
Tiny Tapeout GF 0.2
Datasheet

github.com/TinyTapeout/tinytapeout-gf-0p2

November 24, 2025

https://github.com/TinyTapeout/tinytapeout-gf-0p2

Table of Contents
Projects . 1

0000 Chip ROM . 2

0001 Tiny Tapeout Factory Test . 4

0032 Zedulo TestChip1 . 6

0033 Wafer.space Logo VGA Screensaver . 7

0038 Wildcat RISC-V . 9

0039 TinyQV Risc-V SoC . 10

0101 SCµM-BLE-RX . 14

0102 Silly-Faust . 16

0103 Simon's Caterpillar . 18

0128 VGA clock . 20

0129 2x2 MAC Systolic array with DFT . 21

0130 USB CDC (Serial) Device . 22

0134 VGA Drop (audio/visual demo) . 23

0135 raybox-zero TTGF0p2 edition . 24

0194 2048 sliding tile puzzle game (VGA) . 27

0196 Quickscope . 29

0197 LISA 8-Bit Microcontroller . 30

0198 easy PAL . 48

0199 VGA Nyan Cat . 52

0288 Notre Dame - Lockpick Game TT Example . 54

0295 KianV uLinux SoC . 55

0358 Notre Dame - CSE 30342 - DIC - Advanced FSM Final Project
Example . 58
0359 Simple RISC-V . 61

0384 LEDs Racer . 62

TTGF0P2 Table of Contents i

0385 Frequency Counter SSD1306 OLED . 63

0391 megabytebeat . 64

0451 Asicle v2 . 66

0454 CAN Controller for Rocket . 69

0455 Zilog Z80 . 71

0481 ROTFPGA v2 . 75

0483 7-Segment Digital Desk Clock . 83

0485 MarcoPolo . 85

0487 Linear Timecode (LTC) generator . 87

0513 Classic 8-bit era Programmable Sound Generator SN76489 89

0515 VGA Tiny Logo . 97

0517 Ring Oscillator (5 inverter) . 98

0519 Simon Says memory game . 99

0545 Flame demo . 102

0547 WokwiPWM . 104

0549 Dog Battle Game . 107

0551 PVTMonitorSuite . 109

0577 PILIPINAS_IC . 112

0579 PRISM 8 with TinySnake . 114

0581 Register bank accessible through SPI and I2C . 121

0583 Cell mux . 124

0609 Super-Simple-SPI-CPU . 125

0610 Example of Bad Synchronizer . 126

0611 Video mode tester . 127

0612 One Bit PUF . 130

0613 DDR throughput and flop aperature test . 132

0614 Ring osc on VGA . 134

ii Table of Contents TTGF0P2

0615 GF180MCU loopback tile with input skew measurement 137

Pinout . 138
The Tiny Tapeout Multiplexer . 139

Overview . 139
Operation . 139
Pinout . 142

Team . 144
Using This Datasheet . 145

Structure . 145
Badges . 145
Callouts . 146
Figures & Footnotes . 146
Updates . 146

Where is your design? . 147

TTGF0P2 Table of Contents iii

Projects

1 Projects TTGF0P2

Chip ROM
by Uri Shaked

0000 HDL Project

github.com/TinyTapeout/tt-chip-rom

“ROM with information about the chip”

How it works
ROM memory that contains information about the Tiny Tapeout chip. The
ROM is 8-bit wide and 256 bytes long.

The ROM layout
The ROM layout is as follows:

Address Length Encoding Description
0 8 7-segment Shuttle name (e.g. “tt07”), null-padded
8 8 7-segment Git commit hash
32 96 ASCII Chip descriptor (see below)

248 4 binary Magic value: "TT\xFA\xBB"
252 4 binary CRC32 of the ROM contents, little-endian

The chip descriptor
The chip descriptor is a simple null-terminated string that describes the chip.
Each line is a key-value pair, separated by an equals sign. It contains the
following keys:

Key Description Example value
shuttle The identifier of the shuttle tt07

repo The name of the repository TinyTapeout/tinytapeout-07
commit The commit hash * a1b2c3d4

* The commit hash is only included for Tiny Tapeout 5 and later.

