4 Array Multiplier

316

Input Output Bidirectional
0 m[0] p[0]
1 m1 p1
2 m2 p2
3 m[3] p[3]
4 q[0] p[4]
5 q1 p[5]
6 q2 p[6]
7 q[3] p[7]

317

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Configurable Logic Block [302]

• Author: Gary Mejia
• Description: A small CLB with a LUT3
• GitHub repository
• HDL project
• Mux address: 302
• Extra docs
• Clock: 0 Hz

How it works

The chip takes in two 8-bit inputs uin_in, this is the three arguments to the boolean
function, write enable of the LUT, and clock enable of the CLB, and uio_in is the
actual boolean function. The single output is the evaluation of the boolean function
given the argument.

How to test

A simple hardware test would be to set the uio_in to 011111111 to get a NAND3. Use
uin_in[3] to program the LUT with the seed and use uin_in[4] to make the output
synchronous. Use uin_in[2:0] to input values into the NAND3.

External hardware

Switches on all inputs and leds on all outputs.

Common Boolean Functions and Seeds

Function Seed
NAND3 01111111
NOR3 00000001
NOT 01010101
XOR2 01100110
Majority 11101000
Even Parity 01101001
One Hot 00010110

318

https://github.com/gmejiamtz/tt09-clb

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0] uio_in[0]
1 ui_in1 uo_out1 uio_in1
2 ui_in2 uo_out2 uio_in2
3 ui_in[3] uo_out[3] uio_in[3]
4 ui_in[4] uo_out[4] uio_in[4]
5 ui_in[5] uo_out[5] uio_in[5]
6 ui_in[6] uo_out[6] uio_in[6]
7 ui_in[7] uo_out[7] uio_in[7]

319

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Tiny RAM DFF 2r1w [303]

• Author: Darryl Miles
• Description: RAM made from DFF 2r1w (32x8)
• GitHub repository
• HDL project
• Mux address: 303
• Extra docs
• Clock: 10000000 Hz

How it works

This is a really bad implementation of RAM that uses standard verilog to implement a
dual-port-read single-port-write RAM using D-type flipflops.

• DO_A Data Out Port-A
• DI_A Data In Port-A
• DO_B Data Out Port-B
• AD_A Address Port-A
• AD_B Address Port-B
• LOHI_A Nibble (4bit) select Port-A
• LOHI_B Nibble (4bit) select Port-B
• W_EN Write Enable (Port-A implied)

2 pages of 16 bytes (8-bits) is the total storage. The high 1-bit of address are set via
RST_N configuration, see below. the low 4-bits of address are supplied on the signal
lines.

How to test

The external ports are as you would expect for a RAM module, similar to other ram
modules based on the pin descriptions.
Memory reads occur all the time, there is no read-enable. Only port-A can be used to
write into. The RST_N does not change the contents of the RAM storage area.
The RST_N release (posedge) is used to latch some additional configuration bits, so
the following values are significant and can only be changed by clocking RST_N with
a posedge which causes capture:

320

https://github.com/dlmiles/tt09-dffram-2r1w

• uio_in[0] ADDRHI 1-bit to change the RAM page that can be accessed. This is
a way to fill out the TT 1x1 tile space a little and allow the upper storage area
to be accessible.

• uio_in[3:1] unused
• uio_in[4] READ_BUFFERED_A enable this will enable a synchronous output

buffer register on the PORT-A to be enable, so the read value becomes available
at the next cycle (pipelined) and held between cycles. If this works as expected
this makes the port output asynchronous or synchronous.

• uio_in[5] READ_BUFFERED_B enable, same as above but for PORT-B.
• uio_in[6] WRITE_THROUGH this will activate a MUX bypass that has the

effect of implementing a READ_AFTER_WRITE policy, so the currently written
value is also the value found at the output port. When inactive (set logic 0) a
READ_BEFORE_WRITE policy should be in effect. TODO check this works
as expected when READ_BUFFERED_A is active.

• uio_in[7] unused, due to it also being the WRITE-ENABLE bit when in normal
operations so allowing the CLK to run freely across reset and an unwanted write
occurring.

External hardware

The standard PCB and RP2040 can be used to access. I expect a Micro Python
interface to follow in an update.

Future areas to explore

Write a custom placement and wiring router to perform better placement and conges-
tion architecture so that RAM size and WORD WIDTH. This would perform placement
into the standard cell track layout so it can be run as a first pass to pack a solution
into a design. Ideally leaving the external signals accessible at the edges of the area.
This might allow packing of any width, any depth, single/dual port (as options into
the placement process) allowing for consistent size estimations to be made.
It seems when standard placement is left to solve this problem you don’t get a result
that scales with increased area usage. TODO some research into exactly what occurs
in those scenarios, it is expected this maybe due to wiring congestion problem of cells
just being in the wrong place / locality and requiring a lot of wiring to get a solution.
I pick dual-port-read support as that should provide a harder problem to solve as a
single-port-read needs less wiring.

321

NOTES

PL_TARGET_DENSITY_PCT=95%
PL_RESIZER_HOLD_SLACK_MARGIN=0.08
GRT_RESIZER_HOLD_SLACK_MARGIN=0.03
CLOCK_PERIOD=100 (10MHz)

• 32x8 3 slew, 26 fanout vio, +106 buffers, resized 646, +16 tie,
+238 hold buffers, No room for 156 instances.

• 28x8 1 slew, 36 fanout vio, +124 buffers, resized 763, +16 tie,
+201 hold buffers, No room for 23 instances.

• 26x8 1 slew, 28 fanout vio, +105 buffers, resized 646, +16 tie,
+191 hold buffers,
10091 vio, 6289 vio after 6th, did not get much better, 6H to 4025 (incomplete
pass)

• 24x8 0 slew, 26 fanout vio, +97 buffers, resized 632, +16 tie,
+176 hold buffers,
9084 vio, 5305 vio after 6th, best 2134 vio after 24th

• 22x8 0 slew, 20 fanout vio, +82 buffers, resized 555, +16 tie,
+171 hold buffers,
7079 vio, 3583 vio after 6th, best 428 vio after 29th, 6H to 427

• 20x8 4 slew, +101 buffers, +101 buffers, resized 649, +16 tie,
+151 hold buffers,
6622 vio, 3390 vio after 6th, best 991 vio after 24th

• 18x8 2 slew, 23 fanout vio, +72 buffers, resized 496, +16 tie,
+138 hold buffers,
4379 vio, 1299 vio after 6th, 0 vio after 43rd,
SUCCESS

• 16x8 0 slew, 24 fanout vio, +76 buffers, resized 506, +16 tie,
+120 hold buffers,
4802 vio, 1631 vio after 6th, 1 vio after 56th, 6H to 64th

Pinout

Input Output Bidirectional
0 DI_A[0] DO_A[0] AD_B[0] (in)
1 DI_A1 DO_A1 AD_B1 (in)
2 DI_A2 DO_A2 AD_B2 (in)
3 DI_A[3] DO_A[3] AD_B[3] (in)
4 AD_A[0] DO_B[0] LOHI_A (in)
5 AD_A1 DO_B1 LOHI_B (in)

322

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Input Output Bidirectional
6 AD_A2 DO_B2
7 AD_A[3] DO_B[3] W_EN (in)

323

http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

ECE-2204 4x4 Array Multiplier [320]

• Author: Evan Dworkin, Dante Minasyan
• Description: Multiplies two 4-bit numbers together
• GitHub repository
• HDL project
• Mux address: 320
• Extra docs
• Clock: 0 Hz

How it works

This project takes in two 4-bit inputs and multiplies them together into an 8-bit out-
put. It uses an array of 12 full adders and 16 AND gates to do so (Figure 1). The
operands are represented by the input pins with [0:3] representing operand 1 and [7:4]
representing operand 2. The product is represented by the 8-bit output pin.

How to test

Input two 4-bit numbers via ui_in. The 4 most significant bits are taken to be the
first term, the 4 least significant bits are taken to be the second term. The 8 uo_out
bits are the output, in binary. For example, an input of 10011101 would be (1001) *
(1101), or 9 * 13. The product would be (01110101), or 117.

Pinout

Input Output Bidirectional
0 m0 p0
1 m1 p1
2 m2 p2
3 m3 p3
4 q0 p4
5 q1 p5
6 q2 p6
7 q3 p7

324

https://github.com/evandworkin/tt09-secA-group5-array-multiplier

Figure 30: 4x4 Array Multiplier

325

Senol Gulgonul tt09 [321]

• Author: Senol Gulgonul
• Description: Display the letters of SEnOLGULGONUL on 7-Seg using internal

oscillator
• GitHub repository
• HDL project
• Mux address: 321
• Extra docs
• Clock: 0 Hz

How it works

Displays letters of SEnOLGULGONUL on 7-Seg display by using internal three gate
oscillator

How to test

Connect external R1, R2 and C for three gate oscillator and clk input and watch letters
on 7-seg

External hardware

output pins a,b,c,d,e,f,g,dp are connected to a 7-Seg display, two inout and two bioutput
for oscillator

Pinout

Input Output Bidirectional
0 inv3_in a inv3_out
1 inv1_in b inv2_out
2 c
3 d
4 e
5 f
6 g
7 dp

326

https://github.com/senolgulgonul/tt09-senolgulgonul

ECE2204 4x4 Array Multiplier [322]

• Author: Jason Brandon
• Description: 4x4 Structural Array Multiplier
• GitHub repository
• HDL project
• Mux address: 322
• Extra docs
• Clock: 0 Hz

FA1 FA2 FA3 FA4

FA5FA6FA7FA8

FA9FA10FA11FA12
0

P6 P4 P3P5

P7

0

0

0

P2 P1

AND1

P3

AND2 AND3 AND4

AND6 AND8AND5

m1m2
m3 m0

q1

m3 m1m2 m0

AND9

q0

P0

AND10 AND11 AND12 AND13

m3

m2 m1 m0

q2

AND14 AND15 AND16 AND17

q3

m3

m2 m1 m0

Figure 31: alt text

How it works
The Verilog code is for a 4x4 array multiplier that takes two 4-bit numbers, m and q,
and produces an 8-bit result. It starts by splitting an 8-bit input into two parts: the
upper 4 bits represent m and the lower 4 bits represent q. To calculate the product, the
code computes partial products using bitwise AND operations. Each partial product
corresponds to a bit of q, and there are four arrays created for these. After that, the
code sums these partial products with a series of full adders. Each full adder takes

327

https://github.com/jt4808/tt09-A-6-array-multiplier

inputs from the previous stage and the next bits of the partial products, managing
carries as needed. The final sum is stored in an 8-bit variable p, which is then sent to
the output. The full adder used in this process helps calculate the sum and carry-out
from two inputs and a carry-in. This method of breaking down the multiplication into
partial products and adding them up demonstrates a clear and structured approach to
implementing a basic multiplier in hardware.
How to test it
To test the Verilog program for the 4x4 array multiplier, the user would create a
testbench, which is a separate module designed to evaluate how the multiplier functions.
They would begin by setting up a variety of 4-bit input values, including simple cases
such as all zeros and all ones, as well as some random combinations. This approach
helps ensure that the multiplier can handle different scenarios correctly. Next, the user
would run the testbench with these inputs and check the outputs against the expected
results of the multiplication. Since the multiplication of two 4-bit numbers can yield
an 8-bit result, they would calculate the expected outputs manually or use a calculator
for verification. To facilitate this process, the user would add print statements to
display the outputs on the console. If any outputs do not match the expected values,
they would review the code to identify and correct any mistakes. By systematically
testing various inputs and confirming the results, the user can ensure that the multiplier
operates as intended.

External hardware

N/A

Pinout

Input Output Bidirectional
0 q[0] p[0]
1 q1 p1
2 q2 p2
3 q[3] p[3]
4 m[0] p[4]
5 m1 p[5]
6 m2 p[6]
7 m[3] p[7]

328

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Space Detective Maze Explorer [323]

• Author: Esteban Oman Mendoza
• Description: A maze explorer game, output uses qty5 7segment displays or LED

equivalent
• GitHub repository
• HDL project
• Mux address: 323
• Extra docs
• Clock: 50000 Hz

How it works

This is a maze running on hardware. 3 user inputs are used. user_input[0] is used to
walk forward on low, and user_input[2:1] is used as direction select where 2’b00 = N,
2’b01= East, 2’b10 = South, and 2’b11 = West” bit 2 is the most significant bit

How to test

You will need to wire up qty 5 7-segment displays or led equivalent. seg 0 is the right
most or least significant segment, and seg4 being the left most of Most significant
segment. Hook up all the common pins. for example pin 1 from seg0 connects to
all other pin1 on the other 4 segments, they are then connected to the corresponding
output pins uo[7:0]

Outputs

uo[0]: ” a uo[0] = a ” uo1: ” — uo1 = b ” uo2: ” f | g | b uo2 = c ”
uo[3]: ” | | uo[3] = d ” uo[4]: ” — uo[4] = e ” uo[5]: ” | | uo[5] = f ” uo[6]: ” e | d
| c uo[6] = g ” uo[7]: ” | | uo[7] = dp” — dp uo([7:0] is the decoded segment signals
to display the game output.
using 5 pnp transitors with Vcc (I used. 3.3V) at the emmiter, and the common anode (I
used http://www.xlitx.com/datasheet/5161AS.pdf) connected to the collector, make
a connection to uio[4:0] to represent seg4-seg0. example uio 5’b011111 would turn on
seg 4 (low = on) each segment is mapped to uio[0]: “state LSB” uio1: “state MSB”
uio2: “Direction LSB” uio[3]: “Direction MSB” uio[4]: “Top half of segment used for
wall representation. 0-0, 1-1,…,5-5.

329

https://github.com/Esteban-Oman-Mendoza/maze_game
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

External hardware

qty 5 7-segment display or LED equivalent to visualize the game qty 5 current limitting
resistors for the 7 segments qty 5 current limitting resistors to manage current through
the output pins. these are connected to the base breadboard and enough wiring to
make all the connections

Pinout

Input Output Bidirectional
0 user_input[0]

Move forward
(move one
step in
selected
direction

a segments[0]
= a

state LSB

1 user_input1
(considered
least
significant bit
used in
selection
direction)
Used to select
facing
direction
where 2’b00
= N, 2’b01=
East, 2’b10 =
South, and
2’b11 = West

— segments1
= b

state MSB

330

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Input Output Bidirectional
2 user_input2

(considered
least most
significant bit
used in
selection
direction)
Used to select
facing
direction
where 2’b00
= N, 2’b01=
East, 2’b10 =
South, and
2’b11 = West

f g

3 not used
4 not used —

segments[4] =
e

Top half of segment used
to display the walls of the
room as seen from above
(birds eye view). The top
most segment(a)
represents the wall directly
in front of you in the
chosen direction N,E,S, or
West.

5 not used
6 not used e d
7 not used

331

http://www.ericr.nl/wondrous/pathrecs.html

Array Multiplier [324]

• Author: Leon Ha, Jegyeoung An
• Description: 4*4 Structural Array structural multiplier
• GitHub repository
• HDL project
• Mux address: 324
• Extra docs
• Clock: 0 Hz

How it works

The project is a 4x4 array multiplier. The inputs m and q are 4-bit factors that get mul-
tiplied to produce the output p which is a 8-bit product of m and q. This was created
using manual structural design. The module array_mult_structural multiplies two 4 bit
inputs (m and q) to produce an 8-bit product. Design components such as AND gates
and full adders were applied to construct the design. The full adder module takes three
1-bit inputs, a, b, and cin, and produces a 1-bit sum and a 1-bit cout. The assign state-
ment was used to assign the results. Four 4-bit partial products were generated. The
LSB (Least Significant Bit) was assigned as the LSB of the first partial product. The
sum of the 4-bit partial products are assigned to the output, and the carryout is stored.

332

https://github.com/northbear99/tt09-secA-7-array-multiplier

How to test

In order to use this project, two 4-bit factors can be assigned to m and q. The output
p should be the product of m and q.

0. 10 * 5 = 50
1. 4 * 2 = 8
2. 0 * 0 = 0
3. 2 * 1 = 2
4. 7 * 7 = 49

External hardware

N/A

333

Pinout

Input Output Bidirectional
0 q[0] p[0]
1 q1 p1
2 q2 p2
3 q[3] p[3]
4 m[0] p[4]
5 m1 p[5]
6 m2 p[6]
7 m[3] p[7]

334

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Hamming Code (7,4) [325]

• Author: Sebastien Paradis
• Description: (7,4) Hamming Encoder/Decoder
• GitHub repository
• HDL project
• Mux address: 325
• Extra docs
• Clock: 0 Hz

How it works

This implementation of the (7,4) Hamming Code allows for the same input to be used
for encoding and decoding, with dynamic selection of the mode using the MSB of the
input.

Hamming Encoder (7,4) Overview The Hamming (7,4) encoder is a linear error-
correcting code that encodes 4 data bits into 7 bits by adding 3 parity bits, which can
detect and correct a single-bit error.
Parity Format
{p1 p2 p3}
Data Format
{d1 d2 d3 d4}

Input An 8-bit input “ui” with the following format (note the form is {7 6 5 4 3 2
1 0})
Input Pins

• ui[0] - Bit 0 for 4-bit data input, d4
• ui1 - Bit 1 for 4-bit data input, d3
• ui2 - Bit 2 for 4-bit data input, d2
• ui[3] - Bit 3 for 4-bit data input, d1
• ui[4] - X
• ui[5] - X
• ui[6] - X
• ui[7] - Mode Selector (0 => Encode, uses ui[3:0]; 1 => Decode, uses ui[6:0])

335

https://github.com/sebastienparadis/tt09-hamming-code-7-4
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Output An 8-bit output “uo” with the following format (note the form is {7 6 5 4
3 2 1 0})
Output Pins

• uo[0] - Bit 0 for 7-bit encoded output, d4
• uo1 - Bit 1 for 7-bit encoded output, d3
• uo2 - Bit 2 for 7-bit encoded output, d2
• uo[3] - Bit 3 for 7-bit encoded output, p3
• uo[4] - Bit 4 for 7-bit encoded output, d1
• uo[5] - Bit 5 for 7-bit encoded output, p2
• uo[6] - Bit 6 for 7-bit encoded output, p1
• uo[7] - X

Encode Mode
• Encode Mode is selected by setting the MSB of the input (bit 7) LOW (0).
• If encode mode is chosen, the encoder will use bits 3:0 as the four data bits to

be encoded, and produce a 7-bit encoded output.
• Bit 6:4 are not involved in any encoding.

Encode Mode Input Format
{selector, X, X, X, d1, d2, d3, d4}
Encode Mode Output Format
{p1, p2, d1, p3, d2, d3, d4}

Parity Bit Calculations
1. p1 covers bits d1, d2, and d4.

• p1 = d1 XOR d2 XOR d4

2. p2 covers bits d1, d3, and d4.

• p2 = d1 XOR d3 XOR d4

3. p3 covers bits d2, d3, and d4.

• p3 = d2 XOR d3 XOR d4

336

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Expected Outputs of Encode Mode
• 0XXXd1d2d3d4 -> 0p1p2d1p3d2d3d4
• 00000000 -> 00000000
• 00000010 -> 00101010
• 00000001 -> 01101001
• 00000011 -> 01000011
• 00000100 -> 01001100
• 00000101 -> 00100101
• 00000110 -> 01100110
• 00000111 -> 00001111
• 00001000 -> 01110000
• 00001001 -> 00011001
• 00001010 -> 01011010
• 00001011 -> 00110011
• 00001100 -> 00111100
• 00001101 -> 01010101
• 00001110 -> 00010110
• 00001111 -> 01111111

Hamming Decoder (7,4) Overview The decoder checks the received 7-bit word
for errors and corrects a single-bit error if detected. The process involves recalculating
the parity bits and comparing them with the received parity.

Decode Mode
• Decode Mode is selected by setting the MSB of the input (bit 7) HIGH (1).
• If decode mode is chosen, the decoder will use bits 7:0, both the data and parity

bits, and produce a 7-bit decoded output. The decoded output will be the
originally encoded input as long as there were less than 2 flipped bits between
encoder output and decoder input.

Decode Mode Input Format
{p1, p2, d1, p3, d2, d3, d4}
Decode Mode Output Format
{p1, p2, d1, p3, d2, d3, d4}

• a maximum of 1 bit could be flipped at position {S2, S1, S0}.

337

Syndrome Calculation The syndrome indicates the position of an error (if any):

1. S0 is recalculated using the same bits used to calculate p1 during encoding:

• S0 = p1’ XOR d1 XOR d2 XOR d4

2. S1 recalculates p2:

• S1 = p2’ XOR d1 XOR d3 XOR d4

3. S2 recalculates p3:

• S2 = p3’ XOR d2 XOR d3 XOR d4

Error Correction The syndrome {S2, S1, S0} gives the error location:

• If the syndrome is 000, no error is detected.
• If the syndrome is non-zero, the position of the error corresponds to the syndrome

value (1 for the least significant bit, 7 for the most significant bit).
• E.g. if syndrome is 010, then. Our error bit is at bit 4
• If an error is detected, flip the bit at the position indicated by the syndrome.

How to test

Testing can be done by applying known data inputs with LOW as the value of the 7th
bit (encode mode), and ensuring that the output is the expected encoding value (see
table of expected outputs in encode mode).
Similarly, known encoded values can by used as input, with the 7th bit as HIGH (decode
mode), and we can ensure that the output is the exact same as the original encoded
value, even if we flip 1 bit. This should be done for each of the 7 bits for all encoded
values

External hardware

TBD based on implementation.

Pinout

338

Input Output Bidirectional
0 LSB/Bit 0 for

4-bit Encoder
Input OR
LSB/Bit 0 for
7-bit Decoder
Input

LSB/Bit 0 for
7-bit Encoder
OR Decoder
Output

1 Bit 1 for 4-bit
Encoder Input
OR Bit 1 for
7-bit Decoder
Input

Bit 1 for 7-bit
Encoder OR
Decoder
Output

2 Bit 2 for 4-bit
Encoder Input
OR Bit 2 for
7-bit Decoder
Input

Bit 2 for 7-bit
Encoder OR
Decoder
Output

3 MSB/Bit 3
for 4-bit
Encoder Input
OR Bit 3 for
7-bit Decoder
Input

Bit 3 for 7-bit
Encoder OR
Decoder
Output

4 Bit 4 for 7-bit
Decoder Input

Bit 4 for 7-bit
Encoder OR
Decoder
Output

5 Bit 5 for 7-bit
Decoder Input

Bit 5 for 7-bit
Encoder OR
Decoder
Output

6 MSB/Bit 6
for 7-bit
Decoder Input

MSB/Bit 6
for 7-bit
Encoder OR
Decoder
Output

339

Input Output Bidirectional
7 Mode Selector

(0 =>
Encode, uses
ui[3:0]; 1 =>
Decode, uses
ui[6:0])

Mode Selector
(0 =>
Encode; 1 =>
Decode)

340

ece2204 project for tapeout [326]

• Author: Yiqiao, Geno
• Description: class project 4x4 structal arary multiplier
• GitHub repository
• HDL project
• Mux address: 326
• Extra docs
• Clock: 0 Hz

How it works

The tt_um_array_mult_structural module performs 4x4 unsigned multiplication
by using bitwise multiplication and a series of Carry-Save Adders (CSAs) followed by a
final Carry-Propagate Adder (CPA). It takes an 8-bit input (ui_in) divided into two
4-bit operands: m = ui_in[7:4] and q = ui_in[3:0]. Each bit of m is multiplied
with each bit of q, generating partial products. These partial products are accumulated
row by row using full adders, with the carry propagated through successive rows. The
final product, p, is composed from the sum and carry values of the last rows and is
assigned to the 8-bit output (uo_out).

How to test

To test the module, you can create a Verilog testbench that applies different 8-bit
input values for ui_in representing two 4-bit numbers and observes the resulting 8-
bit output uo_out. For example, inputting ui_in = 8'b0011_0011 (3 * 3) should
yield uo_out = 8'b0000_1001 (9). By applying various combinations of operands,
such as ui_in = 8'b1111_1111 (15 * 15), and using a simulation tool to verify
the waveforms, you can ensure that the design correctly computes the products and
functions as expected.

External hardware

N/A

Pinout

341

https://github.com/Yiiii0/tt09-secA-08-array-multiplier

Figure 32: Alt text

342

Input Output Bidirectional
0 q[0] p[0]
1 q1 p1
2 q2 p2
3 q[3] p[3]
4 m[0] p[4]
5 m1 p[5]
6 m2 p[6]
7 m[3] p[7]

343

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

tiny-tapeout-8bit-GPTPrefixCircuit [327]

• Author: Weihua Xiao
• Description: In this project, we use large language model to automatically create

a totally-new prefix network-based high speed adder, for getting a good trade-off
between PPA (power performance and area).

• GitHub repository
• HDL project
• Mux address: 327
• Extra docs
• Clock: 0 Hz

344

https://github.com/FCHXWH823/tt09-GPTPrefixCircuit

How it works

LLM-aided design of a totally-new 8-bit prefix network-based high speed adder:

In this figure, the squares represent the Square module in project.v, the circles represent
the BigCircle module in project.v, the small circles represent the SmallCircle in project.v,
and the triangles represent the Triangle module in project.v. Each carry signal (c[i]) is
generated by circles and each sum signal (sum[i]) is generated by triangles.

345

How to test

This test systematically applies all combinations of 8-bit values to dut.a and dut.b,
verifies the resulting sum dut.sum against the expected 8-bit result ((dut.a + dut.b)
& 0xFF), and asserts that the dut behaves correctly.

External hardware

No external hardware

Pinout

Input Output Bidirectional
0 a[0] sum[0] b[0]
1 a1 sum1 b1
2 a2 sum2 b2
3 a[3] sum[3] b[3]
4 a[4] sum[4] b[4]
5 a[5] sum[5] b[5]
6 a[6] sum[6] b[6]
7 a[7] sum[7] b[7]

346

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

4x4 array multiplier [328]

• Author: Gabriela Perez, Martha McQuillan
• Description: 4x4 structural array multiplier
• GitHub repository
• HDL project
• Mux address: 328
• Extra docs
• Clock: 0 Hz

How it works

A 4x4 multiplier is a digital circuit that multiplies two 4-bit binary numbers to
produce an 8-bit result. It works by generating partial products: each bit of
one 4-bit number is multiplied by each bit of the other, producing 16 partial
results. These are then organized in rows, with each row shifted left according
to the position of the bit being multiplied. Finally, the rows are summed using
binary adders, yielding the final 8-bit product representing the multiplication result

347

https://github.com/m4rthaswur1d/tt09-secA-9-array-multiplier

This is a 4x4 array muliplier that takes in two 4-bit factors, m and q, and uses a full
adder to output an 8-bit product of m and q, p.

How to test

Test the multiplier with a test bench of 10 varrying values of 4-bit factors with their
multiplcation value. This is an unsigned decimal multiplier.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

348

Input Output Bidirectional
0 q[0] p[0]
1 q1 p1
2 q2 p2
3 q[3] p[3]
4 m[0] p[4]
5 m1 p[5]
6 m2 p[6]
7 m[3] p[7]

349

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

LIF on a Ring Topology [329]

• Author: Taylor Kergan
• Description: LIF neurons connected in a ring that displays different firing pat-

terns.
• GitHub repository
• HDL project
• Mux address: 329
• Extra docs
• Clock: 0 Hz

How it works

This project implements eight leaky integrate-and-fire (LIF) neurons that are connected
in a ring topology. Each neuron:

1. Integrates input current over time
2. Leaks voltage according to a decay constant
3. Fires when voltage reaches threshold
4. Influences its neighbors through coupling currents

The system supports multiple firing patterns:

• Independent: Neurons fire based only on their input current
• Wave: Activity propagates around the ring
• Synchronous: All neurons tend to fire together
• Clustered: Neurons form synchronized pairs
• Burst: Strong neighbor coupling creates burst patterns

How to test

The system can be tested through several inputs:

1. Base current (ui_in[7:3]): Controls the fundamental firing rate
2. Pattern select (ui_in[2:0]): Chooses the firing pattern
3. Coupling strength (uio_in[7:0]): Sets the strength of inter-neuron connections

To observe behavior:

1. Monitor spike outputs (uo_out[7:0]): Each bit represents one neuron’s spikes
2. Watch voltage state (uio_out[7:0]): Shows membrane potential of first neuron
3. Run different patterns to see:

350

https://github.com/kergsy/tt09-ece-210-tk

• Wave propagation
• Synchronization
• Burst patterns
• Clustering effects

Test sequence:

1. Apply reset (rst_n)
2. Enable system (ena)
3. Set desired pattern and current
4. Monitor outputs for expected behavior

External hardware

N/A.

Pinout

Input Output Bidirectional
0 Pattern select

bit 0 (LSB)
Spike output
from neuron 0

Coupling strength bit 0
(LSB)

1 Pattern select
bit 1

Spike output
from neuron 1

Coupling strength bit 1

2 Pattern select
bit 2 (MSB)

Spike output
from neuron 2

Coupling strength bit 2

3 Base current
scaling bit 0
(LSB)

Spike output
from neuron 3

Coupling strength bit 3

4 Base current
scaling bit 1

Spike output
from neuron 4

Coupling strength bit 4

5 Base current
scaling bit 2

Spike output
from neuron 5

Coupling strength bit 5

6 Base current
scaling bit 3

Spike output
from neuron 6

Coupling strength bit 6

7 Base current
scaling bit 4
(MSB)

Spike output
from neuron 7

Coupling strength bit 7
(MSB)

351

4-bit-array-multiplier [330]

• Author: HenryZ-ErickR
• Description: 4-bit array mutiplication between two arrays
• GitHub repository
• HDL project
• Mux address: 330
• Extra docs
• Clock: 0 Hz

How it works

This project is a 4x4 array multiplier which multiplies two 4-bit numbers to produce
an 8-bit result. The miltiplier work by generating partial products through bit-wise
AND operations between the individual bits of the two input numbers. These partial
products are then summed using a series of full adders. Which handle both the sum
and the carry bits. The structure of the code starts from the least significant bits
(LSB) and progresses to the most significant bits (MSB), adding the partial products in
stages. Each stage involves full adders that sum three inputs: two partial products and
a carry from the previous stage. The final product is generated by combining the sums
and carries, with the last carry assigned to the most significant bit of the result. This
approach efficiently organizes binary multiplication using logical AND gates and full
adders. An illustration of the structure of this multiplier can be seen in the figure below.

352

https://github.com/hz3536/tt09-sec-A---10--array-multiplier

How to test

To test the functionality of this multiplier, a test bench file would be used to instan-
tiate the multiplier module, provide different 4-bit values for the inputs m and q, and

353

observe the 8-bit output p. For each test case, the testbench compares the result of
the multiplier’s output with the expected result of multiplying m and q using simple
binary arithmetic. By applying a variety of test inputs, including edge cases such as all
zeros, all ones, and alternating bit patterns, we can verify that the multiplier handles
all cases correctly. The testbench would also use initial and always blocks to display
the results of each multiplication using $display statements, allowing us to validate the
behavior in a simulation environment like Vivado.

External hardware

N/A

Pinout

Input Output Bidirectional
0 q[0] p[0]
1 q1 p1
2 q2 p2
3 q[3] p[3]
4 m[0] p[4]
5 m1 p[5]
6 m2 p[6]
7 m[3] p[7]

354

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Delta-Sigma ADC Decimation Filter [331]

• Author: Alexander Sheldon
• Description: Decimation filter for output of a delta-sigma ADC.
• GitHub repository
• HDL project
• Mux address: 331
• Extra docs
• Clock: 50000000 Hz

How it works

Digital low pass and decimation filter for use at the output of a delta-sigma ADC.
Analog will hopefully be included on the next shuttle.

How to test

Input 1 bit data on ui_in[0] at 50MHz representing the output of a delta-sigma mod-
ulator Will generate 16 bit data on the GPIOs at 50MHz/64=781.25kHz

External hardware

TBD

Pinout

Input Output Bidirectional
0 dec_in mux_out[0] div_clk8x
1 mux_out1
2 mux_out2 div_clk
3 mux_out[3]
4 mux_out[4]
5 mux_out[5]
6 mux_out[6]
7 mux_out[7]

355

https://github.com/asheldon44/tt09-delta-sigma-decimation-filter
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Array_Multiplier [332]

• Author: Taegahm Kang
• Description: Multiplies two 4-bit numbers
• GitHub repository
• HDL project
• Mux address: 332
• Extra docs
• Clock: 0 Hz

How it works

The project takes one 8-bit input. The 8-bit input is split to form two 4-bit inputs. The
inputs are put into an array that uses a combination of AND gates and Full Adders to
get the individual values of the product. The Full Adders are coded using a combination
of AND, XOR, and OR gates. The 4-bit array multiplier used for this project is shown
in Figure 1.
Figure 1: 4-bit array multiplier

How to test

Give an 8-bit input and check if the output is the correct product of the first and last
4-bits of the input.

External hardware

N/A

Pinout

Input Output Bidirectional
0 q[0] p[0]
1 q1 p1
2 q2 p2
3 q[3] p[3]
4 m[0] p[4]
5 m1 p[5]
6 m2 p[6]

356

https://github.com/JeffK2848/tt09-LabA-Group11
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
7 m[3] p[7]

357

an lfsr with synaptic neurons (excitatory or inhibitatory)
[333]

• Author: kai juarez-jimenez
• Description: each bit edge in the LFSR will mimic synaptic input that either

excites / inhibits the next “neuron” , shwoing behaviors similar to how synapses
manage signal in nns.

• GitHub repository
• HDL project
• Mux address: 333
• Extra docs
• Clock: 0 Hz

How it works

this project implements a neuromorphic-inspired Linear Feedback Shift Register (LFSR)
with “synaptic neurons” that simulate excitatory/inhibitory responses. each bit in the
LFSR behaves like a neuron, where transitions (rising/falling edges) from 0 to 1 or
1 to 0 generate excitatory or inhibitory signals, simulating synaptic inputs in neural
networks. these signals modify the LFSR’s feedback path, resulting in pseudo-random
output sequences that mimic synaptic interactions by either enhancing (excitatory) or
suppressing (inhibitory) activity.
additionally, this design allows for customizable seed inputs, set through external input
pins, enabling users to initialize the LFSR with a specific seed to observe varying
sequence outputs. this feature provides added flexibility and control over the pseudo-
random behavior.

How to test

1. clock initialization: Run a clock signal to provide timing for the LFSR operation.
2. reset: hold the reset pin active (low) to initialize the LFSR state with the selected

seed.
3. seed testing: configure the seed by setting the ui_in input pins, then observe

the LFSR output sequence through uo_out.
4. cycle observation: monitor the output sequence over multiple clock cycles to

verify pseudo-random behavior, and repeat for different seed values for varied
sequences.

358

https://github.com/kjuarezj/tt09-ece110-juarez-jimenez

External hardware

N/A

Pinout

Input Output Bidirectional
0 LFSR Seed Bit 0 LFSR Output Bit 0
1 LFSR Seed Bit 1 LFSR Output Bit 1
2 LFSR Seed Bit 2 LFSR Output Bit 2
3 LFSR Seed Bit 3 LFSR Output Bit 3
4 LFSR Seed Bit 4 LFSR Output Bit 4
5 LFSR Seed Bit 5 LFSR Output Bit 5
6 LFSR Seed Bit 6 LFSR Output Bit 6
7 LFSR Seed Bit 7 LFSR Output Bit 7

359

Generador PWM multiproposito con frecuencia y ciclo de
trabajo modulable [334]

• Author: Marco Vázquez, Paúl González, Abimael Jimenez, UACJ
• Description: A PWM generator with a 6-bit input that allows the user to enter

a denominator that divides the frequency. Using a pair of control inputs, we can
increase or decrease the duty cycle of the modulated output by 10%.

• GitHub repository
• HDL project
• Mux address: 334
• Extra docs
• Clock: 5000 Hz

How it works

Overall, the module converts a high-speed clock signal into a PWM signal with ad-
justable frequency and duty cycle. The user receives a high-frequency clock signal and,
through a frequency divider, generates a lower-frequency clock. Then, they control
the high duration of the PWM signal using buttons that increase or decrease the duty
cycle value.
A 5kHz signal is received; the 6-bit divider only accepts numbers from 2 to 63 (decimal).
The possible output frequencies for the PWM range from 2500Hz (5kHz/2) to 79Hz
(5kHz/63), which can be used in different electronic components such as RGB LEDs,
servomotors, stepper motors, sensors, and other circuits.

How to test

• Connect the clock signal: Assign a high-frequency clock.
• Apply the reset signal: Initially set the reset to high to restart the module. This

will reset all counters and the duty cycle to their initial values.
• Set the frequency divider: Define the frequency divider value to adjust the speed

of the clock used. This value controls the PWM signal frequency. A higher
divider value will result in a lower PWM frequency, and vice versa.

• Duty cycle adjustment buttons: When activating the increment button, the
duty cycle will increase by 10%. When activating the decrement button, the
duty cycle will decrease by 10%.

Recommendation: Use the PWM signal only as a control signal; the power supply for
the devices it is applied to should come from an external power source.

360

https://github.com/MarcoV09/ModularPWM_UACJ

External hardware

The PWM output should go to a PMOD to have that control signal available on a
device.

Pinout

Input Output Bidirectional
0 increase_duty pwm_out0
1 decrease_duty pwm_out1
2 divisor[0] pwm_out2
3 divisor1 pwm_out3
4 divisor2 pwm_out4
5 divisor[3] pwm_out5
6 divisor[4] pwm_out6
7 divisor[5] pwm_out7

361

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Perceptron [335]

• Author: Clarence Chan
• Description: Hardware implementation of a single layer perceptron
• GitHub repository
• HDL project
• Mux address: 335
• Extra docs
• Clock: 0 Hz

How it works

Given 8 bits of inputs and 8 bits of weights, the single layer perceptron will classify the
inputs as class 0 or 1.

How to test

Initialize inputs and expected output in test.py, then run make in the test subdirec-
tory.

External hardware

N/A

Pinout

Input Output Bidirectional
0 Input bit 1 Perceptron class output Weight bit 1
1 Input bit 2 Weight bit 2
2 Input bit 3 Weight bit 3
3 Input bit 4 Weight bit 4
4 Input bit 5 Weight bit 5
5 Input bit 6 Weight bit 6
6 Input bit 7 Weight bit 7
7 Input bit 8 Weight bit 8

362

https://github.com/clarencechan28/tt09-perceptron

2_bit_7seg [416]

• Author: Nathaniel_Laurente
• Description: displays 0-3
• GitHub repository
• Wokwi project
• Mux address: 416
• Extra docs
• Clock: 0 Hz

How it works

You use in1 and in0 as binary inputs to display a number in decimal on the 7 segment
display. ex. {in0, ~in1}, will display “2”.

How to test

Use the “1” switch to toggle the most significant bit, and the “2” switch to toggle the
least significant bit.

External hardware

LED display, 8 input switch.

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

363

https://github.com/nathaniel226233/TinyTapeOutGDS
https://wokwi.com/projects/414121421011660801

Adbe_Project [417]

• Author: Aditya_Bedekar
• Description: basic project
• GitHub repository
• Wokwi project
• Mux address: 417
• Extra docs
• Clock: 0 Hz

How it works

Aditya’s init

How to test

A basic project

External hardware

Need to fill in

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1
2
3
4
5
6
7

364

https://github.com/adityabedekar17/tt09_Adbe_project
https://wokwi.com/projects/414125058137148417

8 bit LFSR [418]

• Author: Aaron Nowack
• Description: 8 Bit LFSR, aka 8 Bit Pseudo Random Number Generator
• GitHub repository
• Wokwi project
• Mux address: 418
• Extra docs
• Clock: 0 Hz

How it works

A simple 8 bit LFSR I took from this paper that popped up in a google search of LFSR
designs https://nandland.com/lfsr-linear-feedback-shift-register/

How to test

The 8 output pins should output a pseudo random 8 bit number, about once per
second

External hardware

The 8 output pins can be connected to LEDs.

Pinout

Input Output Bidirectional
0 OUT0
1 OUT1
2 OUT2
3 OUT3
4 OUT4
5 OUT5
6 OUT6
7 OUT7

365

https://github.com/abnowack/tinytapeout
https://wokwi.com/projects/414120263584922625
https://www.mecs-press.org/ijcnis/ijcnis-v10-n2/IJCNIS-V10-N2-5.pdf

Odd or even [419]

• Author: Eliana
• Description: odd or even input
• GitHub repository
• Wokwi project
• Mux address: 419
• Extra docs
• Clock: 0 Hz

How it works

Depending on weather the input is odd or even the green LED will light up for odd
and the red for even.

How to test

Turn on different outputs to see if they are odd or even with the different LEDs.

External hardware

None

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1
2 IN2
3 IN3
4 IN4
5 IN5
6 IN6
7 IN7 OUT7

366

https://github.com/Eliana00S/IC
https://wokwi.com/projects/414120201832165377

Broken Two Bit Adder [420]

• Author: Mann
• Description: Performs binary addition on two 2-bit numbers
• GitHub repository
• Wokwi project
• Mux address: 420
• Extra docs
• Clock: 0 Hz

How it works

Adds two 2-bit numbers using logic gates.

How to test

IN0, IN1 represents the first 2-bit number, IN2, IN3 represents the second 2-bit num-
ber.

External hardware

Switches and LEDs.

Pinout

Input Output Bidirectional
0 IN0
1 IN1
2 IN2
3 IN3
4
5
6
7

367

https://github.com/mannmalviya/Tiny-Tapeout-board
https://wokwi.com/projects/414120696731857921

Manchester Encoder [421]

• Author: Prajwal Shashidhar Chavadi
• Description: Manchester Encoder
• GitHub repository
• Wokwi project
• Mux address: 421
• Extra docs
• Clock: 0 Hz

How it works

It encodes incoming serial data to manchester encoded serial data via a FSM with a
clock frequency twice the frequency of the input data frequency

How to test

Apply incoming serial data with a frequency f and the design with a frequency x2 of
the original frequency. check output for encoded data.

External hardware

NOT Gate, AND gate, D FlipFlops, OR gate, Clocks

Pinout

Input Output Bidirectional
0 Encoder clock x2 frequency Encoded Data
1 Input Data x1 frequency
2
3
4
5
6
7

368

https://github.com/prajwalsc/tt09
https://wokwi.com/projects/414120492890759169

4 bit adder [422]

• Author: Angel Lim Hui Yi
• Description: a 4-bit adder
• GitHub repository
• Wokwi project
• Mux address: 422
• Extra docs
• Clock: 0 Hz

How it works

The project is a 4-bit adder

How to test

input 0/1 and it will output the addition of it

External hardware

no external hardware

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4
5
6
7

369

https://github.com/angellimhy/4-bit-adder
https://wokwi.com/projects/414120518107969537

Tiny_Tapeout_Adder! [423]

• Author: Abhinav Chaubey
• Description: This project synthesizes to an Adder!
• GitHub repository
• Wokwi project
• Mux address: 423
• Extra docs
• Clock: 0 Hz

How it works

This project works by putting two numbers (x and y), and a carry in. This module
adds the two numbers & the carry_in, and returns carry_out and sum

How to test

Check is x and y is equal to sum.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 X Sum
1 Y Carry-out
2 Carry-In
3
4
5
6
7

370

https://github.com/abhinav-chaubeyk24/tiny_tape_chip_design
https://wokwi.com/projects/414125777368065025

TinyTapeout workshop - Wokwi 8 Bit LFSR [424]

• Author: Nate Voorhies
• Description: An 8 bit Fibonacci lfsr
• GitHub repository
• Wokwi project
• Mux address: 424
• Extra docs
• Clock: 0 Hz

How it works

Just a 8-bit LFSR that zooms along. RST_N slaps a 1 in case it comes up all zeros.
Period should be 255

How to test

Raise RST_N, then lower. We should see all 255 patterns of 8 bits values that != 8’h0
over the next 255 clocks.

External hardware

None.

Pinout

Input Output Bidirectional
0 OUT0
1 OUT1
2 OUT2
3 OUT3
4 OUT4
5 OUT5
6 OUT6
7 OUT7

371

https://github.com/nvoorhies/TT-LFSR
https://wokwi.com/projects/414121532514097153

Morse Code for J and R [425]

• Author: Jainil Rao
• Description: A morse code generator circuit for alphabets J and R
• GitHub repository
• Wokwi project
• Mux address: 425
• Extra docs
• Clock: 0 Hz

How it works

I have used a 4bit synchronous counter to used And and Or gates to simulate “.” and
“-” of morsecode.

How to test

We can test it by connecting a 7 segment display and we can change inputs with a
button(for J it’s “.—” and for R it’s “.-.”).

External hardware

button, 7 segment display, clock

Pinout

Input Output Bidirectional
0 OUT0
1 OUT1
2
3
4
5
6
7

372

https://github.com/Jainil25/tinytapeout-workshop
https://wokwi.com/projects/414124872671308801

3bitFullAdder [426]

• Author: Isabella Phung
• Description: 3-bit full adder, where A[3:0] is inputs IN0-IN2, B[3:0] is inputs

IN3-IN5, and the carry in is IN6. Output at OUT0 to OUT2, carryout at OUT3
• GitHub repository
• Wokwi project
• Mux address: 426
• Extra docs
• Clock: 0 Hz

How it works

3 bit adder, A[0:3] on inputs IN0-IN3, B[0:3] on inputs IN4-IN5, output on outputs
OUT0-OUT2, carry out on OUT3.

How to test

flip switches, should connect to hex 7 seg leds to display output.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4
5 IN5
6 IN6
7

373

https://github.com/isabellaPhung/3bitadder
https://wokwi.com/projects/414120407679244289

XorTree [427]

• Author: Ammar Ratnani
• Description: Computes the XOR of all inputs
• GitHub repository
• Wokwi project
• Mux address: 427
• Extra docs
• Clock: 0 Hz

How it works

Computes the sum-mod-2 of all the inputs, and puts the output on a pin.

How to test

N/A

External hardware

N/A

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1
2 IN2
3 IN3
4 IN4
5 IN5
6 IN6
7 IN7

374

https://github.com/ammrat13/tt09-workshop
https://wokwi.com/projects/414120591467404289

Sigma-Delta ADC [428]

• Author: Martin Schoeberl
• Description: Analog to digital converter - and back
• GitHub repository
• Wokwi project
• Mux address: 428
• Extra docs
• Clock: 50000000 Hz

How it works

Provide an analog signal at Vin (e.g., some music) and listen to the output at Vout
(using an amplifier). The circuit will probably add some noise, as it is very crude. But
it went from the analog domain to digital and then back.
Future work should be to use that sigma-delta coded signal to do some fun audio
processing.
Anyone knowing how to do DSP in the sigma-delta domain?