Here is a complete example of a chip descriptor:

shuttle=tt07
repo=TinyTapeout/tinytapeout-07
commit=a1b2c3d4

TTGF0P2 Projects 2

https://github.com/TinyTapeout/tt-chip-rom

How the ROM is generated
The ROM is automatically generated by tt-support-tools while building the
final GDS file of the chip. Look at the rom.py file in the repository for more
details.

Reading the ROM
There are two ways to address ROM, depending on the value of the rst_n pin:

1. When rst_n is high: Set the ui_in pins to the desired address.
2. When rst_n is low: Toggle the clk pin to read the ROM contents sequen-

tially, starting from address 0.

In both cases, the ROM data for the selected address will be available on the
uo_out pins, one byte at a time.

How to test
The first 16 bytes of the ROM are 7-segment encoded and contain the shuttle
name and commit hash. You can dump them by holding rst_n low and
toggling the clk pin, and observing the on-board 7-segment display.

Alternatively, you can keep rst_n high and set the ui_in pins to the desired
address using the first four on-board DIP switches, while observing the on-
board 7-segment display.

Project Pinout
Digital Pins

Input Output Bidirectional
0 addr[0] data[0] —
1 addr[1] data[1] —
2 addr[2] data[2] —
3 addr[3] data[3] —
4 addr[4] data[4] —
5 addr[5] data[5] —
6 addr[6] data[6] —
7 addr[7] data[7] —

3 Projects TTGF0P2

https://github.com/TinyTapeout/tt-support-tools

Tiny Tapeout Factory Test
by Tiny Tapeout

0001 HDL Project

github.com/TinyTapeout/ttgf0p2-factory-test

“Factory test module”

How it works
The factory test module is a simple module that can be used to test all the I/
O pins of the ASIC.

It has three modes of operation:

1. Mirroring the input pins to the output pins (when rst_n is low).
2. Mirroring the bidirectional pins to the output pins (when rst_n is high

sel is low).
3. Outputing a counter on the output pins and the bidirectional pins (when

rst_n is high and sel is high).

The following table summarizes the modes:

rst_n sel Mode uo_out value uio pins
0 X Input mirror ui_in High-Z
1 0 Bidirectional mirror uio_in High-Z
1 1 Counter counter counter

The counter is an 8-bit counter that increments on every clock cycle, and
resets when rst_n is low.

How to test
1. Set rst_n low and observe that the input pins (ui_in) are output on the

output pins (uo_out).
2. Set rst_n high and sel low and observe that the bidirectional pins

(uio_in) are output on the output pins (uo_out).
3. Set sel high and observe that the counter is output on both the output

pins (uo_out) and the bidirectional pins (uio).

TTGF0P2 Projects 4

https://github.com/TinyTapeout/ttgf0p2-factory-test

Project Pinout
Digital Pins

Input Output Bidirectional
0 sel / in_a[0] output[0] / counter[0] in_b[0] / counter[0]
1 in_a[1] output[1] / counter[1] in_b[1] / counter[1]
2 in_a[2] output[2] / counter[2] in_b[2] / counter[2]
3 in_a[3] output[3] / counter[3] in_b[3] / counter[3]
4 in_a[4] output[4] / counter[4] in_b[4] / counter[4]
5 in_a[5] output[5] / counter[5] in_b[5] / counter[5]
6 in_a[6] output[6] / counter[6] in_b[6] / counter[6]
7 in_a[7] output[7] / counter[7] in_b[7] / counter[7]

5 Projects TTGF0P2

Zedulo TestChip1
by Zedulo

0032 HDL Project

github.com/ZeduloTech/ttgf-zed_tc1

“Integration of UART and SPI IP's”

How it works
See README.md

How to test
Use e.g TTL-232 to UART interface such that bytes sent via UART to UART_RX
and observe SPI transfers on SPI_SCL, SPI_CS, and SPI_MOSI. Data returned
from SPI is echo via UART_TX.

Project Pinout
Digital Pins

Input Output Bidirectional
0 UART_RX UART_TX —
1 SPI_MISO SPI_SCL —
2 — SPI_CS —
3 — SPI_MOSI —
4 — — —
5 — — —
6 — — —
7 — — —

TTGF0P2 Projects 6

https://github.com/ZeduloTech/ttgf-zed_tc1

Wafer.space Logo VGA Screensaver
by Uri Shaked

0033 25.175 MHz HDL Project

github.com/TinyTapeout/tt-waferspace-vga-screensaver

“Wafer.space Logo bouncing around the screen (640x480, TinyVGA
Pmod)”

How it works
Displays a bouncing Wafer.space logo on the screen, with an animated color
gradient.

Figure 33.1: Wafer.space VGA screensaver

How to test
Connect to a VGA monitor. Set the following inputs to configure the design:

• tile (ui_in[0]) to repeat the logo and tile it across the screen,
• solid_color (ui_in[1]) to use a solid color instead of an animated gradient.

If you have a Gamepad Pmod connected, you can also use the following
controls:

• Start button: start/pause bouncing
• Left/right/up/down: change the bouncing direction (if bouncing) or move

the logo around the screen (if paused)

7 Projects TTGF0P2

https://github.com/TinyTapeout/tt-waferspace-vga-screensaver

External hardware
• Tiny VGA Pmod
• Optional: Gamepad Pmod

Project Pinout
Digital Pins

Input Output Bidirectional
0 tile R1 —
1 solid_color G1 —
2 — B1 —
3 — VSync —
4 gamepad_latch R0 —
5 gamepad_clk G0 —
6 gamepad_data B0 —
7 — HSync —

TTGF0P2 Projects 8

https://github.com/mole99/tiny-vga
https://github.com/psychogenic/gamepad-pmod

Wildcat RISC-V
by Martin Schoeberl

0038 25 MHz HDL Project

github.com/schoeberl/ttgf-wildcat

“Wildcat: a 3-stage RISC-V implementation”

How it works
It is an educational RISC-V core. This tapeout contains the bare minimum: an
assembler coded blinking LED (In fact it counts up and displays the value on
the 7-segment display).

How to test
Just let it run and see the 7-segment display counting up.

External hardware
None

Project Pinout
Digital Pins

Input Output Bidirectional
0 in0 out0 inout0
1 in1 out1 inout1
2 in2 out2 inout2
3 in3 out3 inout3
4 in4 out4 inout4
5 in5 out5 inout5
6 in6 out6 inout6
7 in7 out7 inout7

9 Projects TTGF0P2

https://github.com/schoeberl/ttgf-wildcat

TinyQV Risc-V SoC
by Michael Bell

0039 24 MHz HDL Project

github.com/MichaelBell/ttgf0p2-tinyQV

“A Risc-V SoC for Tiny Tapeout”

How it works

TinyQV is a small Risc-V SoC, implementing the RV32EC instruction set plus
the Zcb and Zicond extensions, with a couple of caveats:

• Addresses are 28-bits
• Program addresses are 24-bits
• gp is hardcoded to 0x1000400, tp is hardcoded to 0x8000000.

Instructions are read using QSPI from Flash, and a QSPI PSRAM is used for
memory. The QSPI clock and data lines are shared between the flash and the
RAM, so only one can be accessed simultaneously.

Code can only be executed from flash. Data can be read from flash and RAM,
and written to RAM.

Many of the peripherals making up the SoC are contributed by the Tiny
Tapeout community!

Address map
Address range Device

0x0000000 - 0x0FFFFFF Flash
0x1000000 - 0x17FFFFF RAM A
0x1800000 - 0x1FFFFFF RAM B

0x8000000 - 0x8000033 DEBUG
0x8000040 - 0x800007F GPIO
0x8000080 - 0x80000BF UART
0x80000C0 - 0x80001FF User peripherals 3-7
0x8000400 - 0x800043F Simple user peripherals 0-3
0xFFFFF00 - 0xFFFFF07 TIME

DEBUG

Register Address Description

TTGF0P2 Projects 10

https://github.com/MichaelBell/ttgf0p2-tinyQV

ID 0x8000008 (R) Instance of TinyQV: 0x41 (ASCII
A)

SEL 0x800000C (R/W) Bits 6-7 enable peripheral
output on the corresponding

bit on out6-7, otherwise out6-7
is used for debug.