How to test

Connect an analog source to your design and listen to the music (output).

External hardware

This is a sigma-delta AD converter and a DA converter.
The input is mixed with the feedback delay/inversion and uses the threshold of the
DFF input as a comparator, serving as a single bit ADC.
The R and C values depend on the input signal and can be discussed and should be
explored.

100k

OUT0 o--|___|--+
|

375

https://github.com/schoeberl/tt09-sigma-delta
https://wokwi.com/projects/414121715329142785

100k |
___ | ____

Vin o--|___|--o----------o IN0 OUT1 o----|____|---o--------o Vout
| |
--- ---
--- 100n ---
| |
| |
--- ---
- -

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 OUT1
2
3
4
5
6
7

376

tt09-4bit-adder-dhags [429]

• Author: Danny
• Description: This is a 4-bit adder that takes two 4-bit inputs and adds them,

outputting them as a 5-bit number.
• GitHub repository
• Wokwi project
• Mux address: 429
• Extra docs
• Clock: 0 Hz

How it works

This is a 4-bit adder that takes two 4-bit inputs and adds them, outputting them as a
5-bit number.

How to test

Flip the DIP Switch with inputs 0-3 corresponding to the first number and 4-7 corre-
sponding to the second number. See if the output leds light up in a way that makes
sense if the two numbers were added.

External hardware

DIP Switch and a 7-segment display or leds.

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5
6 IN6
7 IN7

377

https://github.com/dannyhagenlocker/tiny-tapeout-09
https://wokwi.com/projects/414120472316644353

Mini-Adder and Clock Divider [430]

• Author: Marcus
• Description: 2-digit full adder and clock divider
• GitHub repository
• Wokwi project
• Mux address: 430
• Extra docs
• Clock: 0 Hz

How it works

The first 4 inputs are 2 two-digit binary inputs. The MSB of each input is at IN0
and IN2, respectively. These are added together into a three-digit binary output that is
displayed as the first 3 vertical lines of the seven segment display - specifically, segments
f, b, and e, where segment f is the MSB of the output.
Additionally, there is a clock divider that divides 10kHz by 2^16 that turns DP on and
off.

How to test

Enabling the below inputs should result in the following ouput: | IN0 | IN1 | IN2 | IN3
| F | B | E | |—–|—–|—–|—–|—|—|—| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 1 | 0 | 0 | 0 | 0
| 1 | | 1 | 0 | 0 | 0 | 0 | 1 | 0 | | 0 | 0 | 1 | 1 | 0 | 1 | 1 | | 1 | 1 | 0 | 1 | 1 | 0 | 0 | | 1 |
1 | 1 | 1 | 1 | 1 | 0 |

Pinout

Input Output Bidirectional
0 IN0
1 IN1 OUT1
2 IN2
3 IN3
4 OUT4
5 OUT5
6
7

378

https://github.com/BigTurtle8/tt09-first-design
https://wokwi.com/projects/414121442515858433

7-seg display checker [431]

• Author: Ryan Taylor
• Description: Converts the inputs to seven seg display
• GitHub repository
• Wokwi project
• Mux address: 431
• Extra docs
• Clock: 0 Hz

How it works

Just converts inverts to 7segdisplay using combinational logic

How to test

Just test each input with all others zero, so in1 = 1 and in2 through in in8 = 0; should
show 1. Same for all numbers. Also all inputs should show the dot.

External hardware

Nothing List external hardware used in your project (e.g. PMOD, LED display, etc), if
any

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN7 OUT6
7 IN0 OUT7

379

https://github.com/RTryantaylor/TinyTapeout
https://wokwi.com/projects/414120404427608065

Drew’s First Wokwi Design [448]

• Author: ReanimationXP
• Description: Drew’s First Wokwi Design
• GitHub repository
• Wokwi project
• Mux address: 448
• Extra docs
• Clock: 0 Hz

How it works

It is a thing, and it does stuff.

How to test

Hook it up to things, and see if it does stuff.

External hardware

’Tis currently a mystery.

Pinout

Input Output Bidirectional
0 IN0 OUT0 D0
1 IN1 OUT1 D1
2 IN2 OUT2 D2
3 IN3 OUT3 D3
4 IN4 OUT4 D4
5 IN5 OUT5 D5
6 IN6 OUT6 D6
7 IN7 OUT7 D7

380

https://github.com/ReanimationXP/TinyTapeout
https://wokwi.com/projects/413387186248679425

Shadoff Test [449]

• Author: David Shadoff
• Description: Gate Sample
• GitHub repository
• Wokwi project
• Mux address: 449
• Extra docs
• Clock: 0 Hz

How it works

This project demonstrates trivial AND gates and inverters. To be used for demonstrat-
ing logical inputs/outputs, tool flow, and 3D visualization.

How to test

OUT0 is driven by the logical AND value from IN0 and RST_N OUT1 is driven by the
logical AND value from IN1 and IN0
OUT2 is driven by the opposite (inverted) logic value from IN2 OUT3 is driven by the
opposite (inverted) logic value from IN3
OUT4 is driven by the logic value at IN4 OUT5 is driven by the logic value at IN5
OUT6 is driven by the logic value at IN6 OUT7 is driven by the logic value at IN7

External hardware

RESET pushbutton DIP Switch (for inputs) LED display

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5

381

https://github.com/dshadoff/tt-wokwi-ds01
https://wokwi.com/projects/413387120998931457

Input Output Bidirectional
6 IN6 OUT6
7 IN7 OUT7

382

Pseudo Random Generator Using 2 Ring Oscillators [450]

• Author: Michael Yim
• Description: Pseudo Random Generator Using 2 Ring Oscillators
• GitHub repository
• Wokwi project
• Mux address: 450
• Extra docs
• Clock: 10000 Hz

How it works

Just connect power. In theory, the two ring oscillators will start to oscillate. The
random output will be sampled at the D flip flop at every clock (10K Hz). Out1 and
Out2 will be the complementary outputs of the random generator.

How to test

Just connect power. In theory, the two ring oscillators will start to oscillate. The
random output will be sampled at the D flip flop at every clock (10K Hz). Out1 and
Out2 will be the complementary outputs of the random generator.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 OUT0
1 OUT1
2
3
4
5
6
7

383

https://github.com/questwiseventures/tt09-wokwi-template
https://wokwi.com/projects/413387152803294209

Tiny Tapeout Take 2 [451]

• Author: Stephanie Rosales
• Description: We got nands
• GitHub repository
• Wokwi project
• Mux address: 451
• Extra docs
• Clock: 0 Hz

How it works

Pins 0, 1 are connected to a NAND Gate. Pines 2, 3 are connected to another nand
gate. Those 2 nand gates are then tied to gether and the output is for pin 1.

How to test

Set pins 1-7 high

External hardware

N/A

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

384

https://github.com/eerosale/Steph-Tiny-Tapeout
https://wokwi.com/projects/413387462882977793

JonsFirstTapeout [452]

• Author: ghangas
• Description: Output J,O,N on a seven segment display
• GitHub repository
• Wokwi project
• Mux address: 452
• Extra docs
• Clock: 0 Hz

How it works

If pin 1 2 and 3 will spell Jon on a seven segment display.

How to test

Pin1 outputs J Pin 2 outputs O Pin 3 outs N

External hardware

Seven segment display

Pinout

Input Output Bidirectional
0 common1 out0
1 In1 out1
2 In2 out2
3 out3
4 out4
5 out5
6 out6
7 out7

385

https://github.com/ghangaskan/JonsFirstTapeout
https://wokwi.com/projects/413387214966034433

Speller [453]

• Author: Aaron Eiche
• Description: Spells ‘AAron’ on a 7-segment display
• GitHub repository
• Wokwi project
• Mux address: 453
• Extra docs
• Clock: 0 Hz

How it works

Pressing the clock button should step through the 5 letters of my name, output on a
7-segment display.

How to test

Press the clock button, letters appear. Note that 0 and 1 are the same letter.

External hardware

None (Well, the 7-segment display)

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

386

https://github.com/aaroneiche/tiny_tapeout
https://wokwi.com/projects/413387224567846913

And Gates that don’t do much [454]

• Author: Chris Collins
• Description: My introduction to tiny tapeout
• GitHub repository
• Wokwi project
• Mux address: 454
• Extra docs
• Clock: 0 Hz

How it works

Still figuring out how it works.

How to test

Flip the dip switches

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any 7
segment display

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT4
4 IN4
5 IN5
6 IN6
7 IN7

387

https://github.com/slackfarmer/tiny-tape-out-intro
https://wokwi.com/projects/413387122850717697

RAYS FIRST TAPEOUT rev 2 [455]

• Author: RAY STITS
• Description: rays first tapeout V3
• GitHub repository
• Wokwi project
• Mux address: 455
• Extra docs
• Clock: 3 Hz

How it works

clock input goes into string of d flip flops making the led segments illuminate in a circle.
may want to hit reset to clear the d flip flops if more than 1 segment is illuminated.

How to test

turn on clock switch or press step button.

External hardware

clock button 7seg led

Pinout

Input Output Bidirectional
0 out0
1 out1
2 out2
3 out3
4 out4
5 out5
6
7 out7

388

https://github.com/raystits/TINYTAPEOUT9
https://wokwi.com/projects/413387064715554817

SimplePattern [456]

• Author: Poorn
• Description: Display P on 7-seg display when 0x46 is inputted
• GitHub repository
• Wokwi project
• Mux address: 456
• Extra docs
• Clock: 0 Hz

How it works

This is a very simple project that displays ‘P’ on the 7-segment display, when the 8-bit
input is 0x46. This is achieved through simple logic design & a few number of basic
logic gates.

How to test

By default, when all inputs are 0 (0x00), the 7-segment output should have inversed
segment states required for displying P (which basically means that if you turn OFF
all segments required for P and turn ON the rest of the ‘digit’ making segments then
that’s what it would be showing). It wasn’t intentional but I think it’s pretty cool that
it turned out this way.
As different patterns are inputted, different segments of the display will turn on/off.
When the right combination (0x46 –> IN1, IN2, IN6 are logic 1 and every other INs are
0) is provided in the input, the 7-segment display should light up segments to display
P (OUT2, OUT3, OUT7 are OFF, every other is lit up or ON).

External hardware

A breadboard, 1.8V power supply, some connector wires, 8 position DIP switch, and a
7 segment display is required.

389

https://github.com/Poorn-Mehta/TinyTapeoutWorkshop
https://wokwi.com/projects/413387009513254913

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 IN0
1 OUT1
2 IN2
3 IN3
4 OUT4
5 IN5 OUT5
6 IN6
7 IN7

390

6 Bit shift register [457]

• Author: MOMO
• Description: 6 Bit shift register
• GitHub repository
• Wokwi project
• Mux address: 457
• Extra docs
• Clock: 0 Hz

How it works

6 Bit shift register

How to test

Apply Clk and Din to inputs 0/1 and observe data on output pins 0-5

Pinout

Input Output Bidirectional
0 Clk Dout 0 NIC
1 Data Dout 1 NIC
2 NIC Dout 2 NIC
3 NIC Dout 3 NIC
4 NIC Dout 4 NIC
5 NIC Dout 5 NIC
6 NIC NIC NIC
7 NIC NIC NIC

391

https://github.com/ferret-guy/momo-layout
https://wokwi.com/projects/413387352465821697

sphereinabox hello [458]

• Author: Nick Winters
• Description: Hello World
• GitHub repository
• Wokwi project
• Mux address: 458
• Extra docs
• Clock: 0 Hz

How it works

I’ve built 8-input logic gates, all using each of the 8 inputs…. or will eventually

How to test

Set the inputs 0..7 to your desired 8 inputs.
Observe the outputs the corresponding output pins.

External hardware

No specific external hardware is expected for this project.

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

392

https://github.com/sphereinabox/tt09-wokwi-hello
https://wokwi.com/projects/413387093939376129

Duffy [459]

• Author: Jonathan Duffy
• Description: trying out an oscillator or delay line
• GitHub repository
• Wokwi project
• Mux address: 459
• Extra docs
• Clock: 0 Hz

How it works

This is pretty much just a string of inverters to try to make a delay line or ring oscillator.
Also there’s an xor gate on the bidir pins, maybe test as a mixer?

How to test

Basic DC logic on the first couple pins, couldn’t describe any way other than the logic
itself OUT1 = IN3 ? (IN0 & IN1) : IN2 OUT0 and OUT2 are both !OUT1 and the
rest of the OUTs should be the same as OUT1 D2 = D0 ^ D1

External hardware

Nothing specific, switches or digital in to the input

Pinout

Input Output Bidirectional
0 IN0 OUT0 D0
1 IN1 OUT1 D1
2 IN2 OUT2 D2
3 IN3 OUT3 D3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

393

https://github.com/jduffy105/WokWiTest
https://wokwi.com/projects/413385294512575489

Input Counter [460]

• Author: Benjamin Meyer
• Description: Counts the number of switches turned on
• GitHub repository
• Wokwi project
• Mux address: 460
• Extra docs
• Clock: 0 Hz

How it works

This project counts the number of input switches turned on.

How to test

Just flip the switches!

External hardware

No external hardware is needed

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OU1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

394

https://github.com/CrypticXVZ/TinyTapeoutInputCounter
https://wokwi.com/projects/413386973689694209

Will It NAND? [461]

• Author: Daniel Samarin
• Description: A bunch of nand gates to test the tool chain… for now.
• GitHub repository
• Wokwi project
• Mux address: 461
• Extra docs
• Clock: 0 Hz

How it works

Yo, it’s just a bunch of NANDs.

How to test

Be a man, use your hand to connect up your NAND.

External hardware

Put it in the sand, like it’s silicon, because you’re a silly con.

Pinout

Input Output Bidirectional
0 NAND1a NAND1out
1 NAND1b NAND2out
2 NAND2a NAND3out
3 NAND2b NAND4out
4 NAND3a
5 NAND3b
6 NAND4a
7 NAND4b

395

https://github.com/dsamarin1/tt09-will_it_nand
https://wokwi.com/projects/413387190167208961

4 bit ALU [462]

• Author: Gabriela Alfaro
• Description: A simple design of an Arithmetic Logic Unit capable of basic opera-

tions: addition, substraction , multiplication, division and some logic operations.
• GitHub repository
• HDL project
• Mux address: 462
• Extra docs
• Clock: 0 Hz

How it works?

The 4-bit ALU (Arithmetic Logic Unit) is designed to perform a range of arithmetic
and logical operations on two 4-bit inputs, A and B. The operation is determined by a
3-bit control signal, Opcode, which specifies the function to execute, such as addition,
subtraction, multiplication, division, and bitwise operations (AND, OR, NOT, XOR).
When an arithmetic operation like addition is selected, the ALU outputs an 8-bit result,
ALU_Result, to accommodate larger sums or products, and it sets a Carry flag if
there’s an overflow. For logical operations like AND or OR, the ALU applies the
operation bit-by-bit between A and B. The Zero flag is activated when the result is
zero, providing a useful condition for further logic. This flexibility allows the ALU to
handle various computational tasks, making it a crucial part of digital systems that
require multi-functional data processing.

How to test?

To test the design, the operation codes are:

• Addition (000)
• Substraction (001)
• Multiplication (010)
• Division (011)
• Logic AND (100)
• Logic OR (101)
• Logic NOT (110)
• Logic XOR (111)

396

https://github.com/alf19185/TT09-ALU

Pinout

Input Output Bidirectional
0 A[0] ALU_Out[0] ZeroFlag
1 A1 ALU_Out1 CarryOut
2 A2 ALU_Out2
3 A[3] ALU_Out[3]
4 B[0] ALU_Out[4]
5 B1 ALU_Out[5]
6 B2 ALU_Out[6]
7 B[3] ALU_Out[7]

397

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Bad Logic [463]

• Author: AaronV
• Description: Basic (broken) logic
• GitHub repository
• Wokwi project
• Mux address: 463
• Extra docs
• Clock: 0 Hz

How it works

Converts ASCII binary ‘A’ to ‘V’

How to test

Input 0x37 on the input pins. The output pins should display 0x56.

External hardware

None

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

398

https://github.com/bnract/tiny_tapeout_example
https://wokwi.com/projects/413386988538584065

Full Adder [481]

• Author: Harish Prabhakaran
• Description: Simple Full Adder Schematic in Wokwi
• GitHub repository
• Wokwi project
• Mux address: 481
• Extra docs
• Clock: 0 Hz

How it works

My Wokwi design is a simple full adder schematic. There are three inputs that corre-
spond to two 1-bit inputs and a carry bit. There are two outputs hooked up to two
LEDs (one red and one blue) that correspond to the sum and carry bits respectively.

How to test

:/

External hardware

External hardware for this project includes two LEDs (colors are up to discretion)

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2
3
4
5
6
7

399

https://github.com/HP824/tinytapeout-workshop
https://wokwi.com/projects/414120372939908097

2048 sliding tile puzzle game (VGA) [482]

• Author: Uri Shaked
• Description: Slide numbered tiles on a grid to combine them to create a tile

with the number 2048.
• GitHub repository
• HDL project
• Mux address: 482
• Extra docs
• Clock: 0 Hz

How it works

2048 is a single-player sliding tile puzzle video game. Your goal is to slide numbered
tiles on a grid to combine them and create a tile with the number 2048. The game is
won when a tile with the number 2048 appears on the board, hence the name of the
game. The game is lost when the board is full and no more moves can be made.
The game is played on a 4x4 grid, with numbered tiles that slide when a player moves
them using ui_in pins. The game starts with two tiles with the number 2 on the
board. The player can move the tiles in four directions: up, down, left, and right.
When the player moves the tiles in a direction, the tiles slide as far as they can in that
direction until they hit the edge of the board or another tile. If two tiles with the same
number collide, they merge into a single tile with the sum of the two numbers. The
resulting tile cannot merge with another tile again in the same move.

How to test

Use the ui_in pins to move the tiles on the board:

ui_in pin Direction
0 Up
1 Down
2 Left
3 Right

After resetting the game, you will see a jumping “2048” animation on the screen. Press
any of the ui_in[3:0] pins to start the game. The game will start with two tiles
with the number 2 on the board. Use the ui_in pins to move the tiles in the desired
direction. The game will end when the board is full and no more moves can be made.

400

https://github.com/urish/tt09-2048-game

The game offers two color themes: modern and retro. You can switch between the
two themes by setting ui_in[6].
Setting ui_in[7] to 1 will enter unit test mode. In this mode, the game displays a
colorful rectangle on the top of the screen, and accepts debug commands on the uio
pins. Check out the test bench for more information.

External hardware

TinyVGA PMOD

Pinout

Input Output Bidirectional
0 btn_up R1 debug_cmd
1 btn_down G1 debug_cmd
2 btn_left B1 debug_cmd
3 btn_right VSync debug_cmd
4 R0 debug_data
5 G0 debug_data
6 retro_colors B0 debug_data
7 debug_mode HSync debug_data

401

https://github.com/mole99/tiny-vga

TT-Farhad [483]

• Author: Farhad
• Description: simple design
• GitHub repository
• Wokwi project
• Mux address: 483
• Extra docs
• Clock: 0 Hz

How it works

It’s 2 flip flops connected to the IO.

How to test

D pin of flip flops are IN0 and IN2, Q is OUT0 and OUT2.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 OUT1
2 IN2 OUT2
3 OUT3
4
5
6
7

402

https://github.com/hermandumas/TT
https://wokwi.com/projects/414120379026893825

Four Bit Adder [485]

• Author: Anahit
• Description: Adds two four-bit numbers together.
• GitHub repository
• Wokwi project
• Mux address: 485
• Extra docs
• Clock: 0 Hz

How it works

Two numbers in [0-15] are converted into 4 bit binary numbers. For example, A = 8
and B = 3: A = 1000 B = 0011 The two numbers are then added.

How to test

Enter the numbers using the switches (inputs 0-3 for A (LSB=0), inputs 4-7 for B
(LSB=4)) and observe the ouput (LSB=0)

External hardware

Switches for input (8), LEDs for output (5).

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

403

https://github.com/ana1251/FourBitAdder-Anahit
https://wokwi.com/projects/414120157271867393

SPI Logic Analyzer with Charlieplexed Display [486]

• Author: ParallelLogic-
• Description: Displays contents of register map on charlieplexed display. Gener-

ates waveforms for PWM, UART, WS2812 in response to trigger.
• GitHub repository
• HDL project
• Mux address: 486
• Extra docs
• Clock: 10000000 Hz

How it works

The bi-directional pins are used to drive a charliplexed 8*7 LED display. A SPI se-
rial connection is used to set the values in a register map. Auxilary functions are
implemented, space/time permitting, ex: LFSR, PWM, freqency counting, ultrasonic
distance sensing

How to test

Use SPI to read/write values to the register map, observe the output on the LEDs
and/or in the serial response. CS active low SPI MODE 0 SPI_CLK <= SYS_CLK/2
Most signigicant bit is exchanged first

External hardware

Charlielexed 7*8 LED display

Pinout

Input Output Bidirectional
0 CS ASIC_OUT_0 MAT0
1 SCLK ASIC_OUT_1 MAT1
2 MOSI ASIC_OUT_2 MAT2
3 TRIGGER ASIC_OUT_3 MAT3
4 ASIC_IN_0 ASIC_OUT_4 MAT4
5 ASIC_IN_1 ASIC_OUT_5 MAT5
6 ASIC_IN_2 ASIC_OUT_6 MAT6

404

https://github.com/parallellogic-/TinyTapeoutLogic2024A

Input Output Bidirectional
7 ASIC_IN_3 MISO MAT7

405

2 bit adder [487]

• Author: Aadarsha Kandel
• Description: this is a 2 bit adder
• GitHub repository
• Wokwi project
• Mux address: 487
• Extra docs
• Clock: 0 Hz

How it works

It works by adder two bit numbers

How to test

set all inputs

External hardware

Buttons and leds

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2
3 IN3
4
5
6
7

406

https://github.com/Kandel76/tapeout
https://wokwi.com/projects/414124843472659457

pio-ram-emulator example: Julia fractal [488]

• Author: Toivo Henningsson
• Description: Example of using pio-ram-emulator to draw a Julia fractal
• GitHub repository
• HDL project
• Mux address: 488
• Extra docs
• Clock: 50400000 Hz

How it works

This is an example of the using the https://github.com/toivoh/pio-ram-emulator RAM
emulator for Tiny Tapeout. The RAM is used to store a frame buffer, 320x480 at 2
bits/pixel. The frame buffer is continuously read to output a 640x480 @60 Hz VGA
signal. At the same time, the logic computes a Julia fractal, writing 16 bits to the
frame buffer for every 8 pixels computed. After about a second, the whole frame buffer
is filled in.
For more info about the RAM emulator, see https://github.com/toivoh/pio-ram-
emulator/blob/main/docs/pio-ram-emulator.md.
The project contains some helper code for working with with the RAM emulator:

• pio_ram_emulator.v and pio_ram_emulator.vh (sb_io.v is also need)
contain the modules pio_ram_emu_transmitter and pio_ram_emu_receiver

– These are used to transmit and receive messages using the RAM emulator’s
message format

– The design still has to follow the rules in https://github.com/toivoh/pio-
ram-emulator/blob/main/docs/pio-ram-emulator.md about which
messages can be sent when

– See julia_top.v for an example of how to use these modules

• test/pio_ram_emulator_model.v contains a simulation model of the RAM
emulator

– See test/tb.v for an example of how to use the simulation model in a
test

– See verilator/vtop.v for an example of how to use the simulation
model in a verilator setup

407

https://github.com/toivoh/tt09-pio-ram-emulator-example

– The model will try to detect behavior that violates the rules in
https://github.com/toivoh/pio-ram-emulator/blob/main/docs/pio-ram-
emulator.md, in which case it will set an error flag and stop responding
(see the ERROR_RESPONSE parameter)

– The simulation model is helpful, but might not capture the ful behavior of
the RAM emulator. Please try to run your design on an FPGA against the
actual RAM emulator as well.

How to test

Plug in a TinyVGA VGA Pmod to the output Pmod. The https://github.com/toivoh/pio-
ram-emulator RAM emulator must be running on the RP2040. TODO: Instructions
for how to set up. Start the project.

Controls The appearance of the Julia fractal is controlled by the C parameter, which
can be seen as a complex value or 2d vector. The C paramter can be changed using
the ui_in port:

• button_up / button_down / button_left / button_right move the C
value.

• button_incstep doubles the step length.
• button_decstep halves the step length.

A new ui_in[5:0] value must be stable for 2^19 cycles, or approximately 10 ms (at
a 50.4 MHz clock rate), before it is accepted. The use_both_button_dirs input
changes how the input is interpreted:

• When use_both_button_dirs = 0, an input is triggered when one of the
button_ signals goes from high to low (and is stable for 10 ms). Recommended
if the inputs are connected to buttons.

• When use_both_button_dirs = 1, an input is triggered when one of the
button_ signals goes from high to low or low to high (and is stable for 10 ms).
Recommended if the inputs are connected to toggle switches.

External hardware

This project needs a TinyVGA VGA Pmod.

Pinout

408

https://github.com/mole99/tiny-vga
https://github.com/mole99/tiny-vga

Input Output Bidirectional
0 button_up R1
1 button_down G1
2 button_right B1
3 button_left vsync
4 button_incstep R0 tx_out[0]
5 button_decstep G0 tx_out1
6 B0 rx_in[0]
7 use_both_button_dirs hsync rx_in1

409

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

AND and NOT gate testing [489]

• Author: Aman Maldar
• Description: AND and NOT gate testing
• GitHub repository
• Wokwi project
• Mux address: 489
• Extra docs
• Clock: 0 Hz

How it works

Added 1 AND gate and 1 NOT gate for testing. AND gate is IN0 and IN1 as input.
OUT1 is output. NOT gate has IN2 as input. OUT2 is output.

How to test

check AND gate truth table. check NOT gat truth table

External hardware

OUT1 and OUT2 drives LED

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2
3
4
5
6
7

410

https://github.com/amanmaldar/tinyTapeout330
https://wokwi.com/projects/414120239772801025

Analog 8 bit 3.3v R2R DAC [490]

• Author: Matt Venn
• Description: A simple 8 bit DAC with a sine waveform driver and 3.3v output
• GitHub repository
• Analog project
• Mux address: 490
• Extra docs
• Clock: 0 Hz

How it works

A simple 8 bit R2R DAC. Driven externally or by an digitally generated sine waveform
generator.
3.3v output is achieved with level shifting drivers.

How to test

Drive externally Set the external data input high to provide the DAC with
external data.
Then drive the 8 inputs and observe the analog output.

Drive with internal sawtooth wave generator Set the external data input
low to enable the sine generator. A sine wave should be seen on the analog output.
Everytime the sine counter is at 0, digital output 0 should go high for one clock.
To change the frequency, set the inputs and then raise the ‘load divider’ input.

External hardware

A multimeter to measure the output voltage on analog pin 0.

411

https://github.com/mattvenn/tt08-analog-r2r-dac-3v3

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 bit 0 count zero external data
1 bit 1 load divider
2 bit 2
3 bit 3
4 bit 4
5 bit 5
6 bit 6
7 bit 7

Analog pins

ua# analog# Description
0 0 DAC output

412

Kanoa’s first Wokwi deseign Tinytapeout 2024 Nonsense
[491]

• Author: Kanoa Mignard
• Description: Something random
• GitHub repository
• Wokwi project
• Mux address: 491
• Extra docs
• Clock: 0 Hz

How it works

It doesn’t yet

How to test

TBD

External hardware

None

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

413

https://github.com/ChristopheKanoaMignard/2024TinyTapeout
https://wokwi.com/projects/414124597390729217

Ring Oscillators [492]

• Author: Matt Venn
• Description: Ring Oscillators using analog output pins
• GitHub repository
• Analog project
• Mux address: 492
• Extra docs
• Clock: 0 Hz

How it works

Aiming to create 2 ring oscillators at around 600MHz and 300MHz. The output will
be quite attenuated due to the pad.

• Ring oscillator 1 is made of 18 inverters and a NAND gate for enable.
• Ring oscillator 2 is made of 36 inverters and a NAND gate for enable.

To get a good output current, a 2 stage inverter is used with large drive transistors.

• Ring oscillator 1
• Ring oscillator 2
• Driver

The output waveform of the 600MHz is expected to be as shown in the cyan trace
(out_parax). The ring_out_parax and pre_drive_parax are internal signals. See the
xschem test bench for more details.

How to test

• Enable 600 MHz oscillator 1 by setting user input pin 0 high and measure the
signal at analog output 0.

• Enable 300 MHz oscillator 2 by setting user input pin 1 high and measure the
signal at analog output 1.

The 300 MHz ring oscillator had a problem with a missing contact in TT08, and is not
expected to work. It has been fixed for TT09.

External hardware

Oscilloscope.

414

https://github.com/mattvenn/tt08-analog-ring-osc
https://xschem-viewer.com/?file=https%3A%2F%2Fgithub.com%2Fmattvenn%2Ftt08-analog-ring-osc%2Fblob%2Fmain%2Fxschem%2Fring.sch
https://xschem-viewer.com/?file=https%3A%2F%2Fgithub.com%2Fmattvenn%2Ftt08-analog-ring-osc%2Fblob%2Fmain%2Fxschem%2Fring_2.sch
https://xschem-viewer.com/?file=https://github.com/mattvenn/tt08-analog-ring-osc/blob/main/xschem/driver.sch

Figure 33: output waveform

Pinout

Input Output Bidirectional
0 Enable ring 1 ring_oscillator1
1 Enable ring 2 ring_oscillator2
2
3
4
5
6
7

Analog pins

ua# analog# Description
0 3
1 2

415

add it [493]

• Author: alex b
• Description: half adder
• GitHub repository
• Wokwi project
• Mux address: 493
• Extra docs
• Clock: 0 Hz

How it works

Half adder

How to test

Click some inputs, see some xor and carry

External hardware

LEDS

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2
3
4
5
6
7

416

https://github.com/badcc/tt09-wokwi-stanford
https://wokwi.com/projects/414120415300298753

AMS Chip ITS [494]

• Author: Astria Nur Irfansyah
• Description: ITS tinytapeout 3
• GitHub repository
• Analog project
• Mux address: 494
• Extra docs
• Clock: 0 Hz

How it works

This is planned to contain a simple ADC.

How to test

TBC

External hardware

TBC

Pinout

Input Output Bidirectional
0
1
2
3
4
5
6
7

Analog pins

417

https://github.com/nurirfansyah/tt09-chipits03

ua# analog# Description
0 1 out
1 3
2 2

418

one [495]

• Author: Neil
• Description: Shows 1 on the 7 segment display
• GitHub repository
• Wokwi project
• Mux address: 495
• Extra docs
• Clock: 0 Hz

How it works

If you turn on the first input, a 1 will be shown on the 7 segment display.

How to test

Wire up the outputs to a 7 segment display, and send a ON signal on IN0.

External hardware

7 segment display

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

419

https://github.com/neilparikh/tt09-wokwi
https://wokwi.com/projects/414117926152578049

SIC-1 8-bit SUBLEQ Single Instruction Computer [518]

• Author: Uri Shaked
• Description: Hardware implementation of the 8-bit Single Instruction Computer
• GitHub repository
• HDL project
• Mux address: 518
• Extra docs
• Clock: 0 Hz

How it works

SIC-1 is an 8-bit Single Instruction computer. The only instruction it supports is
SUBLEQ: Subtract and Branch if Less than or Equal to Zero. The instruction has
three operands: A, B, and C. The instruction subtracts the value at address B from
the value at address A and stores the result at address A. If the result is less than or
equal to zero, the instruction jumps to address C. Otherwise, it proceeds to the next
instruction.

Memory map The SIC-1 computer has an address space of 256 bytes, and and
8-bit program counter. The first 253 bytes are used for the program memory, and the
last 3 bytes are used for input, output, and for halting the computer:

Address Label Read Write
253 @IN ui pins Ignored
254 @OUT Returns 0 uo pins
255 @HALT Returns 0 Ignored

Setting the program counter to 253, 254, or 255 will halt the computer.
Each instruction is 3 bytes long, and the program counter is incremented by 3 after
each instruction, except when a branch is taken.
For more information, check out the SIC-1 Assembly Language Reference.

Execution cycle Each instruction takes 6 cycles to execute, regardless of whether
a branch is taken or not. The execution of an instruction is divided into the following
stages:

1. Fetch A: Read the value at address PC

420

https://github.com/urish/tt09-sic1
https://github.com/jaredkrinke/sic1/blob/master/sic1-assembly.md

2. Fetch B: Read the value at address PC+1
3. Fetch C: Read the value at address PC+2
4. Read valA: Read the value at address A
5. Read valB: Read the value at address B
6. Store: Subtract valB from valA, store the result at A, and branch if the result

is less than or equal to zero.

The pseudocode for the execution cycle is as follows:

(1) A <= memory[PC]
(2) B <= memory[PC+1]
(3) C <= memory[PC+2]
(4) valA <= memory[A]
(5) valB <= memory[B]
(6) result <= valA - valB

memory[A] <= result
if result <= 0:
PC = C

else:
PC = PC + 3

Control signals The uio pins are used to load a program into the computer, and
to control the computer:

uio pin Name Type Description
0 run input Start the computer
1 halted output Computer has halted
2 set_pc input Set the program counter to the value on ui pins
3 load_data input Load the value from the ui pins into the memory at the

PC
4 out_strobe output Pulsed for one clock cycle when the computer writes to

@OUT (uo pins)

Programming the SIC-1

You can use the https://jaredkrinke.itch.io/sic-1 to compile and simulate your SIC-1
programs. Click on “Run game” and then “Apply for the job”, close the “Electronic
mail” popup. Paste the code and click on “Compile” (on the bottom left). You’ll
see the compiled code in the “Memory” window on the right, and will be able to step
through the code.

421

To load a program and run a program, follow this sequence:

1. Set the ui pins to 0 (target address)
2. Pulse the the load_pc pin
3. Set the ui pins to the value you want to load
4. Pulse the load_data pin
5. Repeat steps 3-4 until you have loaded the entire program
6. Set the ui pins to the address you want to start at (usually 0)
7. Pulse the set_pc pin
8. Set the run pin to 1. The computer will start running the program, and the

halted pin will go high when the program is done.

If you want to step through the program, you can pulse the run pin to advance one
instruction at a time.

Pinout

Input Output Bidirectional
0 in[0] out[0] run
1 in1 out1 halted
2 in2 out2 set_pc
3 in[3] out[3] load_data
4 in[4] out[4] out_strobe
5 in[5] out[5]
6 in[6] out[6]
7 in[7] out[7]

422

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

4-bit R2R DAC [520]

• Author: David Parent
• Description: Converts a 4 bit wide signal to an analog signal
• GitHub repository
• Analog project
• Mux address: 520
• Extra docs
• Clock: 0 Hz

How it works

This is a simple 4-bit R2R DAC similar to the example.

How to test

Punt in a 4 bit strait case signal from 0000 to 1111 in steps of 1 on A0 A1 A2 and A3.
Note that the LSB is controlled by pin UIN_0, not UIB_3.

External hardware

ADALM2000 in digital mode.

Pinout

Input Output Bidirectional
0 A3 Out
1 A2
2 A1
3 A0
4
5
6
7

Analog pins

423

https://github.com/davidparent/tt09-r2r-dac

ua# analog# Description
0 6

424

Dickson Charge Pump [522]

• Author: Uri Shaked
• Description: Pumps the input voltage up to ~8V
• GitHub repository
• Analog project
• Mux address: 522
• Extra docs
• Clock: 2000000 Hz

How it works

A 3-stage dickson charge pump. The output voltage is Vout = 4*(VAPWR - Vd) =
~9.6 V where VAPWR is the analog input voltage (nominally 3.3 V), and Vd is the
diode drop (~0.9 V). The output voltage is divided by two and available at the ua[0]
pin.

How to test

Apply a clock signal of 2 MHz to the clk input. In TT09, the analog pin voltage
is limited to VDDIO/VDDA (usually 3.3 V), so the output voltage will be divided by
three. You can measure the divided output voltage at the ua[0] (vout_div) pin.

Simulation results

Post layout simulation showing the output voltage x1.vout and the divided output
voltage on ta ua[0] pin. The output voltage stabilizes at ~8.7 V, and the divided
output voltage at ~2.88 V. The current draw is about 1.2 uA (measured by adding a
1k resistor between ua[0] and VGND in simulation).
The following graph shows the input clock, the intermediate voltages at the output of
each stage, the output voltage, and the divided voltage as they rise during the first 10
us of operation.

Project layout

Pinout

425

https://github.com/urish/tt09-charge-pump

Figure 34: output voltage and divided voltage

426

Figure 35: output voltage and intermediate voltages

Figure 36: Project layout

427

Input Output Bidirectional
0
1
2
3
4
5
6
7

Analog pins

ua# analog# Description
0 7 vout_div

428

Analog double inverter [524]

• Author: Matt Venn
• Description: A pair of inverters wired between 2 analog pins
• GitHub repository
• Analog project
• Mux address: 524
• Extra docs
• Clock: 0 Hz

How it works

A pair of inverters, a large one after a small one.

How to test

Put a signal into the input pin, and observe the output. It should match polarity.
The rise time of the output was simulated at less than 4ns.

External hardware

Signal generator, oscilloscope.

Pinout

Input Output Bidirectional
0
1
2
3
4
5
6
7

429

https://github.com/mattvenn/tt09-analog-double-inverter

Analog pins

ua# analog# Description
0 11 output
1 6 input

430

OpAmp 3stage [526]

• Author: Rod Burt
• Description: 3stage PMOS OpAmp
• GitHub repository
• Analog project
• Mux address: 526
• Extra docs
• Clock: 0 Hz

How it works

A test chip for a 3stage PMOS OpAmp.

How to test

Pinout: out -> ua[0], in- -> ua1, in+ -> ua2

External hardware

Typical analog bench setup.

Pinout

Input Output Bidirectional
0
1
2
3
4
5
6
7

Analog pins

431

https://github.com/rburt16/tt09-analog-opamp-3stage
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

ua# analog# Description
0 7 out
1 9 in-
2 8 in+

432

Counter [544]

• Author: Alex Solomatnikov
• Description: Reverse 8-bit counter with reset
• GitHub repository
• Wokwi project
• Mux address: 544
• Extra docs
• Clock: 10 Hz

How it works

Dividing counter using a series of D-flops

How to test

Reset with reset button and press step button

External hardware

LEDs connected to every output pin + reset and step button, no input data buttons

Pinout

Input Output Bidirectional
0 out0
1 out1
2 out2
3 out3
4 out4
5 out5
6 out6
7 out7

433

https://github.com/solomatnikov/tt09-wokwi-template
https://wokwi.com/projects/414120378768943105

Shifter [545]

• Author: Ethan Sifferman
• Description: Input » Inout
• GitHub repository
• HDL project
• Mux address: 545
• Extra docs
• Clock: 0 Hz

How it works

Output = Input[7:0] » Inout[7:0]

How to test

The LEDs will output the shifted value of Output = Input[7:0] » Inout[7:0].

External hardware

Switches on the inputs, LEDs on the outputs

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0] uio_in[0]
1 ui_in1 uo_out1 uio_in1
2 ui_in2 uo_out2 uio_in2
3 ui_in[3] uo_out[3] uio_in[3]
4 ui_in[4] uo_out[4] uio_in[4]
5 ui_in[5] uo_out[5] uio_in[5]
6 ui_in[6] uo_out[6] uio_in[6]
7 ui_in[7] uo_out[7] uio_in[7]

434

https://github.com/sifferman/tt09-subtractor
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

7-bit arbiter [546]

• Author: Kira Tran
• Description: Simple combinational logic to arbit input (prioritize lowest of inputs

0 - 6)
• GitHub repository
• Wokwi project
• Mux address: 546
• Extra docs
• Clock: 0 Hz

How it works

OUT7 stays high as long as reset_n XOR clk is active (effectively, on when clk low).
Other outputs (OUT0-6) have at most one high, based on inputs IN0-6, arbiting
between multiple inputs. Arbiter prioritizes lowest active input.

How to test

Connect outputs to 7-segment LED display, or any other form of testable output (ex.
LEDs). Change inputs and verify correct arbitration. OUT7, with a freerunning clock
and stable reset, should oscillate periodically.

External hardware

Input switches, output 7-segment LED, possibly a button to step clk.

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 OUT7

435

https://github.com/Kikit24/TT9-Workshop
https://wokwi.com/projects/414120435997105153

NAND Flip-Flop [547]

• Author: Luigi C.
• Description: Micro Design: Signle NAND Flip-Flop
• GitHub repository
• Wokwi project
• Mux address: 547
• Extra docs
• Clock: 0 Hz

How it works

It’s a 4-NAND Flip-Flop, it works!

How to test

Try the switches

External hardware

2 LED’s

Pinout

Input Output Bidirectional
0 CLK OUT0
1
2 IN0
3
4
5
6
7 OUT7

436

https://github.com/tristantzara-dev/TT-Workshop
https://wokwi.com/projects/414122362169493505

LCA’s first Wokwi design [548]

• Author: leahcorbett18
• Description: Number output from switches
• GitHub repository
• Wokwi project
• Mux address: 548
• Extra docs
• Clock: 0 Hz

How it works

The design outputs the number 1 on the 7-segment if switch[0] is high. This will
repeat, so for switch 2 it will output number 2, and so on.

How to test

Turn on the switches and make sure that it outputs it’s corresponding number.

External hardware

LED Display and switches

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

437

https://github.com/leahcorbett18/LeahsFirstDesign
https://wokwi.com/projects/414120349028170753
http://www.ericr.nl/wondrous/pathrecs.html

chip [549]

• Author: Olivia
• Description: lights up numbers
• GitHub repository
• Wokwi project
• Mux address: 549
• Extra docs
• Clock: 0 Hz

How it works

Produces numbers 1-3.

How to test

Turn on switch correlated with number. See LED display and output.

External hardware

none

Pinout

Input Output Bidirectional
0 in0 led0
1 in1 led1
2 in3 led2
3 led3
4 led4
5 led5
6 led6
7 led7

438

https://github.com/olivia-dicorpo/chip
https://wokwi.com/projects/414120432405727233

Tinysynth [550]

• Author: Erling Rennemo Jellum
• Description: A tiny square wave oscillator accepting MIDI commands.
• GitHub repository
• HDL project
• Mux address: 550
• Extra docs
• Clock: 50000000 Hz

How it works

Accepts MIDI commands over UART, generates a corresponding square wave signal
using PWM.

How to test

External hardware

A Pmod AMP2 connected to the PMOD connector.

Pinout

Input Output Bidirectional
0 a x0 b0
1 b x1 b1
2 c x2 b2
3 d x3 b3
4 e x4 b4
5 f x5 b5
6 g x6 b6
7 h x7 b7

439

https://github.com/erlingrj/tinysynth2

rhTinyTapeout [551]

• Author: Raphael Huang
• Description: Flashes my initials
• GitHub repository
• Wokwi project
• Mux address: 551
• Extra docs
• Clock: 10000 Hz

How it works

Using a clock divider and 2-input muxs, I created a circuit that flips between my
initials.

How to test

Who needs tests?

External hardware

Switch at IN0, seven segment display at OUT0-OUT6

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 OUT1
2 OUT2
3 OUT3
4 OUT4
5 OUT5
6 OUT6
7 OUT7

440

https://github.com/blu-exe/tinytapeout11-9
https://wokwi.com/projects/414121555407659009

half adder [552]

• Author: Adam Wu
• Description: half adder with sum and carry out
• GitHub repository
• Wokwi project
• Mux address: 552
• Extra docs
• Clock: 0 Hz

half adder

takes two inputs and outputs a carry and a sum

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 OUT1
2
3
4
5
6
7

441

https://github.com/ATOMiNATiON/wokwi-temp
https://wokwi.com/projects/414120583702696961

rand [553]

• Author: mahi
• Description: just_random
• GitHub repository
• Wokwi project
• Mux address: 553
• Extra docs
• Clock: 0 Hz

How it works

Explain how your

How to test

Explain how to u

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc),

Pinout

Input Output Bidirectional
0 ino out0
1 in1 out1
2 in2 out2
3 in3 out3
4 in4
5 in5
6 in6
7 in7

442

https://github.com/mahi725/mahi
https://wokwi.com/projects/414120509472942081

Tiny Tapeout 9 Template [554]

• Author: Jason
• Description: Flip da switches
• GitHub repository
• Wokwi project
• Mux address: 554
• Extra docs
• Clock: 0 Hz

How it works

Testing the LED digit

How to test

Flip switches as pleased

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any LED
number

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

443

https://github.com/qasmokez/chip-design
https://wokwi.com/projects/414120320168203265

Ripple counter [555]

• Author: Marc Mignard
• Description: Initial test of Wokwi design
• GitHub repository
• Wokwi project
• Mux address: 555
• Extra docs
• Clock: 0 Hz

How it works

A 4-bit ripple counter, a NAND gate, and an AN gate

How to test

Try your best

External hardware

DIP switch, hex LED

Pinout

Input Output Bidirectional
0 CLK OUT0
1 IN0 OUT1
2 IN1 OUT2
3 IN2 OUT3
4 IN3 OUT4
5 OUT5
6
7

444

https://github.com/mmignard/RippleCounter
https://wokwi.com/projects/414120414884012033

four flip flops [556]

• Author: Arjun Vedantham
• Description: four flip flops tied together, drawing from input 0
• GitHub repository
• Wokwi project
• Mux address: 556
• Extra docs
• Clock: 1 Hz

How it works

Pulls the input from in0, and shifts the bit state along four flip flops -> outputs to a
seven segment display

How to test

Flip the in0 switch :)

External hardware

Seven segment display/LEDs, switch

Pinout

Input Output Bidirectional
0 in0
1
2
3
4
5
6
7

445

https://github.com/javathunderman/tt09-template
https://wokwi.com/projects/414117854728812545

adder-tt09 [557]

• Author: Philip Solomatnikov
• Description: 4bit adder with a carry output
• GitHub repository
• Wokwi project
• Mux address: 557
• Extra docs
• Clock: 0 Hz

How it works

The entire thing is based off of this image, so all credit to them. Uses XOR, AND, &
OR gates for the entire thing.