DEBUG_UART_DATA 0x8000018 (W) Transmits the byte on the
debug UART

STATUS 0x800001C (R) Bit 0 indicates whether the
debug UART TX is busy, bytes
should not be written to the
data register while this bit is

set.

See also debug docs

TIME

Register Address Description
MTIME_DIVIDER 0x800002C MTIME counts at clock /

(MTIME_DIVIDER + 1). Bits 0 and 1
are fixed at 1, so multiples of 4MHz

are supported.
MTIME 0xFFFFF00 (RW) Get/set the 1MHz time count

MTIMECMP 0xFFFFF04 (RW) Get/set the time to trigger the timer
interrupt

This is a simple timer which follows the spirit of the Risc-V timer but using a
32-bit counter instead of 64 to save area. In this version the MTIME register is
updated at 1/64th of the clock frequency (nominally 1MHz), and MTIMECMP
is used to trigger an interrupt. If MTIME is after MTIMECMP (by less than 2^30
microseconds to deal with wrap), the timer interrupt is asserted.

GPIO

Register Address Description
OUT 0x8000040 (RW) Control for out0-7 if the

GPIO peripheral is
selected

IN 0x8000044 (R) Reads the current state
of in0-7

AUDIO_FUNC_SEL 0x8000050 (RW) Audio function select for
uo7

11 Projects TTGF0P2

debug.md

FUNC_SEL 0x8000060 - 0x800007F
(RW)

Function select for
out0-7

Function Select Peripheral
0 Disabled
1 GPIO
2 UART

3 - 15 User peripheral 3-15
16 - 31 User byte peripheral 0-15
32 - 39 User peripheral 16-23

Audio function select Peripheral
0-3 PSRAM B enabled
4 5 PWL Synth out 7
5 4 Pulse Transmitter out 7
6 ?
7 18 Matt PWM out 7

UART

Register Address Description
TX_DATA 0x8000080 (W) Transmits the byte on the UART
RX_DATA 0x8000080 (R) Reads any received byte
TX_BUSY 0x8000084 (R) Bit 0 indicates whether the UART TX is

busy, bytes should not be written to the
data register while this bit is set. Bit 1
indicates whether a received byte is

available to be read.
DIVIDER 0x8000088 (R/W) 13 bit clock divider to set the UART baud

rate
RX_SELECT 0x800008C (R/W) 1 bit select UART RX pin: ui_in[7] when

low (default), ui_in[3] when high

How to test

Load an image into flash and then select the design.

Reset the design as follows:

• Set rst_n high and then low to ensure the design sees a falling edge of
rst_n. The bidirectional IOs are all set to inputs while rst_n is low.

TTGF0P2 Projects 12

• Program the flash and leave flash in continuous read mode, and the
PSRAMs in QPI mode

• Drive all the QSPI CS high and set SD1:SD0 to the read latency of the QSPI
flash and PSRAM in cycles. SD2 selects whether half a cycle is subtracted
from the read latency by driving the SPI clock on the negative edge.

• Clock at least 8 times and stop with clock high
• Release all the QSPI lines
• Set rst_n high
• Set clock low
• Start clocking normally

At the target 24MHz clock a read latency of 1.5 is probably best (SD2:SD0 =
0b110). The maximum supported latency is 3.

The above should all be handled by some MicroPython scripts for the RP2 on
the TT demo PCB.

Build programs using the customised toolchain and the tinyQV-sdk, some
examples are here.

External hardware

The design is intended to be used with this QSPI PMOD on the bidirectional
PMOD. This has a 16MB flash and 2 8MB RAMs.

The UART is on the correct pins to be used with the hardware UART on the
RP2040 on the demo board.

It may be useful to have buttons to use on the GPIO inputs.