Inputs
• 0. - A0
• 1. - B0
• 2. - A1
• 3. - B1
• 4. - A2
• 5. - B2
• 6. - A3
• 7. - B3

Outputs
• 0. - Sum 0
• 1. - Sum 1
• 2. - Sum 2
• 3. - Sum 3
• 4. - Carry

How to test

Take 2 4-bit arrays and then feed them in in the following order:

• For array 1, write to A
• For array 2, write to B

446

https://github.com/kickedtomato/tt09-kt-project
https://wokwi.com/projects/414120388391730177
https://content.instructables.com/F3D/2GZ2/KNVR5S0C/F3D2GZ2KNVR5S0C.png?auto=webp&frame=1&width=601&height=1024&fit=bounds&md=MjAyMS0wNC0yNCAxNjo1Nzo1Mi4w

External hardware

LEDs from Sum 0-3 for display. Switches from A0-3 and B0-3.

Pinout

Input Output Bidirectional
0 in0 out0
1 in1 out1
2 in2 out2
3 in3 out3
4 in4 out4
5 in5
6 in6
7 in7

447

Full Adder [558]

• Author: Amogha Srinivas
• Description: takes in two inputs a,b and Cin and outputs the sum and the

carryout
• GitHub repository
• Wokwi project
• Mux address: 558
• Extra docs
• Clock: 0 Hz

How it works

takes in two inputs a and b, along with carry_in and gives output across 2 pins, sum
and carry_out

How to test

to ensure correct working of the full adder , toggle with the inputs , if any two inputs
are high , the sum should be LOW and the carry_out should be HIGH , if any one
input is HIGH the sum should be HIGH and the carry_out should be LOW and if all
three inputs are HIGH both sum and carry_out should be HIGH.

External hardware

LED display.

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2
3
4
5
6
7

448

https://github.com/AmoghaSrinivas/TTworshopF24
https://wokwi.com/projects/414120459831246849

NAND-Equ [559]

• Author: DanT
• Description: NAND Equivilant
• GitHub repository
• Wokwi project
• Mux address: 559
• Extra docs
• Clock: 0 Hz

How it works

Creates NAND equivilant to common gates

How to test

plug in and verify odd output matches even outputs

External hardware

dip switch and leds

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6
7

449

https://github.com/Dantran86/tinytapeout-tt09-copy
https://wokwi.com/projects/414120295047458817

Elevator Design [576]

• Author: Jocelyn Zhu
• Description: Simulation of an elevator design on a digital clock display.
• GitHub repository
• HDL project
• Mux address: 576
• Extra docs
• Clock: 0 Hz

How it works

The project implements an elevator interface on a digital clock based on user floor
selection. The user selects a floor using the board switches, and the display incre-
ments/decrements floor numbers according to the elevator’s state (moving up, moving
down, or idle). Once the elevator reaches the selected floor, the display shows the
user-selected floor number until a different floor is chosen or the switches are reset.
When the switches are reset, the display decrements back to the default floor.

How to test

Use board switches 0-7 to select the desired floor.

External hardware

A LED display is used to show elevator operation and the selected floor number.

Pinout

Input Output Bidirectional
0 Switch 0 Segment A
1 Switch 1 Segment B
2 Switch 2 Segment C
3 Switch 3 Segment D
4 Switch 4 Segment E
5 Switch 5 Segment F
6 Switch 6 Segment G
7 Switch 7 A dot that appears during the IDLE state

450

https://github.com/jxcelynzhu/Elevator_verilog

L display [578]

• Author: Matt Lamparter
• Description: Displays L character on a 7 seg display when 00101111 entered on

the input (and pressing the Step button to enable display)
• GitHub repository
• Wokwi project
• Mux address: 578
• Extra docs
• Clock: 0 Hz

How it works

Enter the right combination of bits to display an “L” on the seven segment display. The
combination is 0b00101111. Once that combination is entered you’ll need to press the
“Step” button in order to display the L on the display. Releasing the Step button will
clear the display.

How to test

Try different combinations of inputs. The only time the output should be displayed is
when the right bit combination is entered and the Step button is pressed.

External hardware

Requires a 7 segment display, a push button connected to power, and a 8 bit wide DIP
switch.

Pinout

Input Output Bidirectional
0 IN0
1 IN1
2 IN2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6

451

https://github.com/mlamparter/Supercon24_TT_workshop
https://wokwi.com/projects/413387014781302785

Input Output Bidirectional
7 IN7

452

S-R latch [580]

• Author: Albert
• Description: S-R latch
• GitHub repository
• Wokwi project
• Mux address: 580
• Extra docs
• Clock: 0 Hz

How it works

This is a simple S-R latch

How to test

IN1 is S, so if IN1 is high, OUT0 is high and OUT1 is low. IN0 is R, so if IN0 is high,
OUT0 is low and OUT1 is high.

External hardware

n/a

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2
3
4
5
6
7

453

https://github.com/albertchae/tt09-supercon8-workshop
https://wokwi.com/projects/413387348132056065

Gabe’s Big AND [582]

• Author: GabeMake
• Description: Displays 1 if all inputs are high, 0 if not
• GitHub repository
• Wokwi project
• Mux address: 582
• Extra docs
• Clock: 0 Hz

How it works

I connected a bunch of AND gates together to make a really big AND gate.

How to test

Set all the inputs to 1 and the output should show 1 on the LED 7-segment display.
Otherwise it should show a 0.

External hardware

N/A

Pinout

Input Output Bidirectional
0 IN0 LCD_A
1 IN1 LCD_B
2 IN2 LCD_C
3 IN3 LCD_D
4 IN4 LCD_E
5 IN5 LCD_F
6 IN6 LCD_G
7 IN7 LCD_P

454

https://github.com/gabemake/gabe-tiny-tapeout
https://wokwi.com/projects/413387032609197057

Secret Code [584]

• Author: Rex
• Description: Simple project for TinyTapeout
• GitHub repository
• Wokwi project
• Mux address: 584
• Extra docs
• Clock: 0 Hz

How it works

This project follows the “secret code” next step in the TinyTapeout workshop:
https://tinytapeout.com/guides/workshop/simulate-a-gate/
If you input the correct code, you get the first letter of my name output on the 7-
segment display (‘r’).

How to test

Set bits 10101010 in order on IN0 through IN7 (“1” is high, “0” low), then you should
receive an output of 10001100 on OUT0 through OUT7. Any other input should
output 00000000.

External hardware

• Dip switch for inputs
• 7-segment display for outputs

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6

455

https://github.com/rexgarland/my-first-wokwi
https://wokwi.com/projects/413387015959903233

Input Output Bidirectional
7 IN7 OUT7

456

joes-first-tiny-tapeout [586]

• Author: securelyfitz
• Description: does nothing… yet
• GitHub repository
• Wokwi project
• Mux address: 586
• Extra docs
• Clock: 0 Hz

How it works

Great, in theory. (Note: it doesn’t actually work yet)

How to test

Toggle inputs. See outputs toggle

External hardware

Buttons (in0 and in1) and leds (out0)

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1
2
3
4
5
6
7

457

https://github.com/securelyfitz/joes-fitst-tiny-tapeout
https://wokwi.com/projects/413387076188030977

Abey’s 1st Chip Design [588]

• Author: Abey Varghese
• Description: 1st Project with 3 AND Gates
• GitHub repository
• Wokwi project
• Mux address: 588
• Extra docs
• Clock: 0 Hz

How it works

2 AND gates outputting to OUT 1 and OUT 2 along with anded AND gates on
OUT3

How to test

Switch the dipswitch

External hardware

7-segment display, dipswitch, pushbutton

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

458

https://github.com/Awesome-Blossom/tiny-tapeout-workshop
https://wokwi.com/projects/413387481972305921

patrick’s project [590]

• Author: patrick marcus
• Description: it does nothing
• GitHub repository
• Wokwi project
• Mux address: 590
• Extra docs
• Clock: 0 Hz

How it works

it doesn’t work

How to test

untestable!

External hardware

there is none!

Pinout

Input Output Bidirectional
0 1 o1
1 2 o2
2 3 03
3 4 04
4 5 05
5 6 06
6 7 07
7 8 08

459

https://github.com/plmarcus/tt09_test
https://wokwi.com/projects/413391266378724353

tt09-pettit-wokproc-trainer [591]

• Author: Ken Pettit
• Description: An 8-bit CPU trainer
• GitHub repository
• Wokwi project
• Mux address: 591
• Extra docs
• Clock: 10000 Hz

What is WocProc Trainer?

WocProc Trainer is a partial CPU implementation coded entirely in Wokwi! While
it is not a fully functional CPU capable of fetching instructions and running code, it
does provide the ALU, registers and opcode deocde for performaing CPU operations
when you “feed” it instructions. Turning it into a full CPU would require addition of
a Program Counter (PC), execution state machine, flow control opcodes (jump, call,
return, conditional branches, etc.), and an interface for fetching opcodes.

How it works

It works by “feeding” it opcodes and data via the ui[7:0] and ui[0] input pins and then
executing them by toggling the uio1 input pin. Some instructions require additional
“Immediate Data” to be supplied via the ui[7:0] input pins prior to toggling the uio1
“execute” input.

460

https://github.com/kdp1965/tt09-pettit-addsub-accum
https://wokwi.com/projects/412635532198550529
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

The WokProc has an 8-bit accumulator and 4 8-bit working registers and can perform
ADD, SUBTRACT and the standard logical functions AND,OR,XOR and NOT, as well
as shift left/right operations. It also keeps track of CARRY and ZERO bits to reflect
the results of operations.

How to test

1. Provide a 10KHz clock then issue rst_n pulse.
2. Select the desired output mode for viewing results. For this testing, set

uio_in[5:2] all LOW.
uio_in2: Selects 7-Segment (LOW) or binary (HIGH) output format uio_in[4]:
Selects auto nibble / digit display (LOW) or manual (HIGH) uio_in[3]: Manual
digit select when uio_in[4] is HIGH. uio_in[5]: Selects value to output (LOW =
ACC reg, HIGH = new ACC load value)

3. Monitor the results using the 7-Seg display and uio_out[7:6] bits:

uio_out[6]: Indicates if CARRY bit is set
uio_out[7]: Indicates if ZERO bit is set

4. Perform an addition. After reset, the opcode register contains opcode 0x00,
which is A = A + IMM. So supply a binry input value on ui_in[7:0] and toggle the
EXECUTE input (uio_in1) HIGH then LOW. The 7-Seg display should display
the HEX value of the sum.

5. The first addition just looked like a ‘load’ since Acc was zero from the reset. Add
the value a second time (or supply a different value on ui_in[7:0]) and toggle
the EXECUTE input again. The 7-Segment display should show the result of
the addiiton.

6. Load register r0 from the A register. First enter the opcode (7’b1100_0000 from
the opcode table) and then toggle the LOAD (ui_in[0]) input HIGH then LOW
to load ui_in[7:] to the opcode register. Now toggle the EXECUTE (ui_in1)
input HIGH then LOW. Register r0 should now contain the value from A.

7. Test if register r0 was loaded. First clear the Acc register (load opcode
7’b0111_0000 and EXECUTE it). The 7-Seg should show “00.”. Now load and
execute the opcode to load register r0 to Acc (opcode 7’b0110_0000). The
7-Seg should show the result of the summation that was stored in r0.

8. Perform a NOT operation on the A register by loading and executing opcode
7’0111_0001. The 7-Seg should show the compliment value of what was in A.

461

http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

9. Try additional oerations from the opcode table by loading and executing them.
For any opcode that uses IMM data, uio_in[7:0] inputs must be changed to the
immediate data AFTER loading the opcode but BEFORE executing it.

Opcodes supported:

Opcode Operation Description
0000_0000 A <= A + IMM Add A + immediate data
0000_1000 A <= A + IMM + Carry Add with carry A + immediate
0001_0000 A <= A - IMM Subtract immediate from A
0001_1000 A <= A - IMM - Borrow Subtract with borrow immediate
0010_00rr A <= A + R[1:0] Add register rr to A
0010_10rr A <= A + R[1:0] + Carry Add with carry register rr
0011_00rr A <= A - R[1:0] Subtract register rr from A
0011_10rr A <= A - R[1:0] - Borrow Subtract with borrow register rr
0100_0000 A <= IMM Load A with immediate data
0110_00rr A <= R[1:0] Load A from register rr
0110_01rr A <= A ^ R[1:0] XOR A with register rr
0110_10rr A <= A OR R[1:0] OR A with register rr
0110_11rr A <= A & R[1:0] AND A with register rr
0111_0000 A <= Zero Clear A
0111_0001 A <= !A Invert (1’s compliment) A‘
0111_01rr A <= !R[1:0] Load A from rr compliment
0111_1000 Cy <= 0 Clear the carry flag
0111_1001 Cy <= !Cy Compliment the carry flag
0111_1010 {A, Cy} <= {Cy, A} Shift right A through Carry
0111_1011 {Cy, A} <= {A, Cy} Shift left A through Carry
0111_1100 A <= {0, A[7:1]} Shift right A
0111_1101 A <= {A[6:0], 0} Shift left A
0111_1110 A <= {A[7], A[7:1]} Signed shift right A
1000_00rr R[1:0] <= A + IMM Load register rr with sum
1001_00rr R[1:0] <= A - IMM Load register rr with difference
1010_00rr R[1:0] <= A + R[1:0] Load register rr with sum
1011_00rr R[1:0] <= A - R[1:0] Load register rr with difference
1100_00rr R[1:0] <= IMM Load immediate data to rr
1101_00rr R[1:0] <= A Load A to rr
1110_RRrr R[1:0] <= R[3:2] Copy register RR to rr

462

Selecting the Output

The uo_out port is used to display the state of the WocProc trainer. It can display
either 7-Segment LED encoded register data or direct binary data.

uio_in2 uo_out Format
LOW 7-Segment
HIGH Binary

The data output to uo_out (either 7-Segment or binary) is selected via the uio_in[5]
input:

uio_in[5] uo_out Data
LOW Acc Register
HIGH ALU result (value loaded upon EXECUTE)

For 7-Segment output format, a single digit LED display is used to show both the
upper and lower nibble of the selected output data. When the LOWER nibble is being
displayed, the 7-Segment Decmial Point (DP) will be illuminted and when the UPPER
nibble is displayed, it will be turned off, such as:

F1.

The nibble display can be configured using uio_in[4:3] as follows:

uio_in[4:3] Displayed Nibble
2’b0x Auto toggle (counter tuned for 10KHz clock)
2’b10 Lower nibble (plus DP)
2’b11 Upper nibble

Hardware needed:

Dip switches and 7-Segment LED.

Pinout

463

http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
0 op/imm[0] seg_a load_opcode
1 op/imm1 seg_b execute_opcode
2 op/imm2 seg_c sevenSeg_binary
3 op/imm[3] seg_d digit_select
4 op/imm[4] seg_e manual_digit
5 op/imm[5] seg_f digit_a_reg
6 op/imm[6] seg_g carry_out
7 op/imm[7] seg_dp zero_out

464

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Full adder Design [608]

• Author: Mithun
• Description: one bit full adder
• GitHub repository
• Wokwi project
• Mux address: 608
• Extra docs
• Clock: 0 Hz

How it works

The design has three inputs and two outputs. when a 1 bit 3 inputs are given, design
gives the sum and carry.

How to test

Give 1 bit 3 inputs and check the 1 bit sum and 1 bit carry.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2
3
4
5
6
7

465

https://github.com/mithunKL/Design
https://wokwi.com/projects/414120800422397953

seven [609]

• Author: nikmign
• Description: seven
• GitHub repository
• Wokwi project
• Mux address: 609
• Extra docs
• Clock: 0 Hz

How it works

it works

How to test

click the buttons

External hardware

none

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3
4 IN4
5 IN5
6
7

466

https://github.com/nikmign/nikmign-gds
https://wokwi.com/projects/414124428088683521

Vincent’s First Design [610]

• Author: Vincent Harkins
• Description: Not entirely sure
• GitHub repository
• Wokwi project
• Mux address: 610
• Extra docs
• Clock: 0 Hz

How it works

It takes a really long time but it should make a V.

How to test

turn on input 1

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 OUT1
2 OUT2
3 OUT3
4 OUT4
5 OUT5
6
7 OUT7

467

https://github.com/vharkins/wokwi_vincent_harkins
https://wokwi.com/projects/414118423095874561

gatesoup [611]

• Author: Elio Bourcart
• Description: a tasteful selection of logic gates between input and output
• GitHub repository
• Wokwi project
• Mux address: 611
• Extra docs
• Clock: 0 Hz

How it works

I connected a tasteful selection of logic gates between the inputs and outputs.

How to test

Get a snack, flip some switches, look at the pretty lights. Best enjoyed with a friend.

External hardware

N/A List external hardware used in your project (e.g. PMOD, LED display, etc), if
any

Pinout

Input Output Bidirectional
0 FAFO LED 0
1 FAFO LED 1
2 FAFO LED 2
3 FAFO LED 3
4 FAFO LED 4
5 FAFO LED 5
6 FAFO LED 6
7 FAFO LED 7

468

https://github.com/3lio/tty9elio
https://wokwi.com/projects/414120513895838721

A Tale of Two NCOs [612]

• Author: Mike Ng
• Description: Two NCOs enter, one signal leaves
• GitHub repository
• HDL project
• Mux address: 612
• Extra docs
• Clock: 50000000 Hz

How it works

This design contains two NCOs, implemented with phase accumulators and sine lookup
tables. The outputs of the NCOs are multiplied together by default. NCO B can be
bypassed to a constant “one” or “half”. There is also a boxcar filter for funsies.
When operating at 50 MHz, it should be possible to tune NCO A from 24.8 MHz to
0.195 MHz. NCO B has one less bit in its increment control, so it can only go up to
12.3 MHz.

How to test

The output is intended for something simple like an R-2R DAC. Don’t expect it to be
pretty at high frequency.

External hardware

• DAC
• Oscilloscope

Pinout

Input Output Bidirectional
0 phase_incr_A[0] OUT0 phase_incr_B[0]
1 phase_incr_A1 OUT1 phase_incr_B1
2 phase_incr_A2 OUT2 phase_incr_B2
3 phase_incr_A[3] OUT3 phase_incr_B[3]
4 phase_incr_A[4] OUT4 phase_incr_B[4]
5 phase_incr_A[5] OUT5 phase_incr_B[5]

469

https://github.com/mng2/tt09-wokwi
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
6 phase_incr_A[6] OUT6 low_amplitude_B
7 filter_on OUT7 bypass_B

470

Tiny Tapeout 9 Template Version 1 Tata Luka [613]

• Author: lukab
• Description: broken tatanator2000
• GitHub repository
• Wokwi project
• Mux address: 613
• Extra docs
• Clock: 1 Hz

How it works

testing 1 2 3 Explain how your project works

How to test

. Explain how to use your project

External hardware

. List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 IN0 OUT1
1 IN1 OUT2
2
3
4
5
6
7

471

https://github.com/LukaBazan/tatanator2000
https://wokwi.com/projects/414120303651028993

Workshop demo [614]

• Author: Tommy Thorn
• Description: Just a demo
• GitHub repository
• HDL project
• Mux address: 614
• Extra docs
• Clock: 50000000 Hz

How it works

It’s magic

How to test

Connect the TX pin to your favorite terminal (more to be written)

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 rx tx
1 pdm_out
2
3
4
5
6
7

472

https://github.com/tommythorn/tt09-tommythorn-workshop

UART TX [615]

• Author: Shaokai Lin
• Description: A UART transmitter modified from the one from the TinyTapeout

website
• GitHub repository
• Wokwi project
• Mux address: 615
• Extra docs
• Clock: 50000000 Hz

How it works

This design is a UART TX that sends “SHAOKAI’’.

How to test

Connect it to your serial receiver and see if “SHAOKAI’’ gets printed.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 OUT0
1 OUT1
2
3
4
5
6 IN6
7 IN7 OUT7

473

https://github.com/lsk567/tinytapeout-uart-tx
https://wokwi.com/projects/414122607025630209

LRC - Longitudinal Redundancy Check generator [616]

• Author: Steve Jenson <stevej@gmail.com>
• Description: LRC implementation for Tiny Tapeout 09
• GitHub repository
• HDL project
• Mux address: 616
• Extra docs
• Clock: 0 Hz

How it works

Calculates a running error correcting code. For each new byte applied to the input
pins, calculates a running longitudinal redundancy code.

How to test

Supply a byte to ui_in, read the LRC on uo_out. Keep feeding it bytes and you’ll
keep getting new LRC codes. Code resets when the chip resets.

External hardware

No external hardware needed.

Pinout

Input Output Bidirectional
0 Input Bit 0 Output Bit 0
1 Input Bit 1 Output Bit 1
2 Input Bit 2 Output Bit 2
3 Input Bit 3 Output Bit 3
4 Input Bit 4 Output Bit 4
5 Input Bit 5 Output Bit 5
6 Input Bit 6 Output Bit 6
7 Input Bit 7 Output Bit 7

474

https://github.com/stevej/tt09-lrc-stevej

my First WokWi Design [617]

• Author: Mani Rayabarapu
• Description: This is just a basic circuit that I designed in the WokWi environment

with some basic logic gates.
• GitHub repository
• Wokwi project
• Mux address: 617
• Extra docs
• Clock: 0 Hz

How it works

This project is a simple counter circuit that increments and displays numbers on a
7-segment display. A “Step” button advances the count, and a “Reset” button resets
it to zero. Logic gates control the segments based on the counter’s output.

How to test

Press the “Step” button to increment the display and “Reset” to reset the count.
Optionally, connect a clock for automatic counting.

External hardware

7-Segment Display Step and Reset buttons Clock source

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

475

https://github.com/manitejarayabarap/firstWokWiDesign
https://wokwi.com/projects/414120368966850561

print [618]

• Author: Syeva
• Description: prints seven
• GitHub repository
• Wokwi project
• Mux address: 618
• Extra docs
• Clock: 0 Hz

How it works

Uses an and gate to make a seven on the LED display.

How to test

Toggle the 3 and 4 on in the switch, and it will print out a seven on the LED display.

External hardware

LED display

Pinout

Input Output Bidirectional
0 OUT0
1 OUT1
2 IN2 OUT2
3 IN3
4
5
6
7

476

https://github.com/syevaa/tapeout
https://wokwi.com/projects/414120202583995393

Tiny Tapeout 9 [619]

• Author: Maya Choudhury
• Description: Testing logic
• GitHub repository
• Wokwi project
• Mux address: 619
• Extra docs
• Clock: 0 Hz

How it works

My project uses several flops and muxes.

How to test

Test carefully!

External hardware

Hook up to LEDs

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

477

https://github.com/maya-choudhury/tt09
https://wokwi.com/projects/414120299211357185

hello [620]

• Author: vishwajeet
• Description: Hello Bcd
• GitHub repository
• Wokwi project
• Mux address: 620
• Extra docs
• Clock: 0 Hz

How it works

Explain how your project

How to test

Explain how to use your

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

478

https://github.com/vishwajeet-sinh/Tiny_Tapeout_workshop
https://wokwi.com/projects/414120500233937921

tinydsp-lol [621]

• Author: Tassilo Tanneberger
• Description: testing digital dsp
• GitHub repository
• HDL project
• Mux address: 621
• Extra docs
• Clock: 2000000 Hz

How it works

This is just a test project to explore Chisel.

How to test

It should have a ChiselTest to run with sbt test.

External hardware

Nothing at the moment.

Pinout

Input Output Bidirectional
0 a x0 b0
1 b x1 b1
2 c x2 b2
3 d x3 b3
4 e x4 b4
5 f x5 b5
6 g x6 b6
7 h x7 b7

479

https://github.com/tanneberger/tt09-dsp

Full Adder [622]

• Author: David De La Luz
• Description: full adder from XOR, OR, AND gates
• GitHub repository
• Wokwi project
• Mux address: 622
• Extra docs
• Clock: 0 Hz

How it works

there are total of 3 inputs, the first two inputs are 1 bit inputs and they are added. the
third input represents the carry value.

How to test

input your 1 bit values to be added to the first two inputs

External hardware

Two LEDs are being used, along with two XOR, two AND, and one OR gate

Pinout

Input Output Bidirectional
0 IN0 OUT0 BI1
1 IN1 OUT1 BI2
2 IN2 OUT2 BI3
3 IN3 OUT3 BI4
4 IN4 OUT4 BI5
5 IN5 OUT5 BI6
6 IN6 OUT6 BI7
7 IN7 OUT7 BI8

480

https://github.com/DavidOfTheLight/GDS
https://wokwi.com/projects/414120569974735873

Leaky integrate and fire spiking neural network [623]

• Author: Aliyaa Islam
• Description: simulates a lif neuron
• GitHub repository
• HDL project
• Mux address: 623
• Extra docs
• Clock: 0 Hz

How it works

It takes input voltages and treats that as the input injection to the LIF neuron

How to test

Do something

External hardware

NA

Pinout

Input Output Bidirectional
0 Input current

bit [0]
State varibale
bit [0]

1 Input current
bit 1

State varibale
bit 1

2 Input current
bit 2

State varibale
bit 2

3 Input current
bit [3]

State varibale
bit [3]

4 Input current
bit [4]

State varibale
bit [4]

5 Input current
bit [5]

State varibale
bit [5]

481

https://github.com/alnislam/tt09-ece-110
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
6 Input current

bit [6]
State varibale
bit [6]

7 Input current
bit [7]

State varibale
bit [7]

Spike bit

482

Stochastic Integrator [640]

• Author: Ciecen Lestari, Chih-Kuan Ho, David Parent
• Description: Use stochastic computing to implement integration
• GitHub repository
• HDL project
• Mux address: 640
• Extra docs
• Clock: 50000000 Hz

How it works

The stochastic integrator uses Euler’s definition of integration to make it happen in
the stochastic domain. This integrator follows unipolar probability.
REFERENCES USED
General Stochastic Integrator Design:
1 S. Liu and J. Han, “Hardware ODE solvers using stochastic circuits,” 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 2017,
pp. 1-6, doi: 10.1145/3061639.3062258. keywords: {Radiation detectors;Stochastic
processes;Hardware;Generators;Clocks;Energy consumption;Throughput;stochastic in-
tegrator;ordinary differential equation;stochastic computing},
LFSR Design in Stochastic Computing:
2 Jason H. Anderson, Yuko Hara-Azumi, and Shigeru Yamashita. 2016. Effect
of LFSR seeding, scrambling and feedback polynomial on stochastic computing
accuracy. In Proceedings of the 2016 Conference on Design, Automation &
Test in Europe (DATE ’16). EDA Consortium, San Jose, CA, USA, 1550–1555.
https://dl.acm.org/doi/abs/10.5555/2971808.2972171

How to test

Set ui_in[0] with a constant high and ui_in1 with constant low to see the equations
described.

External hardware

ADALM2000

483

https://github.com/CL-123-abc/tt_um_stochastic_integrator_tt9_CL123abc
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture

Pinout

Input Output Bidirectional
0 serial_input_1 serial_output_seq_integrator_a
1 serial_input_2 serial_output_seq_integrator_b
2 serial_output_seq_integrator_c
3 serial_output_system_integrator_a
4 serial_output_system_integrator_b
5 serial_output_test_integrator_a
6 serial_output_test_integrator_b
7 output_sn_bit_seq_integrator_c

484

E2M0 x INT8 Systolic Array [642]

• Author: ReJ aka Renaldas Zioma
• Description: Systolic array for testing (Septenary and Quinary) 2.6 bits/param

packed weights
• GitHub repository
• HDL project
• Mux address: 642
• Extra docs
• Clock: 48000000 Hz

How it works

Reduced precision matrix multiplication base on systolic array architecture. Left side
matrix is compressed to 2.6 bits per element.

How to test

Every cycle feed packed weight data to Input pins and input data to Bidirectional pins.
Strobe Enable pin to start receiving results of the matrix multiplication on the Output
pins.

External hardware

External hardware

External processor (RP2040 for example) is necessary to feed weights and input data
into the accelerator and fetch the results.

Pinout

Input Output Bidirectional
0 packed weights LSB result LSB (in) activations LSB
1 packed weights result (in) activations
2 packed weights result (in) activations
3 packed weights result (in) activations
4 packed weights result (in) activations
5 packed weights result (in) activations

485

https://github.com/rejunity/tt09-septenary-matrix-mul

Input Output Bidirectional
6 packed weights result (in) activations
7 packed weights MSB result MSB (in) activations MSB

486

VGA Nyan Cat [644]

• Author: Andy Sloane
• Description: Displays the classic nyan.cat animation
• GitHub repository
• HDL project
• Mux address: 644
• Extra docs
• Clock: 25175000 Hz

VGA nyan cat

Figure 37: nyancat preview

How it works Outputs nyancat on VGA with music!
Colors and animation are all from the original nyan.cat site, using a 2x2 Bayer dithering
matrix which inverts on alternate frames for better color rendition on the Tiny VGA
Pmod.

487

https://github.com/a1k0n/tt08-nyan

Sound is generated from a MIDI file, split into melody and bass parts. Melody and
bass are each square waves mixed with a simple exponential decay envelope, which is
then fed to a low-pass filter and then a sigma-delta DAC.
This was designed to fit into 1 tile, and it almost did – the cells take up about 93% of
1 tile, but detailed routing doesn’t finish. With the deadline approaching I was forced
to grow it to 1x2, so I threw in a little easter egg.

How to test Set clock to 25.175MHz or thereabouts, give reset pulse, and enjoy

External hardware TinyVGA Pmod for video on o[7:0].
1-bit sound on io[7], compatible with Tiny Tapeout Audio Pmod, or any basic ~20kHz
RC filter on io7 to an amplifier will work.

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VSync
4 R0
5 G0
6 B0
7 HSync AudioPWM

488

https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod

15 channels emission counter [646]

• Author: Coline Chehense, Dinko Oletic
• Description: Counts the number of pulses received on each of 15 input channel

and returns periodically a serial output of these values.
• GitHub repository
• HDL project
• Mux address: 646
• Extra docs
• Clock: 12000000 Hz

How it works

This is an early work-in progress test implementation of a digital readout, part of a
low-power mixed-signal multichannel sensor interface for acoustic emission detection.
The sensor interface is developed to support a passive, micromechanically-implemented
ultrasonic signal frequency decomposition MEMS device, based on an array of piezo-
electric micro-resonators: https://ieeexplore.ieee.org/document/9139151.

Figure 38: MEMS-based mixed-signal multichannel sensor interface for acoustic emis-
sion detection.

The digital readout part implemented here, tracks cumulative number of ultrasonic
acoustic events/emissions occurences at each channel i.e. at the specific ultrasonic
frequency, over a longer time interval. It is assumed that each acoustic emission event
is represented by a short single digital input pulse. An analog conditioning circuit for
pulse-shaping of input signals is not implemented here. The digital design consists
of fifteen 12-bit channel-counters with overflow detection, a mm:ss real-time clock
(RTC), a parallel-input-serial output (PISO) readout register, controlled by a readout
state-machine. The counters store number of intermittently-occuring short digital
input pulses, accumulated within the RTC’s time-measurement interval 00:00 - 59:59,

489

https://github.com/DinkoOletic/tt09-HDL_unizgfer_15ch_AE_evt_counter

at each of the four input channels. Periodically, after every RTC overflow (1 h with
assumed 1 Hz RTC input clock signal), the state-machine performs sequential serial
readout of the RTC time and all channels, and resets all channel counters. Additionally,
readout and individual channel reset is initiated by overflow at any of individual input
channel counter.

Figure 39: Digital multi-channel counter of ultrasonic acoustic events.

This design is part of research activities https://www.fer.unizg.hr/liss/aemems. The
design is generally applicable for low-power wake-up sensor interfaces, acoustic event
detection, non-destructive testing, particle-counters, or as a generic pulse-counting
digital building block. This is the second TinyTapeout submission of the design. The
first version was submitted to TT04, it featured 4 channels, and had timing issues
during serial readout.

How to test

Input signals are short rising-edge digital pulses, connected to input pins “channel 1”
to “channel 15” . Output data becomes ready for serial readout at the output pin
“serial_out” when overflow is signalled via the output “ready” pin ovf_global. Output
bits are serially clocked-out using the input pin “clk”. Specifically, RTC overflow is
signalled via output pin “ovf_RTC_out”, and overflow at an individual channel via

490

the pin “ovf_ch_out”. The rest of output pins are used for debugging of the state-
machine’s internal states.

External hardware

Logics analyzer will come handy.

Pinout

Input Output Bidirectional
0 RTC serial_out Channel 8
1 Channel 1 ovf_global Channel 9
2 Channel 2 ovf_RTC Channel 10
3 Channel 3 a0 Channel 11
4 Channel 4 a1 Channel 12
5 Channel 5 a2 Channel 13
6 Channel 6 a3 Channel 14
7 Channel 7 SL_out Channel 15

491

Basic Oszilloscope and Signal Generator [648]

• Author: Pascal Gesell
• Description: Basic oscilloscope & signal generator on an ASIC
• GitHub repository
• HDL project
• Mux address: 648
• Extra docs
• Clock: 25000000 Hz

Authors: Pascal Gesell, Dr. Torsten Maehne, Dr. Theo Kluter

How it works

This is a basic oscilloscope design using the experimental VHDL template. It samples
the input signal from channel 1 of an ADC Pmod (Digilent PmodAD1) and buffers the
samples on an external FRAM. The captured signal is output on screen via a BlackMesa
HDMI Pmod. Test signals are generated using Direct Digital Synthesis and are output
on channel 1 of the DAC Pmod (Digilent PmodDA2). Four buttons and two switches
allow to control the oscilloscope and choose the test signal to generate.
When the trigger button is pressed, a single-shot measurement is taken when the
trigger criteria is met. The trigger criteria can be the vertical and horizontal position
as well as the trigger level (positive edge or negative edge). The data is buffered onto
the external FRAM, with the goal to contain 32k samples before the trigger event and
32k samples after the trigger event. After the data is collected, the data is displayed
on the HDMI screen.
Since an external FRAM memory is used with no buffers on the chip, the displayed
oscilloscope screen is actually rotated by 90° to the right. Thus only one sample needs
to be read from the FRAM per output video line. A Python script is provided for
convenience to read the video frames captured by an USB HDMI video grabber, rotate
them by 90° to the left and display them on the screen.
The signal generator supports a few basic waveforms: sine, square, triangle and saw-
tooth. The frequency and amplitude can be adjusted using the buttons and switches.
The signal generator is also used to test the trigger functionality and the display of the
oscilloscope.
The scope settings are continuously output via UART at 9600 baud (8N1) on
uo_out(3).

492

https://github.com/gfcwfzkm/tt09-scope-bfh-mht1_3
https://github.com/gfcwfzkm
https://www.bfh.ch/en/torsten-maehne
https://www.bfh.ch/en/theo-kluter
show_scope.py

Figure 40: Image of Scope

493

How to test

Connect the various Pmods to the TinyTapeout 4+ demo board or FPGA board accord-
ing to the pinout description in the info.yaml file. Connect the output of the DAC to
the input of the ADC and connect the HDMI Pmod to a screen or HDMI capture card.
Run the trigger to capture a single-shot measurement and display the data on the
screen.

External hardware

To test and use this project, you will need the following hardware:

• 1 � BlackMesaLabs 3-bit HDMI Pmod : A 3-bit HDMI Pmod
• 1 � Digilent PmodAD1 : A 12-bit ADC Pmod
• 1 � Digilent PmodDA2 : A 12-bit DAC Pmod
• 1 � FM25W256G : 32k x 8 FRAM Pmod
• 1 � Digilent PmodBTN : A 4 Buttons Pmod
• 1 � Digilent PmodSWT : A 4 Switches Pmod, of which only 2 are used
• Optionally, an HDMI capture card to display the HDMI output on a computer

screen

Attention: The above Pmods cannot be directly connected to the TinyTapeout 4+
demo board! The Pmods’ pins need to be individually connected to the right Pmod
pins of the TinyTapeout 4+ demo board, as documented in the IO section.

FPGA Implementation

The design has been implemented and tested on a Sipeed Tang Nano 9k FPGA board
using my own base PCB to have enough available Pmods to test the design.

Acknowledgements

This work was realized under the supervision of Dr. Torsten Maehne and Dr. Theo
Kluter as part of my project work in the 5th term of my Bachelor studies of electrical en-
gineering and information technology at Berner Fachhochschule (BFH), Biel/Bienne,
Switzerland.

Pinout

494

../info.yaml
https://blackmesalabs.wordpress.com/2017/12/15/bml-hdmi-video-for-fpgas-over-pmod/
https://digilent.com/reference/pmod/pmodad1/start
https://digilent.com/reference/pmod/pmodda2/start
https://datasheet.octopart.com/FM25W256-G-Cypress-Semiconductor-datasheet-86779777.pdf
https://digilent.com/reference/pmod/pmodbtn/start
https://digilent.com/reference/pmod/pmodswt/start
https://github.com/TinyTapeout/tt-demo-pcb
https://github.com/TinyTapeout/tt-demo-pcb
https://github.com/gfcwfzkm/t9k-baseboard
https://bfh.ch/electrical
https://bfh.ch/electrical
https://www.bfh.ch/ti/en

Input Output Bidirectional
0 FRAM MISO ADC CS HDMI Pmod Green
1 Button 1 DAC MOSI HDMI Pmod Clock
2 Button 3 ADC SCLK HDMI Pmod HSYNC
3 Switch 1 FRAM SCLK UART_TX Settings Info

(9600bps, 8N1)
4 ADC MISO DAC CS HDMI Pmod Red
5 Button 2 DAC SCLK HDMI Pmod Blue
6 Button 4 FRAM CS HDMI Pmod DE
7 Switch 2 FRAM MOSI HDMI Pmod VSYNC

495

T3 (Tiny Ternary Tapeout) CSA [650]

• Author: Arnav Sacheti & Jack Adiletta
• Description: Ternary Matmul Processor using CSA
• GitHub repository
• HDL project
• Mux address: 650
• Extra docs
• Clock: 50000000 Hz

Tiny Ternary Tapeout Project Documentation

Inspiration The inspiration for this Tiny Tapeout project comes from the “Scalable
MatMul-free Language Modeling” paper, which explores a novel approach to language
modeling that bypasses traditional matrix multiplication (MatMul) operations. Stan-
dard neural network models, especially those used for language processing, rely heavily
on matrix multiplications to handle complex data transformations. However, these
operations can be computationally expensive and power-intensive, especially at large
scales.
The key insight of this research is to leverage alternative mathematical structures and
sparse representations, reducing the need for resource-heavy MatMul operations while
still enabling efficient language processing. By reimagining the model architecture
to avoid these multiplications, it opens up possibilities for more energy-efficient, scal-
able models, particularly in hardware-constrained environments like microchips. This
Tiny Tapeout project aims to implement and experiment with these principles on a
small scale, designing circuitry that emulates the core ideas of this MatMul-free ap-
proach. This can pave the way for more efficient and compact language models in
embedded systems, potentially transforming real-time, on-device language processing
applications.

How it works The tt_um_tiny_ternary_tapeout_csa.v module is designed
to perform matrix multiplication using a pipelined architecture. Here’s a step-by-step
explanation of how it works:
Loading the Weights (tt_um_load.v):

The module starts by loading the weights for the matrix. These weights
are stored in an internal register array and are used for the matrix multi-
plication operations.

Matrix Multiplication (tt_um_mult.v):

496

https://github.com/arnavsacheti/tt09-tiny-ternary-tapeout-csa

The module performs matrix multiplication by iterating over the columns
of the weight matrix and calculating the temporary output values based on
the weights and input vectors. For each column, the module multiplies the
input vector elements by the corresponding weights and sums the results
to produce the output values.

Pipelined Architecture:

The module is pipelined, meaning that it can continuously accept new
input vectors while performing computations on the previous inputs. As
new inputs are driven into the module, the current computations are com-
pleted, and the results are stored in a pipeline register. During the next
clock cycle, the outputs are produced as 8-bit integers, allowing for con-
tinuous data processing without interruption.

Outputting Results:

After driving all the inputs, the outputs are produced as 8-bit integers.
These outputs represent the result of the matrix multiplication operation.
By leveraging a pipelined architecture, the tt_um_mult.v module ensures
efficient and continuous data processing, allowing for high-throughput ma-
trix multiplication operations.

Example: Using a Ternary Array for Efficient Computation In this example,
we’ll create a 4x2 ternary array and demonstrate how it can be used to process a 1x4
input vector.
Step 1: Define a Ternary Array
A ternary array is one where each element can take on one of three possible values,
commonly -1, 0, or +1. These values simplify calculations because instead of perform-
ing complex multiplications, you can use additions, subtractions, or ignore the zero
entries altogether.
Let’s create a sample 4x2 ternary array:

Array = [+1 0 − 1 +1 0 −1 + 1 +1]

Step 2: Define the Input Vector
Let’s assume we have a 1x4 input vector:

Input = [2 −1 3 0]

497

Step 3: Compute the Output without Matrix Multiplication
Instead of performing a matrix multiplication, we’ll calculate the output using simpler
operations based on the ternary values.
For each column in the ternary array:

• Multiply +1 entries by the corresponding input values.
• Subtract the values for -1 entries.
• Ignore the 0 entries.

Step 4: Calculate Each Column’s Output
Let’s compute each column separately:

• Column 1 Calculation:

– Row 1: (+1 ×2 = 2)
– Row 2: (-1 ×-1 = +1)
– Row 3: (0 ×3 = 0)
– Row 4: (+1 ×0 = 0)

Sum of Column 1: (2 + 1 + 0 + 0 = 3)
• Column 2 Calculation:

– Row 1: (0 ×2 = 0)
– Row 2: (+1 ×-1 = -1)
– Row 3: (-1 ×3 = -3)
– Row 4: (+1 ×0 = 0)

Sum of Column 2: (0 - 1 - 3 + 0 = -4)

Final Output Vector
Combining the results from each column, we get the final output vector:

Output = [3 −4]

498

How to test To test the Matrix Multiplier with an external MCU like a Raspberry
Pi, follow these steps:

1. Setup:

• Connect the Raspberry Pi to the Matrix Multiplier hardware using appropriate
GPIO pins.

• Ensure that the Raspberry Pi has the necessary libraries installed for GPIO ma-
nipulation.

Pinout

Input Output Bidirectional
0 A1 Q1 B1
1 A2 Q2 B2
2 A3 Q3 B3
3 A4 Q4 B4
4 A5 Q5 B5
5 A6 Q6 B6
6 A7 Q7 B7
7 A8 Q8 B8

499

CORA-16 [652]

• Author: Andrew Dona-Couch
• Description: Simply 16-bit CPU
• GitHub repository
• HDL project
• Mux address: 652
• Extra docs
• Clock: 0 Hz

Couch’s One-Register Accumulator machine, 16-bit width.

How it works

One register should be enough for anybody. Well, there’s also the program counter,
status flags, stack pointer, data pointer, but who’s counting?
External SPI memory is used for a simple instruction fetch/execute cycle. High-
bandwidth I/O is provided through a full byte-width input and output bus. The machine
allows single-stepping through execution to aid debugging.

Pin Function
step Set high for a clock cycle to step, hold high to run.
busy When high, the machine is currently working on an

instruction.
halt When high, the machine has halted execution.
trap When halt is low and trap is high, the machine has

trapped. Step once to attempt recovery (success depends
significantly on context).

Note: when both halt
and trap are high, the
machine has experienced
an irrecoverable fault,
please reset.
in[7:0] General-purpose byte input. Use as data source IN for

any one-argument instruction.
out[7:0] General-purpose byte output. Set with the OUT

instruction.

500

https://github.com/couchand/tt09-cora16

How to test

1. Load the program to run into the external SPI RAM.
2. Reset the CPU.
3. Raise step high for a clock for each instruction to step.
4. Hold step high to run free (you are advised to handle trap).
5. Observe busy, halt and trap for the module status.

External hardware

The module expects an SPI RAM attached to the relevant SPI pins. The onboard
Raspberry Pi emulation should work just fine.

Instruction set

Status byte 7 6 5 4 3 2 1 0
x x Else x x Carry Neg Zero

Impact on the status flags is documented as:

• -: No effect
• 0: The flag is cleared to zero
• 1: The flag is set to one
• #: The flag is affected by the operation

One-byte instructions

Name Bit Pattern Description Status
Nop 0000 0000 No operation ---- ----
Halt 0000 0001 Halt machine ---- ----
Trap 0000 0010 Trap execution ---- ----
Drop 0000 0011 Drop a word from the

stack
---- ----

Push 0000 0100 Push a word to the stack ---- ----
Pop 0000 0101 Pop a word from the stack

to the accumulator
---- ----

Return 0000 0110 Return to the address on
top of the stack

---- ----

501

Name Bit Pattern Description Status
Not 0000 0111 One’s complement of the

accumulator
---- -1##

Out Lo 0000 1000 Output the low byte of the
accumulator

---- ----

Out Hi 0000 1001 Output the high byte of
the accumulator

---- ----

Set DP 0000 1010 Set the data pointer value
to the accumulator value

---- ----

Test 0000 1011 Set the status flags based
on the accumulator value

---- --##

Branch
Indirect

0000 1100 Add the accumulator to
the program counter

---- ----

Call
Indirect

0000 1101 Call the subroutine address
in the accumulator

---- ----

Status 0001 0000 Load the status flags into
the accumulator

---- ----

Load
Indirect

0100 01mm Load a word from the
address in the accumulator,
using addressing mode m
(bug: modes not
supported)

---- ----

Two-byte instructions

Name Bit Pattern Description Status
Load 1000 0sss vvvv vvvv Load a value into the

accumulator
---- ----

Store 1001 0sss vvvv vvvv Store a value to memory ---- ----
Add 1000 1sss vvvv vvvv Add a value to the

accumulator
---- -###

Sub 1001 1sss vvvv vvvv Subtract a value from the
accumulator

---- -###

And 1010 0sss vvvv vvvv Bitwise and a value with
the accumulator

---- --##

Or 1010 1sss vvvv vvvv Bitwise or a value with the
accumulator

---- --##

Xor 1011 0sss vvvv vvvv Bitwise exclusive or a value
with the accumulator

---- --##

502

Name Bit Pattern Description Status
Shift 1011 1sss vvvv vvvv Shift the accumulator (see

note below on direction)
---- -###

Branch 1100 0pp pppp pppp Add the offset p to the
program counter

---- ----

Call 1101 0pp pppp pppp Call the subroutine at
address p

---- ----

If 1111 000 0000 cccc Skip the following
instruction if the condition
doesn’t hold

---- ----

Many of these instructions specify a source type s and value v. These are the options:

Source Type Bit Pattern Interpretation
Const Lo 000 Take the value v as the low

byte of a constant
Const Hi 001 Take the value v as the high

byte of a constant
Input Lo 010 Input the low byte, ignore the

value v
Input Hi 011 Input the high byte, ignore the

value v
Data Direct 100 Read a value from the address

v (relative to the data
pointer)

Data Indirect 101 Read a pointer from the
address v (relative to the data
pointer), and load a value
from that address

Stack Direct 110 Read a value from the address
v (relative to the stack
pointer)

Stack Indirect 111 Read a pointer from the
address v (relative to the
stack pointer), and load a
value from that address

Note: the SHIFT instruction stashes the shift direction within this source field.