Project Pinout
Digital Pins

Input Output Bidirectional
0 Interrupt 0 UART TX Flash CS
1 Interrupt 1 UART RTS SD0
2 SPI MISO SPI DC SD1
3 1 MHz clock for time SPI MOSI SCK
4 Game controller latch SPI CS SD2
5 Game controller clock SPI SCK SD3
6 Game controller data Debug UART TX RAM A CS
7 UART RX Debug signal / PWM RAM B CS / PWM

13 Projects TTGF0P2

https://github.com/MichaelBell/riscv-gnu-toolchain
https://github.com/MichaelBell/tinyQV-sdk
https://github.com/MichaelBell/tinyQV-projects
https://github.com/mole99/qspi-pmod

SCµM-BLE-RX
by Dingyu Zhou

0101 16 MHz HDL Project

github.com/ZDYnb/ttgf-BLE_Receiver

“Digital Baseband for SCµM3 BLE”

How it works
This project implements a Bluetooth Low Energy (BLE) digital baseband
receiver designed for the SCuM (Single-Chip µ-Mote) platform (https://
crystalfree.atlassian.net/wiki/spaces/SCUM/overview). The receiver takes I/Q
samples from the SCuM RF front-end (or any compatible I/Q-sample inter-
face), processes incoming BLE signals in real time, and performs packet
decoding to extract BLE packets.

Core processing stages:

• Matched filtering for GFSK demodulation and bit extraction
• Clock and data recovery for symbol-timing synchronization
• Preamble-detection module for identifying the start of a received BLE

packet
• Packet-sniffer module that performs bit de-whitening, CRC checking,

and detection of complete BLE packets

How to test
Connect the SCuM chip’s I/Q sampling outputs to the BLE digital baseband
receiver. Configure the SCuM RF front-end to receive BLE packets, and then
observe the decoded packet data on a computer through the Tiny Tapeout
chip’s output interface.

External hardware
• SCuM Chip – Serves as the RF front-end and BLE transmitter/receiver

interface.
• Digital Discovery – Used for signal probing, debugging, and verification.
• Computer – Handles serial communication, visualization, and data log-

ging.

TTGF0P2 Projects 14

https://github.com/ZDYnb/ttgf-BLE_Receiver
https://crystalfree.atlassian.net/wiki/spaces/SCUM/overview
https://crystalfree.atlassian.net/wiki/spaces/SCUM/overview

Project Pinout
Digital Pins

Input Output Bidirectional
0 I_BPF[0] demod_symbol channel_sel[0] (input)
1 I_BPF[1] demod_symbol_clk channel_sel[1] (input)
2 I_BPF[2] packet_detected I_BPF_echo[0] (output)
3 I_BPF[3] preamble_detected I_BPF_echo[1] (output)
4 Q_BPF[0] ena_sync I_BPF_echo[2] (output)
5 Q_BPF[1] rst I_BPF_echo[3] (output)
6 Q_BPF[2] Q_BPF_echo[0] Q_BPF_echo[2] (output)
7 Q_BPF[3] Q_BPF_echo[1] Q_BPF_echo[3] (output)

15 Projects TTGF0P2

Silly-Faust
by Louis Ledoux & Cochard Pierre

0102 44.1 kHz HDL Project

github.com/Bynaryman/ttgf0p2-faust-mlir-silicon

“Trial to use the audio circuit compiler for open silicon”

How it works
TTGF0P2 compiles the one-line Faust soft clipper softclip(x) =

tanh(3x) / tanh(3) into silicon. The flow snapshots every MLIR stage in
src/20251113-120748-faust-tanh-softclip-switchcase/stages, which mir-
rors the pipeline below:

1. Stage 00 – Faust frontend. Capture the canonical Faust AST with
faust.graph ops.

2. Stage 10 – Real arithmetic. --faust-to-core-real-arith
--configure-faust-real-arith="config=hls-driver/pipelines/tanh-

softclip-8bit-config.json" tags the input domain [-1, 1] and keeps
the DSP in symbolic real form.

3. Stage 20 – Uniform piecewise fixed-point. --realarith-to-

fixed_pt_arith subdivides the domain into eight regions, emits Horner
coefficients per region, and keeps all truncations explicit.