503

Source Type Shift Bit Source Limitation
Constant Lo/Hi Only 8-bit constants supported
Input Lo/Hi Only 8-bit inputs supported
Memory Addr[0] Only aligned addresses supported

(TODO: maybe require that
everywhere??)

The following table lists the condition codes for the IF instruction.

Condition Bit Pattern Description
Zero 0000 Skip the next instruction if

the Z bit is cleared
Not Zero 0001 Skip the next instruction if

the Z bit is set
Else 0010 Skip the next instruction if

the E bit is cleared
Not Else 0011 Skip the next instruction if

the E bit is set
Neg 0100 Skip the next instruction if

the N bit is cleared
Not Neg 0101 Skip the next instruction if

the N bit is set
Carry 0110 Skip the next instruction if

the C bit is cleared
Not Carry 0111 Skip the next instruction if

the C bit is set

Three-byte instructions

Name Bit Pattern Description Status
Call Word 0011 1110 wwww wwww

wwww wwww
Call the subroutine at
address w

---- ----

Load
Immediate
Word

0011 1111 wwww wwww
wwww wwww

Set the accumulator to w ---- ----

Pinout

504

Input Output Bidirectional
0 Data In 0 Data Out 0 SPI MOSI
1 Data In 1 Data Out 1 SPI CS
2 Data In 2 Data Out 2 SPI CLK
3 Data In 3 Data Out 3 SPI MISO
4 Data In 4 Data Out 4 Step
5 Data In 5 Data Out 5 Busy
6 Data In 6 Data Out 6 Halt
7 Data In 7 Data Out 7 Trap

505

ITS-RISCV [654]

• Author: Bambang T. Wibowo, Chazim Fikri A., Hernanda A. P., M. Hafidzh,
Figo A. M., and Faiz S. K.

• Description: ITS RISC V based on the underserved TinyTapeout 07.
• GitHub repository
• HDL project
• Mux address: 654
• Extra docs
• Clock: 20000000 Hz

How it works

When the system boots up, it will start accessing the SPI bus to set up a connected
SPI Flash memory in XIP mode and start executing instructions from there. The GPIO
can be used to output data, e.g. as a bitbanged UART.

Figure 41: Environment

How to test

The testbench contains a model of an SPI Flash. A program in Verilog Hex format
can be preloaded into the Flash model.
Underserved can easiest be run locally using FuseSoC.
Install FuseSoC

pip install fusesoc

Create and enter a new workspace

506

https://github.com/BambangTW/tt09-ITS-RISCV

mkdir workspace && cd workspace

Register underserved as a library in the workspace

fusesoc library add underserved /path/to/prince

…if repo is available locally or… …to get the upstream repo

fusesoc library add underserved https://github.com/olofk/underserved

Show available cores in workspace (probally just underserved for now if you haven’t
added other libraries)

fusesoc core list

Show info about underserved

fusesoc core show underserved

Run linting (static code checks) using Verilator

fusesoc run --target=lint underserved

Run underserved testbench

fusesoc run --target=sim underserved

Run with modelsim instead of default tool (icarus)

fusesoc run --target=sim underserved --tool=modelsim

External hardware

Expects a compatible SPI Flash. The XIP controller was stolen from PicoSoC which
also contains some info about compatible SPI Flash components.

507

https://github.com/YosysHQ/picorv32

Pinout

Input Output Bidirectional
0 gpio0
1 gpio1
2 gpio2
3 gpio3
4 gpio4
5 sclk
6 cs_n
7 mosi miso

508

16 Bit Izhikevich Neuron [672]

• Author: Noah Williams
• Description: Izhikevich neuron model with 16 bit arithmetic.
• GitHub repository
• HDL project
• Mux address: 672
• Extra docs
• Clock: 0 Hz

How it works

Izhikevich model

The Izhikevich model is a simple spiking neuron model that builds on the
dynamics of the simplistic leaky integrate-and-fire model, adding
complexity of the Hodgkin-Huxley model with minimal computational
cost.

The model is described by the following system:

v' = 0.04*v^2 + 5*v + 140 - u + I
u' = a*(b*v - u)
if v >= 30 then {v = c; u = u + d}

where:
a, b, c, d = dimensionless constants

Regular Spiking (RS) Excitatory Neuron:
a = 0.02, b = 0.2, c = -65, d = 8

v = membrane potential
u = membrane recovery (Na and K, neg feedback to v)
a = time scale of the recovery variable u (small = slow recovery)
b = sensitivity of the recovery variable u to v

Larger values increase sensitivity and lead to more
spiking behavior. b<a(b>a) is saddle-node

c = after spike reset value of v
caused by fast K+ channels

d = after spike reset value of u

509

https://github.com/nomuwill/tt_um_nomuwill

caused by slow Na+ & K+ channels
I = input current

The constants for the model differential equation v' are experimentally
determined by fitting the model to the desired neuron behavior. In
the original paper (from which the equations are taken), the model
was fit to experimental data from Regular Spiking of a rat cortical
neuron.

References:
https://www.izhikevich.org/publications/spikes.pdf

How to test

To test the model, use the supplied test-bench. The test-bench will run through
three different scenarios. The first case is the reset test case, which
ensure that the model resets properly given a reset condition (res_n = 1).
The next test case checks to make sure that the model doesn't spike when
the input current is below threshold. The spike value for each of these
included non-spike test cases should be 0. The final test case is the spike
test that ensures the model spikes when the input is above the threshold. This
includes a test for the maximum current to test overflow conditions. Each condition
is checked with an assert statement.

External hardware

N/A at the moment :)

Pinout

Input Output Bidirectional
0 Input current

bit [0]
State variable
bit [0]

1 Input current
bit 1

State variable
bit 1

2 Input current
bit 2

State variable
bit 2

510

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
3 Input current

bit [3]
State variable
bit [3]

4 Input current
bit [4]

State variable
bit [4]

5 Input current
bit [5]

State variable
bit [5]

6 Input current
bit [6]

State variable
bit [6]

7 Input current
bit [7]

State variable
bit [7]

Spike bit

511

Giant Ring Oscillator (3853 inverters) [673]

• Author: Uri Shaked
• Description: Configurable ring oscillator with up to 3853 inverters
• GitHub repository
• HDL project
• Mux address: 673
• Extra docs
• Clock: 0 Hz

How it works

A giant, configurable ring oscillator with up to 3853 stages. To enable the ring oscillator,
connect one of the output pins to the first input pin (ring_in / ui_in[0]). Each
output pin is connected at a different point in the ring oscillator chain, making it
possible to create rings of different lengths:

Pin Chain length
uo[0] 1
uo1 3
uo2 5
uo[3] 7
uo[4] 11
uo[5] 21
uo[6] 51
uo[7] 101
uio[0] 201
uio1 501
uio2 1001
uio[3] 2001
uio[4] 3001
uio[5] 3853

There is also an option to connect the ring oscillator internally, by driving
internal_loopback high. This will create a ring oscillator with 3853 stages.

How to test

Connect one of the output pins (e.g. uio_out[5]) to ring_in or set
internal_loopback to 1, and measure the output frequency.

512

https://github.com/urish/tt09-giant-ring-oscillator
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

External hardware

A scope / logic analyzer to measure the output frequency and the delay between
different points in the inverter chain.

Pinout

Input Output Bidirectional
0 ring_in len1 len201
1 internal_loopback len3 len501
2 len5 len1001
3 len7 len2001
4 len11 len3001
5 len21 len3853
6 len51
7 len101

513

dff_mem [674]

• Author: dmrudait
• Description: 16 byte RAM built out of DFFs
• GitHub repository
• HDL project
• Mux address: 674
• Extra docs
• Clock: 0 Hz

How it works

This project implements a 16 Byte memory module (it consists of 16 memory locations
that store 1 byte each). The memory allows for both read and write operations,
controlled by input signals. The module requires a 4-bit address input, control signals
lr_n and ce_n, a clock, 8-bit data input (for writes), and a reset signal.
Signals

• ui_in[7:0]: Dedicated input line for all control signals
• ce_n (Active Low): Chip enable signal for reading data.
• lr_n (Active Load): Load/write signal, enabling writing to memory.
• uio_in[7:0]: Bidrectional IO line for input (used an the input line for data)
• uio_out[7:0]: Bidrectional IO line for output.
• uio_oe (Active High): Used to set the bidirectional IO line to an input to be

able to input data
• ena (Active High): Tiny Tapeout signal for enabling the module
• clk: global clock. Operations happen on the positive edge
• rst_n (Active low): Resets all contents in RAM to NULL.
• uo_out[7:0]: Dedicated output line (outputs ram contents when ce_n is low

(active).

Addressing: The memory is 4-bit addressable, where the address specifies which
register (out of 16) is being accessed for reading or writing.
Write operation: A byte of data is written to specific register in RAM, where the
location is determined by the address. Requires write enable lr_n signal as active
(low) and the clock edge to occur.
Read operation: Data can be read from a specific register in RAM determined by the
input address. Requires chip enable ce_n signal as active (low). The data is output on
the uo_out ports, and it is updated asynchronously (independant of the clock edge).

514

https://github.com/Troops3/TinyRAM

Output: Data is presented on the uo_out line when the chip is enabled for reading,
and high-impedance (Z) otherwise.

How to test

To test, set the address and corresponding inputs to desired values. Clear lr_n for a
write operation and ce_n for a read operation. Then pulse the clock to run signals.
The CocoTB testbenches located in the test.py file, test various scenarios for the
module. First, it tests a write operation to each address in the module followed by
a read operation at each address, to ensure correct behaviour. The script then sets
ui_in, lr_n high and clears ce_n to setup for a Read with RAM output enabled. It
then iterates over and reads from each address, comparing the recevied value (uo_out),
to the expected byte from that address. If there are any mismatches, an assertion error
is raised, specifying the faulty address and value.

Figure 42: image

Figure 1: Gate level Test
Figure 2: Ideal Test

External hardware

This RAM module is intended to be integrated into an 8-bit processor. However, it is
being submitted to TT as an indiviudal tile for testing. An external MAR would thus
be required to program RAM and subseqently read memory. The MAR would act as a
programmer according to the avove described specifications.

515

Figure 43: image

Pinout

Input Output Bidirectional
0 addr[0] out[0] in[0]
1 addr1 out1 in1
2 addr2 out2 in2
3 addr[3] out[3] in[3]
4 addr[4] out[4] in[4]
5 out[5] in[5]
6 lr_n out[6] in[6]
7 ce_n out[7] in[7]

516

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Lab B Group 10 Array Multiplier [675]

• Author: Abhinav and Annay
• Description: 4x4 Array Multiplier
• GitHub repository
• HDL project
• Mux address: 675
• Extra docs
• Clock: 0 Hz

How it works

An array multiplier is a combinational digital circuit used to multiply two binary num-
bers. It is structured similarly to the multiplication process, where partial products are
generated and added to produce the final product. The array multiplier makes use
of full adders, arranged in a systematic array to handle the binary addition of partial
products. This process is shown in the image 4x4_array_multiplier.png located in the
docs folder as well as shown in this preview.

How to test

To ensure new hardware is working correctly, start with a visual inspection for any
physical damage and verify that all components are properly connected. Power up the
hardware to confirm it initializes without errors, and check that your system detects
it, typically through device manager or similar tools. Run any manufacturer-provided
diagnostics or benchmarking tools to verify core functions and performance meet expec-
tations. Test specific functionalities (such as I/O, communication, or display output),
and update firmware or drivers if necessary. Conduct stress tests to check for stabil-
ity under load, and perform any necessary compatibility and environmental checks to
ensure the hardware is fully operational in its intended use case.

External hardware

N/A

Pinout

517

https://github.com/abhinavdangri/tt09-b-10-array-multiplier-main

Input Output Bidirectional
0 m[0] p[0]
1 m1 p1
2 m2 p2
3 m[3] p[3]
4 q[0] p[4]
5 q1 p[5]
6 q2 p[6]
7 q[3] p[7]

518

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Verilog ring oscillator V2 [676]

• Author: algofoogle (Anton Maurovic)
• Description: Multiple simple ring oscillators by instantiating sky130 inv_2 in-

verter rings
• GitHub repository
• HDL project
• Mux address: 676
• Extra docs
• Clock: 0 Hz

What is this?

Everyone has done a ring oscillator using inverter cells. Now it’s my turn!
I already submitted tt09-ring-osc on TT09 and rather than muck that up with extra
stuff I decided to submit this alternate version which features:

• 4 simple independent rings instead of 1, hoping to run at different speeds:

– ring_125: 125 inverters, maybe 112MHz out? Could be too fast for IO.
– ring_251: 251 inverters, hopefully good for ~56MHz.
– ring_501: 501 inverters, ~28MHz.
– ring_1001: 1001 inverters, ~14MHz.

• Some other PWM experiments on faster ring oscillators.

Approximate frequences are estimated on the assumption that each inverter introduces
a delay of ~70ps.
These use verilog to instantiate the rings of (an odd number of) sky130_fd_sc_hd__inv_2
cells.

Pinout

Input Output Bidirectional
0 pwm2_in[0] ring_125 dummy
1 pwm2_in1 ring_251 pwm3a_out
2 pwm3_in[0] ring_501
3 pwm3_in1 ring_1001
4 c0_3
5 pwm3a_in[0] c1_3

519

https://github.com/algofoogle/tt09-ring-osc2
https://github.com/algofoogle/tt09-ring-osc
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Input Output Bidirectional
6 pwm3a_in1 c2_5 pwm2_out
7 pwm3a_in2 c3_5 pwm3_out

520

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

TwoChannelSquareWaveGenerator [677]

• Author: Sam Kho
• Description: Like having two apple2-style speakers
• GitHub repository
• HDL project
• Mux address: 677
• Extra docs
• Clock: 256000 Hz

How it works

Two 8-bit inputs, TA and TB, are used to reload internal countdown timers when they
reach zero, at which time, respective outputs OUTA and OUTB are toggled. A 2-bit
SUM output is also provided as a convenience (SUM = OUTA + OUTB).

How to test

Apply arbitrary 8-bit reload values to TA (ui_in) and TB (uio_in). Probe OUTA and
OUTB with oscilloscope or logic analyzer. Time period for outputs is proportional to
(input+1); i.e. to get two waves with period T and period 2T, provide values like 3
and 7 (instead of 4 and 8). Also check 2-bit output SUM (should be OUTA + OUTB,
possibly delayed by one cycle).

External hardware

External hardware not needed, but intent is to drive speakers (probably bring down
voltage level via resistor dividers, then feed into speaker amplifier).

Pinout

Input Output Bidirectional
0 TA0 OUTA TB0
1 TA1 OUTB TB1
2 TA2 SUM0 TB2
3 TA3 SUM1 TB3
4 TA4 TB4
5 TA5 TB5

521

https://github.com/samkho/TwoChannelSquareWaveGenerator

Input Output Bidirectional
6 TA6 TB6
7 TA7 TB7

522

Basic model for Systollic array implementation of LIF [678]

• Author: Sulaiman Islam
• Description: A model for systolic array implementation of LIF neurons. Hazard

cases have been taken into account such as overstimulation of LIF nuerons with
bypass cases.

• GitHub repository
• HDL project
• Mux address: 678
• Extra docs
• Clock: 0 Hz

How it works

The model represents how a generative implementation of SNN training can be im-
plemented in verilog. Hazards that were predicted were that of LIF overstimulation
due to excessive accumilation of the multiply accumilate MAC operations. In order
to prevent this I implemented bypass conditions that made regulated the LIF inputs
to choose between 0 and the output of the MAC operatios. The LIF would only take
in the value of the MAC operation when the threeshold for firing was reached by the
output of the MAC. One clock cylce later the MAC Accumilation would be reset. This
was a weight stationary implemenation that had fixed constant weights on each of the
MACS. Several Blocks of these weight stationary MACS could be implemented with
their respective LIFS in theory, however due to size restrictions there is only one small
block in the Top module. The user input ui_in is used to drive the MAC inputs. The
uo_out individual bits were used to drive the spike to inidcate that the bypass had
occured and that the LIF had spiked.

How to test

Using ui_in to vary X and checking uo_out for expected behavior based on the MAC
operations.

External hardware

N/A

Pinout

523

https://github.com/suaislam/tt09-ece110

Input Output Bidirectional
0 input current

bit [0]
State variable
bit [0]

1 input current
bit 1

State variable
bit 1

2 input current
bit 2

State variable
bit 2

3 input current
bit [3]

State variable
bit [3]

4 input current
bit [4]

State variable
bit [4]

5 input current
bit [5]

State variable
bit [5]

6 input current
bit [6]

State variable
bit [6]

7 input current
bit [7]

State variable
bit [7]

spike bit

524

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

RGB Mixer demo [679]

• Author: Matt Venn
• Description: Zero to ASIC demo project
• GitHub repository
• HDL project
• Mux address: 679
• Extra docs
• Clock: 10000000 Hz

How it works

Debounce the inputs, drive an encoder module, and output a PWM signal for each
encoder.

How to test

Twist each encoder and the LEDs attached to the outputs should change in bright-
ness.
By setting the debug port to 0, 1 or 2, the internal value of each encoder is output on
the bidirectional outputs.

External hardware

Use 3 digital encoders attached to the first 6 inputs.

Pinout

Input Output Bidirectional
0 enc0 a pwm0 encoder bit 0
1 enc0 b pwm1 encoder bit 1
2 enc1 a pwm2 encoder bit 2
3 enc1 b encoder bit 3
4 enc2 a encoder bit 4
5 enc2 b encoder bit 5
6 debug bit 0 encoder bit 6
7 debug bit 1 encoder bit 7

525

https://github.com/mattvenn/tt08-rgb-mixer

mips.sv [680]

• Author: Eric Smith
• Description: The MIPs core example from Weste & Harris
• GitHub repository
• HDL project
• Mux address: 680
• Extra docs
• Clock: 1000000 Hz

How it works

This is the example processor core from Weste & Harris written by Max Yi
(byyi@hmc.edu) and David_Harris@hmc.edu 12/9/03 https://pages.hmc.edu/harris/cmosvlsi/4e/code/mips.tar.gz

How to test

Carefully

External hardware

Need a program store.
More to come later.

Pinout

Input Output Bidirectional
0 memdata[0] writedata[0] adr[0]
1 memdata1 writedata1 adr1
2 memdata2 writedata2 adr2
3 memdata[3] writedata[3] adr[3]
4 memdata[4] writedata[4] adr[4]
5 memdata[5] writedata[5] adr[5]
6 memdata[6] writedata[6] memread
7 memdata[7] writedata[7] memwrite

526

https://github.com/ericsmi/tt09-yi-harris-mips
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

VGA clock [681]

• Author: Matt Venn
• Description: Shows the time on a VGA screen
• GitHub repository
• HDL project
• Mux address: 681
• Extra docs
• Clock: 31500000 Hz

How it works

Races the beam! Font is pre generated and loaded into registers. 6 bit colour keeps
register count low.
Every minute the colours cycle.

How to test

Hook up a VGA monitor to the outputs and provide a clock at 31.5 MHz.
Adjust time with the inputs[2:0], and choose the type of VGA PMOD with the in-
put[3].

External hardware

VGA PMOD - you can use one of these VGA PMODs:

• https://github.com/mole99/tiny-vga
• https://github.com/TinyTapeout/tt-vga-clock-pmod

Set input[3] low to use tiny-vga and high to use vga-clock

527

https://github.com/mattvenn/tt08-vga-clock

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 adjust hours hsync / R1
1 adjust minutes vsync / G1
2 adjust seconds B0 / B1
3 PMOD type select B1 / VS
4 G0 / R0
5 G1 / G0
6 R0 / B0
7 R1 / HS

528

gta6 [682]

• Author: henry
• Description: gta6
• GitHub repository
• Wokwi project
• Mux address: 682
• Extra docs
• Clock: 0 Hz

How it works

Guess a pin that lights the LED
Explain how your project works

How to test

Pick a pin and see if it lights up.
Explain how to use your project

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any
None

Pinout

Input Output Bidirectional
0
1 OUT1
2
3
4 IN0
5
6
7

529

https://github.com/hennhen/tt9
https://wokwi.com/projects/414127944900611073

8-bit CBILBO [683]

• Author: Devesh Bhaskaran, Om Shivshankar Shigarkanti, Garima Bajpayi
• Description: Concurrent Built–In Logic BlockIn Logic Block Observer for Mem-

ory Test
• GitHub repository
• HDL project
• Mux address: 683
• Extra docs
• Clock: 40000000 Hz

How it works

In this Verilog code, we implement a BILBO (Built-In Logic Block Observer) shift
register with multiple stages, using a combination of logic gates (AND, XOR), D flip-
flops (DFF), and multiplexers (MUX) for feedback and shifting operations. We include
input and output paths for Tiny Tapeout and support asynchronous reset and clocked
logic. The modules interact to store and shift data, providing internal feedback and
driving outputs for observation.

How to test

To test this project, we would create a testbench that provides stimulus for the inputs
(ui_in, uio_in, clk, rst_n) and checks the outputs (uo_out, uio_out, uio_oe).
We would simulate the shifting and feedback behavior of the BILBO shift register,
verifying that the data is properly shifted and the feedback logic functions correctly
across all stages of the register.

External hardware

No external hardware required for this project.

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0] uio[0]
1 ui_in1 uo_out1 uio1
2 ui_in2 uo_out2 uio2

530

https://github.com/garima19bajpayi/tt09-.gxrii-BILBO
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
3 ui_in[3] uo_out[3] uio[3]
4 ui_in[4] uo_out[4] uio[4]
5 ui_in[5] uo_out[5] uio[5]
6 ui_in[6] uo_out[6] uio[6]
7 ui_in[7] uo_out[7] uio[7]

531

Name Speller [684]

• Author: Conor Van Bibber
• Description: it spells a name using a 3 bit clock divider
• GitHub repository
• Wokwi project
• Mux address: 684
• Extra docs
• Clock: 2 Hz

How it works

It has a 3 bit counter that counts up to 7 and then resets. The counter is displayed on
a 7-segment display.

How to test

To test, connect the 7-segment display to the ASIC and run the program. The counter
should be displayed on the display. The counter should reset to 0 after pressing the
reset button.

External hardware

7-segment display, reset button for nreset

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT3
2 IN2 OUT1
3 IN3 OUT2
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

532

https://github.com/cvanbibber/tt09-firstwokwiproject
https://wokwi.com/projects/414174625969437697

Michaels Tiny Tapeout ALU [685]

• Author: Michael McCulloch
• Description: Should work as a 2 6 bit input ALU, which then can choose from

the RISCV ALU opcodes to select the operation which will be outputed in 8bit
• GitHub repository
• HDL project
• Mux address: 685
• Extra docs
• Clock: 0 Hz

How it works

In short the first 6 bits of the bidirection IO is A, then bits 7 and 7 of the bidirectional
and bits 0 to 3 of the single way input are B and the last 4 bits are the ALU opcode
(based on RISCV) Values get outputted in 8bit from the single way output bus

How to test

Setting the inputs and testing the outputs for certain opcodes

External hardware

None at the moment… Could attach LEDs for testing

Pinout

Input Output Bidirectional
0 Bit 2 of ALU

Input B
Bit 0 of ALU
Output

Bit 0 of ALU Input A

1 Bit 3 of ALU
Input B

Bit 1 of ALU
Output

Bit 1 of ALU Input A

2 Bit 4 of ALU
Input B

Bit 2 of ALU
Output

Bit 2 of ALU Input A

3 Bit 5 of ALU
Input B

Bit 3 of ALU
Output

Bit 3 of ALU Input A

4 Bit 0 of ALU
OpCode

Bit 4 of ALU
Output

Bit 4 of ALU Input A

533

https://github.com/MichaelMcCulloch1/tt09-verilog-Michael-ALU

Input Output Bidirectional
5 Bit 1 of ALU

Opcode
Bit 5 of ALU
Output

Bit 5 of ALU Input A

6 Bit 2 of ALU
OpCode

Bit 6 of ALU
Output

Bit 0 of ALU Input B

7 Bit 3 of ALU
OpCode

Bit 7 of ALU
Output

Bit 1 of ALU Input B

534

2-bit Full Adder [686]

• Author: Shreya
• Description: Adds two numbers
• GitHub repository
• Wokwi project
• Mux address: 686
• Extra docs
• Clock: 0 Hz

How it works

Adds two numbers

How to test

Apply two input signals.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3
4
5
6
7

535

https://github.com/shreyabsingh/tiny-tapeout-workshop
https://wokwi.com/projects/414126546375915521

ovl abc chip [687]

• Author: oliver lazaras
• Description: displays a with in0 and . with in1
• GitHub repository
• Wokwi project
• Mux address: 687
• Extra docs
• Clock: 0 Hz

How it works

basically the idea is to have each input display corresponding letter output ex: in0 on
–> A , in1 on –> B, in2 on or in0 & in1 –> C etc…

How to test

switch IN 0 and 1 and see what happens

External hardware

7 seg display

Pinout

Input Output Bidirectional
0 IN0 OUT0 0
1 IN1 OUT1 1
2 IN2 OUT2 2
3 IN3 OUT3 3
4 IN4 OUT4 4
5 IN5 OUT5 5
6 IN6 OUT6 6
7 IN7 OUT7 7

536

https://github.com/olazaras/ovl-tiny-tapeout
https://wokwi.com/projects/413921836641882113

Simon’s Caterpillar [704]

• Author: htfab
• Description: Port of Caterpillar Logic to Simon Says PMOD
• GitHub repository
• HDL project
• Mux address: 704
• Extra docs
• Clock: 50000 Hz

How it works

Simon’s Caterpillar is a re-implementation of the game Caterpillar Logic by Fuks
Michael targeting Tiny Tapeout with the Simon Says PMOD.
The game consists of 20 levels. Each level has a secret rule that is valid for certain
sequences of colors. For instance, if the rule is “contains exactly two yellow tokens” then
blue-yellow-green-yellow is a valid sequence and yellow-red-blue is an invalid one.
A new level starts in exploration mode. You can ask an unlimited number of questions
where you learn whether a particular sequence is valid or not. Once you know the rule
you can activate challenge mode. Now the roles are reversed and the game asks you
15 questions. If you can answer all of them correctly, you advance to the next level.

How to test

Set the clock to 50 kHz. Activate and reset the project. The 7-segment display should
indicate level 1 and only the blue led should light up. You are in exploration mode.

Exploration mode A sequence of up to 7 colors can be typed into the buffer with
short presses of the buttons. The leds indicate the sequence status in real time:

• red: sequence is invalid
• green: sequence is valid
• blue: buffer is empty
• yellow: buffer is full

(The empty sequence is neither valid nor invalid.)
Further operations are available as long button presses or a combination of two but-
tons:

537

https://github.com/htfab/tt09-caterpillar
https://github.com/gromozeka1980/kivy_contest_2014/tree/master/caterpillars
https://github.com/urish/tt-simon-pmod/

• long-press red: clear buffer
• long-press yellow: erase last color from buffer (“backspace”)
• long-press blue: show buffer contents (as a series of led flashes)
• long-press green: activate challenge mode
• short-press green & yellow: show a random valid sequence (and load into buffer)
• short-press red & blue: show a random invalid sequence (and load into buffer)
• short-press blue & yellow: switch to next level
• short-press red & green: switch to previous level
• short-press green & blue: toggle sound

Challenge mode A sequence of up to 6 colors is shown as a series of led flashes.
Press the green or red button to mark it as valid or invalid respectively.
Each correct answer adds a notch (turns on a new segment on the 7-segment display).
After the 15th one the next level is loaded. An incorrect answer switches back to
exploration mode.
Other keys and combinations:

• short-press or long-press blue: repeat the current question
• short-press red & yellow: switch back to exploration mode
• short-press blue & yellow: add a notch
• short-press red & green: remove a notch
• short-press green & blue: toggle sound

External hardware

Simon Says PMOD

Pinout

Input Output Bidirectional
0 red button red led segment A
1 green button green led segment B
2 blue button yellow led segment C
3 yellow button blue led segment D
4 display polarity speaker segment E
5 digit 1 segment F
6 digit 2 segment G
7

538

tt6502 [706]

• Author: Anders
• Description: tt6502
• GitHub repository
• HDL project
• Mux address: 706
• Extra docs
• Clock: 0 Hz

How it works

This thing is to test how big a 6502 is.

How to test

This thing is to test how big a 6502 is.

External hardware

Ipsum Lorem List external hardware used in your project (e.g. PMOD, LED display,
etc), if any

Pinout

Input Output Bidirectional
0 gpio input 0 gpio output 0 cs_n
1 gpio input 1 gpio output 1 mosi
2 gpio input 2 gpio output 2 miso
3 gpio input 3 gpio output 3 sclk
4 gpio input 4 gpio output 4 gpio bidir 4
5 gpio input 5 gpio output 5 gpio bidir 5
6 irq interrupt gpio output 6 gpio bidir 6
7 nmi interrupt sync gpio bidir 7

539

https://github.com/anders-code/tt09-6502

Oscillating Bones [708]

• Author: Uri Shaked
• Description: A stylish ring oscillator built from SkullFET transistors
• GitHub repository
• HDL project
• Mux address: 708
• Extra docs
• Clock: 0 Hz

How it works

A simple yet stylish ring oscillator that uses a chain of 21 SkullFET inverters to generate
a square wave output. Based on simulation, the oscillator should have a frequency of
around 90 MHz.

How to test

Connect an oscilloscope to the osc_out (ou_out pin 0) pin and enjoy the show.
You can also observe the divided frequency outputs on osc_div_2, osc_div_4, and
osc_div_8.

Simulation results

The following graph shows the output of the oscillator and the divided outputs. It
was generated by running make -C sim and patiently waiting for the simulation to
finish:
The outputs are shifted by 2 volts to make them easier to see in the graph. “uo_out[0]”
is the main output of the oscillator, and “uo_out1”, “uo_out2”, and “uo_out[3]” are
the divided outputs.
Note that the simulation results do not include all the parasitics, only the main ones.
The actual frequency of the oscillator will probably be lower than the simulated one.

540

https://github.com/urish/tt08-oscillating-bones
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 osc_out
1 osc_div_2
2 osc_div_4
3 osc_div_8
4
5
6
7

541

Figure 44: Simulation results

542

SoCET UART with FIFO buffers [710]

• Author: Miguel Isrrael Teran, Yashashwini Singh, Michael Li, Rafael Monteiro
Martins Pinheiro, Vito Gamberini

• Description: General-purpose UART with hardware control flow and FIFO buffer
capacity developed by Purdue’s SoCET team

• GitHub repository
• HDL project
• Mux address: 710
• Extra docs
• Clock: 50000000 Hz

How it works

This project is a UART module that includes FIFO buffers to store bytes of data. The
module has standard UART input and output pins, such as rx, tx, cts, and rts.
Additional inputs allow the configuration of operation mode(s): Idle, RX, TX or
Buffer Clear, and desired baud rate is user-configurable through the Control pins.
Bidirectional data pins are used to send and receive test data. Additional outputs
include an error flag, as well as the TX FIFO’s full flag, and the RX FIFO’s empty
flag.

How to test

Steps for testing are the following:

1) Supply a 50 MHz clock signal to the UART
2) Configure the control settings: Control[1:0] (ui[3:2]) are used to choose

between preloaded baud rates. Here are the following baud rate configurations
based on the values of Control[1:0]:

Value of ui[3:2] Baud rate (bits/s)
0 9600
1 19200
2 38400
3 115200

Control[3:2] (ui[5:4]) set the UART’s mode of operation for the current byte
of data being processed. Each non-idle control signal must be preceded with an idle

543

https://github.com/Purdue-SoCET/tt09-purdue-socet

signal to perform a valid transaction/manage the FIFO buffers. Here are the following
UART mode configurations determined by the values of Control[3:2]:

Value of ui[5:4] Mode Configuration
0 IDLE
1 TX
2 RX
3 BUFFER CLEAR

3) If you have 2 PCBs with the TT09 ASIC, you can load the same UART design in
both and cross-connect their rx, tx, cts, and rts pins as shown in the image
below. Then, you can use one of them as a Transmitter and the other as a
Receiver. If you only have 1 PCB, you can test the UART with the FT232RL
Mini USB to TTL Serial Adapter Module (see next section).

External hardware

We suggest using switches for the Control pins (this way you can keep the mode
of operation stable). Image below shows the FT232RL module that can be used for
testing and connecting serially to a computer’s USB port. More information on the
product can be found here.

Pinout

Input Output Bidirectional
0 rx tx data[0]
1 cts rts data1
2 Control[0] err data2
3 Control1 tx_buffer_full data[3]
4 Control2 rx_buffer_empty data[4]
5 Control[3] data[5]
6 data[6]
7 data[7]

544

https://components101.com/modules/ft232rl-usb-to-ttl-converter-pinout-features-datasheet-working-application-alternative
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

VGA Drop (audio/visual demo) [712]

• Author: ReJ aka Renaldas Zioma, eriQue aka Erik Hemming, Matthias Kampa
• Description: Tiny 8 part Megademo! TBLNesnauskSonikClique
• GitHub repository
• HDL project
• Mux address: 712
• Extra docs
• Clock: 25200000 Hz

How it works

VGA signal generator

How to test

We are learning how VGA and Sky130 works here

External hardware

VGA PMOD

Pinout

Input Output Bidirectional
0 R1 Audio (PWM)
1 G1 Audio (PWM)
2 B1 Audio (PWM)
3 VSYNC Audio (PWM)
4 R0 Audio (PWM)
5 G0 Audio (PWM)
6 B0 Audio (PWM)
7 HSYNC Audio (PWM)

545

https://github.com/rejunity/tt08-vga-drop

Warp [714]

• Author: sylefeb
• Description: Demo on TinyTapeout? Let’s do something!
• GitHub repository
• HDL project
• Mux address: 714
• Extra docs
• Clock: 25000000 Hz

Warp

Please make sure to watch the demo for a few minutes as various effects
play out before it loops. At start it waits for a few seconds to ensure VGA
sync is achieved.

How it works
But does it work?

Preface This demo is written in Silice, my HDL. Here is the actual source. Silice
now fully support TinyTapeout as a build target.

Graphics The core effect is a classical tunnel effect ; however this is normally done
with a “huge” pre-computed table having one entry per-pixel. So I thought it’d be
challenging and fun to do it while racing the beam! Plus, I really like this effect.
There are several tricks at play: a shallow CORDIC pipeline to compute an atan
and length, and a few precomputed 1/x distances to interpolate between – these form
keypoint rings along the tunnel. All the effects are then obtained by combining multiple
layers in various ways (like a tunnel effect processor which registers can be configured
for various effects).
The demo uses a lot of dithering (ordered Bayer dithering) given the output is RGB
2-2-2. All computations are grayscale and the RGB lense effect is obtained by delaying
the grayscale values using the tunnel distance in R and B.
I also tried to make the logo interesting by deviating from a classical pixelated look. It
is composed of tiles, either full or triangular, with a comparator and a bit of logic to
do all four possible triangles.

546

https://github.com/sylefeb/tt08-compo-entry
https://github.com/sylefeb/Silice/
../src/silice/vga_demo.si
https://lodev.org/cgtutor/tunnel.html
https://htmlpreview.github.io/?https://github.com/sylefeb/gfxcat/blob/main/runtime/gfxcat_tunnel.html
https://en.wikipedia.org/wiki/CORDIC

The tunnel viewpoint change is obtained simply by shifting the tunnel center. I was
surprised that a simple translation gives such a convincing effect (almost as if the
viewpoint was rotating).
The ‘blue-orange’ tunnel effect is obtained through temporal dithering, one frame being
the standard tunnel, the other the rotated tunnel. This gets combined with the RGB
lense distortion, achieving the final look.

Audio I am no musician, so making a soundtrack was a challenge for me, but that’s
something I’ve always wanted to try. In the end it was a very enjoyable part of the
design, and I was surprised at how compact this can be made, the soundtrack using
perhaps around 10% of the entire design.
I tried to make a track that matches the spirit and rhythm of the graphics. It is what
is is, but I’m happy that there’s sound at all!

How to test Plug the VGA+audio PMODs to the board and run. Maybe it
works?
Simulation of both audio and video can run on an ECPIX5, with the Diligent VGA
PMOD on ports 0,1 and an I2S audio PMOD on port 2 (upper row). The audio also
runs on an ULX3S using its DAC (but no video in this case).

External hardware
• VGA PMOD
• Audio PMOD

See https://tinytapeout.com/competitions/demoscene/

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VS
4 R0
5 G0
6 B0
7 HS Audio

547

https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod

Sequential Shadows [TT08 demo competition] [716]

• Author: Toivo Henningsson
• Description: My contribution to the TT08 demo competition
• GitHub repository
• HDL project
• Mux address: 716
• Extra docs
• Clock: 50400000 Hz

Intro

Curly / Medieval presents

my contribution to the Tiny Tapeout 8 demo competition. Code, graphics, and music
by Curly (Toivo Henningsson) of Medieval.
The demo can be seen at https://youtu.be/pkiTu3iLA_U (captured from a Verilator
simulation).

How it works

The demo code contains a few different parts:

• Ray caster
• Synthesizer
• Music sequencer
• Logo
• Combined timing generator for raster scan and synthesizer
• Dithering
• Top level sequencer
• Audio visualizer

548

https://github.com/toivoh/tt08-demo

The code was first written without the audio visualizer and top level sequencer. At this
point, there was music, but the demo was always showing the same moving landscape
as in the intro (without fade-in) with the static logo on top. Also, there was not very
much space left.
To add more contents, I went through the code looking for narrow control signals that
might do interesting things when changed, and experimented on FPGA with changing
them to see if I could get any interesting results. Examples:

• Sine plasma: Disable 3D part of ray caster
• Logo animation: Change address calculation into logo bitmap
• Jagged landscape: Change when bits are inverted in sine table lookup to modify

part of sine function

The final steps were to choose which of these effects to use and to tweak the demo
until I ran out of area and time.

Ray caster The ray caster is used to generate the landscapes. The height map is
procedurally generated as the sum of 3 sine waves; there was no space to store a full
height map. A sine table is used since the sine calculation needs to be fast. Summing
3 sine waves means that each height can be evaluated in 3 cycles, or 1.5 VGA pixels.
The calculated ground height is accumulated and stored in a register. The next ground
height can start to be calculated directly, but has to wait to update the register until
the previous height is no longer needed. There is also a mode to feed the sum of the 3
sine waves through the sine table to produce the final ground height, requiring 4 cycles
per ground height evaluation.
Each sine term has its own phase and phase increment registers. Each phase incre-
ment is set based on an angle that is increased for each scan line to look in different
directions. The angle is fed through the sine table (and the result scaled) to get the
phase increment. The initial phases and the initial angles for the phase increments are
updated each frame to animate the landscape.
The ray caster keeps track of the current ray height z, starting at eye level, and current
z increment dz, starting at 511 (pointing down as much as possible). If z is above
ground, the ray steps forward using dz, and the landscape steps forward to calculate
a new height. If z is below ground, the ray steps up by decreasing dz by one, and
decreasing z by the distance t the ray has travelled so far. This steps up to the ray
given by the new dz value.
The ray caster has to produce output pixels in time with the VGA timing, starting
from the left side of each scan line and producing a new pixel every two cycles. The x
coordinate where a ground hit should be displayed corresponds to the downward angle

549

of the ray, and is given by 511-dz. If the ray caster is about to run ahead of the
display (x) coordinate, it waits for the display coordinate to catch up. If the ray caster
is running behind the display coordinate, as often happens after running over the top
of a hill in the landscape, a shadow (black pixel) is displayed while the ray tries to
catch up.
As dz decreases along the scan line, a longer distance along the ray is needed to find
each new ground hit. To be able to keep up with the display coordinate, the step length
when moving along the ray is successively doubled after a given number of steps. This
works out ok visually since details appear smaller at greater distances, so the increased
step lengths don’t lose as much detail as they would if they were used from the start.

Synthesizer The synthesizer is based on a small ALU, with one accumulator register
and 7 numbered registers, each 11 bits wide. A program of 100 ALU operations is
looped, producing a new sample value between 0 and 99 for each loop. The program
is used to calculate sawtooth, triangle, and square waves, and sum them to create the
output sample. For the chords, 6 sawtooth waves are calculated based on the same
oscillator value (and the global counter) and added together.
All ALU operations update the accumulator. The accumulator value can then be
written to a numbered register. The numbered registers are implemented with latches,
and the accumulator value should be held constant while updating one to make sure
that the correct value is written. Fortunately, the numbered registers don’t need to be
updated that often. The numbered registers are:

• chord phase
• drum phase
• bass phase
• lead phase
• B: temporary register
• output accumulator
• output (written during the last cycle in the loop, never read by the ALU)

The output from the previous sample is compared to the current loop position to create
a PWM signal to output as the sound signal.
The phase values for the channels are updated in a similar way to the synth in
https://github.com/toivoh/tt06-retro-console, with bit reversed phase compared to
mantissa to get a sawooth wave, and octave divider.
Wave forms used:

• chords: detuned sawtooth
• drum: triangle (with descending frequency)

550

• bass: triangle
• lead: sawtooth or square, sometimes detuned

Detuning is created by calculating and adding the same waveform twice, but adding
the global counter to the phase in one of the cases, suitably shifted.
The chords use different multipliers on the chord phase:

• major chord: 8, 10, 12
• minor chord: 10, 12, 15
• sus2 chord: 8, 9, 12

doubling some of the multipliers to create chord inversions. Each multiplication is
calculated as the sum of two shifts. The chord phase is multiplied by each multiplier
in turn, creating a sawtooth waveform that is added to the output.
Each ALU instruction has a tag field. A nonzero tag signifies conditional execution
for different effects: rase the bass drum one octave, change the lead waveform into a
square wave, etc…

Logo The logo stores two bits per 16x16 pixel square, one for each triangle half.
Which one to look up is calculated from the current screen coordinates, and an offset
for the logo animation effect.

Top level sequencer As much as possible is derived from the global counter. This
includes the top level sequencer, which is basically a big case statement that sets
different control signals depending on the current frame. Some of the control signals
feed into the music sequencer to change the music (alternate melody and bass line,
change lead between sawtooth and square wave, raise the bass one octave, …).

Audio visualizer The audio is produced in sync with the VGA signal, 8 samples per
scan line, so the audio visualizer mostly needs to look at the current audio output (0
or 1) after PWM comparison to decide the current pixel value. The synthesizer’s ALU
program was updated to invert every other sample value, and the audio output is also
inverted for these samples. This creates the mirroring effect in the visualizer (and also
makes the PWM output almost phase correct).
The music was transposed so that the root note is roughly a power of two times 60 Hz.
This avoids most audio channels feeding flicker into the audio visualizer. The drums
were cut a bit short when the visualizer is on, since their descending frequency can’t
avoid creating flicker. The bass line was raised one octave when the visualizer is on,
and the amplitude is halved, which also reduces flicker substantially.

551

How to test

Plug in a TinyVGA compatible Pmod on the TT08 demo board’s out Pmod. Plug in
a Pmod compatible with Mike’s audio Pmod on the TT08 demo board’s bidir Pmod.
Set all inputs to zero to get the default behavior. Warning: The default behavior
includes some flashing ligts. Set v_bass_off and v_drums_off (keep ui_in
at 3 instead of 0) to remove flashing. The demo starts directly after reset.
This demo is best viewed with the monitor rotated 90 degrees, with the left side facing
down.

Inputs There is no guarantee that changing the inputs after reset is released works
as intended, but it probably does. Some of the inputs provide options on how the demo
is run:

• v_bass_off: Setting this high reduces flashing when the audio visualizer is on
by turning off the bass.

• v_drums_off: Setting this high reduces flashing when the audio visualizer is
on by turning off the drums.

• v_bass_low: Setting this high keeps the bass at its default octave even when
the audio visualizer is on, which increases flashing.

• pause: While this is high, the demo is paused and the sound is turned off. Can
probably be used to start the demo paused.

• step_frame: While this is high, the the demo advances one frame per cycle.
Used for testing.

External hardware

This project needs

• a TinyVGA VGA Pmod.
• Mike’s audio Pmod.

Pinout

Input Output Bidirectional
0 v_bass_off R1
1 v_drums_off G1
2 v_bass_low B1
3 pause vsync

552

https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod
https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod

Input Output Bidirectional
4 R0
5 G0
6 B0
7 step_frame hsync audio_out

553

achasen workshop validation [718]

• Author: adam chasen
• Description: validation description
• GitHub repository
• Wokwi project
• Mux address: 718
• Extra docs
• Clock: 0 Hz

How it works

single gate

How to test

take a look at the wokwi

External hardware

LED display and input switches

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1
2
3
4
5
6
7

554

https://github.com/chaseadam/tt09-workshop-validation
https://wokwi.com/projects/412367067047460865

7-Segment Digital Desk Clock [736]

• Author: Samuel Ellicott
• Description: 7-Segment Desk Clock
• GitHub repository
• HDL project
• Mux address: 736
• Extra docs
• Clock: 50000000 Hz

How it works

Simple digital clock, displays hours, minutes, and seconds in either a 24h format. Since
there are not enough output pins to directly drive a 6x 7-segment displays, the data is
shifted out over SPI to a MAX7219 in 7-segment mode. The time can be set using
the hours_set and minutes_set inputs. If set_fast is high, then the the hours or
minutes will be incremented at a rate of 5Hz, otherwise it will be set at a rate of 2Hz.
Note that when setting either the minutes, rolling-over will not affect the hours setting.
If both hours_set and minutes_set are presssed at the same time the seconds will
be cleared to zero.
A block diagram of the system is shown below.

1

0

clk_gen_inst
i_clk

i_refclk

i_reset_n

o_1hz_stb

o_debounce_stb

o_fast_set_stb

o_slow_set_stb

clock_reg_inst
i_1hz_stb

i_clk

i_reset_n

i_set_hours

i_set_minutes

i_set_stb

o_hours

o_minutes

o_seconds

display_control_inst
i_1hz_stb

i_clk

i_clk_set

i_clk_set_stb

i_display_ack

i_reset_n

o_display_stb

o_write_config

display_inst
i_clk

i_dp

i_hours

i_minutes

i_reset_n

i_seconds

i_stb

i_write_config

o_ack

o_busy

o_serial_clk

o_serial_dout

o_serial_load

dp_control_inst
i_am_pm

i_seconds

i_set_time

o_dp

input_debounce
i_12h_mode

i_clk

i_debounce_stb

i_fast_set

i_reset_n

i_set_hours

i_set_minutes

o_12h_mode_db

o_fast_set_db

o_set_hours_db

o_set_minutes_db

mode_conv_inst
i_12h_mode

i_hours

i_minutes

i_seconds

o_am_pm

o_hours

o_minutes

o_seconds

refclk_sync_inst
i_clk

i_refclk

i_reset_n

o_refclk_sync

i_reset_n

i_clk

i_en

i_refclk

i_fast_set

i_set_hours

i_set_minutes

i_12h_mode

o_serial_load

o_serial_dout

o_serial_clk

/6/

/5/

/6/

/6//6/

/5/

/6/

/6/

How to test

Apply a 5MHz clock to the clock pin and 32.786Khz signal to the refclk pin. Use the
hours_set and minutes_set pins to set the time.

555

https://github.com/sellicott/tt09_desk_alarm_clock

External hardware

Connect the BIDIR PMOD to a MAX7219 7-segment display, For reference Tiny Tape-
out SPI

Pinout

Input Output Bidirectional
0 refclk Display CS
1 Display MOSI
2 Fast/Slow Set
3 Set Hours Display SCK
4 Set Minutes
5 12-Hour Mode
6
7

556

https://tinytapeout.com/specs/pinouts/#spi
https://tinytapeout.com/specs/pinouts/#spi

TinySnake [737]

• Author: Ken Pettit
• Description: A snake slithers around the 7-Seg display
• GitHub repository
• Wokwi project
• Mux address: 737
• Extra docs
• Clock: 10000 Hz

How it works

This is a very simple Wokwi example that uses the 7-Segment display to show a 3-
segment “snake” as it moves around the display. It uses three 3-bit registers to store
the current location of the “head”, “body” and “tail”, along with a register identifying
the direction (0=clockwise, 1=counter clockwise).
There are two larger registers also, one a simple counter for speed control and the other
a Linear Feedback Shift Register (LFSR) to randomize the direction of travel.

How to test

Supply a 10 KHz clock. Then set the speed using the ui_in[7:0] pins. Larger binary
values represent slower speed. Start off with something like 8’h20 (i.e. ui_in[5] HIGH,
the rest LOW). Watch the snake move around. Try different speeds.
NOTE: When changing from a slower to a faster speed, the initial update may take
a few seconds. This is because the This is because the counter may already be larger
than the newly entered “speed” value, and therefore must count all the way up until
it wraps to zero. The speed compare is a simple EQUAL circuit and doesn’t check for
GREATER-THAN-OR-EQUAL.

External hardware

Only need the 7-Segment display on the demo board.

Pinout

557

https://github.com/kdp1965/tt09_um_tinysnake
https://wokwi.com/projects/414123795172381697

Input Output Bidirectional
0 speed[0] seg_a
1 speed1 seg_b
2 speed2 seg_c
3 speed[3] seg_d
4 speed[4] seg_e
5 speed[5] seg_f
6 speed[6] seg_g
7 speed[7]

558

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Basic Perceptron + ReLU [738]

• Author: UDXS
• Description: Basic Perceptron + ReLU Layer
• GitHub repository
• HDL project
• Mux address: 738
• Extra docs
• Clock: 0 Hz

How it works

It connects a small single-cycle multiply-accumulation unit to a ReLU output.

How to test

Reset and then, for every following cycle, provide pairs of signed 4-bit numbers rep-
resenting the weight-input pair for a given model layer invocation. The output will
change cycle-to-cycle. Sample it while providing your last inputs and then reset to
attempt another invocation.

Pinout

Input Output Bidirectional
0 Weight[0] ReLU[0] ReLU[8]
1 Weight1 ReLU1 ReLU[9]
2 Weight2 ReLU2 ReLU[10]
3 Weight[3] ReLU[3] ReLU[11]
4 Input[0] ReLU[4] ReLU[12]
5 Input1 ReLU[5] ReLU[13]
6 Input2 ReLU[6] ReLU[14]
7 Input[3] ReLU[7] ReLU[15]

559

https://github.com/UDXS/tt09-mlp
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Classic 8-bit era Programmable Sound Generator SN76489
[739]

• Author: ReJ aka Renaldas Zioma
• Description: The SN76489 Digital Complex Sound Generator (DCSG) is a pro-

grammable sound generator chip from Texas Instruments.
• GitHub repository
• HDL project
• Mux address: 739
• Extra docs
• Clock: 4000000 Hz

How it works

This Verilog implementation is a replica of the classical SN76489 programmable sound
generator. With roughly a 1400 logic gates this design fits on a single tile of the
TinyTapeout.
The goals of this project

1. closely replicate the behavior and eventually the complete design of the orig-
inal SN76489

2. provide a readable and well documented code for educational and hardware
preservation purposes

3. leverage the modern fabrication process

A significant effort was put into a thorough test suite for regression testing and
validation against the original chip behavior.
The future work
The next step is to incorporate analog elements into the design to match the original
SN76489 - DAC for each channel and an analog OpAmp for channel summation.
Chip technical capabilities

• 3 square wave tone generators
• 1 noise generator
• 2 types of noise: white and periodic
• Capable to produce a range of waves typically from 122 Hz to 125 kHz, defined

by 10-bit registers.
• 16 different volume levels

560

https://github.com/rejunity/tt05-psg-sn76489
https://en.wikipedia.org/wiki/Texas_Instruments_SN76489

Registers The behavior of the SN76489 is defined by 8 “registers” - 4 x 4 bit volume
registers, 3 x 10 bit tone registers and 1 x 3 bit noise configuration register.

Channel Volume registers Tone & noise registers
0 Channel #0 attenuation Tone #0 frequency
1 Channel #1 attenuation Tone #1 frequency
2 Channel #2 attenuation Tone #2 frequency
3 Channel #3 attenuation Noise type and frequency

Square wave tone generators Square waves are produced by counting down the 10-
bit counters. Each time the counter reaches the 0 it is reloaded with the corresponding
value from the configuration register and the output bit of the channel is flipped
producing square waves.
Noise generator Noise is produced with 15-bit Linear-feedback Shift Register (LFSR)
that flips the output bit pseudo randomly. The shift rate of the LFSR register is
controller either by one of the 3 hardcoded power-of-two dividers or output from the
channel #2 tone generator is used.
Attenuation Each of the four SN76489 channels have dedicated attenuation modules.
The SN76489 has 16 steps of attenuation, each step is 2 dB and maximum possible
attenuation is 28 dB. Note that the attenuation definition is the opposite of volume /
loudness. Attenuation of 0 means maximum volume.
Finally, all the 4 attenuated signals are summed up and are sent to the output pin of
the chip.
Historical use of the SN76489
The SN76489 family of programmable sound generators was introduced by Texas In-
struments in 1980. Variants of the SN76489 were used in a number of home computers,
game consoles and arcade boards:

• home computers: TI-99/4, BBC Micro, IBM PCjr, Sega SC-3000, Tandy 1000
• game consoles: ColecoVision, Sega SG-1000, Sega Master System, Game Gear,

Neo Geo Pocket and Sega Genesis
• arcade machines by Sega & Konami and would usually include 2 or 4 SN76489

chips

The SN76489 chip family competed with the similar General Instrument AY-3-8910.
The original pinout of the SN76489AN

561

https://en.wikipedia.org/wiki/Linear-feedback_shift_register
https://en.wikipedia.org/wiki/TI-99/4A
https://en.wikipedia.org/wiki/BBC_Micro
https://en.wikipedia.org/wiki/IBM_PCjr
https://en.wikipedia.org/wiki/SG-1000#SC-3000
https://en.wikipedia.org/wiki/Tandy_1000
https://en.wikipedia.org/wiki/ColecoVision
https://en.wikipedia.org/wiki/SG-1000
https://en.wikipedia.org/wiki/Master_System
https://en.wikipedia.org/wiki/Game_Gear
https://en.wikipedia.org/wiki/Neo_Geo_Pocket
https://en.wikipedia.org/wiki/Sega_Genesis
https://en.wikipedia.org/wiki/General_Instrument_AY-3-8910

,--._.--.
D5 -->|1 16|<-- VCC
D6 -->|2 15|<-- D4
D7 -->|3 14|<-- CLOCK

ready* <--|4 13|<-- D3
/WE -->|5 12|<-- D2
/ce* -->|6 11|<-- D1

AUDIO OUT <--|7 10|<-- D0
GND ---|8 9| not connected*

`-------'
* -- omitted from this Verilog implementation

Difference from the original hardware
This Verilog implementation is a completely digital and synchronous design that differs
from the original SN76489 design which incorporated analog parts.
Audio signal output While the original chip had integrated OpAmp to sum generated
channels in analog fashion, this implementation does digital signal summation and
digital output. The module provides two alternative outputs for the generated audio
signal:

1. digital 8-bit audio output suitable for external Digital to Analog Converter (DAC)
2. pseudo analog output through Pulse Width Modulation (PWM)

Separate 4 channel output Outputs of all 4 channels are exposed along with the
master output. This allows to validate and mix signals externally. In contrast the
original chip was limited to a single audio output pin due to the PDIP-16 package.
No DC offset This implementation produces output 0/1 waveforms without DC
offset.
No /CE and READY pins Chip enable control pin /CE is omitted in this design for
simplicity. The behavior is the same as if /CE is tied low and the chip is considered
always enabled.
Unlike the original SN76489 which took 32 cycles to update registers, this implemen-
tation handles register writes in a single cycle and chip behaves as always READY.
Synchronous reset and single phase clock The original design employed 2 phases
of the clock for the operation of the registers. The original chip had no reset pin and
would wake up to a random state.
To make it easier to synthesize and test on FPGAs this implementation uses single
clock phase and synchronous reset for registers.
A configurable clock divider was introduced in this implementation.

562

1. the original SN76489 with the master clock internally divided by 16. This clas-
sical chip was intended for PAL and NTSC frequencies. However in BBC Micro
4 MHz clock was employed.

2. SN94624/SN76494 variants without internal clock divider. These chips were
intended for use with 250 to 500 KHz clocks.

3. high frequency clock configuration for TinyTapeout, suitable for a range between
25 MHz and 50 Mhz. In this configuration the master clock is internally divided
by 128.

The reverse engineered SN76489
This implementation is based on the results from these reverse engineering efforts:

1. Annotations and analysis of a decapped SN76489A chip.
2. Reverse engineered schematics based on a decapped VDP chip from Sega Mega

Drive which included a SN76496 variant.

How to test

Summary of commands to communicate with the chip
The SN76489 is programmed by updating its internal registers via the data bus. Be-
low is a short summary of the communication protocol of SN76489. Please consult
SN76489 Technical Manual for more information.

Command Description Parameters
1cc0ffff Set tone fine frequency f - 4 low bits, c - channel #
00ffffff Follow up with coarse

frequency
f - 6 high bits

11100bff Set noise type and frequency b - white/periodic, f - frequency control
1cc1aaaa Set channel attenuation a - 4 bit attenuation, c - channel #

NF1 NF0 Noise frequency control
0 0 Clock divided by 512
0 1 Clock divided by 1024
1 0 Clock divided by 2048
1 1 Use channel #2 tone frequency

Write to SN76489 Hold /WE low once data bus pins are set to the desired values.
Pull /WE high before setting different value on the data bus.

563

https://en.wikipedia.org/wiki/BBC_Micro
https://github.com/gchiasso/76489A-analysis
https://github.com/emu-russia/SEGAChips/tree/main/VDP/PSG
https://github.com/rejunity/tt05-psg-sn76489/blob/main/docs/SN76489AN_Manual.pdf

Note frequency
Use the following formula to calculate the 10-bit period value for a particular note :

𝑡𝑜𝑛𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑐𝑦𝑐𝑙𝑒𝑠 = 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(32𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

For example 10-bit value that plays 440 Hz note on a chip clocked at 4 MHz would
be:

𝑡𝑜𝑛𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑐𝑦𝑐𝑙𝑒𝑠 = 4000000𝐻𝑧/(32𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 440𝐻𝑧) = 284 = 11𝐶ℎ𝑒𝑥

An example to play a note accompanied with a lower volume noise

/WE D7 D6/5 D4..D0 Explanation
0 1 00 01100 Set channel #0 tone low 4-bits to 𝐶ℎ𝑒𝑥 = 1100𝑏𝑖𝑛
0 0 00 10001 Set channel #0 tone high 6-bits to

11ℎ𝑒𝑥 = 010001𝑏𝑖𝑛
0 1 00 10000 Set channel #0 volume to 100%, attenuation 4-bits

are 0𝑑𝑒𝑐 = 0000𝑏𝑖𝑛
0 1 11 00100 Set channel #3 noise type to white and divider to

512
0 1 11 11000 Set channel #3 noise volume to 50%, attenuation

4-bits are 8𝑑𝑒𝑐 = 1000𝑏𝑖𝑛

Timing diagram

CLK ____ ____ ____ ____ ____ ____
__/ `____/ `____/ `____/ `____/ `____/ `___ ...
| | | | | |
| | | | | |

/WE _ __ __ __ __ _______
`_____/ `______/ `______/ `______/ `______/ *

^
D7..D0_______ ________ ________ ________ ________ |

/10001100 00010001 10010000 11100100 11111000`|______
chan#0 chan#0 chan#0 chan#3 chan#3 |

tone=h??C =h11C atten=0 div=16 atten=8 |
h011C = 440 Hz /16 = ~1 Khz |

564

white noise |
|

noise restarts
after /WE goes high and

there was a write to noise register

Configurable clock divider
Clock divider can be controlled through SEL0 and SEL1 control pins and allows to
select between 3 chip variants.

SEL1 SEL0 Description Clock frequency
0 0 SN76489 mode, clock divided by 16 3.5 .. 4.2 MHz
1 1 —–//—– 3.5 .. 4.2 MHz
0 1 SN76494 mode, no clock divider 250 .. 500 kHZ
1 0 New mode for TT05, clock div. 128 25 .. 50 MHz

SEL1 SEL0 Formula to calculate the 10-bit tone period value for a note
0 0 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(32𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
1 1 —–//—–
0 1 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(2𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
1 0 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(256𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

Some examples of music recorded from the chip simulation

• https://www.youtube.com/watch?v=ghBGasckpSY
• https://www.youtube.com/watch?v=HXLAdA02I-w

External hardware

DAC (for ex. Digilent R2R PMOD), RC filter, amplifier, speaker.
The data bus of the SN76489 chip has to be connected to microcontroller and receive
a regular stream of commands. The SN76489 produces audio output and has to be
connected to a speaker. There are several ways how the overall schematics can be
established.
8-bit parallel output via DAC One option is to connect off the shelf data parallel
Digital to Analog Converter (DAC) for example Digilent R2R Pmod to the output pins
and route the resulting analog audio to piezo speaker or amplifier.

565

https://digilent.com/reference/pmod/pmodr2r/start

uController SN76489
,---------. ,---._.---.
| | 4 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|D0 SEL1|<-- 0
| GPIOx|----------->|D1 | ,----------.
| GPIOx|----------->|D2 OUT0|-------->|LSB |
| GPIOx|----------->|D3 OUT1|-------->| |
| GPIOx|----------->|D4 OUT2|-------->| pDAC | Headphones
| GPIOx|----------->|D5 OUT3|-------->| or | or
| GPIOx|----------->|D6 OUT4|-------->| RESISTOR | Buzzer
| GPIOx|----------->|D7 OUT5|-------->| ladder | /|
| GPIOx|----------->|/WE OUT6|-------->| | .--/ |
`---------' | OUT7|-------->|MSB |-----| |

`---------' `----------' `--` |
| `|
|

GND ---

AUDIO OUT through RC filter Another option is to use the Pulse Width Modu-
lated (PWM) AUDIO OUT pin that combines 4 channels with the Resistor-Capacitor
based low-pass filter or better the Operation Amplifier (Op-amp) & Capacitor based
integrator:

uController SN76489
,---------. ,---._.---.
| | 4 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|D0 SEL1|<-- 0
| GPIOx|----------->|D1 |
| GPIOx|----------->|D2 |
| GPIOx|----------->|D3 | C1
| GPIOx|----------->|D4 | ,----||----.
| GPIOx|----------->|D5 | | |
| GPIOx|----------->|D6 | | Op-amp | Speaker
| GPIOx|----------->|D7 AUDIO| | |X | /|
| GPIOx|----------->|/WE OUT |-----+---|-X | C2 .--/ |
`---------' `---------' | }---+---||---| |

,--|+/ `--` |
| |/ | `|
| |

GND --- GND ---

566

Separate channels through the Op-amp The third option is to externally combine
4 channels with the Operational Amplifier and low-pass filter:

uController SN76489
,---------. ,---._.---.
| | 4 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|D0 SEL1|<-- 0
| GPIOx|----------->|D1 |
| GPIOx|----------->|D2 |
| GPIOx|----------->|D3 | C1
| GPIOx|----------->|D4 | ,----||----.
| GPIOx|----------->|D5 chan0|---. | |
| GPIOx|----------->|D6 chan1|---+ | Op-amp | Speaker
| GPIOx|----------->|D7 chan2|---+ | |X | /|
| GPIOx|----------->|/WE chan3|---+--+---|-X | C2 .--/ |
`---------' `---------' | }---+---||---| |

,--|+/ `--` |
| |/ | `|
| |

GND --- GND ---

Pinout

Input Output Bidirectional
0 D0 data bus digital audio

LSB
(in) /WE write enable

1 D1 data bus digital audio (in) SEL0 clock divider
2 D2 data bus digital audio (in) SEL1 clock divider
3 D3 data bus digital audio (out) channel 0 (PWM)
4 D4 data bus digital audio (out) channel 1 (PWM)
5 D5 data bus digital audio (out) channel 2 (PWM)
6 D6 data bus digital audio (out) channel 3 (PWM)
7 D7 data bus digital audio

MSB
(out) AUDIO OUT master
(PWM)

567

Basic Matrix-Vector Multiplication [740]

• Author: Andy Ly
• Description: Basic matrix and vector multiplier that multiplies a 2x2 matrix with

a 2x1 vector. Inputs are limited to 2 bit elements
• GitHub repository
• HDL project
• Mux address: 740
• Extra docs
• Clock: 0 Hz

How it works

Take input voltages and treats them as input current injection to lif neuron

How to test

Test it

External hardware

Possibly

Pinout

Input Output Bidirectional
0 Input bit [0]

for matrix
element 11

Output bit [0]
for output
vector
element 1

Output bit [3] for output
vector element 2

1 Input bit 1 for
matrix
element 11

Output bit 1
for output
vector
element 1

Output bit [4] for output
vector element 2

2 Input bit [0]
for matrix
element 12

Output bit 2
for output
vector
element 1

568

https://github.com/andyly37/tt09-ECE-110
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
3 Input bit 1 for

matrix
element 12

Output bit [3]
for output
vector
element 1

4 Input bit [0]
for matrix
element 21

Output bit [4]
for output
vector
element 1

Input bit [0] for input
vector element 1

5 Input bit 1 for
matrix
element 21

Output bit [0]
for output
vector
element 2

Input bit 1 for input vector
element 1

6 Input bit [0]
for matrix
element 22

Output bit 1
for output
vector
element 2

Input bit [0] for input
vector element 2

7 Input bit 1 for
matrix
element 22

Output bit 2
for output
vector
element 2

Input bit 1 for input vector
element 2

569

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture

Classic 8-bit era Programmable Sound Generator AY-3-8913
[741]

• Author: ReJ aka Renaldas Zioma
• Description: The AY-3-8913 is a 3-voice programmable sound generator (PSG)

chip from General Instruments. The AY-3-8913 is a smaller variant of AY-3-8910
or its analog YM2149.

• GitHub repository
• HDL project
• Mux address: 741
• Extra docs
• Clock: 2000000 Hz

How it works

This Verilog implementation is a replica of the classical AY-3-8913 programmable
sound generator. With roughly a 1500 logic gates this design fits on a single tile of
the TinyTapeout.
The goals of this project

1. closely replicate the behavior and eventually the complete design of the orig-
inal AY-3-891x with builtin DACs

2. provide a readable and well documented code for educational and hardware
preservation purposes

3. leverage the modern fabrication process

A significant effort was put into a thorough test suite for regression testing and
validation against the original chip behavior.
Chip technical capabilities

• 3 square wave tone generators
• A single white noise generator
• A single envelope generator able to produce 10 different shapes
• Chip is capable to produce a range of waves from a 30 Hz to 125 kHz, defined

by 12-bit registers.
• 16 different volume levels

Registers The behavior of the AY-3-891x is defined by 14 registers.

570

https://github.com/rejunity/tt05-psg-ay8913
https://en.wikipedia.org/wiki/General_Instrument_AY-3-8910

Register Bits used Function Description
0 xxxxxxxx Channel A Tone 8-bit fine frequency
1xxxx —//— 4-bit coarse frequency
2 xxxxxxxx Channel B Tone 8-bit fine frequency
3xxxx —//— 4-bit coarse frequency
4 xxxxxxxx Channel C Tone 8-bit fine frequency
5xxxx —//— 4-bit coarse frequency
6 ...xxxxx Noise 5-bit noise frequency
7 ..CBACBA Mixer Tone and/or Noise per

channel
8 ...xxxxx Channel A Volume Envelope enable or 4-bit

amplitude
9 ...xxxxx Channel B Volume Envelope enable or 4-bit

amplitude
10 ...xxxxx Channel C Volume Envelope enable or 4-bit

amplitude
11 xxxxxxxx Envelope 8-bit fine frequency
12 xxxxxxxx —//— 8-bit coarse frequency
13xxxx Envelope Shape 4-bit shape control

Square wave tone generators Square waves are produced by counting down the
12-bit counters. Counter counts up from 0. Once the corresponsding register value is
reached, counter is reset and the output bit of the channel is flipped producing square
waves.
Noise generator Noise is produced with 17-bit Linear-feedback Shift Register (LFSR)
that flips the output bit pseudo randomly. The shift rate of the LFSR register is
controller by the 5-bit counter.
Envelope The envelope shape is controlled with 4-bit register, but can take only 10
distinct patterns. The speed of the envelope is controlled with 16-bit counter. Only a
single envelope is produced that can be shared by any combination of the channels.
Volume Each of the three AY-3-891x channels have dedicated DAC that converts 16
levels of volume to analog output. Volume levels are 3 dB apart in AY-3-891x.
Historical use of the AY-3-891x
The AY-3-891x family of programmable sound generators was introduced by General
Instrument in 1978. Soon Yamaha Corporation licensed and released a very similar
chip under YM2149 name.
Both variants of the AY-3-891x and YM2149 were broadly used in home computers,
game consoles and arcade machines in the early 80ies.

571

https://en.wikipedia.org/wiki/Linear-feedback_shift_register

• home computers: Apple II Mockingboard sound card, Amstrad CPC, Atari ST,
Oric-1, Sharp X1, MSX, ZX Spectrum 128/+2/+3

• game consoles: Intellivision, Vectrex, Amstrad GX4000
• arcade machines: Frogger, 1942, Spy Hunter and etc.

The AY-3-891x chip family competed with the similar Texas Instruments SN76489.
The original pinout of the AY-3-8913
The AY-3-8913 was a 24-pin package release of the AY-3-8910 with a number of
internal pins left simply unconnected. The goal of AY-3-8913 was to reduce complexity
for the designer and reduce the foot print on the PCB. Otherwise the functionality of
the chip is identical to AY-3-8910 and AY-3-8912.

,--._.--.
GND ---|1 24|<-- /cs*
BDIR -->|2 23|<-- a8*
BC1 -->|3 22|<-- /a9*
DA7 <->|4 21|<-- /RESET
DA6 <->|5 20|<-- CLOCK
DA5 <->|6 19|--- GND
DA4 <->|7 18|--> CHANNEL C OUT
DA3 <->|8 17|--> CHANNEL A OUT
DA2 <->|9 16| not connected
DA1 <->|10 15|--> CHANNEL B OUT
DA0 <->|11 14|<-- test*

test* <--|12 13|<-- VCC
`-------'

* -- omitted from this Verilog implementation

Difference from the original hardware
This Verilog implementation is a completely digital and synchronous design that dif-
fers from the original AY-3-8913 design which incorporated internal DACs and analog
outputs.
Audio signal output While the original chip had no summation The module provides
two alternative outputs for the generated audio signal:

1. digital 8-bit audio output suitable for external Digital to Analog Converter (DAC)
2. pseudo analog output through Pulse Width Modulation (PWM)

572

https://en.wikipedia.org/wiki/Mockingboard
https://en.wikipedia.org/wiki/Amstrad_CPC
https://en.wikipedia.org/wiki/Atari_ST
https://en.wikipedia.org/wiki/Oric
https://en.wikipedia.org/wiki/Sharp_X1
https://en.wikipedia.org/wiki/MSX
https://en.wikipedia.org/wiki/ZX_Spectrum
https://en.wikipedia.org/wiki/Intellivision
https://en.wikipedia.org/wiki/Vectrex
https://en.wikipedia.org/wiki/Amstrad_GX4000
https://www.vgmpf.com/Wiki/index.php/AY-3-8910#Games
https://en.wikipedia.org/wiki/Texas_Instruments_SN76489

Master output channel In contrast to the original chip which had only separate
channel outputs, this implementation also provides an optional summation of the chan-
nels into a single master output.
No DC offset This implementation produces output 0/1 waveforms without DC
offset.
No /A8, A9 and /CS pins The combination of /A8, A9 and /CS pins orginially
were intended to select a specific sound chip out the larger array of devices connected
to the same bus. In this implementation this mechanism is omitted for simplicity, /A8,
A9 and /CS are considered to be tied low and chip behaves as always enabled.
Synchronous reset and single phase clock The original design employed 2 phases
of the clock and asynchronous reset mechanism for operation of the registers.
To make it easier to synthesize and test on FPGAs this implementation uses single
clock phase and synchronous reset for registers.
The reverse engineered AY-3-891x
This implementation would not be possible without the reverse engineered schematics
and analysis based on decapped AY-3-8910 and AY-3-8914 chips.
Explain how your project works

How to test

Summary of commands to communicate with the chip
The AY-3-8913 is programmed by updating its internal registers via the data bus. Below
is a short summary of the communication protocol of AY-3-891x. Please consult AY-
3-891x Technical Manual for more information.

BDIR BC1 Bus state description
0 0 Bus is inactive
0 1 (Not implemented)
1 0 Write bus value to the previously latched register #
1 1 Latch bus value as the destination register #

Latch register address First, put the destination register adress on the bus of the
chip and latch it by pulling both BDIR and BC1 pins high.
Write data to register Put the desired value on the bus of the chip. Pull BC1 pin
low while keeping BDIR pin high to write the value of the bus to the latched register
address.

573

https://github.com/lvd2/ay-3-8910_reverse_engineered
https://github.com/lvd2/ay-3-8910_reverse_engineered
https://siliconpr0n.org/map/gi/ay-3-8910
https://siliconpr0n.org/map/gi/ay-3-8914
https://github.com/rejunity/tt05-psg-ay8913/blob/main/docs/AY-3-8910_Manual.pdf
https://github.com/rejunity/tt05-psg-ay8913/blob/main/docs/AY-3-8910_Manual.pdf

Inactivate bus by pulling both BDIR and BC1 pins low.

Register Format Description Parameters
0,2,4 ffffffff A/B/C tone period f - low bits
1,3,5 0000FFFF —//— F - high bits
6 000fffff Noise period f - noise period
7 00CBAcba Noise / tone per channel CBA - noise off,

cba - tone off
8,9,10 000Evvvv A/B/C volume E - envelope on,

v - volume level
11 ffffffff Envelope period f - low bits
12 FFFFFFFF —//— F - high bits
13 0000caAh Envelope Shape c - continue, a -

attack, A - alternate,
h - hold

Note frequency
Use the following formula to calculate the 12-bit period value for a particular note:

𝑡𝑜𝑛𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑐𝑦𝑐𝑙𝑒𝑠 = 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(16𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

For example 12-bit period that plays 440 Hz note on a chip clocked at 2 MHz would
be:

𝑡𝑜𝑛𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑐𝑦𝑐𝑙𝑒𝑠 = 2000000𝐻𝑧/(16𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 440𝐻𝑧) = 284 = 11𝐶ℎ𝑒𝑥

An example to play a note at a maximum volume

BDIR BC1 DA7..DA0 Explanation
1 1 xxxx0000 Latch tone A coarse register address 0 = 0000𝑏𝑖𝑛
1 0 xxxx0001 Write high 4-bits of the 440 Hz note 1 = 0001𝑏𝑖𝑛
1 1 xxxx0001 Latch tone A fine register address 1𝑑𝑒𝑐 = 0001𝑏𝑖𝑛
1 0 00011100 Write low 8-bits of the note 1𝐶ℎ𝑒𝑥 = 00011100𝑏𝑖𝑛
1 1 xxxx1000 Latch channel A volume register address 8 = 1000𝑏𝑖𝑛
1 0 xxx01111 Write maximum volume level 15𝑑𝑒𝑐 = 1111𝑏𝑖𝑛 with the

envelope disabled

574

Timing diagram

CLK ____ ____ ____ ____ ____ ____
__/ `____/ `____/ `____/ `____/ `____/ `____ ...
| | | | | |
| | | | | |

BDIR ______ ______ ______ ______ ______ ______
_/ `__/ `__/ `__/ `__/ `__/ `__

BC1 _______ _______ ________
_/ `___________/ `__________/ `___________

DA7..DA0_____ ________ ________ ________ ________ ________
_/ 0000 `/xxxx0001`/ 0001 `/00011100`/ 1000 `/xxx01111`

latch write latch write latch

Externally configurable clock divider

SEL1 SEL0 Description Clock frequency
0 0 Standard mode, clock divided by 8 1.7 .. 2.0 MHz
1 1 —–//—– 1.7 .. 2.0 MHz
0 1 New mode for TT05, no clock divider 250 .. 500 kHZ
1 0 New mode for TT05, clock div. 128 25 .. 50 MHz

SEL1 SEL0 Formula to calculate the 12-bit tone period value for a note
0 0 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(16𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
1 1 —–//—–
0 1 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(2𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
1 0 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(128𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

External hardware

The data bus of the AY-3-8913 chip has to be connected to microcontroller and receive
a regular stream of commands. The AY-3-8913 produces audio output and has to be
connected to a speaker. There are several ways how the overall schematics can be
established.

575

8-bit parallel output via DAC One option is to connect off the shelf data parallel
Digital to Analog Converter (DAC) for example Digilent R2R Pmod to the output pins
and route the resulting analog audio to piezo speaker or amplifier.

uController AY-3-8913
,---------. ,---._.---.
| | 2 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|BC1 SEL1|<-- 0
| GPIOx|----------->|BDI | ,----------.
| GPIOx|----------->|DA0 OUT0|-------->|LSB |
| GPIOx|----------->|DA1 OUT1|-------->| |
| GPIOx|----------->|DA2 OUT2|-------->| pDAC | Headphones
| GPIOx|----------->|DA3 OUT3|-------->| or | or
| GPIOx|----------->|DA4 OUT4|-------->| RESISTOR | Buzzer
GPIOx	----------->	DA5 OUT5	-------->	ladder	/	
GPIOx	----------->	DA6 OUT6	-------->		.--/	
GPIOx	----------->	DA7 OUT7	-------->	MSB	-----	
`---------' `---------' `----------' `--` |

| `|
|

GND ---

AUDIO OUT through RC filter Another option is to use the Pulse Width Modu-
lated (PWM) AUDIO OUT pin that combines 4 channels with the Resistor-Capacitor
based low-pass filter or better the Operation Amplifier (Op-amp) & Capacitor based
integrator:

uController AY-3-8913
,---------. ,---._.---.
| | 2 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|BC1 SEL1|<-- 0
GPIOx	----------->	BDIR
GPIOx	----------->	DA0
GPIOx	----------->	DA1
GPIOx	----------->	DA2
GPIOx	----------->	DA3
GPIOx	----------->	DA4
GPIOx	----------->	DA5
GPIOx	----------->	DA6 AUDIO
GPIOx	----------->	DA7 OUT
`---------' `---------' | }---+---||---| |

576

https://digilent.com/reference/pmod/pmodr2r/start

,--|+/ `--` |
| |/ | `|
| |

GND --- GND ---

Separate channels through the Op-amp The third option is to externally combine
4 channels with the Operational Amplifier and low-pass filter:

uController AY-3-8913
,---------. ,---._.---.
| | 2 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|BC1 SEL1|<-- 0
GPIOx	----------->	BDIR
GPIOx	----------->	DA0
GPIOx	----------->	DA1
GPIOx	----------->	DA2
GPIOx	----------->	DA3
GPIOx	----------->	DA4
GPIOx	----------->	DA5 A
GPIOx	----------->	DA6 B
GPIOx	----------->	DA7 C
`---------' `---------' | }---+---||---| |

,--|+/ `--` |
| |/ | `|
| |

GND --- GND ---

Pinout

Input Output Bidirectional
0 DA0 -

multiplexed
data/address
bus LSB

audio out
(PWM)

(in) BC1 bus control

1 DA1 -
multiplexed
data/address
bus

digita audio
LSB

(in) BDIR bus direction

577

Input Output Bidirectional
2 DA2 -

multiplexed
data/address
bus

digita audio (in) SEL0 clock divider

3 DA3 -
multiplexed
data/address
bus

digita audio (in) SEL1 clock divider

4 DA4 -
multiplexed
data/address
bus

digita audio (out) channel A (PWM)

5 DA5 -
multiplexed
data/address
bus

digita audio (out) channel B (PWM)

6 DA6 -
multiplexed
data/address
bus

digita audio (out) channel C (PWM)

7 DA7 -
multiplexed
data/address
bus MSB

digita audio
MSB

(out) AUDIO OUT master
(PWM)

578

8 bit MAC Unit [742]

• Author: Devesh Bhaskaran
• Description: Implementation Of 8-bit MAC Using Vedic Multipliers And Re-

versible Gates
• GitHub repository
• HDL project
• Mux address: 742
• Extra docs
• Clock: 40000000 Hz

How it works

The project aims to implement a 8-bit MAC unit for unsigned integer data type using
Vedic Multipliers and Reversible gates. The two inputs are to be taken in through
input pins and bi-directional pins using half a clock cycle and stored in registers. The
MAC operation is performed on the values stored in these registers. The multiplier and
adder takes half clock cycle each. The result of the operation is then sent through the
output and bidirectional pins.

How to test

The project will be used to perform mac operations on 8-bit unsigned integers. This is
mainly used in systems with fast computation and also primarly explores the concepts
of reversible gates for energy efficiency.

External hardware

No external hardware is used for this project.

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0] uio[0]
1 ui_in1 uo_out1 uio1
2 ui_in2 uo_out2 uio2
3 ui_in[3] uo_out[3] uio[3]
4 ui_in[4] uo_out[4] uio[4]

579

https://github.com/devesh-b/tt09-deveshb-8-bitMAC
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
5 ui_in[5] uo_out[5] uio[5]
6 ui_in[6] uo_out[6] uio[6]
7 ui_in[7] uo_out[7] uio[7]

580

Cgates [743]

• Author: Tommy Thorn
• Description: Testing two different Cgate implementations and rings
• GitHub repository
• HDL project
• Mux address: 743
• Extra docs
• Clock: 0 Hz

How it works

(This is a variant of tt06-ncl-lfsr, but with different C-gate implementations)
Muller’s C-gate is a state-holding element with two inputs A and B, and an output Q.
Q holds the previous state unless A == B in which case it takes on this value. There
are many ways to implement the C-gate. In this design, we try two: building it from a
latch and building it out of combinatorial logic. The two inputs ui[0] and ui1 are fed to
two C-gates Cl and Cc, build with a latch and combinatorial logic respectively. Their
respective outputs are wired to uo[0] and uo1.
We also build four rings from this, with uo2 and uo[3] being the output of a four stage
build from Cl and Cc gates respectively. Similar for uo[4]/uo[5] except using 16 stage
rings and uo[6]/uo[7] for 64 stage rings.

Since the pulse from each C-gate rings last only a few gate delay times, we use it to
feed a toggle flip-flop, thus the corresponding output ping will toggle every time the
pulse makes it round the ring. In other words, the cycle time of 4, 16, and 64 stage
ring corresponding 8, 32, and 128 times the average stage delay of the corresponding
ring.
Why is this interesting? Most asynchronous circuits disciplines rely heavily on the Cgate
and this stage delay represents the absolute best-case for an asynchronous pipestage.
Of course, for most interesting circuits the stage delay will be dominated by the com-
putation performed.

581

https://github.com/tommythorn/tt09-tommythorn-cgates
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

How to test

Set ui[0] and ui1 different values and verify that uo[0]/uo1 only changes when both
agree. The remaining six uo outputs corresponding to six rings, two 4-stage, two
16-stage, and two 64-stage. The first of each pair are built from latches, the latter
from combinatorial logic. It will be interesting to see which is faster. The outputs are
limited to 33 MHz / 30.3 ns, thus if the stage delay is less 3.8 ns we likely will not
observe anything. For the other two the limits, are 947 ps and 237 ps, respectively. In
hindsight, I should have made the rings more than an order of magnitude longer.

External hardware

For the basic test the rp2040 on the bringup board should be enough for the ring test,
an oscilloscope is definely required to see anything from the rings.

Pinout

Input Output Bidirectional
0 A Ql
1 B Qc
2 R4l
3 R4c
4 R16l
5 R16c
6 RTBDl
7 RTBDc

582

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Programmable PWM Generator [744]

• Author: Anas Alam
• Description: Programmabel PWM Generator
• GitHub repository
• HDL project
• Mux address: 744
• Extra docs
• Clock: 0 Hz

How it works

A programmable PWM generator. The desired frequency and duty cycle is programmed
by setting pwm_top and pwm_threshold. A counter counts from 0 to pwm_top (over
and over), the pwm signal is high as when the counter is <= pwm_threshold.
pwm_top is wired to uio (all of them are used as inputs) pwm_threshold is wired to
ui
They are encoded as follows
pwm_top &lt;= uio(7 downto 5) &lt;&lt; uio(4 downto
0)

pwm_threshold &lt;= ui(7 downto 5) &lt;&lt; ui(4
downto 0)

Resulting frequency of PWM signal is: 𝑓𝑜𝑢𝑡 = 𝑓𝑖𝑛
𝑝𝑤𝑚𝑡𝑜𝑝+1

Resulting duty cycle is: 𝑓 = 𝑝𝑤𝑚𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑+1
𝑝𝑤𝑚𝑡𝑜𝑝+1

The goal is to have wide as possible frequency range while still being able to go from
0% to 100% in duty cycle.

How to test

Use above formulas to determine value of pwm_threshold and pwm_top, hard ware
them to this value or connect through switches. Probe output on oscilloscope

External hardware

Switches and oscilloscope

583

https://github.com/SyedAnasAlam/TinyTapeout09

Pinout

Input Output Bidirectional
0 pwm_threshold

shift_amount[0]
pwm output input: pwm_top

shift_amount[0]
1 pwm_threshold

shift_amount1
design is
enabled
(active high)

input: pwm_top
shift_amount1

2 pwm_threshold
shift_amount2

wired 0 input: pwm_top
shift_amount2

3 pwm_threshold
shift_amount[3]

wired 0 input: pwm_top
shift_amount[3]

4 pwm_threshold
shift_amount[4]

wired 0 input: pwm_top
shift_amount[4]

5 pwm_threshold
base[0]

wired 0 input: pwm_top base[0]

6 pwm_threshold
base1

wired 0 input: pwm_top base1

7 pwm_threshold
base[3]

wired 0 input: pwm_top base2

584

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

eksdee [745]

• Author: lucy revi
• Description: That’s for none of us to know and all of us to find out.
• GitHub repository
• HDL project
• Mux address: 745
• Extra docs
• Clock: 0 Hz

How it works

I honestly don’t know yet.

How to test

I honestly don’t know yet.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any.
I honestly don’t know yet.

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

585

https://github.com/Fi50/tt09-eksdee

Verilog test project [746]

• Author: Alexander Symons
• Description: It adds the input and the IO pins
• GitHub repository
• HDL project
• Mux address: 746
• Extra docs
• Clock: 0 Hz

How it works

It adds the dedicated input to an internal register every clock cycle Least significant
bits: dedicated output Most significant bits: bidirectional output

How to test

Put numbers on the input and see the accumulated value on all the leds

External hardware

Switches on inputs, leds on outputs and bidirectionals

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0] uio_out[0]
1 ui_in1 uo_out1 uio_out1
2 ui_in2 uo_out2 uio_out2
3 ui_in[3] uo_out[3] uio_out[3]
4 ui_in[4] uo_out[4] uio_out[4]
5 ui_in[5] uo_out[5] uio_out[5]
6 ui_in[6] uo_out[6] uio_out[6]
7 ui_in[7] uo_out[7] uio_out[7]

586

https://github.com/FlyingFish800/tt09
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

ternary, E1M0, E2M0 decoders [747]

• Author: ReJ aka Renaldas Zioma
• Description: Ternary, Quinary and Septenary 1.6 .. 2.6 bits/param packed

weights
• GitHub repository
• HDL project
• Mux address: 747
• Extra docs
• Clock: 0 Hz

How it works

Unpacks Ternary, Quinary and Septenary 1.6 .. 2.6 bits/param packed weights

How to test

Provide packed weights on INPUT pmods

External hardware

Use Pico

Pinout

Input Output Bidirectional
0 packed

weights LSB
unpacked (out) unpacked

1 packed
weights

unpacked (out) unpacked

2 packed
weights

unpacked (out) unpacked

3 packed
weights

unpacked (out) unpacked

4 packed
weights

unpacked (out) unpacked

5 packed
weights

unpacked (out) unpacked

587

https://github.com/rejunity/tt09-ternary-septenary-decoders

Input Output Bidirectional
6 packed

weights
unpacked (out) dummy

7 packed
weights MSB

unpacked (in) Ternary / Septenary

588

Basic LIF Neuron [748]

• Author: stewedbeef
• Description: This is a basic LIF neuron
• GitHub repository
• HDL project
• Mux address: 748
• Extra docs
• Clock: 0 Hz

How it works

This is a simple leaky integrate-and-fire neuron which performs the integration by
addition and leaks by dividing by two every time step. The neuron has an enable pin
which causes the neuron to enable and move forward in time roughly once every second
when fed a clock of approximately 50 MHz.

How to test

The LED wired up to output seven should turn on and off approximately once every
second, with a period of approximately two seconds, to allow synchronisation by the
user. Each time the LED switches on or off a time step has occurred. The user should
stimulate the neuron by “providing” an input current, which is achieved by switching
the inputs manually to indicate to the neuron, in binary, how much current should flow
in. With enough stimulus, the neuron will fire a spike, visible on LEDs zero to six, for
one time period. The neuron has a timeout which prevents it from having a constant
output from overstimulation.

External hardware

Wire switches to all input ports and LEDs to all output ports. Bidirectional ports are
unused.

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0]
1 ui_in1 uo_out1

589

https://github.com/stewedbeef/tt09-verilog-template
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Input Output Bidirectional
2 ui_in2 uo_out2
3 ui_in[3] uo_out[3]
4 ui_in[4] uo_out[4]
5 ui_in[5] uo_out[5]
6 ui_in[6] uo_out[6]
7 ui_in[7] uo_out[7]

590

http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Dynamic Threshold Leaky Integrate-and-Fire [749]

• Author: Kai Linsley
• Description: Leaky Integrate-and-Fire model simulating a spiking biological neu-

ron
• GitHub repository
• HDL project
• Mux address: 749
• Extra docs
• Clock: 1000000 Hz

How it works

This is how my model works. Why does test say I haven’t added a how it works
section?

How to test

This is how to test the model, you just gotta do that and this and that again. Why is
there no how it works section? I don;t particulalry understand.

External hardware

These are all the external hardware requirements, there are actually none because we
aren’t fancy like that. In fact, I am only wriitng this out to avoid tests failing.

Pinout

Input Output Bidirectional
0 Input 1 Output 1
1 Input 2 Output 2
2 Input 3 Output 3
3 Input 4 Output 4
4 Input 5 Output 5
5 Input 6 Output 6
6 Input 7 Output 7
7 Input 8 Output 8

591

https://github.com/kalinsley/tt09-verilog

Integrate-and-Fire Neuron Circuit [750]

• Author: FNU Ashwine
• Description: A simple integrate-and-fire neuron model implemented in Verilog.
• GitHub repository
• HDL project
• Mux address: 750
• Extra docs
• Clock: 0 Hz

How it works

The Leaky Integrate-and-Fire (LIF) Neuron is a simple model of neuronal behavior. In
this design, the neuron receives an input signal (spike) and integrates this input over
time by increasing its internal membrane potential. If there is no input, the membrane
potential “leaks” or decays gradually over time, simulating the natural loss of charge
in biological neurons.
When the membrane potential reaches a defined threshold, the neuron fires a spike
output, after which the membrane potential resets to zero. This process emulates the
firing and reset cycle of biological neurons, providing a digital approximation of spiking
behavior.
LIF Neuron Diagram - https://drive.google.com/uc?export=view&id=19_hF5C_uv8FfWdlOOItlB8326t2pqFBz

How to test

Do something

External hardware

NA

Pinout

Input Output Bidirectional
0 Input current

bit [0]
State variable
bit [0]

592

https://github.com/Ashwine-git/tt09-verilog-template

Input Output Bidirectional
1 Input current

bit 1
State variable
bit 1

2 Input current
bit 2

State variable
bit 2

3 Input current
bit [3]

State variable
bit [3]

4 Input current
bit [4]

State variable
bit [4]

5 Input current
bit [5]

State variable
bit [5]

6 Input current
bit [6]

State variable
bit [6]

7 Input current
bit [7]

State variable
bit [7]

Spike bit

593

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

tt09-C6-array-multiplier [751]

• Author: Jonathan Farah and Josef Anurov
• Description: 4x4 multiplier
• GitHub repository
• HDL project
• Mux address: 751
• Extra docs
• Clock: 0 Hz

How it works

4 x 4 Array Multiplier Circuit Diagram The circuit implements a 4 x 4 array multiplier
using manual structural design. The array multiplier was created by using partial
products and 4-bit adders. There are 2 inputs: m and q, which represent 4-bit input
numbers to be multiplied. It outputs p, an 8-bit product of m and q. It has Wires
w1,w2,w3 and w4. These represent the partial products generated from each bit of q
multiplied by each bit of m. Wires: partial1, partial2, and partial3 store intermediate
sums of partial products as they are added.