4. Stage 30 – FixedPointArith to Arith. --fixed_pt_arith-to-arith
rewrites everything into arith + scf so the datapath is purely integer.

5. Stage 40/50/55 – Switch normalization and CF prep. --switch-to-
if, --convert-scf-to-cf, and --strip-real-arith-arg-attrs sanitize
control flow before Dynamatic lowers the result to handshake/RTL.

The resulting RTL lives in src/faust_core.v and is wrapped by
tt_um_gf0p2_faust_top, which multiplexes between an internal ramp and
the external sample bus. ui_in[0] selects the source (0 = internal ramp, 1 =
external data on ui_in[7:1]), and the 8-bit result appears on uo_out, ready
to drive an R-2R ladder.

How to test
1. Install the Python requirements (pip install -r test/

requirements.txt).
2. Run make -C test for the full Cocotb suite or make -C test sim for the

Icarus-only path.
3. Inspect test/results.xml or test/tb.vcd for pass/fail information and

waveforms.

TTGF0P2 Projects 16

https://github.com/Bynaryman/ttgf0p2-faust-mlir-silicon

The regression toggles between the internal ramp and external stimulus to
ensure the Horner pipeline matches the saved MLIR snapshots.

External hardware
• Attach the 8-bit Tiny Tapeout DAC (or Digilent Pmod R-2R) to uo[7:0] for

line-level audio.
• Provide an optional external 7-bit sample stream on ui[7:1] (MSB on
ui[7]) and raise ui[0] to route it through the Faust core.

• Keep every uio pin unconnected; they remain inputs inside the design.

The Pmod R-2R documentation: https://digilent.com/reference/pmod/
pmodr2r/start

Project Pinout
Digital Pins

Input Output Bidirectional
0 src_sel (0=ramp,1=external) dac_out[0] nc (input only)
1 ext_sample[0] dac_out[1] nc (input only)
2 ext_sample[1] dac_out[2] nc (input only)
3 ext_sample[2] dac_out[3] nc (input only)
4 ext_sample[3] dac_out[4] nc (input only)
5 ext_sample[4] dac_out[5] nc (input only)
6 ext_sample[5] dac_out[6] nc (input only)
7 ext_sample[6] (MSB) dac_out[7] (MSB) nc (input only)

17 Projects TTGF0P2

https://digilent.com/reference/pmod/pmodr2r/start
https://digilent.com/reference/pmod/pmodr2r/start

Simon's Caterpillar
by htfab

0103 50 kHz HDL Project

github.com/htfab/ttgf0p2-caterpillar

“Port of Caterpillar Logic to Simon Says PMOD”

How it works
Simon’s Caterpillar is a re-implementation of the game Caterpillar Logic by
Fuks Michael targeting Tiny Tapeout with the Simon Says PMOD.

The game consists of 20 levels. Each level has a secret rule that is valid for
certain sequences of colors. For instance, if the rule is “contains exactly two
yellow tokens” then blue-yellow-green-yellow is a valid sequence and yellow-
red-blue is an invalid one.

A new level starts in exploration mode. You can ask an unlimited number
of questions where you learn whether a particular sequence is valid or not.
Once you know the rule you can activate challenge mode. Now the roles are
reversed and the game asks you 15 questions. If you can answer all of them
correctly, you advance to the next level.

How to test
Set the clock to 50 kHz. Activate and reset the project. The 7-segment display
should indicate level 1 and only the blue led should light up. You are in explo-
ration mode.

Exploration mode
A sequence of up to 7 colors can be typed into the buffer with short presses
of the buttons. The leds indicate the sequence status in real time:

• red: sequence is invalid
• green: sequence is valid
• blue: buffer is empty
• yellow: buffer is full

(The empty sequence is neither valid nor invalid.)