How to test

We test using some test numbers and checking the output. Wires C[2:0] are carry bits
between the adders. Each w vector (from w1 to w4) represents the result of ANDing
each bit of m with a specific bit of q. The add_4bit modules add these partial products
together, simulating a ripple-carry addition for each shifted partial product. In terms
of assigning the final product is constructed from the individual bits. The MSB comes
from C2. Bits of partial3, partial2, partial1, and w1 make up the remaining bits, in that
order. The implementation of the circuit was then tested using the provided Verilog
testbench. The testbench was given a combination of inputs that effectively tested
each case to ensure that the multiplier ran correctly.

External hardware

N/A

Pinout

594

https://github.com/jonathan-farah/ttt09-C-6-array-multiplier
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
0 q[0] p[0]
1 q1 p1
2 q2 p2
3 q[3] p[3]
4 m[0] p[4]
5 m1 p[5]
6 m2 p[6]
7 m[3] p[7]

595

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Zilog Z80 [770]

• Author: ReJ aka Renaldas Zioma
• Description: Z80 open-source silicon. Goal is to become a silicon proven, pin

compatible, open-source replacement for classic Z80.
• GitHub repository
• HDL project
• Mux address: 770
• Extra docs
• Clock: 16000000 Hz

How it works

On April 15 of 2024 Zilog has announced End-of-Life for Z80, one of the most famous 8-
bit CPUs of all time. It is a time for open-source and hardware preservation community
to step in with a Free and Open Source Silicon (FOSS) replacement for Zilog Z80.
The implementation is based around Guy Hutchison’s TV80 Verilog core.
The future work

• Add thorough instruction (including ‘illegal’) execution tests ZEXALL to test-
bench

• Compare different implementations: Verilog core A-Z80, Netlist based
Z80Explorer

• Create gate-level layouts that would resemble the original Z80 layout. Zilog
designed Z80 by manually placing each transistor by hand.

• Tapeout QFN44 package
• Tapeout DIP40 package

Z80 technical capabilities

• nMOS original frequency 4MHz. CMOS frequency up to 20 MHz. This tapeout
on 130 nm is expected to support frequency up to 50 MHz.

• 158 instructions including support for Intel 8080A instruction set as a subset.
• Two sets of 6 general-purpose reigsters which may be used as either 8-bit or

16-bit register pairs.
• One maskable and one non-maskable interrupt.
• Instruction set derived from Datapoint 2200, Intel 8008 and Intel 8080A.

Z80 registers

• AF: 8-bit accumulator (A) and flag bits (F)
• BC: 16-bit data/address register or two 8-bit registers

596

https://github.com/rejunity/z80-open-silicon
https://www.mouser.com/PCN/Littelfuse_PCN_Z84C00.pdf
https://github.com/hutch31/tv80
https://mdfs.net/Software/Z80/Exerciser/
https://github.com/gdevic/A-Z80
https://github.com/gdevic/Z80Explorer
https://en.wikipedia.org/wiki/Intel_8080
https://en.wikipedia.org/wiki/Datapoint_2200
https://en.wikipedia.org/wiki/Intel_8008
https://en.wikipedia.org/wiki/Intel_8080

• DE: 16-bit data/address register or two 8-bit registers
• HL: 16-bit accumulator/address register or two 8-bit registers
• SP: stack pointer, 16 bits
• PC: program counter, 16 bits
• IX: 16-bit index or base register for 8-bit immediate offsets
• IY: 16-bit index or base register for 8-bit immediate offsets
• I: interrupt vector base register, 8 bits
• R: DRAM refresh counter, 8 bits (msb does not count)
• AF': alternate (or shadow) accumulator and flags (toggled in and out with EX

AF, AF')
• BC', DE' and HL': alternate (or shadow) registers (toggled in and out with EXX)

Z80 Pinout

,---------.__.---------.
<-- A11 |1 40| A10 -->
<-- A12 |2 39| A9 -->
<-- A13 |3 Z80 CPU 38| A8 -->
<-- A14 |4 37| A7 -->
<-- A15 |5 36| A6 -->
--> CLK |6 35| A5 -->
<-> D4 |7 34| A4 -->
<-> D3 |8 33| A3 -->
<-> D5 |9 32| A2 -->
<-> D6 |10 31| A1 -->

VCC |11 30| A0 -->
<-> D2 |12 29| GND
<-> D7 |13 28| /RFSH -->
<-> D0 |14 27| /M1 -->
<-> D1 |15 26| /RESET <--
--> /INT |16 25| /BUSRQ <--
--> /NMI |17 24| /WAIT <--
<-- /HALT |18 23| /BUSAK -->
<-- /MREQ |19 22| /WR -->
<-- /IORQ |20 21| /RD -->

`----------------------'

How to test

Hold all bidirectional pins (Data bus) low to make CPU execute NOP instruction.
NOP instruction opcode is 0. Hold all input pins high to disable interrupts and signal
that data bus is ready.

597

Every 4th cycle 8-bit value on output pins (Address bus low 8-bit) should
monotonously increase.

Timing diagram, input pins

Z80CLK____ ____ ____ ____ ____ ____
__/ ____/ ____/ ____/ ____/ ____/ `____ ...
| | | | | |
| | | | | |

/RESET___
__/

/WAIT ___
__/

/INT ___
__/

/NMI ___
__/

/BUSRQ___
__/

D7..D0 NOP NOP NOP NOP NOP
__ XXXXXXXXX ___#00___ ___#00___ ___#00___ ___#00___ ___#00___

Expected signals on output pins
/M1 _________ ____________________

__________________/ _________
/MREQ ___________________ ______________________________

________/
/RD ___________________ ______________________________

________/
A0..A7

__ XXXXXXXXX ___#00___ ___#00___ XXXXXXXXX XXXXXXXXX ___#01___

External hardware

Bus de-multiplexor, external memory, 8-bit computer such as ZX Spectrum.
Alternatively the RP2040 on the TinyTapeout test PCB can be used to simulate RAM
and I/O.

598

https://en.wikipedia.org/wiki/ZX_Spectrum

Pinout

Input Output Bidirectional
0 /WAIT /M1, A0, A8 D0
1 /INT /MREQ, A1,

A9
D1

2 /NMI /IORQ, A2,
A10

D2

3 /BUSRQ /RD, A3, A11 D3
4 /WR, A4,

A12
D4

5 /RFSH, A5,
A13

D5

6 MUX –
address lo/hi
bits on the
output pins

/HALT, A6,
A14

D6

7 MUX –
control signals
on the output
pins

/BUSAK, A7,
A15

D7

599

Spectrogram extractor, 2 channels [782]

• Author: Coline Chehense, Dinko Oletic
• Description: Digital part of a time-frequency feature extraction sensor interface,

two-channel real-time signal amplitude tracker. 7 input lines per channel repre-
sent thermometer code output of a flash ADC. Two-channel serial output.

• GitHub repository
• HDL project
• Mux address: 782
• Extra docs
• Clock: 1000000 Hz

How it works

This is an early work-in progress test implementation of a digital readout, part of a
low-power mixed-signal multichannel sensor interface for acoustic emission detection.
The sensor interface is developed to support a passive, micromechanically-implemented
ultrasonic signal frequency decomposition MEMS device, based on an array of piezo-
electric micro-resonators: https://ieeexplore.ieee.org/document/9139151.

Figure 45: MEMS-based mixed-signal multichannel sensor interface for acoustic emis-
sion detection.

The digital part implemented here, performs real-time tracking of time-frequency spec-
trograms of individual acoustic emissions. It is assumed that each input-channel rep-
resents a signal amplitude envelope of the associated frequency-component over time,
digitized using a flash ADC. The analog part of the ADC is not implemented here.
Each input channel is represented by 7 input lines per channel representing the ther-
mometer code output of a flash ADC. This test design implements only two-channels.
The amplitude of an signal envelope at each channel is decoded into 3-bit BCD code.

600

https://github.com/DinkoOletic/tt09-HDL_unizgfer_2ch_AE_tf_spectrogram

Presence of an input signal at any channel (detector of acoustic emission start) initi-
ates event-based 1 MHz sampling of the time-frequency amplitude spectrogram. The
sampling lasts for 200 us. Once finished, the state machine controls reads-out the data
stored. A double buffer composed of D-bistables is used to manage the storage and
readout simultaneously. The stored data is sent serially for each channel. An RTC
module is used to retrieve the time of the acoustic emission start.

Figure 46: Digital multi-channel time-frequency amplitude spectrogram tracker.

This design is part of research activities https://www.fer.unizg.hr/liss/aemems. The
design is generally applicable as a generic multi-channel time-series feature extraction
block, and serve for subsequent clustering or classification, as part of an low-power
MEMS-based sensor system-on-chip for acoustic event detection, or non-destructive
testing. This is the first TinyTapeout submission of the design.

How to test

Please contact authors for detailed instructions on how to set-up the design.

External hardware

Logics analyzer will be useful for debugging.

601

Pinout

Input Output Bidirectional
0 ch1(0) serial_out(0) ch2(0)
1 ch1(1) serial_out(1) ch2(1)
2 ch1(2) SL_time ch2(2)
3 ch1(3) SL_ch ch2(3)
4 ch1(4) signal_detected ch2(4)
5 ch1(5) memorization_completed ch2(5)
6 ch1(6) serial_readout ch2(6)
7 RTC_clk(1kHz) sending_data serial_readout_clk(4Mhz)

602

Encoder [800]

• Author: Peilin
• Description: 8x3 encoder
• GitHub repository
• Wokwi project
• Mux address: 800
• Extra docs
• Clock: 0 Hz

How it works

Use the logic gates to make the 7 segment display the first letter of your name.

How to test

If the IN1-IN5 are on, the 7 segment will display an “F”.

External hardware

No external hardware.

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3
4 IN4
5 IN5
6 IN6
7 IN7

603

https://github.com/NUPFU/pfu-wokwi
https://wokwi.com/projects/413919625901452289

chip_fab [801]

• Author: Aleksi
• Description: simple logic gate
• GitHub repository
• Wokwi project
• Mux address: 801
• Extra docs
• Clock: 0 Hz

How it works

Testing

How to test

Testing

External hardware

Here is my hardware

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2
3
4
5
6
7

604

https://github.com/alek-ski/chip_fab
https://wokwi.com/projects/414118269335820289

Clocked Display [802]

• Author: Dooseok
• Description: 8-bit Clocked Display
• GitHub repository
• Wokwi project
• Mux address: 802
• Extra docs
• Clock: 1 Hz

How it works

It allows output displays when the switch is clicked, or clock signal toggles. This was
enabled by using flip-flops. And it also can be reset using the reset button.

How to test

Set input toggle switches as you want. Start test, and check its output changes by
clicking the switch button.

External hardware

Flip-flops are added to enable display at each switch.

Pinout

Input Output Bidirectional
0 Display input 0 Display output 0
1 Display input 1 Display output 1
2 Display input 2 Display output 2
3 Display input 3 Display output 3
4 Display input 4 Display output 4
5 Display input 5 Display output 5
6 Display input 6 Display output 6
7 Display input 7 Display output 7

605

https://github.com/doo3yoon/TinyTapeout
https://wokwi.com/projects/413879612498222081

YoshiTP [803]

• Author: Yeshua M (Yoshi)
• Description: Tiny Tapeout Microchip creates the letter M if flipped horizontally
• GitHub repository
• Wokwi project
• Mux address: 803
• Extra docs
• Clock: 0 Hz

How it works

This project is a tiny TDC constructed entirely of standard cells. During the Tapeout,
we are creating a MOSFET. A MOSFET is a type of Transistor that can be used as a
digital watch. The name stands for Metal Oxide Semiconductor Field Effect Transistor.
When a voltage is applied across the gate and body, an electric field forms in the
channel, attracting charge carriers to enable conduction. In an N-type MOSFET on
a P-type substrate, minority carriers (electrons) form the conductive channel between
the drain and the source. In a P-type MOSFET, the process is reversed: the substrate
is N-type, and minority carriers (holes) create the channel. Since holes have lower
mobility than electrons, P-type MOSFETs typically require a wider channel (2-3 times
larger) than N-type MOSFETs for matching performance. To avoid increasing cell size,
standard cells often don’t match P and N strengths. Doping the silicon controls the
ratio of charge carriers.
During the tape out when turning on or turning of the switches IN1-7 is causes a
reaction on the lights that turn it on (OUT1-7).

How to test

To test the MOSFET you can switch on and off switches to cause a reaction on the
“digital watch light”

External hardware

LED lights were used such as the Digital watch to view the numbers. (UNSURE) but
the Logics “NAND Gate” and the “Not Gate” been used to create my initial of my
last name

606

https://github.com/Yoshiiii1/YoshiTP
https://wokwi.com/projects/413919833599252481

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

607

A simple leaky integrate and fire neuron [804]

• Author: Heather Knight
• Description: Simulation of lif neuron
• GitHub repository
• HDL project
• Mux address: 804
• Extra docs
• Clock: 0 Hz

How it works

It takes input voltages and treats that as the input current injection to the LIF neuron

How to test

Do something

External hardware

NA

Pinout

Input Output Bidirectional
0 Input current

bit [0]
State variable
bit [0]

1 Input current
bit 1

State variable
bit 1

2 Input current
bit 2

State variable
bit 2

3 Input current
bit [3]

State variable
bit [3]

4 Input current
bit [4]

State variable
bit [4]

5 Input current
bit [5]

State variable
bit [5]

608

https://github.com/hjade100/tt09-hjk
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
6 Input current

bit [6]
State variable
bit [6]

7 Input current
bit [7]

State variable
bit [7]

Spike bit

609

Who knows what’s happening Tiny Tapeout [805]

• Author: Ryan Kuo
• Description: Couldn’t tell you
• GitHub repository
• Wokwi project
• Mux address: 805
• Extra docs
• Clock: 1 Hz

How it works

YOLO

How to test

I am still working on how to make it work. Test by runnning random input

External hardware

Im going to implement external led for funsies

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

610

https://github.com/rkuo22/tinyTapeout
https://wokwi.com/projects/414120458938907649

VGA Tiny Logo (1 tile) [806]

• Author: Renaldas Zioma
• Description: Large 480x480 pixels Tiny Tapeout logo with bling and dithered

colors crammed into 1 tile!
• GitHub repository
• HDL project
• Mux address: 806
• Extra docs
• Clock: 25175000 Hz

How it works

Compressed VGA Logo

How to test

Connect to VGA monitor

External hardware

TinyVGA PMOD, VGA monitor

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VSync
4 R0
5 G0
6 B0
7 HSync

611

https://github.com/rejunity/tt08-huge-480x480-tiny-tapeout-logo-in-1-tile

Tiniest of tapeouts [807]

• Author: J Money
• Description: I’m still learning, trying my best
• GitHub repository
• Wokwi project
• Mux address: 807
• Extra docs
• Clock: 0 Hz

How it works

Guess a number! If the light lights up you win

How to test

Guess!

External hardware

Connect LED to output 0

Pinout

Input Output Bidirectional
0 IN3 OUT0
1
2
3
4
5
6
7

612

https://github.com/jasmine-milan29/Tiniest-of-tapeouts
https://wokwi.com/projects/414120391864616961

SK Test Workshop [808]

• Author: sreela
• Description: 8 bit buffer
• GitHub repository
• Wokwi project
• Mux address: 808
• Extra docs
• Clock: 0 Hz

How it works

takes 4 bit inputs, loads and displays
switches 7/8 to load upper 4 bits and then lower

How to test

play with switches

External hardware

none

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3
4 IN4
5 IN5
6 IN6
7 IN7

613

https://github.com/sreelakodali/tinyTapeoutWorkshop
https://wokwi.com/projects/414041465275103233

Tian TT9 [809]

• Author: Tianxin Wu
• Description: Flashy Lights
• GitHub repository
• Wokwi project
• Mux address: 809
• Extra docs
• Clock: 0 Hz

How it works

It is supposed to light up and hopefully flashes.

How to test

Run stimulation and redo things.

External hardware

LED Display, I believe.

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

614

https://github.com/Whale02/ttrepo-01
https://wokwi.com/projects/414120868401584129

2-bit 2x2 Matrix Multiplier [810]

• Author: Kevin Ma
• Description: multiples two 2-bit 2x2 matrices
• GitHub repository
• HDL project
• Mux address: 810
• Extra docs
• Clock: 1000000 Hz

How it works

Computes matrix multiplication AB = C.
Standard input pins are used to input a 2-bit 2x2 matrix A as 8-bit 1x8 matrix. Bidi-
rection IOs, initialized as inputs, are used to input a 2-bit 2x2 matrix B as 8 bit 1x8
matrix. Standard output pins will show the result of the computation in as a 2-bit 2x2
matrix as 8-bit 1x8 matrix.
Here is the matrix position mapping to input pins. Note each value is 2-bits.
“A” top left: (0,0) -> IN7 | IN6
“A” top right: (0,1) -> IN5 | IN4
“A” bot left: (1,0) -> IN3 | IN2
“A” bot right: (1,1) -> IN1 | IN0
“B” top left: (0,0) -> IO7 | IO6
“B” top right: (0,1) -> IO5 | IO4
“B” bot left: (1,0) -> IO3 | IO2
“B” bot right: (1,1) -> IO1 | IO0
“C” top left: (0,0) -> OUT7 | OUT6
“C” top right: (0,1) -> OUT5 | OUT4
“C” bot left: (1,0) -> OUT3 | OUT2
“C” bot right: (1,1) -> OUT1 | OUT0
The logic will compute the matrix multiplication of AB, and output the result in the 8
output pins (8 bits).
Each pin corresponds to one bit.

615

https://github.com/KEV-MA/tt09

How to test

To set a pin to 1, pull up to max voltage of the respective pin. To set a pin to 0, pull
down to ground.
Pull the pins respectively to input your A and B matrices based on the mapping in the
above section.
The matrix mulitplication of AB will be output.

External hardware

No external hardware needed.

Pinout

Input Output Bidirectional
0 IN0 IO0 OUT8
1 IN1 IO1 OUT9
2 IN2 IO2 OUT10
3 IN3 IO3 OUT11
4 IN4 IO4 OUT12
5 IN5 IO5 OUT13
6 IN6 IO6 OUT14
7 IN7 IO7 OUT15

616

RISCV Processor Design [811]

• Author: KOUSHIK CSN
• Description: RISCV Processor Design
• GitHub repository
• HDL project
• Mux address: 811
• Extra docs
• Clock: 64000000 Hz

Project Datasheet: RISCV Processor Design

Overview The tt_um_KoushikCSN_RISCV module is a simple, basic processor (or
computational unit) designed in Verilog. It operates on a small subset of instructions
similar to a RISC-V architecture, with the ability to decode instructions, perform arith-
metic or logical operations, and interact with registers and external I/O. This module
serves as a building block for a more complex processor design.

How it Works This simple processor module works by fetching instructions, decod-
ing them into different fields, performing operations using the ALU and register file,
and finally generating the result. The design is flexible enough to allow for expansion,
such as adding memory operations, additional instructions, or more complex control
logic, which would be necessary for a complete processor design.
###Summary of How the Processor Works Fetch the instruction: The instruction is
provided as two 8-bit inputs (ui_in and uio_in), forming a 16-bit instruction. Decode
the instruction: The instruction is split into opcode, register addresses (rs1, rs2, rd),
function codes (funct3, funct2), and an immediate value (imm). Register Read: The
specified registers (rs1, rs2) are read from the register file. ALU Operation: The ALU
performs the operation based on the decoded instruction (using operands from registers
or the immediate value). Write-back to Register File: The result of the ALU operation
(or immediate value) is written back to the register file if the instruction allows it.
Generate the Output: The result is placed on uo_out, and depending on the opcode,
might come from the register file or ALU.

How to Test By writing a testbench with cocotb and applying various test cases, we
can verify the functionality of your “tt_um_KoushikCSN_RISCV” processor ensuring
that all parts of the processor (instruction decoding, ALU, register file, etc.) are tested
under different scenarios by varying the Input and IO ports.

617

https://github.com/KoushikCSN/TT_RISCV

Pinout

Input Output Bidirectional
0 instruction[0] result[0] instruction[8]
1 instruction1 result1 instruction[9]
2 instruction2 result2 instruction[10]
3 instruction[3] result[3] instruction[11]
4 instruction[4] result[4] instruction[12]
5 instruction[5] result[5] instruction[13]
6 instruction[6] result[6] instruction[14]
7 instruction[7] result[7] instruction[15]

618

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Verilog ring oscillator V3 [812]

• Author: algofoogle (Anton Maurovic)
• Description: sky130 inv_2 ring oscillator with externally-selectable length
• GitHub repository
• HDL project
• Mux address: 812
• Extra docs
• Clock: 0 Hz

What is this?

See tt09-ring-osc and tt09-ring-osc2 for my other ring oscillator experiments on
TT09.
This one has a configurable ring oscillator; the feedback can be tapped at different
parts of the chain.
This use verilog to instantiate the rings of (an odd number of) sky130_fd_sc_hd__inv_2
cells.

Pinout

Input Output Bidirectional
0 tap[0] out[0]
1 tap1 out1
2 tap2 out2
3 out[3]
4 out[4]
5 out[5]
6 out[6]
7 out[7]

619

https://github.com/algofoogle/tt09-ring-osc3
https://github.com/algofoogle/tt09-ring-osc
https://github.com/algofoogle/tt09-ring-osc2
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Test_project [813]

• Author: Ash
• Description: Full Adder
• GitHub repository
• Wokwi project
• Mux address: 813
• Extra docs
• Clock: 0 Hz

How it works

Simple full adder imnplementation. Three inputs and two outputs

How to test

Run all eight test cases duh

External hardware

Its very simple, not necessary.

Pinout

Input Output Bidirectional
0 IN0 OUT1
1 IN1 OUT2
2 IN2 OUT3
3 IN3
4 IN4
5 IN5
6 IN6
7 IN7

620

https://github.com/cheatcode11/Tiny-Tapeout
https://wokwi.com/projects/413883347321632769

4-Bit Toy CPU [814]

• Author: Stefan Wallentowitz
• Description: This is a simple 4-bit CPU from a popular German textbook
• GitHub repository
• HDL project
• Mux address: 814
• Extra docs
• Clock: 0 Hz

How it works

This is a 4 bit Toy CPU from a popular German textbook (Hoffmann, “Technische
Informatik”, https://www.dirkwhoffmann.de/TI/). It is extremely simple and not ex-
tremely useful but a useful CPU to transistion from digital design to microprocessors
in a fundamental way.
The CPU is based on a 4 bit accumulator. It has 4 bit instructions with 4 bit operands.
The memory is organized in 16 words of each 8 bit. The upper four bit are the
instruction, the lower 4 bit the operand. A nop instruction (or any other instruction
without operand) can be used for variables.

How to test

The memory is outside the logic and the clock along with some scan logic that reads
the internal state for debug and visualization.
Each cycle is driven externally usually as:

• Reset the logic with cycling usr_rst 1 -> usr_clk 1 -> usr_clk 0 ->
usr_rst 0

• Each execution starts with the fetch phase where usr_clk is 0 and the data
from addr assigned to the bidirectional data

• With the rising edge of usr_clk the execution starts. The we signal indi-
cates a write cycle, but the controller driving the execution grants access with
mem_grant, and can then read the data from the pins

The internal 19 bit state can be scanned on either positive or negative clock period with
a seperate clock. Both clocks are assumed in the kHz range, so timing and domain
crossing are no problem. scan_clk cycles through the data, scan_en indicates the
start when high during a positive edge.

621

https://github.com/wallento/tt09-4bit-toycpu

External hardware

It requires a testbed to properly drive the pins. There is a micrcontroller program to
cycle through those states including the handling of the tristate.

Pinout

Input Output Bidirectional
0 usr_clk addr[0] data[0]
1 usr_rst addr1 data1
2 scan_clk addr2 data2
3 scan_en addr[3] data[3]
4 mem_grant we data[4]
5 scan_out data[5]
6 data[6]
7 data[7]

622

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

RISCV Processor Design [815]

• Author: Nishanth Kotla
• Description: RISCV Processor Design
• GitHub repository
• HDL project
• Mux address: 815
• Extra docs
• Clock: 64000000 Hz

Project Datasheet: RISCV Processor

Overview The tt_um_Nishanth_RISCV module is a simple, basic processor (or
computational unit) designed in Verilog. It operates on a small subset of instructions
similar to a RISC-V architecture, with the ability to decode instructions, perform arith-
metic or logical operations, and interact with registers and external I/O. This module
serves as a building block for a more complex processor design.

How it Works This simple processor module works by fetching instructions, decod-
ing them into different fields, performing operations using the ALU and register file,
and finally generating the result. The design is flexible enough to allow for expansion,
such as adding memory operations, additional instructions, or more complex control
logic, which would be necessary for a complete processor design.
###Summary of How the Processor Works Fetch the instruction: The instruction is
provided as two 8-bit inputs (ui_in and uio_in), forming a 16-bit instruction. Decode
the instruction: The instruction is split into opcode, register addresses (rs1, rs2, rd),
function codes (funct3, funct2), and an immediate value (imm). Register Read: The
specified registers (rs1, rs2) are read from the register file. ALU Operation: The ALU
performs the operation based on the decoded instruction (using operands from registers
or the immediate value). Write-back to Register File: The result of the ALU operation
(or immediate value) is written back to the register file if the instruction allows it.
Generate the Output: The result is placed on uo_out, and depending on the opcode,
might come from the register file or ALU.

How to Test By writing a testbench with cocotb and applying various test cases, we
can verify the functionality of your “tt_um_KoushikCSN_RISCV” processor ensuring
that all parts of the processor (instruction decoding, ALU, register file, etc.) are tested
under different scenarios by varying the Input and IO ports.

623

https://github.com/Nishanth2969/TT_RISCV

Pinout

Input Output Bidirectional
0 instruction[0] result[0] instruction[8]
1 instruction1 result1 instruction[9]
2 instruction2 result2 instruction[10]
3 instruction[3] result[3] instruction[11]
4 instruction[4] result[4] instruction[12]
5 instruction[5] result[5] instruction[13]
6 instruction[6] result[6] instruction[14]
7 instruction[7] result[7] instruction[15]

624

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

APA102 to WS2812 Translator [832]

• Author: Squidgeefish
• Description: Convert a 7-LED APA102 stream to a WS2812-compatible one
• GitHub repository
• HDL project
• Mux address: 832
• Extra docs
• Clock: 25000000 Hz

How it works

This is a converter from the SPI-style APA102 LED protocol to the single-line WS2812
protocol.
It’s hard-coded to seven LEDs because I needed to set a limit, and this is clearly the
simplest possible way to replace the Arduino Micro performing the same task on my
5n4ck3y-7r clone.
It clocks the SPI data on input bit 0 (clock) and bit 1 (data) and waits until it sees
a string of 32 low bits to signal a valid start condition. At this point, it starts saving
data into an internal shift register, handing that register’s contents over to the WS2812
output data feed once all seven LEDs’ values have been received. It continues clocking
along until recognizing a stop condition (unconditionally 32 bits after the last LED
value), at which point it goes back to waiting for a valid start condition. In order to
address area concerns, I wound up cutting this down a bit - the internal mirror register
was removed entirely, and the SPI reader now also handles discarding the first 8 bits of
each 32-bit pixel value. Further tweaks that traded wiring complexity for combinatorics
did not make it any better, unfortunately.
I wrote the SPI-parsing and bit-shuffling code from scratch, but the WS2812 output
module is lifted from this TT05 submission. I did modify it to read the data stream
MSB-first rather than LSB-first since that made my life a lot easier in bit-twiddler
land.
Note that the first byte of each APA102 packet encodes an intensity, which I am
ignoring since WS2812s do not support such a feature.

How to test

The way I will be testing this is by attaching ui_in[0] to SCK and ui_in[1] to SDO
on a DEFCON badge that used APA102 LEDs. Attach uo_out[0] to drive a string of

625

https://github.com/squidgeefish/TT09
https://squidgeefish.com/projects/cloning-5n4ck3y-7r/
https://github.com/Gatsch/jku-tt06-ledcontroller/blob/main/src/led.v

at least seven WS2812s. I suspect that level shifters will be needed since TinyTapeout
ICs run at around 1.8V?
Alternatively, you could probably stream something over in MicroPython.
If you’re hand-crafting your packets, a few notes:

• A packet stream must start with a 32-bit start packet (0x00000000)
• APA102s reserve the first byte for intensity: 0b11100000 | &lt;5-bit

intensity&gt;. We’re ignoring this completely.
• APA102 color order for the remaining three bytes is Blue, Green, Red.

There is also a random feature added in to fill space - there should be a continuous
UART output of “Arglius Barglius” on uo_out[1] at approximately 115200 baud; this
can be read out with a serial bridge or sufficiently advanced logic analyzer.

External hardware

Some sort of SPI driver is necessary, as is a string of at least seven WS2812 LEDs (or
I suppose a logic analyzer can verify it if you’re allergic to blinkies).

Pinout

Input Output Bidirectional
0 APA102_CK WS2812_OUT
1 APA102_SD UART_OUT
2
3
4
5
6
7

626

Collatz conjecture brute-forcer [834]

• Author: Vytautas Šaltenis
• Description: Runs a Collatz sequence calculation for a given number
• GitHub repository
• HDL project
• Mux address: 834
• Extra docs
• Clock: 0 Hz

How it works

The module takes a (large) integer number N as an input and computes the Collatz
sequence until it reaches 1. When it does, it allows reading back two numbers:

1) The orbit length (i.e. the number of steps it took to reach 1)
2) The highest recorded value of the upper 16 bits of the 144-bit internal iterator

The latter number is an indicator for good candidates for computing path records. The
non-zero upper bits indicate that the highest iterator value Mx(N) is in the range of
the previous path records and should be recomputed in the full offline. (Holding on to
the entire 144 bits of Mx(N) number would be more obvious, but this almost doubles
the footprint of the design, hence, this optimisation).

How to test

The module can be in 2 states: IO and COMPUTE. After reset, the chip will be in IO
mode. Since the input is intended to be much larger than the available pins, the input
number is uploaded one byte at a time, increasing the address of where in the internal
144-bit-wide register that byte should be stored.
Same for reading the output, except that the output numbers are limited to 16-bits
each, so it takes much fewer operations to read them.
The full loop of computations works like this:

1) Set input (see below)
2) Pull start compute pin to high. The chip will start computations and will pull

compute busy indicator pin to high
3) Keep reading compute busy indicator pin until it gets low again
4) Read the output (see below)

Writing input:

627

https://github.com/rtfb/tt09-collatz-rev1
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

1) Set write enable pin to low
2) Wait at least one cycle
3) Expose your input byte to input0-7
4) Expose the target address for that byte to address0-4
5) Wait at least one cycle
6) Set write enable pin to high

Reading output:

1) Set orbit/max select pin to low
2) Set address0-4 to 0
3) Read low byte of orbit length from output0-7
4) Set address0-4 to 1
5) Read high byte of orbit length from output0-7
6) Set orbit/max select pin to high
7) Repeat steps 2-5 to read the upper Mx(N) bits

Pinout

Input Output Bidirectional
0 input0 output0 address0
1 input1 output1 address1
2 input2 output2 address2
3 input3 output3 address3
4 input4 output4 address4
5 input5 output5 orbit/max select
6 input6 output6 start compute
7 input7 output7 write enable or compute

busy indicator

628

TT09 SKY130 ROM Test [836]

• Author: Sylvain Munaut
• Description: Test of some prototype ROM macros
• GitHub repository
• HDL project
• Mux address: 836
• Extra docs
• Clock: 0 Hz

How it works

Just some registers in front of a few ROM macros to be able to send the address and
capture data at specific intervals.

How to test

Set clk and rst_n to select one of the 4 possible testing mode.
Load a test address to read setting half the bits on ui[6:0] and then using both
ui[7] and uio[7] to load the internal preload register.
Then apply a clock edge on uio[6] to clock the address register which will transfer the
address from the pre-load register to the actual address register and send the address
to the ROMs.
After some delay, apply a clock edge on uio[5] which will capture the output of the
ROM.

External hardware

To do any meaningful timing testing you’ll need some FPGA hardware to drive the
various control signal in sequence with precise timings.
The exact testing platform is still TBD.

629

https://github.com/smunaut/tt09-rom-test

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 addr_in[0] data[0] data[5]
1 addr_in1 data1 data[6]
2 addr_in2 data2 data[7]
3 addr_in[3] data[3] data[8]
4 addr_in[4] data[4] data[9]
5 addr_in[5] clk of data register
6 addr_in[6] clk of addr register
7 clk of

addr_ld[13:7]
register

clk of addr_ld[6:0] register

630

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

TT09 SKY130 ROM Test (no LVT variant) [838]

• Author: Sylvain Munaut
• Description: Test of some prototype ROM macros modified to remove LVT

implant on bitcell
• GitHub repository
• HDL project
• Mux address: 838
• Extra docs
• Clock: 0 Hz

How it works

Just some registers in front of a few ROM macros to be able to send the address and
capture data at specific intervals.

How to test

Set clk and rst_n to select one of the 4 possible testing mode.
Load a test address to read setting half the bits on ui[6:0] and then using both
ui[7] and uio[7] to load the internal preload register.
Then apply a clock edge on uio[6] to clock the address register which will transfer the
address from the pre-load register to the actual address register and send the address
to the ROMs.
After some delay, apply a clock edge on uio[5] which will capture the output of the
ROM.

External hardware

To do any meaningful timing testing you’ll need some FPGA hardware to drive the
various control signal in sequence with precise timings.
The exact testing platform is still TBD.

Pinout

631

https://github.com/smunaut/tt09-rom-nolvt-test

Input Output Bidirectional
0 addr_in[0] data[0] data[5]
1 addr_in1 data1 data[6]
2 addr_in2 data2 data[7]
3 addr_in[3] data[3] data[8]
4 addr_in[4] data[4] data[9]
5 addr_in[5] clk of data register
6 addr_in[6] clk of addr register
7 clk of

addr_ld[13:7]
register

clk of addr_ld[6:0] register

632

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

PID Controller [840]

• Author: Kilian Bender
• Description: Hardware implementation of a naive PID Controller
• GitHub repository
• HDL project
• Mux address: 840
• Extra docs
• Clock: 1000000 Hz

How it works

The PID controller module works by continuously adjusting its output based on the
difference between the desired value (setpoint) and the measured value (feedback). It
does this using three components:
Proportional Term (P): This term corrects the error in proportion to the current dif-
ference between the setpoint and the feedback. It applies an immediate response to
reduce the error.
Integral Term (I): This term accumulates the past error over time, helping to eliminate
any steady-state error that may persist after the proportional correction.
Derivative Term (D): This term predicts future error by observing the rate of change
of the current error, thus providing a damping effect to reduce overshooting.
The controller outputs a signal only in the positive direction. That means that we
expect a system that naturally tends towards one point. Regarding a application in
heating that means that we are not aiming to cool down the system when overshooting
or if the setpoint is higher then our feedback but we just output 0 for control.

How to test

Set different values for setpoint and feedback and observe the output in response to it.
Change the setpoint to play around.

633

https://github.com/Zufallsgenerat0r/PIDcontroller

External hardware

No specific external hardware is required to test the module in a simulation environment.
However, for practical deployment, you may need:
Sensor: A sensor to provide the feedback signal, representing the process variable you
wish to control.
Actuator: An actuator driven by the control_out signal to affect the process, such as
a motor or a heating element.

Pinout

Input Output Bidirectional
0 setpoint 0 control_signal 0” feedback 0
1 setpoint 1 control_signal 1 feedback 1
2 setpoint 2 control_signal 2 feedback 2
3 setpoint 3 control_signal 3 feedback 3
4 setpoint 4 control_signal 4 feedback 4
5 setpoint 5 control_signal 5 feedback 5
6 setpoint 6 control_signal 6 feedback 6
7 setpoint 7 control_signal 7 feedback 7

634

Frequency Counter SSD1306 OLED [842]

• Author: Pawel Sitarz (embelon)
• Description: Simple Frequency Counter displaying result on SSD1306 SPI OLED
• GitHub repository
• HDL project
• Mux address: 842
• Extra docs
• Clock: 1000000 Hz

How it works

Project measures frequency on ui[0] input by counting pulses during 100ms periods.
Measured frequency is then displayed on graphical 128x32 pixels OLED display in form
of emulated 7-segment display.

How to test

Internal logic needs 1MHz clock (to be generated by RPi Pico)

• Connect PMOD OLED display to see measurement
• Connect unknown frequency signal to be measured to ui[0]

External hardware

Freqquency is displayed on 128x32 OLED display with SSD1306 controller: PMOD
OLED

Pinout

Input Output Bidirectional
0 clk_x - measured frequency input OLED nRST
1 OLED nVBAT
2 OLED nVDC
3 OLED nCS
4 OLED Data/Command
5 OLED CLK
6 OLED Data Out

635

https://github.com/embelon/tt08-frequency-counter-oled
https://digilent.com/reference/pmod/pmodoled/start?srsltid=AfmBOorLYfaDc8BpQC9A5OXZzMUAsCeca8Y7uBRi8CIp-gxW1e7fsLZP
https://digilent.com/reference/pmod/pmodoled/start?srsltid=AfmBOorLYfaDc8BpQC9A5OXZzMUAsCeca8Y7uBRi8CIp-gxW1e7fsLZP

Input Output Bidirectional
7

636

Basys 3 Over UART Link [844]

• Author: Devin Atkin
• Description: Run the main Basys 3 Peripherals over a 115200 Uart Link
• GitHub repository
• HDL project
• Mux address: 844
• Extra docs
• Clock: 50000000 Hz

How it works

The Basys 3 is a normal board for learning FPGA design or prototyping certain designs.
This project runs the main peripherals over a 115200 UART link. This code includes
the main block that takes 16 “Led” inputs, 16 “Switch” Outputs, 12 “7 Segment
Display” inputs, and 5 “Button” outputs; the block then gives a UART RX and UART
TX which are routed to the bi-directional PMOD bus.

How to test

Use the associated PMOD board or interact with the UART. The following are the
expected elements on the UART.

• “LD: 0xFFFF” Coming from this design going to the peripheral
• “SW: 0xFFFF” Coming from the peripheral going to the design
• “7S: 0xFFFF” Coming from this design going to the peripheral
• “BT: 0xFFFF” Coming from the peripheral going to the design

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 uart_tx
1 uart_rx
2 uart_tx_ready

637

https://github.com/devinatkin/tt09-basys3-uart-link

Input Output Bidirectional
3 uart_tx_valid
4 uart_rx_valid
5 uart_rx_ready
6
7

638

Tiny 1-bit AM Radio [846]

• Author: James Ross Sharp
• Description: Syntehsizable 1-bit AM radio core
• GitHub repository
• HDL project
• Mux address: 846
• Extra docs
• Clock: 50000000 Hz

How it works

This project is a Software Defined Radio pipeline for AM radio reception written in
verilog. It works using an external comparator as a 1-bit ADC frontend. Demodulation
is by the digital equivalent of a how a crystal radio works, i.e. bandpass filter followed
by envelope detector. It is based on this Hackaday Project: https://hackaday.io/proj
ect/170916-fpga-3-r-1-c-mw-and-sw-sdr-receiver by Alberto Garlassi.
Although this is a fully digital core, but there are plans to make an analog frontend
circuit as an analog design in future Tiny Tapeouts, so both designs would be hooked
up together to create a radio with few external components.
This project is different from a previously submitted 3x2 tile tiny tapeout core, which
used more conventional SDR techniques. This layout reduces area to 1x2 tiles, with a
tradeoff in selectivity.

How to test

You need to connect an external comparator and RC network. You will probably need
a simple RF amplifier as well. See below for more information.
The core has a SPI interface for setting the demodulation frequency and gain. It
consists of a single 24-bit shift register. It has the following format:-

Bit 23 Bits 22 - 20 Bits 19 - 0
Unused Gain NCO Phase incr.

The gain can take on the following values:

639

https://github.com/jamesrosssharp/tt09-smaller-am-sdr
https://hackaday.io/project/170916-fpga-3-r-1-c-mw-and-sw-sdr-receiver
https://hackaday.io/project/170916-fpga-3-r-1-c-mw-and-sw-sdr-receiver

“Gain” value Actual Gain
0 x1
1 x2
2 x4
3 x8
4 x16
5 - 7 x32

If the gain is set too high, the demodulated signal will wrap and sound distorted, so
adjust the gain down to the minimum needed to hear the station clearly.
The “NCO Phase increment” is the value that is added to the NCO phase every clock
cycle. Use the following python code to calculate the value to write, based on the
desired carrier frequency:

hex(int((1<<20) * <carrier frequency - (455000/<clock_frequency>*50e6)> / <chip clock frequency>))

E.g., for 936kHz (ABC Radio national Hobart) at 50MHz clock frequency, it would
be:

> hex(int((1<<20) * 936000 / 50000000))
'0x2767'

External hardware

• External comparator
• Resistor bias network
• RC network
• External SPI microcontroller to set station
• RF amplifier

Pinout

Input Output Bidirectional
0 COMP_IN COMP_OUT
1 SPI_MOSI PWM
2 SPI_SCK
3 SPI_CSb

640

Input Output Bidirectional
4
5
6
7

641

Figure 47: Schematic diagram of external circuitry

642

Encoder [864]

• Author: Ryan Schrader
• Description: 8x3 Encoder
• GitHub repository
• Wokwi project
• Mux address: 864
• Extra docs
• Clock: 0 Hz

How it works

This Wokwi project is an 8x3 Encoder

How to test

How to test is a WiP

External hardware

External hardware is a WiP

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3
4 IN4
5 IN5
6 IN6
7 IN7

643

https://github.com/Vellag/rSchrader-TT9-Wokwi-Template
https://wokwi.com/projects/413919442353385473

dummy [865]

• Author: Naveen
• Description: does ntg
• GitHub repository
• Wokwi project
• Mux address: 865
• Extra docs
• Clock: 0 Hz

How it works

Explain how your project works by passing inputs leds will e on

How to test

just pass the input to it Explain how to use your project

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any 7
segment display,push buttons

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

644

https://github.com/navi2311/workshop
https://wokwi.com/projects/414121281003682817

First Tapeout Chip - OCR [866]

• Author: Owen Robertson
• Description: Gate Demonstration Chip
• GitHub repository
• Wokwi project
• Mux address: 866
• Extra docs
• Clock: 0 Hz

How it works

This project functions as a demostration device for different gates. IN0 goes through
a NOT gate to OUT0. IN1 and IN5 go through an OR gate to OUT1 and OUT5 and
they go through a NOR gate to OUT7. IN2, IN3, and IN4 got through a 3-input XOR
gate to OUT2 and OUT4. IN6 and IN7 goes through an AND gate to OUT6 and a
NAND gate to OUT3.

How to test

Use the 8 different inputs to test the different gate operations on the board. Connecting
the outputs to a seven-segment display or to 8 different LEDs can be used to verify
the successful gate operations.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6

645

https://github.com/OwenR227/TapeoutChip
https://wokwi.com/projects/413919540668975105

Input Output Bidirectional
7 IN7 OUT7

646

sarah’s first chip [867]

• Author: sarah
• Description: testing, learning, chipping
• GitHub repository
• Wokwi project
• Mux address: 867
• Extra docs
• Clock: 60 Hz

How it works

Press play

How to test

Test well

External hardware

LED display

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

647

https://github.com/sarzha052/chips
https://wokwi.com/projects/414124471705253889

Half Adder [868]

• Author: Brendon
• Description: Half Adder circuit
• GitHub repository
• Wokwi project
• Mux address: 868
• Extra docs
• Clock: 0 Hz

How it works

Half adder adds 2 one bit integers, and I have 4 of them which produces 4 outputs
onto the LED display.

How to test

External hardware

N/A

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

648

https://github.com/brendonchang/First-Tapeout-
https://wokwi.com/projects/413918022277139457

tiny cipher 4 bit key [869]

• Author: sriram nimmala
• Description: a tiny encryption core that encryptes based on input key
• GitHub repository
• HDL project
• Mux address: 869
• Extra docs
• Clock: 5000000 Hz

How it works

A simple encryption core with a 4 bit input 4 bit key and a 4 bit output

How to test

you can send randomized inputs of 4 bit length for the input and key and get a 4 bit
output

External hardware

no external harware but memory to send test data

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0]
1 ui_in1 uo_out1
2 ui_in2 uo_out2
3 ui_in[3] uo_out[3]
4 ui_in[4]
5 ui_in[5]
6 ui_in[6]
7 ui_in[7]

649

https://github.com/goatgate/tt09-teeny-tiny-aes-template
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Kai’s Death Adder [870]

• Author: Kai Linsley
• Description: A simple full adder with a sum and carry out output
• GitHub repository
• Wokwi project
• Mux address: 870
• Extra docs
• Clock: 0 Hz

How it works

Takes a 1’bA + 1’bB, outputs Sum and Cout.

How to test

Test by checking design against A + B.

External hardware

LEDS were used for testing.

Pinout

Input Output Bidirectional
0 A Sum
1 B Cout
2 Cin
3
4
5
6
7

650

https://github.com/kalinsley/tt09-event-design
https://wokwi.com/projects/414120435095328769

2 input multiplexor [871]

• Author: chad
• Description: 2 input multiplexor
• GitHub repository
• Wokwi project
• Mux address: 871
• Extra docs
• Clock: 0 Hz

How it works

I made a 2 input multiplexor

How to test

External hardware

nothing

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1
2 IN2
3
4
5
6
7

651

https://github.com/ChadxBaker52/tinytapeout
https://wokwi.com/projects/414120526876163073

Kevin Project [872]

• Author: Kevin
• Description: half adder
• GitHub repository
• Wokwi project
• Mux address: 872
• Extra docs
• Clock: 0 Hz

How it works

this is a half adder Explain how your project works

How to test

this is a half adder Explain how to use your project

External hardware

this is a half adder List external hardware used in your project (e.g. PMOD, LED display,
etc), if any

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

652

https://github.com/tetsuu-a/Kevin-s-github
https://wokwi.com/projects/413919775044656129

Tutorial: Simple LIF Neuron [873]

• Author: Zack Bethel
• Description: It simulates a LIF neuron
• GitHub repository
• HDL project
• Mux address: 873
• Extra docs
• Clock: 0 Hz

How it works

it takes input voltages and treats that as the input current injection to LIF neuron

How to test

do something

External hardware

NA

Pinout

Input Output Bidirectional
0 Input current

bit[0]
State variable
bit[0]

1 Input current
bit1

State variable
bit1

2 Input current
bit2

State variable
bit2

3 Input current
bit[3]

State variable
bit[3]

4 Input current
bit[4]

State variable
bit[4]

5 Input current
bit[5]

State variable
bit[5]

653

https://github.com/zack-bethel/tt09-verilog-zack-bethel
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
6 Input current

bit[6]
State variable
bit[6]

7 Input current
bit[7]

State variable
bit[7]

Spike Bit

654

Leaky Neuron Network [874]

• Author: Matthew Randall
• Description: makes a leaky neuron network
• GitHub repository
• HDL project
• Mux address: 874
• Extra docs
• Clock: 0 Hz

How it works

This project is a spiking neural network based on the leaky integrate-and-fire (LIF) neu-
ron model, implemented in Verilog. The design includes three input neurons that each
receive a 5-bit input signal representing incoming current. Each neuron accumulates
this input over time, and when it reaches a specific threshold, the neuron “spikes,”
producing an output signal.
The spike signals from these three input neurons are then combined, with each neuron’s
spike weighted according to its contribution, and sent to an output neuron. The
output neuron integrates these weighted inputs and produces a spike output when the
accumulated value exceeds its threshold. This final spike output represents a decision
or response of the network to the inputs, making it suitable for basic pattern recognition
or response simulations.

How to test

1. Simulation: Use a Verilog simulator (e.g., ModelSim or Verilator) to test the
neuron network. Apply various 5-bit input values to each of the three input
neurons and observe when each neuron spikes in response. Check that the
output neuron responds as expected to the combined weighted inputs by spiking
when the sum of weighted spikes exceeds its threshold.

2. Hardware Testing (if implemented on FPGA): Synthesize the design and program
it onto an FPGA. Connect switches or buttons to provide input signals for each
neuron. Observe the final spike output on an LED to visualize when the output
neuron spikes, or use an oscilloscope to verify spike timings and patterns for
more detailed analysis.

655

https://github.com/MatthewRandall10/tt09-MattRandall_ChipDesign

External hardware

LEDs are used to display the spike outputs of each neuron, allowing visual feedback of
the spiking activity. Switches or buttons provide manual 5-bit inputs to each neuron
for testing and simulation on hardware. PMOD or GPIO headers (optional) can be
used if testing on an FPGA, allowing GPIO pins for input signals or connections to
external displays for monitoring neuron activity.

Pinout

Input Output Bidirectional
0 input 1 output 1 input/output 1
1 input 2 output2 input/output 2
2 input 3 output3 input/output 3
3 input 4 output4 input/output 4
4 input 5 output5 input/output 5
5 input 6 output6 input/output 6
6 input 7 output7 input/output 7
7 input 8 output8 input/output 8

656

Neuromorphic Hardware for SNN LSTM [876]

• Author: Hunter Schweiger
• Description: efficient neuromorphic hardware for running a SNN LSTM unit
• GitHub repository
• HDL project
• Mux address: 876
• Extra docs
• Clock: 50000000 Hz

Neuromorphic Hardware for SNN LSTM

How it works This LSNN (Leaky Spike Neural Network) implementation features:

• 12-bit membrane potential with configurable decay (DECAY_FACTOR = 1/4)
• Adaptive threshold mechanism with learning rate control
• 3-cycle refractory period after spike generation
• 7-bit spike counter for monitoring activity
• Base threshold of 100 units with dynamic adaptation

The design operates through several key mechanisms:

1. Membrane Dynamics:

• Integrates 8-bit input current
• Applies leaky decay of 1/4 per cycle
• Resets to 0 after spike

2. Adaptation Mechanism:

• Learning-enabled threshold adjustment (controlled by uio_in[0])
• Adaptation increases with each spike
• Gradual decay when not spiking

3. Output Monitoring:

• uo_out[7]: Refractory state indicator
• uo_out[6:0]: Current membrane potential
• uio_out[7]: Spike output
• uio_out[6:0]: Spike counter

657

https://github.com/hschweiger15/tt09-ECE-210

How to test Testing procedure:

1. Reset (rst_n = 0):

• Verify all state variables reset to 0
• Threshold should reset to base value (100)

2. Basic Operation:

• Apply input current through ui_in[7:0]
• Monitor membrane potential on uo_out[6:0]
• Observe spike generation on uio_out[7]
• Check refractory period indicator on uo_out[7]

3. Learning Mode:

• Set uio_in[0] to enable learning
• Verify threshold adaptation after spikes
• Monitor spike frequency changes

4. Performance Verification:

• Track spike count through uio_out[6:0]
• Verify proper threshold adjustment
• Test different input current levels

External Hardware None required - all testing can be done through digital I/O

Pinout

Input Output Bidirectional
0 Input current

bit [0]
State variable
bit [0]

1 Input current
bit 1

State variable
bit 1

2 Input current
bit 2

State variable
bit 2

3 Input current
bit [3]

State variable
bit [3]

4 Input current
bit [4]

State variable
bit [4]

658

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
5 Input current

bit [5]
State variable
bit [5]

6 Input current
bit [6]

State variable
bit [6]

7 Input current
bit [7]

State variable
bit [7]

Spike bit [7]

659

Project [878]

• Author: calculus
• Description: Exploring Wokwi/GDS
• GitHub repository
• Wokwi project
• Mux address: 878
• Extra docs
• Clock: 0 Hz

How it works

The various inputs will be used to determine if there is success on the output.

How to test

Change inputs to change the output

External hardware

No extra hardware needed.

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

660

https://github.com/calculu5/tt09-farmer
https://wokwi.com/projects/413387065963362305

Hardware UTF Encoder/Decoder [897]

• Author: Rebecca G. Bettencourt
• Description: Converts Unicode code points between UTF-8, UTF-16, and UTF-

32.
• GitHub repository
• HDL project
• Mux address: 897
• Extra docs
• Clock: 0 Hz

How it works

This project contains hardware logic to convert between the UTF‑8, UTF‑16, and
UTF‑32 encodings for Unicode text.
It will detect and raise an error signal on overlong encodings, out of range code point
values, and invalid byte sequences.
(You can optionally disable range checking if you wish to use the original UTF‑8 spec
that supports values up to 0x7FFFFFFF.)

Basic operation

• In the initial state, all dedicated inputs should be set HIGH.
• At any time, set /RESET (rst_n) LOW and pulse CLK to reset all inputs and

outputs to initial state.
• At any time, set /ROUT (input 0) LOW and pulse CLK to seek to the beginning

of the output.
• You can set ERRS or /PROPS (input 1) HIGH to get an error status on the

dedicated outputs.
• You can set ERRS or /PROPS (input 1) LOW to get character properties on

the dedicated outputs.
• You can set CHK (input 2) HIGH to raise an error signal when the code point

value is out of range (�0x110000).
• You can set CHK (input 2) LOW to ignore out of range code point values and

encode/decode values up to 0x7FFFFFFF.
• You can set CBE (input 3) HIGH to specify big endian order for UTF‑32 and

UTF‑16 input and output.
• You can set CBE (input 3) LOW to specify little endian order for UTF‑32 and

UTF‑16 input and output.

661

https://github.com/RebeccaRGB/hardware-utf8

Inputting UTF‑32

1. Set READ or /WRITE (input 4) LOW.
2. Set /CIO (input 5, character I/O) LOW.
3. Set bidirectional I/O to the first byte of the UTF‑32 word and pulse CLK.
4. Set bidirectional I/O to the second byte of the UTF‑32 word and pulse CLK.
5. Set bidirectional I/O to the third byte of the UTF‑32 word and pulse CLK.
6. Set bidirectional I/O to the fourth byte of the UTF‑32 word and pulse CLK.
7. Set /CIO (input 5, character I/O) HIGH.
8. Set READ or /WRITE (input 4) HIGH.
9. If READY (output 0) is HIGH and ERROR (output 5) is LOW, the input and

output are both valid.
10. If READY (output 0) is LOW or ERROR (output 5) is HIGH, the input was out

of range (�0x110000 or, if CHK is LOW, �0x80000000).

Inputting UTF‑16

1. Set ERRS or /PROPS (input 1) LOW.
2. Set READ or /WRITE (input 4) LOW.
3. Set /UIO (input 6, UTF‑16 I/O) LOW.
4. Set bidirectional I/O to the first byte of the first UTF‑16 word and pulse CLK.
5. Set bidirectional I/O to the second byte of the first UTF‑16 word and pulse CLK.
6. If HIGHCHAR (output 3) is LOW, skip to step 9.
7. Set bidirectional I/O to the first byte of the second UTF‑16 word and pulse CLK.
8. Set bidirectional I/O to the second byte of the second UTF‑16 word and pulse

CLK.
9. Set /UIO (input 6, UTF‑16 I/O) HIGH.

10. Set READ or /WRITE (input 4) HIGH.
11. Set ERRS or /PROPS (input 1) HIGH.
12. If READY (output 0) is HIGH and ERROR (output 5) is LOW, the input and

output are both valid.
13. If RETRY (output 1) is HIGH, the first word was a high surrogate but the second

word was not a low surrogate. The output will be the high surrogate only; the
last word will need to be processed again.

Inputting UTF‑8

1. Set READ or /WRITE (input 4) LOW.
2. Set /BIO (input 7, byte I/O) LOW.
3. Set bidirectional I/O to the current byte of the UTF‑8 sequence and pulse CLK.

662

4. Repeat step 3 until READY (output 0) or ERROR (output 5) is HIGH.
5. If READY (output 0) is HIGH and ERROR (output 5) is LOW, the input and

output are both valid.
6. If RETRY (output 1) is HIGH, the UTF‑8 sequence was truncated (not enough

continuation bytes). The output will be the truncated sequence only; the last
byte will need to be processed again.

7. If INVALID (output 2) is HIGH, the UTF‑8 sequence was a single continuation
byte or invalid byte (0xFE or 0xFF).

8. If OVERLONG (output 3) is HIGH, the UTF‑8 sequence was an overlong encod-
ing.

9. If NONUNI (output 4) is HIGH, the UTF‑8 sequence was out of range
(�0x110000).

Outputting UTF‑32

1. Set READ or /WRITE (input 4) HIGH.
2. Set /CIO (input 5, character I/O) LOW.
3. Pulse CLK and read the first byte of the UTF‑32 word from the bidirectional

I/O.
4. Pulse CLK and read the second byte of the UTF‑32 word from the bidirectional

I/O.
5. Pulse CLK and read the third byte of the UTF‑32 word from the bidirectional

I/O.
6. Pulse CLK and read the fourth byte of the UTF‑32 word from the bidirectional

I/O.
7. Set /CIO (input 5, character I/O) HIGH.
8. If the UTF‑32 word is within range, the input and output are both valid.
9. If the UTF‑32 word is not within range, then the input was either incomplete or

invalid.

Outputting UTF‑16

1. Set READ or /WRITE (input 4) HIGH.
2. If UEOF (output 6) is HIGH, then the input was either incomplete or invalid.
3. Set /UIO (input 6, UTF‑16 I/O) LOW.
4. Pulse CLK and read the next byte of the UTF‑16 sequence from the bidirectional

I/O.
5. Repeat step 4 until UEOF (output 6) is HIGH.
6. Set /UIO (input 6, UTF‑16 I/O) HIGH.

663

Outputting UTF‑8

1. Set READ or /WRITE (input 4) HIGH.
2. If BEOF (output 7) is HIGH, then the input was either incomplete or invalid.
3. Set /BIO (input 7, byte I/O) LOW.
4. Pulse CLK and read the next byte of the UTF‑8 sequence from the bidirectional

I/O.
5. Repeat step 4 until BEOF (output 7) is HIGH.
6. Set /BIO (input 7, byte I/O) HIGH.

Error status

When ERRS or /PROPS (input 1) is HIGH, the dedicated outputs will be:

Name Meaning
0 READY The input and output are complete

sequences.
1 RETRY The previous input was invalid or the

start of another sequence and was
ignored. Process the output, reset,
and try the previous input again.

2 INVALID The input and output are invalid.
3 OVERLONG The UTF‑8 input was an overlong

sequence.
4 NONUNI The code point value is out of range

(�0x110000). (This is set
independently of the CHK input; the
CHK input only changes whether this
counts as an error.)

5 ERROR Equivalent to (RETRY or INVALID or
OVERLONG or (NONUNI and CHK)).

If all of these outputs are LOW, the accumulated input is incomplete and more input
is required (underflow).

Character properties

When ERRS or /PROPS (input 1) is LOW, the dedicated outputs will be:

664

Name Meaning
0 NORMAL The code point value is valid and not

a C0 or C1 control character,
surrogate, private use character, or
noncharacter.

1 CONTROL The code point value is valid and a C0
or C1 control character (0x00-0x1F or
0x7F-0x9F).

2 SURROGATE The code point value is valid and a
UTF‑16 surrogate (0xD800-0xDFFF).

3 HIGHCHAR The code point value is valid and
either a high surrogate
(0xD800-0xDBFF) or a non-BMP
character (�0x10000).

4 PRIVATE The code point value is valid and
either a private use character
(0xE000-0xF8FF, �0xF0000) or the
high surrogate of a private use
character (0xDB80-0xDBFF).

5 NONCHAR The code point value is valid and a
noncharacter (0xFDD0-0xFDEF or the
last two code points of any plane).

If all of these outputs are LOW, there is no valid code point in the output.

How to test

The test.py file covers a comprehensive set of test cases which are listed in a separate
file to avoid bloating the TT09 manual.

External hardware

Any device that needs to process Unicode text.

Pinout

665

https://github.com/RebeccaRGB/hardware-utf8/blob/main/docs/test_cases.md
https://github.com/RebeccaRGB/hardware-utf8/blob/main/docs/test_cases.md

Input Output Bidirectional
0 /ROUT READY; NORMAL I/O LSB
1 ERRS, /PROPS RETRY; CONTROL I/O
2 CHK INVALID; SURROGATE I/O
3 CBE, /CLE OVERLONG; HIGHCHAR I/O
4 READ, /WRITE NONUNI; PRIVATE I/O
5 /CIO ERROR; NONCHAR I/O
6 /UIO UEOF I/O
7 /BIO BEOF I/O MSB

666

BINCounterAndGates [899]

• Author: conrad franke
• Description: Binary counter with io gates
• GitHub repository
• Wokwi project
• Mux address: 899
• Extra docs
• Clock: 1 Hz

How it works

This project is fairly straightforward as it is my first TT run and I know time is of the
essence … of which in this case there is a lot of but much waiting. This circuit is a
binary counter using D flip flops. There is also a gate example on the GPIO pins that
are included with TT09. The way to test this is to hook up a 1HZ oscillator (you could
go faster but I would recommend a 1HZ freq) to the clk pin and to provide power to
the processor then watch the output as the LEDs start counting up. These will go to
15 (hex F) and then roll back to 0 (so you could even say it goes to 30… a stretch).
The figure below has the circuit I created.

Figure 48: image

The I/O pins can be controlled with pushbuttons or DIP switches such as the ones
that are in the schematic/circuit editor.

667

https://github.com/metermult/BINCounterAndGates
https://wokwi.com/projects/411783629732984833

How to test

Flip through gates for representation of logic elements. For the binary counter attach
a 1HZ oscillator and watch the LEDS start to go. To manually crawl through the
binary counter, flip the oscillator circuit switch to connect to the pushbutton then step
through manually with the button.

External hardware

555 Timer configured for 1HZ oscillation, A dip switch (2 SPQT would be nice TBF for
the Input pins but a 8 pos SPST switch will do), 12 LED’s, 12 resistors, the oscillator
switch, and the step pushbutton.
Thank you tiny tapeout for this opportunity. It has been very cool building this and I
look forward to making more TT IC’s in the future.

Update

Build was good. Here is an image of the 2d model.

Pinout

Input Output Bidirectional
0 IN0 OUT0 D0
1 IN1 OUT1 D1
2 IN2 OUT2 D2
3 IN3 OUT3 D3
4 IN4 OUT4 D4
5 IN5 OUT5 D5
6 IN6 OUT6 D6
7 IN7 OUT7 D7

668

Figure 49: image

669

Color Bars [901]

• Author: Rebecca G. Bettencourt
• Description: VGA demo resembling NTSC color bars
• GitHub repository
• HDL project
• Mux address: 901
• Extra docs
• Clock: 0 Hz

How it works

Displays a test pattern on the screen resembling NTSC color bars. Optionally, you can
add a station ID, make the ID scroll, and make the color bars scroll.
The colors displayed are NOT accurate to actual NTSC color bars. This cannot be
used to adjust NTSC video equipment; it’s just for fun.

Figure 50: Color bars with station ID

670

https://github.com/RebeccaRGB/tt-colorbars

How to test

Connect to a VGA monitor. Set the following inputs to configure the design:

• show_id (ui_in[0]) to add a station ID,
• custom_id (ui_in[1]) to use a custom ID (address on uio_out, data on

ui_in[7:4]),
• scroll_id (ui_in[2]) to make the ID scroll,
• scroll_bars (ui_in[3]) to make the color bars scroll.

External hardware

TinyVGA PMOD

Pinout

Input Output Bidirectional
0 show_id R1 A0 (custom id)
1 custom_id G1 A1 (custom id)
2 scroll_id B1 A2 (custom id)
3 scroll_bars VSync A3 (custom id)
4 D3 (custom id) R0 A4 (custom id)
5 D2 (custom id) G0 A5 (custom id)
6 D1 (custom id) B0 A6 (custom id)
7 D0 (custom id) HSync A7 (custom id)

671

https://github.com/mole99/tiny-vga

Fuzzy Search Engine [903]

• Author: Peter Nørlund
• Description: A levenshtein based fuzzy search engine
• GitHub repository
• HDL project
• Mux address: 903
• Extra docs
• Clock: 50000000 Hz

How it works

tt09-levenshtein is a fuzzy search engine which can find the best matching word in a
dictionary based on levenshtein distance.
Fundamentally its an implementation of the bit-vector levenshtein algorithm from
Heikki Hyyrö’s 2003 paper with the title A Bit-Vector Algorithm for Computing Lev-
enshtein and Damerau Edit Distances.

Architecture The overall architecture is a Wishbone Classic system with two mas-
ters (The levenshtein engine and an SPI controlled master) and two slaves (The leven-
shtein engine and a QSPI SRAM controller).
Using the SPI interface, you store a dictionary and some bitvectors representing a
search word in SRAM and then configures and activates the engine. The engine will
then read the dictionary and bitvectors from the SRAM and, ultimately store the index
and distance of the word in the dictionary with the lowest levenshtein distance in
registers which can be read by the user.

SPI The device is organized as a wishbone bus which is accessed through commands
on an SPI bus.
The maximum SPI frequency is 25% of the master clock (12.5MHz when the chip is
running at 50MHz).
The bus uses SPI mode 3 (CPOL=1, CPHA=1)
Input bytes:

Byte Bit Description
0 7 READ=0 WRITE=1
0 6-0 Address bit 22-16

672

https://github.com/peter-noerlund/tt09-levenshtein

Byte Bit Description
1 7-0 Address bit 15-8
2 7-0 Address bit 7-0
3 7-0 Byte to write if WRITE, otherwise ignored

Output bytes:

Byte Bit Description
0 7-0 Byte read if READ, otherwise just 0x00

Since the SPI bridges to a wishbone bus which is shared by another master and because
register and SRAM have different latencies, the response time is variable.
While the bus is working, the output bits will be zero. The final output byte will be
preceeded by a one-bit.
Note that this means that the value 0x5A can appear 8 different ways on the SPI
bus:

01 5A 0000000 1 01011010
02 B4 000000 1 01011010 0
05 68 00000 1 01011010 00
0A D0 0000 1 01011010 000
15 A0 000 1 01011010 0000
2B 40 00 1 01011010 00000
56 80 0 1 01011010 000000
AD 00 1 01011010 00000000

Memory Layout As indicated by the SPI protocol, the address space is 23 bits.
The address space is basically as follows:

Address Size Access Identifier
0x000000 1 R/W CTRL
0x000001 1 R/W SRAM_CTRL
0x000002 1 R/W LENGTH
0x000003 1 R/O MAX_LENGTH
0x000004 2 R/O INDEX
0x000006 1 R/O DISTANCE
0x000200 512 R/W VECTORMAP

673

Address Size Access Identifier
0x000400 8M R/W DICT

CTRL
The control register is used to start the engine and see when it has completed.
The layout is as follows:

Bits Size Access Description
0 1 R/W Enable flag
1-7 7 R/O Not used

Set the enable flag to start the engine. When the engine is finished, the enable flag is
changed to 0

SRAM_CTRL
Controls the SRAM

Bits Size Access Description
0-1 2 R/W Chip select
2-7 6 R/O Not used

The chip select flag controls which chip select is used on the PMOD when accessing
SRAM

Value Pin Notes
0 None Default value
1 CS Uses the default CS on the PMOD (Pin 1). Compatible with

Machdyne’s QQSPI PSRAM
2 CS2 Uses CS2 on the PMOD (pin 6). Compatible with mole99’s QSPI

Flash/(P)SRAM
3 CS3 Uses CS3 on the PMOD (pin 7). Compatible with mole99’s QSPI

Flash/(P)SRAM

LENGTH

674

Figure 51: image

675

Bits Size Access Description
0-7 8 R/W Word length minus 1

Used to indicate the length of the search word. Note that the word cannot be empty
and it cannot exceed 16 characters.
MAX_LENGTH

Bits Size Access Description
0-7 8 R/O Max word length supported minus 1

This field allows for applications to dynamically detect the size of the bit vector.
DISTANCE
When the engine has finished executing, this address contains the levenshtein distance
of the best match.
INDEX
When the engine has finished executing, this address contains the index of the best
word from the dictionary in big endian byte order.
VECTORMAP
The vector map must contain the corresponding bitvector for each input byte in the
alphabet.
If the search word is application, the bit vectors will look as follows:

Letter Index Bit vector
a 0x61 16'b00000000_01000001 (a_____a____)
p 0x70 16'b00000000_00000110 (_pp________)
l 0x6C 16'b00000000_00001000 (___l_______)
i 0x69 16'b00000001_00010000 (____i___i__)
c 0x63 16'b00000000_00100000 (_____c_____)
t 0x74 16'b00000000_10000000 (_______t___)
o 0x6F 16'b00000010_00000000 (_________o_)
n 0x6E 16'b00000100_00000000 (__________n)
* * 16'b00000000_00000000 (___________)

Each vector is 16 bits in bit endian byte order.

676

The vectormap is stored in SRAM so the values are indetermined at power up and
must be cleared.
DICT
The word list.
The word list is stored of a sequence of words, each encoded as a sequence of 8-bit
characters and terminated by the byte value 0x00. The list itself is terminated with
the byte value 0x01.
Note that the algorithm doesn’t care about the particular characters. It only cares if
they are identical or not, so even though the algorithm doesn’t support UTF-8 and is
limited to a character set of 254 characters, ignoring Asian alphabets, a list of words
usually don’t contain more than 254 distinct characters, so you can practially just map
lettters to a value between 2 and 255.

How to test

You can compile the client as follows:

mkdir -p build
cmake -G Ninja -B build .
cmake --build build

Next, you can run the test tool:

Machdyne QQSPI PSRAM
./build/client/client --interface tt --test --verify-dictionary --verify-search

mole99 PSRAM
./build/client/client --interface tt --cs cs2 --test --verify-dictionary --verify-search

This will load 1024 words of random length and characters into the SRAM and then
perform a bunch of searches, verifying that the returned result is correct.

External hardware

To operate, the device needs a QSPI PSRAM PMOD. The design is tested with the
QQSPI PSRAM PMOD from Machdyne, but any memory PMOD will work as long as
it supports:

• WRITE QUAD with the command 0x38 in 1S-4S-4S mode and no latency

677

• FAST READ QUAD with the command 0xE8 in 1S-4S-4S mode and 6 wait
cycles

• 24-bit addresses
• Uses pin 0, 6, or 7 for SS#.
• Must be able to run at half the clock speed of the TT chip.

Note that this makes it incompatible with the spi-ram-emu project for the RP2040.

Pinout

Input Output Bidirectional
0 SRAM QSPI CS
1 SRAM QSPI SIO0/MOSI
2 SRAM QSPI SIO1/MISO
3 SRAM QSPI SCK
4 SPI SS# SRAM QSPI SIO2
5 SPI SCK SRAM QSPI SIO3
6 SPI MOSI SRAM QSPI CS2
7 SPI MISO SRAM QSPI CS3

678

TT09Ball GDS Art [905]

• Author: Rebecca G. Bettencourt
• Description: THE STRONGEST ROM and GDS art
• GitHub repository
• HDL project
• Mux address: 905
• Extra docs
• Clock: 0 Hz

How it works

An octal counter is connected to THE STRONGEST 8-byte ROM, which is connected
to the dedicated output, which is connected to the seven-segment display, to provide
a carrier for THE STRONGEST GDS art.
You can bypass the counter by setting ui_in[3] high and putting the address on
ui_in[2:0].

How to test

1. Set ui_in[3] low.
2. Set reset low and pulse clk.
3. Set reset high and pulse clk to change the LED display.
4. You should see, in order: 9 blank C I � � O blank.
5. Set ui_in[3] high.
6. Set ui_in[2:0] to the values 0 through 7.
7. You should see, in order: 9 blank C I � � O blank.

External hardware

Seven-segment LED display and/or chip decapping tools, depending on how destructive
you want to be.

679

https://github.com/RebeccaRGB/tt09ball-gdsart

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 A0 a D0
1 A1 b D1
2 A2 c D2
3 address mode d D3
4 e D4
5 f D5
6 g D6
7 dp D7

680

Simon Says memory game [907]

• Author: Uri Shaked
• Description: Repeat the sequence of colors and sounds to win the game
• GitHub repository
• HDL project
• Mux address: 907
• Extra docs
• Clock: 50000 Hz

Figure 52: Simon Says Game

How it works

Simon says is a simple electronic memory game: the user has to repeat a growing
sequence of colors. The sequence is displayed by lighting up the LEDs. Each color also
has a corresponding tone.

681

https://github.com/urish/tt09-simon-game

In each turn, the game will play the sequence, and then wait for the user to repeat the
sequence by pressing the buttons according to the color sequence. If the user repeated
the sequence correctly, the game will play a “leveling-up” sound, add a new color at
the end of the sequence, and move to the next turn.
The game continues until the user has made a mistake. Then a game over sound is
played, and the game restarts.
Check out the online simulation at https://wokwi.com/projects/408757730664700929
(including wiring diagram).

How to test

Use a Simon Says Pmod to test the game.
Provide a 50 KHz clock input, reset the game, and enjoy!
If you don’t have the Pmod, you can still connect the hardware manually as follows:

1. Connect the four push buttons to pins btn1, btn2, btn3, and btn4. Also
connect each button to a pull down resistor.

2. Connect the LEDs to pins led1, led2, led3, and led4, matching the colors
of the buttons (so led1 and btn1 have the same color, etc.). Don’t forget
current-limiting resistors!

3. Connect the speaker to the speaker pin (optional).
4. Connect the seven segment display as follows: seg_a through sev_g to individ-

ual segments, dig1 to the common pin of the tens digit, dig2 to the common
pin of the ones digit. Set seginv according to the type of 7 segment display
you have: high for common anode, low for common cathode.

5. Reset the game, and then press any button to start it. Enjoy!

External Hardware

Simon Says Pmod or four push buttons (with pull-down resistors), four LEDs, and
optionally a speaker/buzzer and two digit 7-segment display.

Pinout

Input Output Bidirectional
0 btn1 led1 seg_a
1 btn2 led2 seg_b

682

https://github.com/urish/tt-simon-pmod
https://github.com/urish/tt-simon-pmod

Input Output Bidirectional
2 btn3 led3 seg_c
3 btn4 led4 seg_d
4 seginv speaker seg_e
5 dig1 seg_f
6 dig2 seg_g
7

683

TT09Ball VGA Screensaver [909]

• Author: Rebecca G. Bettencourt; Uri Shaked
• Description: THE STRONGEST DVD style screen saver (640x480, TinyVGA

Pmod)
• GitHub repository
• HDL project
• Mux address: 909
• Extra docs
• Clock: 0 Hz

How it works

Displays THE STRONGEST bouncing logo on the screen, with animated color gradi-
ent.

Figure 53: THE STRONGEST screensaver

How to test

Connect to a VGA monitor. Set the following inputs to configure the design:

• tile (ui_in[0]) to repeat the logo and tile it across the screen,
• solid_color (ui_in1) to use a solid color instead of an animated gradient.

684

https://github.com/RebeccaRGB/tt09ball-screensaver
https://en.wikipedia.org/wiki/Collatz_conjecture

External hardware

TinyVGA PMOD

Pinout

Input Output Bidirectional
0 tile R1
1 solid_color G1
2 B1
3 VSync
4 R0
5 G0
6 B0
7 HSync

685

https://github.com/mole99/tiny-vga

ChatGPT-generated Spiking Neural Network with Delays
[910]

• Author: Paola Vitolo
• Description: ChatGPT-generated Spiking Neural Network with Delays
• GitHub repository
• HDL project
• Mux address: 910
• Extra docs
• Clock: 50000000 Hz

Overview

How it works

This project implements 18 programmable digital LIF neurons with programmable de-
lays and a total of 144 synapsis. The neurons are arranged in 3 layers (8 inputs +
FC (8 neurons) + FC (8 neurons) + FC (2 neurons) +2 outputs). Spikes_in directly
maps to the inputs of the first layer neurons. When an input spike is received, it is
first multiplied by an 2-bit weight, programmable from an SPI interface, 1 per input
neuron. This value is then added to the membrane potential of the respective neuron.
When the first layer neurons activate, its pulse is routed to each of the 8 neurons in
the next layer. There are 144 (8x8+8x8+8x2) programmable weights describing the
connectivity between the input spikes and the first layer (64 weights=8x8), the first and
second layers (64 weights=8x8), and the second and third layers (16 weights=8x2).
Through a configurable selection signal via SPI, it is possible to read any of the mem-
brane potentials from any neuron in any layer, or the output spikes from any layer.

How to test

After reset, program the neuron threshold, decay rate, and refractory period. Addition-
ally program the first, second, and third layer weights and delays. Once programmed
activate spikes_in to represent input data, track spikes_out synchronously.

Memory Map Overview Each parameter (decay, refractory period, membrane
potential threshold, weights, and delays) and each configuration signal (value for
the configurable clock divider and output select signal) is accessible via SPI in specific
byte addresses. The memory is organized as follows:

686

https://github.com/PaolaUniSa/tt09_chatGPT_SNN_LD

Parameter
Bit Range /
Byte

Address
(Hex)

Address
(Decimal) Description

decay 5:0 bits in 2nd
byte

0x00 0 Decay configuration parameter

refractory_period5:0 bits in 3rd
byte

0x01 1 Refractory period parameter

threshold 5:0 bits in 4th
byte

0x02 2 Membrane potential threshold

div_value 5th byte 0x03 3 Division value for clock divider
weights 36 bytes (5th

to 40th)
0x04 -
0x27

4 - 39 Synaptic weights

delays 72 bytes (41st
to 112th)

0x28 -
0x6F

40 - 111 Synaptic delay

output_config8 bits in 113th
byte

0x70 112 Output select signal

Simulations

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 input_spike[0] output[0] CS
1 input_spike1 output1 MOSI
2 input_spike2 output2 MISO
3 input_spike[3] output[3] SCLK
4 input_spike[4] output[4] input_ready
5 input_spike[5] output[5] output_ready
6 input_spike[6] output[6] SNN_en
7 input_spike[7] output[7] spi_instruction_done

687

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

32x8 LED Matrix Animation [911]

• Author: Ayla Lin, Pavit Thakur, Lauren Low
• Description: An animation using a 32x8 matrix, switching between a beaver logo

and the letters ‘BWSI’
• GitHub repository
• HDL project
• Mux address: 911
• Extra docs
• Clock: 33000000 Hz

How it works

This project contains 3 components:

• SPI for sending instructions and bitmaps to MAX7219/7221.
• ROM for storing bitmaps to display.
• Controller for instructing SPI and ROM.

How to test

Test using FPGA and a breadboard

External hardware

• 32x8 LED Matrix.
• MAX7219/7221.
• 5V battery.

Pinout

Input Output Bidirectional
0 spi_clk
1 spi_cs_n
2 spi_mosi
3
4
5

688

https://github.com/ayla-lin/led-matrix

Input Output Bidirectional
6
7

689

8b10b decoder and multiplier [961]

• Author: Mike Bell
• Description: Test for high speed cell library - 8b10b decoder and multiplier
• GitHub repository
• HDL project
• Mux address: 961
• Extra docs
• Clock: 0 Hz

What is it?

This project decodes incoming 8b10b encoded data and optionally multiplies the two
decoded bytes.

How it works

After reset, the 8b10b decoders look for the K.28.5 symbol 001111 1010 or 110000
0101. Once this sequence is detected the decoder indicates the stream is valid and
then sets its input byte after each data symbol is received.
If a K.28.5 symbol is received when the stream is valid, then the decoder remains in
the valid state but does not update its output.
If any symbol other than a data symbol or K.28.5 is received the decoder returns to
the reset state until a new K.28.5 symbol is sent.
The remaining inputs allow the decoded data, or the result of multiplying the decoded
data to be presented on the outputs.

How to test

Send 8b10b encoded data streams, check the outputs.
While in reset, the inputs are presented on the outputs and bidirs as differential pairs,
with out[0] = in[0], out[1] = ~in[0], out[2] = in[1], etc.
If not in reset, the output enables on the bidirectional pins are controlled by in[7].

External hardware

None required

690

https://github.com/MichaelBell/tt09-8b10b-decoder

Pinout

Input Output Bidirectional
0 A 8b10b in Out 0 Out 8
1 B 8b10b in Out 1 Out 9
2 Decoder status Out 2 Out 10
3 Multiply result Out 3 Out 11
4 Multiply result (update gated) Out 4 Out 12
5 Decoded values (registered) Out 5 Out 13
6 Decoded values (unregistered) Out 6 Out 14
7 Bidir output enable Out 7 Out 15

691

Styler [963]

• Author: Rebecca G. Bettencourt
• Description: 16x16 bitmap manipulation based on text mode attributes.
• GitHub repository
• HDL project
• Mux address: 963
• Extra docs
• Clock: 0 Hz

How it works

The styler chip is used to transform a 16x16 character glyph bitmap based on a set of
text mode attributes. It consists of a 4-bit scanline register, an 8-bit control register, a
16-bit bitmap register, and a 25-bit attribute register. Additionally, three independent
input lines are used to control polarity of faint text (even or odd pixels), text and cursor
blink rate, and cursor position.

692

https://github.com/RebeccaRGB/styler

Typical use of the styler chip follows these steps:

1. Set output enable (input 6) HIGH and write enable (input 7) LOW.
2. Set the address (inputs 0-2) to 0.
3. Set the bidirectional pins to the physical scanline number.
4. Pulse clk.
5. Set output enable (input 6) LOW and write enable (input 7) HIGH.
6. Read the logical scanline number from the bidirectional pins.
7. Set output enable (input 6) HIGH and write enable (input 7) LOW.
8. Set the address (inputs 0-2) to 2.
9. Set the bidirectional pins to the right half of the row of the character bitmap

corresponding to the logical scanline number.
10. Pulse clk.
11. Set the address (inputs 0-2) to 3.
12. Set the bidirectional pins to the left half of the row of the character bitmap

corresponding to the logical scanline number.
13. Pulse clk.
14. Set output enable (input 6) LOW and write enable (input 7) HIGH.
15. Set the address (inputs 0-2) to 2.
16. Read the right half of the final character bitmap from the bidirectional pins.
17. Set the address (inputs 0-2) to 3.
18. Read the left half of the final character bitmap from the bidirectional pins.

You can also read from the dedicated output pins without changing output enable or
write enable.
The register layout is as follows:

693

Address Bits Description
0 0-3 Input: physical scanline number; output: logical scanline number.
0 4-7 Input: ignored; output: 0.
1 0 Show cursor at bottom of character cell.
1 1 Show cursor at top of character cell.
1 2 Enable cursor blink.
1 3 Enable cursor.
1 4 Enable character underline, strikethrough, overline attributes.
1 5 Enable character blink, alternate attributes.
1 6 Reserved.
1 7 Reserved.
2 0-7 Right half of character glyph bitmap.
3 0-7 Left half of character glyph bitmap.
4 0 X offset. (Determines which half of a double-width character.)
4 1 Double width.
4 2 Y offset. (Determines which half of a double-height character.)
4 3 Double height.
4 4 X premirror (flip input bitmap horizontally).
4 5 X postmirror (flip output bitmap horizontally).
4 6 Y premirror (invert physical scanline).
4 7 Y postmirror (invert logical scanline).
5 0 Bold.
5 1 Faint.
5 2 Italic.
5 3 Reverse italic.
5 4 Blink (text only, VT100-style).
5 5 Alternate (text and background, Apple II-style).
5 6 Inverse.
5 7 Hidden.
6 0 Underline.
6 1 Double underline.
6 2 Dotted underline.
6 3 Strikethrough.
6 4 Double strikethrough.
6 5 Dotted strikethrough.
6 6 Overline.
6 7 Double overline.
7 0 Dotted overline.
7 1-7 Input: ignored; output: 0.

The input pin assignments are as follows:

694

Pin Description
0 A0 (address line 0).
1 A1 (address line 1).
2 A2 (address line 2).
3 Faint text polarity (even or odd pixels).
4 Blink phase.
5 Cursor enable.
6 /OE (output enable).
7 /WE (write enable).

How to test

The test.py file covers a variety of test cases.

External hardware

The styler chip is intended to be used as part of a larger text mode video display
hardware project.

695

Pinout

Input Output Bidirectional
0 A0 (address) D0 D0
1 A1 (address) D1 D1
2 A2 (address) D2 D2
3 faint text polarity D3 D3
4 blink phase D4 D4
5 cursor enable D5 D5
6 /OE (output enable) D6 D6
7 /WE (write enable) D7 D7

696

VGA Timing Experiments [965]

• Author: Rebecca G. Bettencourt
• Description: Configurable VGA signal generator for experimentation purposes.
• GitHub repository
• HDL project
• Mux address: 965
• Extra docs
• Clock: 0 Hz

How it works

Generates VGA signals. All signal timings (display area, front porch, back porch, hsync,
vsync, polarity) are fully configurable and several test patterns are included to enable
experimentation.

How to test

Connect to a VGA monitor. Set ui_in[3:0] all LOW and pulse ui_in[7] to set
signal timings to a “known good” configuration of 640×480 at 60Hz. Observe the
vertical color bars. Set either ui_in[0] or ui_in[1] HIGH and pulse ui_in[7] to
change the displayed test pattern.
Set ui_in[3:0] to a register address, set {ui_in[6:4], uio_in} to a register
value, and pulse ui_in[7] to change individual timing values. (When setting hsync
width or vsync height, set ui_in[6] HIGH for positive polarity or LOW for negative
polarity.)

Address Description Default
0 Reset.
1 Next pattern.
2 Previous pattern.
3 Pattern number. 31
4 Horizontal visible width. 640
5 Horizontal front porch (right border). 16
6 Horizontal sync width (polarity on ui_in[6]). 96
7 Horizontal back porch (left border). 48
8 Vertical visible height. 480
9 Vertical front porch (bottom border). 10
10 Vertical sync height (polarity on ui_in[6]). 2

697

https://github.com/RebeccaRGB/vga-timing-experiments

Address Description Default
11 Vertical back porch (top border). 33
12 Pattern color. 0
13 Next color.
14 Previous color.
15 Reset.

Pattern Description
0 Solid color.
1 1×1 pixel checkerboard.
2 2×2 pixel checkerboard.
3 4×4 pixel checkerboard.
4 8×8 pixel checkerboard.
5 16×16 pixel checkerboard.
6 32×32 pixel checkerboard.
7 64×64 pixel checkerboard.
8 8×8 pixel grid.
9 16×16 pixel grid.
10 32×32 pixel grid.
11 64×64 pixel grid.
12 1×1 pixel color table.
13 2×2 pixel color table.
14 4×4 pixel color table.
15 8×8 pixel color table.
16 16×16 pixel color table.
17 32×32 pixel color table.
18 1×1 pixel color antidiagonal lines.
19 2×2 pixel color antidiagonal lines.
20 4×4 pixel color antidiagonal lines.
21 8×8 pixel color antidiagonal lines.
22 16×16 pixel color antidiagonal lines.
23 32×32 pixel color antidiagonal lines.
24 1×1 pixel color diagonal lines.
25 2×2 pixel color diagonal lines.
26 4×4 pixel color diagonal lines.
27 8×8 pixel color diagonal lines.
28 16×16 pixel color diagonal lines.
29 32×32 pixel color diagonal lines.
30 Horizontal color bars.
31 Vertical color bars.

698

External hardware

TinyVGA PMOD

Pinout

Input Output Bidirectional
0 A0 R1 D0
1 A1 G1 D1
2 A2 B1 D2
3 A3 VSync D3
4 D8 R0 D4
5 D9 G0 D5
6 D10 B0 D6
7 WE HSync D7

699

https://github.com/mole99/tiny-vga

Universal Binary to Segment Decoder [967]

• Author: Rebecca G. Bettencourt
• Description: Decodes various binary codes to various segmented displays.
• GitHub repository
• HDL project
• Mux address: 967
• Extra docs
• Clock: 0 Hz

How it works

This project is composed of four modules:

• A BCD to seven segment decoder with a wide variety of options for customizing
the appearance of digits

• An ASCII to seven segment decoder with two different “fonts”
• A dual BCD to Cistercian numeral decoder
• A BCV (binary-coded vigesimal) to Kaktovik numeral decoder

BCD to seven segment decoder

This mode converts a decimal digit in BCD to its representation on a standard seven
segment display. There are inputs that affect the display of the digits 6, 7, and 9,
and eight different options for handling out-of-range values. These inputs allow this
decoder to match the behavior of just about any other BCD to seven segment decoder,
making it universal.

700

https://github.com/RebeccaRGB/ubcd
https://en.wikipedia.org/wiki/Cistercian_numerals
https://en.wikipedia.org/wiki/Kaktovik_numerals

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

1010 1011 1100 1101 1110 1111 1010 1011 1100 1101 1110 1111

V0=0
V1=0
V2=0

V0=1
V1=0
V2=0

V0=0
V1=1
V2=0

V0=1
V1=1
V2=0

V0=0
V1=0
V2=1

V0=1
V1=0
V2=1

V0=0
V1=1
V2=1

V0=1
V1=1
V2=1

The signals used in this mode are:

• /AL - Active low. If HIGH, outputs will be HIGH when lit. If LOW, outputs
will be LOW when lit.

• /BI - Blanking input. If LOW, all segments will be blank regardless of other
inputs, including /LT.

• /LT - Lamp test. When /BI is HIGH and /LT is LOW, all segments will be lit.
• /RBI - Ripple blanking input. If the BCD value is zero and /RBI is LOW, all

segments will be blank.
• V0, V1, V2 - Selects the output when the BCD value is out of range.
• X6 - When HIGH, the extra segment a will be lit on the digit 6.
• X7 - When HIGH, the extra segment f will be lit on the digit 7.
• X9 - When HIGH, the extra segment d will be lit on the digit 9.
• A, B, C, D - BCD input from least significant bit A to most significant bit D.
• a, b, c, d, e, f, g - Outputs for a seven segment display.
• /RBO - Ripple blanking output. HIGH when BCD value is nonzero or /RBI is

HIGH.

The pin assignments in this mode are:

Dedicated Input Dedicated Output Bidirectional
0 A Segment a Input - X6

701

Dedicated Input Dedicated Output Bidirectional
1 B Segment b Input - X7
2 C Segment c Input - X9
3 D Segment d Input - /LT
4 V0 Segment e Input - /BI
5 V1 Segment f Input - /AL
6 V2 Segment g Input - LOW
7 /RBI /RBO Input - LOW

ASCII to seven segment decoder

This mode converts an ASCII character to a representation on a standard seven segment
display. Like with the BCD decoder, there are inputs that affect the display of the digits
6, 7, and 9. There are also two choices of “font” and the option to display lowercase
letters as uppercase or as lowercase.

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

D6=0
D5=1
D4=0

D6=0
D5=1
D4=1

D6=1
D5=0
D4=0

D6=1
D5=0
D4=1

D6=1
D5=1
D4=0

D6=1
D5=1
D4=1

FS=0:

702

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

D6=0
D5=1
D4=0

D6=0
D5=1
D4=1

D6=1
D5=0
D4=0

D6=1
D5=0
D4=1

D6=1
D5=1
D4=0

D6=1
D5=1
D4=1

FS=1:

The signals used in this mode are:

• /AL - Active low. If HIGH, outputs will be HIGH when lit. If LOW, outputs
will be LOW when lit.

• /BI - Blanking input. If LOW, all segments will be blank regardless of other
inputs.

• FS - Font select. Selects one of two “fonts.”
• LC - Lower case. If LOW, lowercase letters will appear as uppercase.
• X6 - When HIGH, the extra segment a will be lit on the digit 6.
• X7 - When HIGH, the extra segment f will be lit on the digit 7.
• X9 - When HIGH, the extra segment d will be lit on the digit 9.
• D0…D6 - ASCII input from least significant bit D0 to most significant bit D6.
• a, b, c, d, e, f, g - Outputs for a seven segment display.
• /LTR - Letter. LOW when the input is a letter (A…Z or a…z).

The pin assignments in this mode are:

Dedicated Input Dedicated Output Bidirectional
0 D0 Segment a Input - X6
1 D1 Segment b Input - X7
2 D2 Segment c Input - X9
3 D3 Segment d Input - FS
4 D4 Segment e Input - /BI

703

Dedicated Input Dedicated Output Bidirectional
5 D5 Segment f Input - /AL
6 D6 Segment g Input - HIGH
7 LC /LTR Input - LOW

Dual BCD to Cistercian numeral decoder

This mode converts two decimal digits in BCD to their representations on the seg-
mented display for Cistercian numerals shown below.

UU

UU

VV
VV

W

W
X

XX

X
W

W

X

X
W

W
W

W
X

X

Y

Y

Y

Y

Z

Z

Z

The patterns produced for each input value are shown below.

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

0 1 2 3 4

1+4=5 6 1+6=7 2+6=8 1+2+6=9

1+2+3+4=10 5+6=11 3+9=12 4+9=13 3+4+7=14 3+4+8=15

Patterns as seen in top right (units) position:

The signals used in this mode are:

704

https://en.wikipedia.org/wiki/Cistercian_numerals

• /AL - Active low. If HIGH, outputs will be HIGH when lit. If LOW, outputs
will be LOW when lit.

• /BI - Blanking input. If LOW, all segments will be blank regardless of other
inputs, including /LT1 and /LT2.

• /LT1 - Lamp test for digit 1. When /BI is HIGH and /LT1 is LOW, all
segments for digit 1 will be lit.

• /LT2 - Lamp test for digit 2. When /BI is HIGH and /LT2 is LOW, all
segments for digit 2 will be lit.

• A1, B1, C1, D1 - BCD input for digit 1 from least significant bit A1 to most
significant bit D1.

• A2, B2, C2, D2 - BCD input for digit 2 from least significant bit A2 to most
significant bit D2.

• U1, V1, W1, X1, Y1 - Outputs for digit 1 on a Cistercian segmented display.
• U2, V2, W2, X2, Y2 - Outputs for digit 2 on a Cistercian segmented display.

The pin assignments in this mode are:

Dedicated Input Dedicated Output Bidirectional
0 A1 Segment U1 Output - Y1
1 B1 Segment U2 Output - Y2
2 C1 Segment V1 Input - /LT1
3 D1 Segment V2 Input - /LT2
4 A2 Segment W1 Input - /BI
5 B2 Segment W2 Input - /AL
6 C2 Segment X1 Input - LOW
7 D2 Segment X2 Input - HIGH

BCV to Kaktovik numeral decoder

This mode converts a vigesimal (base 20) digit in BCV (binary-coded vigesimal) to its
representation on the segmented display for Kaktovik numerals shown below.

a b
c
d e

f
g

h

dp

The patterns produced for each input value are shown below.

705

https://en.wikipedia.org/wiki/Kaktovik_numerals

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

In
-R
a
n
g
e

O
v
e
rf
lo
w

The signals used in this mode are:

• /AL - Active low. If HIGH, outputs will be HIGH when lit. If LOW, outputs
will be LOW when lit.

• /BI - Blanking input. If LOW, all segments will be blank regardless of other
inputs, including /LT.

• /LT - Lamp test. When /BI is HIGH and /LT is LOW, all segments will be lit.
• /RBI - Ripple blanking input. If the BCV value is zero and /RBI is LOW, all

segments will be blank.
• /VBI - Overflow blanking input. If the BCV value is out of range and /VBI is

LOW, all segments will be blank.
• A, B, C, D, E - BCV input from least significant bit A to most significant bit

E.
• a, b, c, d, e, f, g, h - Outputs for a Kaktovik segmented display.
• /RBO - Ripple blanking output. HIGH when BCV value is nonzero or /RBI is

HIGH.
• V - Overflow. HIGH when BCV value is out of range (greater than or equal to

20).

The pin assignments in this mode are:

Dedicated Input Dedicated Output Bidirectional
0 A Segment a Output - h
1 B Segment b Output - V
2 C Segment c

706

Dedicated Input Dedicated Output Bidirectional
3 D Segment d Input - /LT
4 E Segment e Input - /BI
5 Segment f Input - /AL
6 /VBI Segment g Input - HIGH
7 /RBI /RBO Input - HIGH

How to test

The test directory includes extensive tests for each of the four modules.

External hardware

For the BCD and ASCII modes, a standard seven-segment display is used.
For the Cistercian mode, a segmented display like the one below is used. There are
design files for such a display here.

UU

UU

VV
VV

W

W
X

XX

X
W

W

X

X
W

W
W

W
X

X

Y

Y

Y

Y

Z

Z

Z

For the Kaktovik mode, a segmented display like the one below is used. There are
design files for such a display here.

a b
c
d e

f
g

h

dp

707

https://github.com/RebeccaRGB/buck/tree/main/cistercian-display
https://github.com/RebeccaRGB/buck/tree/main/kaktovik-display

Pinout

Input Output Bidirectional
0 A; D0; A1; A Segment a;

U1; a
X6; X6; Y1; h

1 B; D1; B1; B Segment b;
U2; b

X7; X7; Y2; V

2 C; D2; C1; C Segment c;
V1; c

X9; X9; /LT1; -

3 D; D3; D1; D Segment d;
V2; d

/LT; FS; /LT2; /LT

4 V0; D4; A2; E Segment e;
W1; e

/BI (blanking input)

5 V1; D5; B2; - Segment f;
W2; f

/AL (active low)

6 V2; D6; C2;
/VBI

Segment g;
X1; g

M0 (mode select)

7 /RBI; LC; D2;
/RBI

/RBO; /LTR;
X2; /RBO

M1 (mode select)

708

INTERCAL ALU [969]

• Author: Rebecca G. Bettencourt
• Description: An ALU for the five operators of the INTERCAL programming

language.
• GitHub repository
• HDL project
• Mux address: 969
• Extra docs
• Clock: 0 Hz

How it works

As an educational project, it is inevitable that Tiny Tapeout would attract various ped-
agogical examples of common logic circuits, such as ALUs. While ALUs for common
operations such as addition, subtraction, and binary bitwise logic are surprisingly com-
mon, it is much rarer to encounter one that can calculate the five operations of the
INTERCAL programming language. Due to either the cost-prohibitive nature of War-
menhovian logic gates or general lack of interest, such a feat has never been performed
until now. With chip production finally within reach of the average person, all it takes
is one person who has more dollars than sense to design the fabled INTERCAL ALU
(Arrhythmic Logic Unit).
The pin assignments for this design are roughly as follows. The /OE (output enable)
and /WE (write enable) signals are active low, so should be set HIGH by default.

Dedicated Input Dedicated Output Bidirectional I/O
0 A0 (address) D0 (output only) D0 (input and output only)
1 A1 (address) D1 (output only) D1 (input and output only)
2 S0 (selector) D2 (output only) D2 (input and output only)
3 S1 (selector) D3 (output only) D3 (input and output only)
4 S2 (selector) D4 (output only) D4 (input and output only)
5 S3 (selector) D5 (output only) D5 (input and output only)
6 /OE (output enable) D6 (output only) D6 (input and output only)
7 /WE (write enable) D7 (output only) D7 (input and output only)

This ALU has two 32-bit registers, B and A (in no particular order). (These may also
be thought of as four 16-bit registers, AL, AH, BL, and BH.) To write a byte to a
register, set A0 and A1 to the byte address, set S0 LOW for the A register or HIGH
for the B register, set S1 through S3 LOW, set the bidirectional I/O pins to the byte

709

https://github.com/RebeccaRGB/intercal-alu

value, set /WE LOW, then set /WE HIGH again. (Do not set S1 through S3 HIGH
when writing, or else something unpredictable will happen, most likely nothing.)
To read a register or result, set A0 and A1 to the byte address, set S0 through S3 to
the desired operation, set /OE LOW, read the byte value from the bidirectional I/O
pins, then set /OE HIGH. Results can also be read from the dedicated outputs; the
dedicated outputs are not affected by the /OE signal, as they do not need to care
about your feelings.
The operations supported are listed below. An attempt was made to make it under-
standable.

Address

A 3 2 1 0

A1 1 1 0 0Selector

S S3 S2 S1 S0 Operation A0 1 0 1 0

0 0 0 0 0 A AH AL

1 0 0 0 1 B BH BL

2 0 0 1 0 AND16 & AH & AL

3 0 0 1 1 AND32 & A

4 0 1 0 0 OR16 V AH V AL

5 0 1 0 1 OR32 V A

6 0 1 1 0 XOR16 ? AH ? AL

7 0 1 1 1 XOR32 ? A

8 1 0 0 0 MINGLE16L AL $ BL

9 1 0 0 1 MINGLE16H AH $ BH

10 1 0 1 0 SELECT16 AH~BH AL~BL

11 1 0 1 1 SELECT32 A ~ B

Operations 0 and 1 simply return the current value of the A or B register, respectively.
This corresponds with the values of S0 through S3 used in write mode. This is not
unintentional. This might also explain why S1 through S3 must be LOW in write
mode.

710

Operations 2 through 7 correspond to INTERCAL’s unary AND, unary OR, and unary
XOR operators, represented by ampersand (&), book (V), and what (?), respectively.
From the INTERCAL manual:
These operators perform their respective logical operations on all pairs of adjacent bits,
the result from the first and last bits going into the first bit of the result. The effect
is that of rotating the operand one place to the right and ANDing, ORing, or XORing
with its initial value. Thus, #&77 (binary = 1001101) is binary 0000000000000100 =
4, #V77 is binary 1000000001101111 = 32879, and #?77 is binary 1000000001101011
= 32875.
Operations 2, 4, and 6 work on the 16-bit halves of the A register independently, while
operations 3, 5, and 7 work on the 32-bit whole of the A register.
Operations 8 and 9 correspond to INTERCAL’s interleave (also called mingle) operator,
represented by big money ($). From the INTERCAL manual:
The interleave operator takes two 16-bit values and produces a 32-bit result by alternat-
ing the bits of the operands. Thus, #65535$#0 has the 32-bit binary form 101010….10
or 2863311530 decimal, while #0$#65535 = 0101….01 binary = 1431655765 decimal,
and #255$#255 is equivalent to #65535.
Operation 8 returns the interleave of the lower halves of A and B, while operation 9
returns the interleave of the upper halves of A and B. (Should the chip fabrication
process allow for it, operation 8½ will, of course, return the interleave of the middle
halves of A and B.)
Operations 10 and 11 correspond to INTERCAL’s select operator, represented by sqig-
gle (~). From the INTERCAL manual:
The select operator takes from the first operand whichever bits correspond to 1’s in
the second operand, and packs these bits to the right in the result. Both operands
are automatically padded on the left with zeros. […] For example, #179~#201 (binary
value 10110011~11001001) selects from the first argument the 8th, 7th, 4th, and 1st
from last bits, namely, 1001, which = 9. But #201~#179 selects from binary 11001001
the 8th, 6th, 5th, 2nd, and 1st from last bits, giving 10001 = 17. #179~#179 has
the value 31, while #201~#201 has the value 15.
To help understand the select operator, the INTERCAL manual also provides a helpful
circuitous diagram.
Use of operations 12 and above is not recommended, unless undefined behavior is
required.

711

https://www.muppetlabs.com/~breadbox/intercal-man/figure1.html

How to test

The following example calculations found in the INTERCAL manual should be partic-
ularly illuminating.

S A B F
MINGLE16L (8) 0 256 65536
MINGLE16L (8) 65535 0 2863311530
MINGLE16L (8) 0 65535 1431655765
MINGLE16L (8) 255 255 65535
SELECT16 (10) 51 21 5 *
SELECT16 (10) 179 201 9
SELECT16 (10) 201 179 17
SELECT16 (10) 179 179 31
SELECT16 (10) 201 201 15
AND16 (2) 77 4
OR16 (4) 77 32879
XOR16 (6) 77 32875

These test cases are included in the (unfortunately Python and not INTERCAL)
test.py file. As these are likely more INTERCAL operations than any sensible
person will ever perform, they should be sufficient for testing purposes. However, for
curiosity’s sake, an extensive set of additional test cases have also been included.

• Not found in the INTERCAL manual.

External hardware

The ALU may be used without external hardware, although seeing the output values
may present a challenge. Instead, it is recommended to use a microcontroller of some
sort to drive the inputs and read the outputs, as microcontrollers are designed to do.
The implementation of the rest of the INTERCAL language is left as an exercise for
the reader.

Further reading

The INTERCAL Programming Language Revised Reference Manual by Donald R.
Woods and James M. Lyon with revisions by Louis Howell and Eric S. Raymond (can
recommend highly enough)

712

https://www.muppetlabs.com/~breadbox/intercal-man/home.html

Pinout

Input Output Bidirectional
0 A0 (address) D0 D0
1 A1 (address) D1 D1
2 S0 (selector) D2 D2
3 S1 (selector) D3 D3
4 S2 (selector) D4 D4
5 S3 (selector) D5 D5
6 /OE (output enable) D6 D6
7 /WE (write enable) D7 D7

713

Simple PWM Module [971]

• Author: Tobi McKellar
• Description: PWM for LED control.
• GitHub repository
• HDL project
• Mux address: 971
• Extra docs
• Clock: 0 Hz

How it works

A basic PWM controller. ui[5:0] control the reference. When ui[6] is low, this reference
is used to set the PWM duty cycle. when ui[6] is high, functionality changes from
manual reference to a triangular reference generated internally. In this mode, ui[5:0]
control the frequency of the triangular reference. ui[7] enables pwm output when high.
PWM is output on uo[7].

How to test

Set ui[7] to high. Measure the output on uo[7]. FLip the other input switches and see
what happens!

External hardware

None, but an LED and resistor would be nice.

Pinout

Input Output Bidirectional
0 Manual mode PWM reference control PWM output
1 Manual mode PWM reference control
2 Manual mode PWM reference control
3 Manual mode PWM reference control
4 Manual mode PWM reference control
5 Manual mode PWM reference control
6 Toggle PWM breathe or manual mode
7 Enable PWM output

714

https://github.com/Tobi-McKellar/tt09-led-driver

freqSweep [973]

• Author: Jesus Minguillon
• Description: Frequency sweeper
• GitHub repository
• HDL project
• Mux address: 973
• Extra docs
• Clock: 5000000 Hz

How it works

The project (src/project.v) implements a clock frequency sweeper in Verilog. It uses
the Tiny Tapeout clock as input to generate a clock signal at the output uo[0] whose
frequency is divided by 2 every 15 clock cycles. It goes from 1/2 to 1/16 of the input
clock frequency and starts again. Input ui[0] is used as internal enable (active high).

How to test

For simulation, use the test bench (test/tb.v), which includes a module
(src/periodCount.v) for measuring the frequency (or period) ratio between in-
put and output clocks. Use the Python script (test/test.py) if you want to perform
unit tests using cocotb. For hardware testing, make sure the internal enable (input
ui[0]) is high and check the output clock at output uo[0] using an oscilloscope.

Gate level simulation (5 MHz input clock) The frequency (or period) ratio
between the input clock (clk) and the output clock (uo_out[0]) is given by clk_factor
register of periodCount module:

Figure 54: image info

Zoom in:
Unit tests:

715

https://github.com/JesusMinguillon/tt09-verilog-freqSweep

Figure 55: image info

(venv) jesus@ws131571:~/tt09-verilog-freqSweep/test$ make -B GATES=yes
rm -f results.xml
"make" -f Makefile results.xml
make[1]: Entering directory '/home/jesus/tt09-verilog-freqSweep/test'
mkdir -p sim_build/gl
/usr/bin/iverilog -o sim_build/gl/sim.vvp -D COCOTB_SIM=1 -s tb -g2012 -DGL_TEST -DFUNCTIONAL -DUSE_POWER_PINS -DSIM -DUNIT_DELAY=#1 -f sim_build/gl/cmds.f /home/jesus/ttsetup/pdk/sky130A/libs.ref/sky130_fd_sc_hd/verilog/primitives.v /home/jesus/ttsetup/pdk/sky130A/libs.ref/sky130_fd_sc_hd/verilog/sky130_fd_sc_hd.v /home/jesus/tt09-verilog-freqSweep/test/gate_level_netlist.v /home/jesus/tt09-verilog-freqSweep/test/periodCount.v /home/jesus/tt09-verilog-freqSweep/test/tb.v
rm -f results.xml
MODULE=test TESTCASE= TOPLEVEL=tb TOPLEVEL_LANG=verilog \

/usr/bin/vvp -M /home/jesus/ttsetup/venv/lib/python3.12/site-packages/cocotb/libs -m libcocotbvpi_icarus sim_build/gl/sim.vvp
-.--ns INFO gpi ..mbed/gpi_embed.cpp:108 in set_program_name_in_venv Using Python virtual environment interpreter at /home/jesus/ttsetup/venv/bin/python
-.--ns INFO gpi ../gpi/GpiCommon.cpp:101 in gpi_print_registered_impl VPI registered
0.00ns INFO cocotb Running on Icarus Verilog version 12.0 (stable)
0.00ns INFO cocotb Running tests with cocotb v1.9.1 from /home/jesus/ttsetup/venv/lib/python3.12/site-packages/cocotb
0.00ns INFO cocotb Seeding Python random module with 1729775152
0.00ns INFO cocotb.regression Found test test.test_startup
0.00ns INFO cocotb.regression Found test test.test_reset
0.00ns INFO cocotb.regression Found test test.test_internal_enable
0.00ns INFO cocotb.regression Found test test.test_period_count
0.00ns INFO cocotb.regression running test_startup (1/4)
0.00ns INFO cocotb.tb Startup test with reset and internal enable
0.00ns INFO cocotb.tb rst_n = 0, ui_in[0] = 0

VCD info: dumpfile tb.vcd opened for output.
2.00ns INFO cocotb.tb uo_out[0] = 0

2000.00ns INFO cocotb.tb rst_n = 1, ui_in[0] = 0
2202.00ns INFO cocotb.tb uo_out[0] = 0
4000.00ns INFO cocotb.tb rst_n = 1, ui_in[0] = 1
4202.00ns INFO cocotb.tb uo_out[0] = 1
4402.00ns INFO cocotb.tb uo_out[0] = 0
4402.00ns INFO cocotb.tb Wait until 6 us
6000.00ns INFO cocotb.tb End of startup test
6000.00ns INFO cocotb.regression test_startup passed
6000.00ns INFO cocotb.regression running test_reset (2/4)
6000.00ns INFO cocotb.tb Reset test

716

6000.00ns INFO cocotb.tb rst_n = 0, ui_in[0] = 1
6002.00ns INFO cocotb.tb uo_out[0] = 0
6002.00ns INFO cocotb.tb clk_factor = 1
6202.00ns INFO cocotb.tb uo_out[0] = 0
6202.00ns INFO cocotb.tb clk_factor = 1
8000.00ns INFO cocotb.tb uo_out[0] = 0
8000.00ns INFO cocotb.tb clk_factor = 1
8000.00ns INFO cocotb.tb rst_n = 1, ui_in[0] = 1
8202.00ns INFO cocotb.tb uo_out[0] = 1
8202.00ns INFO cocotb.tb clk_factor = 1
8402.00ns INFO cocotb.tb uo_out[0] = 0
8402.00ns INFO cocotb.tb clk_factor = 1
8402.00ns INFO cocotb.tb Wait until 10 us

10000.00ns INFO cocotb.tb End of reset test
10000.00ns INFO cocotb.regression test_reset passed
10000.00ns INFO cocotb.regression running test_internal_enable (3/4)
10000.00ns INFO cocotb.tb Internal enable test
10000.00ns INFO cocotb.tb rst_n = 1, ui_in[0] = 0
11600.00ns INFO cocotb.tb rst_n = 1, ui_in[0] = 1
11802.00ns INFO cocotb.tb uo_out[0] = 1
11802.00ns INFO cocotb.tb clk_factor = 2
11802.00ns INFO cocotb.tb Wait until 13 us
13000.00ns INFO cocotb.tb Reset for 800 ns and wait 200 ns
14000.00ns INFO cocotb.tb End of internal enable test
14000.00ns INFO cocotb.regression test_internal_enable passed
14000.00ns INFO cocotb.regression running test_period_count (4/4)
14000.00ns INFO cocotb.tb Period count test
14402.00ns INFO cocotb.tb clk_factor = 2
20802.00ns INFO cocotb.tb clk_factor = 4
33602.00ns INFO cocotb.tb clk_factor = 8
59202.00ns INFO cocotb.tb clk_factor = 16
59202.00ns INFO cocotb.tb Wait until 200 us
200000.00ns INFO cocotb.tb End of period count test
200000.00ns INFO cocotb.regression test_period_count passed
200000.00ns INFO cocotb.regression **

** TEST STATUS SIM TIME (ns) REAL TIME (s) RATIO (ns/s) **
**
** test.test_startup PASS 6000.00 0.02 362907.61 **
** test.test_reset PASS 4000.00 0.00 985504.01 **
** test.test_internal_enable PASS 4000.00 0.00 1009763.48 **
** test.test_period_count PASS 186000.00 0.11 1763647.26 **
**

717

** TESTS=4 PASS=4 FAIL=0 SKIP=0 200000.00 0.22 918687.40 **
**

make[1]: Leaving directory '/home/jesus/tt09-verilog-freqSweep/test'

Test using Tang Nano 9K FPGA (4.5 MHz input clock) Input clock signal
(yellow) and ouput clock signal (blue) acquired with an oscilloscope (analog inputs and
passive probes):

Figure 56: image info

Zoom in:

External hardware

No external hardware is needed.

Pinout

718

Figure 57: image info

Input Output Bidirectional
0 ui_in[0] uo_out[0]
1
2
3
4
5
6
7

719

Atari 2600 [974]

• Author: Renaldas Zioma
• Description: Replica of Atari 2600
• GitHub repository
• HDL project
• Mux address: 974
• Extra docs
• Clock: 25175000 Hz

How it works

Replica of a classic Atari 2600 (SoC) System On a Chip

How to test

Plug and play!

External hardware

Tiny (mole99) VGA PMOD, Tiny Audio PMOD, VGA display.

Pinout

Input Output Bidirectional
0 UP / Switch 1 R1 QSPI CS
1 DOWN / Switch 2 G1 QSPI SD0
2 LEFT / Switch BW B1 QSPI SD1
3 RIGHT / Switch 3 VSync QSPI SCK
4 FIRE R0 QSPI SD2
5 Joystick 1 / 2 G0 QSPI SD3
6 Switches B0
7 RESET HSync Audio (PWM)

720

https://github.com/rejunity/tt09-atari-2600

LED Bitserial Cipher [975]

• Author: simon cipher
• Description: A bitserial implementation of the LED cipher
• GitHub repository
• HDL project
• Mux address: 975
• Extra docs
• Clock: 0 Hz

How it works

tt09-led-serial is a nibble-serial implementation of the LED block cipher, proposed in
2012 and defined in The LED Block Cipher by J. Guo et. al. The cipher encrypts
a 64-bit block of plaintext with a 128-bit key into a 64-bit block of ciphertext. The
nibble-serial implementation enables a very compact implementation as most of the
datapath logic can be reused over each nibble. The downside is that such nibble-serial
implementations have a much larger latency. The nibble-serial architecture shown
below was presented and analyzed earlier in Differential Fault Intensity Analysis on
PRESENT and LED Block Ciphers by N. F. Galathy et. al.

Figure 58: image

To further reduce the I/O pinout constraints, this design also serializes the data-input
(64 bit plaintext and 128 bit key) as well as the data-output (64 bit ciphertext).

721

https://github.com/Secure-Embedded-Systems/tt09-led-serial
https://eprint.iacr.org/2012/600.pdf
https://link.springer.com/chapter/10.1007/978-3-319-21476-4_12
https://link.springer.com/chapter/10.1007/978-3-319-21476-4_12

Activity Cycles
Load Plaintext 64
Load Key 128
Read Ciphertext 64
Encrypt 2045

The module is controlled through the bits of the input word ui_in. The serial data
format is MSB to LSB. That is, given a block of plaintext 0x0123..., the bits would
be shift in as in the bitstring 0b0000000100100011....

Bit Name Function
7-6 unused NA
5 start Assert to start encryption
4 getct Assert to shift out ciphertext bit
3 loadkey Assert to shift in key bit
2 loadpt Assert to shift in plaintext bit
1 keyi Key input bit
0 datai Plaintext input bit

The results are generation on the output word uo_out.

Bit Name Function
7-2 unused NA
1 done 1 indicates encryption complete
0 dataq Ciphertext output bit

LIMITATIONS

This design forces the key bits to 0 upon loading, so that the effective key value of
the cipher is always hardcoded to 00000000_00000000_00000000_00000000. This
disables the use of the design as a cipher, yet it still demonstrates how a nibble-serial
architecture can be designed.

How to test

This block could be tested with some integration on a Raspberry PI to control ui_in
and uo_out. The typical sequence of operation is as follows.

722

1. Wait until done == 1, which indicates that the cipher is idle
2. Assert loadkey, and shift in key bits. Repeat 128 times. De-assert loadkey.
3. Assert loadpt, and shift in plaintext bits. Repeat 64 times. De-assert loadpt.
4. Assert start for one clock cycle.
5. Wait until done == 1.
6. Assert getct and shift out ciphertext bits. Repeat 64 times. De-assert getct.

Here are twotthree sample test vectors. Consult the testbench for additional test
vectors.

Plaintext Key Ciphertext
0000000000000000 00000000000000000000000000000000 3decb2a0850cdba1
0123456789abcdef 00000000000000000000000000000000 da261393c73be9ce
12153524c0895e81 00000000000000000000000000000000 29db5fe262572f4e

External hardware

You will need external hardware to use the block cipher.

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0]
1 ui_in1 uo_out1
2 ui_in2 uo_out2
3 ui_in[3] uo_out[3]
4 ui_in[4] uo_out[4]
5 ui_in[5] uo_out[5]
6 ui_in[6] uo_out[6]
7 ui_in[7] uo_out[7]

723

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Pinout

The chip is packaged in a 64-pin QFN package. The pinout is shown below.

Pin 1

1 16

uio[1]
uio[2]

uio[3]
uio[4]
uio[5]
uio[6]
uio[7]

8 17

3233

ctrl_ena

11

ctrl_sel_inc
ctrl_sel_rst_n

48

clk

37

rst_n

41

ui_in[0]
ui_in[1]

u
i_

in
[2

]
u
i_

in
[3

]
u
i_

in
[4

]
u
i_

in
[5

]
u
i_

in
[6

]

49

a
n
a
lo

g
[0

]

53

uo_out[0]

u
o
_o

u
t[

1
]

64

u
o
_o

u
t[

2
]

57

u
o
_o

u
t[

3
]

u
o
_o

u
t[

4
]

u
o
_o

u
t[

5
]

u
o
_o

u
t[

6
]

u
o
_o

u
t[

7
]

uio[0]

62

Bottom View

u
i_

in
[7

]

a
n
a
lo

g
[1

]
a
n
a
lo

g
[2

]
a
n
a
lo

g
[3

]
a
n
a
lo

g
[4

]
a
n
a
lo

g
[5

]

a
n
a
lo

g
[6

]

a
n
a
lo

g
[8

]
a
n
a
lo

g
[7

]

a
n
a
lo

g
[9

]
a
n
a
lo

g
[1

0
]

a
n
a
lo

g
[1

1
]

22

Figure 59: Pinout

Note: you will receive the chip mounted on a breakout board. The pinout is provided
for advanced users, as most users will not need to solder the chip directly.

724

https://github.com/TinyTapeout/caravel-breakout-pcb/tree/main/breakout-qfn

The Tiny Tapeout Multiplexer

Overview

The Tiny Tapeout Multiplexer distributes a single set of user IOs to multiple user
designs. It is the backbone of the Tiny Tapeout chip.
It has the following features:

• 10 dedicated inputs
• 8 dedicated outputs
• 8 bidirectional IOs
• Supports up to 512 user designs (32 mux units, each with up to 16 designs)
• Designs can have different sizes. The basic unit is a called a tile, and each design

can occupy up to 16 tiles.

Operation

The multiplexer consists of three main units:

1. The controller - used to set the address of the active design
2. The spine - a bus that connects the controller with all the mux units
3. Mux units - connect the spine to individual user designs

The Controller

The mux controller has 3 inputs lines:

Input Description
ena Sent as-is (buffered) to the downstream mux units
sel_rst_n Resets the internal address counter to 0 (active low)
sel_inc Increments the internal address counter by 1

It outputs the address of the currently selected design on the si_sel port of the spine
(see below).
For instance, to select the design at address 12, you need to pulse sel_rst_n low,
and then pulse sel_inc 12 times:

725

Figure 60: Mux Diagram

726

Figure 61: Mux Controller Diagram

Figure 62: Mux signals for activating the design at address 12

Internally, the controller is just a chain of 10 D flip-flops. The sel_inc signal is
connected to the clock of the first flip-flop, and the output of each flip-flop is connected
to the clock of the next flip-flop. The sel_rst_n signal is connected to the reset of
all flip-flops.
The following Wokwi projects demonstrates this setup: https://wokwi.com/projects/364347807664031745.
It contains an Arduino Nano that decodes the currently selected mux address and
displays it on a 7-segment display. Click on the button labeled RST_N to reset the
counter, and click on the button labeled INC to increment the counter.

The Spine

The controller and all the muxes are connected together through the spine. The spine
has the following signals going on it:
From controller to mux:

• si_ena - the ena input
• si_sel - selected design address (10 bits)
• ui_in - user clock, user rst_n, user inputs (10 bits)
• uio_in - bidirectional I/O inputs (8 bits)

727

From mux to controller:

• uo_out - User outputs (8 bits)
• uio_oe - Bidirectional I/O output enable (8 bits)
• uio_out - Bidirectional I/O outputs (8 bits)

The only signal which is actually generated by the controller is si_sel (using
sel_rst_n and sel_inc, as explained above). The other signals are just going
through from/to the chip IO pads.

The Multiplexer (The Mux)

Each mux branch is connected to up to 16 designs. It also has 5 bits of hard-coded
address (each unit gets assigned a different address, based on its position on the die).
The mux implements the following logic:
If si_ena is 1, and si_sel matches the mux address, we know the mux is active.
Then, it activates the specific user design port that matches the remaining bits of
si_sel.
For the active design:

• clk, rst_n, ui_in, uio_in are connected to the respective pins coming from
the spine (through a buffer)

• uo_out, uio_oe, uio_out are connected to the respective pins going out to
the spine (through a tristate buffer)

For all others, inactive designs (including all designs in inactive muxes):

• clk, rst_n, ui_in, uio_in are all tied to zero
• uo_out, uio_oe, uio_out are disconnected from the spine (the tristate buffer

output enable is disabled)

Pinout

mprj_io pin Function Signal QFN64 pin
0 Input ui_in[0] 31
1 Input ui_in1 32
2 Input ui_in2 33
3 Input ui_in[3] 34
4 Input ui_in[4] 35

728

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

mprj_io pin Function Signal QFN64 pin
5 Input ui_in[5] 36
6 Input ui_in[6] 37
7 Analog analog[0] 41
8 Analog analog1 42
9 Analog analog2 43
10 Analog analog[3] 44
11 Analog analog[4] 45
12 Analog analog[5] 46
13 Input ui_in[7] 48
14 Input clk † 50
15 Input rst_n † 51
16 Bidirectional uio[0] 53
17 Bidirectional uio1 54
18 Bidirectional uio2 55
19 Bidirectional uio[3] 57
20 Bidirectional uio[4] 58
21 Bidirectional uio[5] 59
22 Bidirectional uio[6] 60
23 Bidirectional uio[7] 61
24 Output uo_out[0] 62
25 Output uo_out1 2
26 Output uo_out2 3
27 Output uo_out[3] 4
28 Output uo_out[4] 5
29 Output uo_out[5] 6
30 Output uo_out[6] 7
31 Output uo_out[7] 8
32 Analog analog[6] 11
33 Analog analog[7] 12
34 Analog analog[8] 13
35 Analog analog[9] 14
36 Analog analog[10] 15
37 Analog analog[11] 16
38 Mux Control ctrl_ena 22
39 Mux Control ctrl_sel_inc 24
40 Mux Control ctrl_sel_rst_n 25
41 Reserved (none) 26
42 Reserved (none) 27
43 Reserved (none) 28

729

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

† Internally, there’s no difference between clk, rst_n, and ui_in pins. They are all
just bits in the pad_ui_in bus. However, we use different names to make it easier to
understand the purpose of each signal.

730

Sponsored by

Team

Tiny Tapeout would not be possible without a lot of people helping. We would espe-
cially like to thank:

• Uri Shaked for wokwi development and lots more
• Patrick Deegan for PCBs, software, documentation and lots more
• Sylvain Munaut for help with scan chain improvements
• Mike Thompson and Mitch Bailey for verification expertise
• Tim Edwards and Harald Pretl for ASIC expertise
• Jix for formal verification support
• Proppy for help with GitHub actions
• Maximo Balestrini for all the amazing renders and the interactive GDS viewer
• James Rosenthal for coming up with digital design examples
• All the people who took part in TinyTapeout 01 and volunteered time to improve

docs and test the flow
• The team at YosysHQ and all the other open source EDA tool makers
• Jeff and the Efabless Team for running the shuttles and providing OpenLane and

sponsorship
• Tim Ansell and Google for supporting the open source silicon movement
• Zero to ASIC course community for all your support
• Jeremy Birch for help with STA

731

https://efabless.com/
https://wokwi.com/
https://psychogenic.com/
https://twitter.com/tnt
https://www.linkedin.com/in/michael-thompson-0a581a/
https://www.linkedin.com/in/mitch-bailey-8ba0b45/
https://www.linkedin.com/in/tim-edwards-4376a18/
https://www.linkedin.com/in/harald-pretl-4911ba10/
https://twitter.com/jix_
https://twitter.com/proppy
https://twitter.com/maxiborga
https://www.yosyshq.com/
https://efabless.com/
https://www.youtube.com/watch?v=EczW2IWdnOM
https://zerotoasiccourse.com/

	Chip map
	Projects
	Chip ROM [0]
	TinyTapeout Factory Test 1
	Trubick - Tiny Tapeout Logic Gate 2
	Andrew Vo - Repository [3]
	tinytapeout [4]
	Half adder [5]
	Samson’s Tiny Tapout Project [6]
	Jacks First Project [7]
	4 x 4 array multiplier NuKoP [8]
	MuxLED [9]
	Tiny Tapeout [10]
	halfadder+not [11]
	Yohan Tiny Tapeout Project [12]
	4-bit Multiplier [13]
	Yared Fente’s Tiny Tapeout [14]
	Metastable Chip [15]
	Secret Initial [32]
	Binary to 7 Segment Display Decoder [33]
	Tahiti [34]
	Letter H [35]
	APTT [36]
	Two PFD [37]
	Zero to Nine Display Count [38]
	Redco [39]
	Light LED [40]
	Matmul System [41]
	Tiny Tapeout-Huerta [42]
	Light [43]
	TinyTapeOut [44]
	Nathan’s chip [45]
	OR gate [46]
	project [47]
	D_flipflop_hold_test [64]
	Dipankar’s first Wowki design [65]
	Bit Counter [66]
	Hamad’s design [67]
	Full bit adder [68]
	Encoder [69]
	Encoder [70]
	GDS [71]
	Big J’s Big Circuit [72]
	2 Bit Times 2 Bit Plus 4 Bit MAD and 5 Bit Binary to 7 Segment Display [73]
	AndLogicPass [74]
	Not Good BCD Decoder [75]
	Half Adder [76]
	tinytapeoutkr [77]
	Jordan [78]
	My First ASIC [79]
	GJAA Design [96]
	8b10b decoder and multiplier [97]
	Logic Gates [98]
	Test Design 1 [99]
	My First TinyTapeout [100]
	Decimation Filter for Incremental and Regular Delta-Sigma Modulators [101]
	1st [102]
	adder-accumulator [103]
	JCB First WOKWI Design [104]
	ECE 298A 8-Bit CPU Control Block [105]
	Logic Gates 7-Segment Display [106]
	LFSR Encrypter [107]
	BadeTP [108]
	SkyKing Demo [109]
	Lynn’s TinyTapeout Design [110]
	Two LIF Neurons with STDP Learning [111]
	4-bit-multiplier [128]
	ece2204_4x4_mult [129]
	my_4bit_multiplier [130]
	T3 (Tiny Ternary Tapeout) [131]
	Hybrid_Adder_8bit [132]
	3 Neuron ALIF [133]
	8-bit Carry Look-Ahead Adder [134]
	2bit adder [135]
	RISC-V Mini [136]
	4-1 mux [137]
	8-bit carry-skip [138]
	STDP Circuit [139]
	4 bit array multiplier [140]
	instrumented_ring_oscillator [141]
	Array Multiplier [142]
	Linear Feedback Shift Register [143]
	Frequency Encoder and Decoder [160]
	TT Test [161]
	carry skip adder [162]
	4-bit up/down binary counter [163]
	xor gate with registered output [164]
	Team 17’s 8 bit DAC [165]
	Multi-LFSR [166]
	ECE2204MultiplierProject [167]
	Micro tile container [168]
	4bit multiplier [169]
	Forward Pass Network for Simple ANN [170]
	Tiny Registers [171]
	7-Segment Byte Display [172]
	Leaky Integrate Fire Neuron [173]
	znah_vga_ca [174]
	Tiny Tapeout Group 7 Lab D [175]
	4-bit Multiplier [192]
	FIREngine [193]
	4x4multiplier [194]
	Lab B Group 1 Array Multiplier [195]
	4-bit Multiplier [196]
	Array Multiplier [197]
	4x4 Multiplier [198]
	4x4 Array Multiplier [199]
	tt09 kathyhtt [200]
	4x4 Array Multiplier [201]
	TINY TAPE OUT [202]
	ECE2204 4x4 Array Multiplier [203]
	TinyTapeout1 [204]
	comparator [205]
	FB GDS [206]
	4x4 Array Multiplier [207]
	Semana UCU Verilog [224]
	4 by 4 Array Multiplier [226]
	4-bit multiplier [228]
	OpenRAM SRAM macro [229]
	Array Multiplier [230]
	VGA Pride [231]
	4-bit Array Multiplier [232]
	Noise test for a CDAC capacitor chain [233]
	ECE-UY 2204 4x4 Array Multiplier [234]
	Analog Switch [235]
	array_multiplier [236]
	Digital OTA [237]
	8-bit-CARRY_SKIP [238]
	Telephone hybrid [239]
	Array Multiplier [256]
	Array multiplier [258]
	Array Multiplier [260]
	1bit_am_sdr [261]
	Array Multiplier [262]
	Time to Digital Converter [263]
	Delta RNN and Leaky Integrate-and-Fire Nueron Circuit [264]
	tt_um_tim2305_adc_dac [265]
	Verilog ring oscillator [266]
	2-bit Flash ADC [267]
	Adaptive Leaky Integrate and Fire Neuron [268]
	pll [269]
	Matmul System [270]
	Analog MUX module [271]
	Steven’s Wokwi Test [288]
	2-Bit-Adder [289]
	8-Bit CPU [290]
	fulladder [291]
	RLE Video Player [292]
	Hopfield Network with Izhikevich-type RS and FS Neurons [293]
	4-bit Multiplier [294]
	Perceptron [295]
	Histogramming [296]
	test_friday2 [297]
	Perceptron Neuron [298]
	carry_select [299]
	I2C and SPI [300]
	Lab C 4x4 Mult-Array [301]
	Configurable Logic Block [302]
	Tiny RAM DFF 2r1w [303]
	ECE-2204 4x4 Array Multiplier [320]
	Senol Gulgonul tt09 [321]
	ECE2204 4x4 Array Multiplier [322]
	Space Detective Maze Explorer [323]
	Array Multiplier [324]
	Hamming Code (7,4) [325]
	ece2204 project for tapeout [326]
	tiny-tapeout-8bit-GPTPrefixCircuit [327]
	4x4 array multiplier [328]
	LIF on a Ring Topology [329]
	4-bit-array-multiplier [330]
	Delta-Sigma ADC Decimation Filter [331]
	Array_Multiplier [332]
	an lfsr with synaptic neurons (excitatory or inhibitatory) [333]
	Generador PWM multiproposito con frecuencia y ciclo de trabajo modulable [334]
	Perceptron [335]
	2_bit_7seg [416]
	Adbe_Project [417]
	8 bit LFSR [418]
	Odd or even [419]
	Broken Two Bit Adder [420]
	Manchester Encoder [421]
	4 bit adder [422]
	Tiny_Tapeout_Adder! [423]
	TinyTapeout workshop - Wokwi 8 Bit LFSR [424]
	Morse Code for J and R [425]
	3bitFullAdder [426]
	XorTree [427]
	Sigma-Delta ADC [428]
	tt09-4bit-adder-dhags [429]
	Mini-Adder and Clock Divider [430]
	7-seg display checker [431]
	Drew’s First Wokwi Design [448]
	Shadoff Test [449]
	Pseudo Random Generator Using 2 Ring Oscillators [450]
	Tiny Tapeout Take 2 [451]
	JonsFirstTapeout [452]
	Speller [453]
	And Gates that don’t do much [454]
	RAYS FIRST TAPEOUT rev 2 [455]
	SimplePattern [456]
	6 Bit shift register [457]
	sphereinabox hello [458]
	Duffy [459]
	Input Counter [460]
	Will It NAND? [461]
	4 bit ALU [462]
	Bad Logic [463]
	Full Adder [481]
	2048 sliding tile puzzle game (VGA) [482]
	TT-Farhad [483]
	Four Bit Adder [485]
	SPI Logic Analyzer with Charlieplexed Display [486]
	2 bit adder [487]
	pio-ram-emulator example: Julia fractal [488]
	AND and NOT gate testing [489]
	Analog 8 bit 3.3v R2R DAC [490]
	Kanoa’s first Wokwi deseign Tinytapeout 2024 Nonsense [491]
	Ring Oscillators [492]
	add it [493]
	AMS Chip ITS [494]
	one [495]
	SIC-1 8-bit SUBLEQ Single Instruction Computer [518]
	4-bit R2R DAC [520]
	Dickson Charge Pump [522]
	Analog double inverter [524]
	OpAmp 3stage [526]
	Counter [544]
	Shifter [545]
	7-bit arbiter [546]
	NAND Flip-Flop [547]
	LCA’s first Wokwi design [548]
	chip [549]
	Tinysynth [550]
	rhTinyTapeout [551]
	half adder [552]
	rand [553]
	Tiny Tapeout 9 Template [554]
	Ripple counter [555]
	four flip flops [556]
	adder-tt09 [557]
	Full Adder [558]
	NAND-Equ [559]
	Elevator Design [576]
	L display [578]
	S-R latch [580]
	Gabe’s Big AND [582]
	Secret Code [584]
	joes-first-tiny-tapeout [586]
	Abey’s 1st Chip Design [588]
	patrick’s project [590]
	tt09-pettit-wokproc-trainer [591]
	Full adder Design [608]
	seven [609]
	Vincent’s First Design [610]
	gatesoup [611]
	A Tale of Two NCOs [612]
	Tiny Tapeout 9 Template Version 1 Tata Luka [613]
	Workshop demo [614]
	UART TX [615]
	LRC - Longitudinal Redundancy Check generator [616]
	my First WokWi Design [617]
	print [618]
	Tiny Tapeout 9 [619]
	hello [620]
	tinydsp-lol [621]
	Full Adder [622]
	Leaky integrate and fire spiking neural network [623]
	Stochastic Integrator [640]
	E2M0 x INT8 Systolic Array [642]
	VGA Nyan Cat [644]
	15 channels emission counter [646]
	Basic Oszilloscope and Signal Generator [648]
	T3 (Tiny Ternary Tapeout) CSA [650]
	CORA-16 [652]
	ITS-RISCV [654]
	16 Bit Izhikevich Neuron [672]
	Giant Ring Oscillator (3853 inverters) [673]
	dff_mem [674]
	Lab B Group 10 Array Multiplier [675]
	Verilog ring oscillator V2 [676]
	TwoChannelSquareWaveGenerator [677]
	Basic model for Systollic array implementation of LIF [678]
	RGB Mixer demo [679]
	mips.sv [680]
	VGA clock [681]
	gta6 [682]
	8-bit CBILBO [683]
	Name Speller [684]
	Michaels Tiny Tapeout ALU [685]
	2-bit Full Adder [686]
	ovl abc chip [687]
	Simon’s Caterpillar [704]
	tt6502 [706]
	Oscillating Bones [708]
	SoCET UART with FIFO buffers [710]
	VGA Drop (audio/visual demo) [712]
	Warp [714]
	Sequential Shadows [TT08 demo competition] [716]
	achasen workshop validation [718]
	7-Segment Digital Desk Clock [736]
	TinySnake [737]
	Basic Perceptron + ReLU [738]
	Classic 8-bit era Programmable Sound Generator SN76489 [739]
	Basic Matrix-Vector Multiplication [740]
	Classic 8-bit era Programmable Sound Generator AY-3-8913 [741]
	8 bit MAC Unit [742]
	Cgates [743]
	Programmable PWM Generator [744]
	eksdee [745]
	Verilog test project [746]
	ternary, E1M0, E2M0 decoders [747]
	Basic LIF Neuron [748]
	Dynamic Threshold Leaky Integrate-and-Fire [749]
	Integrate-and-Fire Neuron Circuit [750]
	tt09-C6-array-multiplier [751]
	Zilog Z80 [770]
	Spectrogram extractor, 2 channels [782]
	Encoder [800]
	chip_fab [801]
	Clocked Display [802]
	YoshiTP [803]
	A simple leaky integrate and fire neuron [804]
	Who knows what’s happening Tiny Tapeout [805]
	VGA Tiny Logo (1 tile) [806]
	Tiniest of tapeouts [807]
	SK Test Workshop [808]
	Tian TT9 [809]
	2-bit 2x2 Matrix Multiplier [810]
	RISCV Processor Design [811]
	Verilog ring oscillator V3 [812]
	Test_project [813]
	4-Bit Toy CPU [814]
	RISCV Processor Design [815]
	APA102 to WS2812 Translator [832]
	Collatz conjecture brute-forcer [834]
	TT09 SKY130 ROM Test [836]
	TT09 SKY130 ROM Test (no LVT variant) [838]
	PID Controller [840]
	Frequency Counter SSD1306 OLED [842]
	Basys 3 Over UART Link [844]
	Tiny 1-bit AM Radio [846]
	Encoder [864]
	dummy [865]
	First Tapeout Chip - OCR [866]
	sarah’s first chip [867]
	Half Adder [868]
	tiny cipher 4 bit key [869]
	Kai’s Death Adder [870]
	2 input multiplexor [871]
	Kevin Project [872]
	Tutorial: Simple LIF Neuron [873]
	Leaky Neuron Network [874]
	Neuromorphic Hardware for SNN LSTM [876]
	Project [878]
	Hardware UTF Encoder/Decoder [897]
	BINCounterAndGates [899]
	Color Bars [901]
	Fuzzy Search Engine [903]
	TT09Ball GDS Art [905]
	Simon Says memory game [907]
	TT09Ball VGA Screensaver [909]
	ChatGPT-generated Spiking Neural Network with Delays [910]
	32x8 LED Matrix Animation [911]
	8b10b decoder and multiplier [961]
	Styler [963]
	VGA Timing Experiments [965]
	Universal Binary to Segment Decoder [967]
	INTERCAL ALU [969]
	Simple PWM Module [971]
	freqSweep [973]
	Atari 2600 [974]
	LED Bitserial Cipher [975]

	Pinout
	The Tiny Tapeout Multiplexer
	Overview
	Operation
	Pinout

	Sponsored by
	Team