Further operations are available as long button presses or a combination of
two buttons:

• long-press red: clear buffer
• long-press yellow: erase last color from buffer (“backspace”)
• long-press blue: show buffer contents (as a series of led flashes)

TTGF0P2 Projects 18

https://github.com/htfab/ttgf0p2-caterpillar
https://github.com/gromozeka1980/kivy_contest_2014/tree/master/caterpillars
https://github.com/urish/tt-simon-pmod/

• long-press green: activate challenge mode
• short-press green & yellow: show a random valid sequence (and load into

buffer)
• short-press red & blue: show a random invalid sequence (and load into

buffer)
• short-press blue & yellow: switch to next level
• short-press red & green: switch to previous level
• short-press green & blue: toggle sound

Challenge mode
A sequence of up to 6 colors is shown as a series of led flashes. Press the green
or red button to mark it as valid or invalid respectively.

Each correct answer adds a notch (turns on a new segment on the 7-
segment display). After the 15th one the next level is loaded. An incorrect
answer switches back to exploration mode.

Other keys and combinations:

• short-press or long-press blue: repeat the current question
• short-press red & yellow: switch back to exploration mode
• short-press blue & yellow: add a notch
• short-press red & green: remove a notch
• short-press green & blue: toggle sound

External hardware
Simon Says PMOD

Project Pinout
Digital Pins

Input Output Bidirectional
0 red button red led segment A
1 green button green led segment B
2 blue button yellow led segment C
3 yellow button blue led segment D
4 display polarity speaker segment E
5 — digit 1 segment F
6 — digit 2 segment G
7 — — —

19 Projects TTGF0P2

VGA clock
by Matt Venn

0128 31.5 MHz HDL Project

github.com/mattvenn/GF180-VGA-clock-waferspace

“Shows the time on a VGA screen”

How it works
Races the beam! Font is pre generated and loaded into registers. 6 bit colour
keeps register count low.

Every minute the colours cycle.

How to test
Hook up a VGA monitor to the outputs and provide a clock at 31.5 MHz.

Adjust time with the inputs[2:0], and choose the type of VGA PMOD with the
input[3].

External hardware
VGA PMOD - you can use one of these VGA PMODs:

• https://github.com/mole99/tiny-vga
• https://github.com/TinyTapeout/tt-vga-clock-pmod

Set input[3] low to use tiny-vga and high to use vga-clock

Project Pinout
Digital Pins

Input Output Bidirectional
0 adjust hours hsync / R1 —
1 adjust minutes vsync / G1 —
2 adjust seconds B0 / B1 —
3 PMOD type select B1 / VS —
4 — G0 / R0 —
5 — G1 / G0 —
6 — R0 / B0 —
7 — R1 / HS —

TTGF0P2 Projects 20

https://github.com/mattvenn/GF180-VGA-clock-waferspace
https://github.com/mole99/tiny-vga
https://github.com/TinyTapeout/tt-vga-clock-pmod

2x2 MAC Systolic array with DFT
by Julia Desmazes

0129 50 MHz HDL Project

github.com/Essenceia/Systolic_MAC_with_DFT

“2x2 multiply and accumulate systolic array supporting signed 8 bit
values with design for test infrastructure.”

Multiply and accumulate matrix multiplier ASIC with design for test infrac-
ture

ASIC design for a 2x2 systolic matrix multiplier supporting multiply and
accumulate operations on int8 data alongside a design for test infrastructure
to help debug both usage and diagnose design issues in silicon.

MAC

For faster multiplication we are using the booth radix4 algorythme with
wallace trees.

If the result of the MAC operation w*i + a exeeds the ranges of the int8, they
will be clamped to int8_min and int8_max.

Project Pinout
Digital Pins

Input Output Bidirectional
0 tck result_o data_i[7]
1 data_i[0] result_o data_valid_i
2 data_i[1] result_o data_mode_i
3 data_i[2] result_o data_rst_addr_i
4 data_i[3] result_o tdi
5 data_i[4] result_o tms
6 data_i[5] result_o tdo
7 data_i[6] result_o result_v_o

21 Projects TTGF0P2

https://github.com/Essenceia/Systolic_MAC_with_DFT

USB CDC (Serial) Device
by Uri Shaked

0130 48 MHz HDL Project

github.com/urish/tt-usbcdc-device

“USB to UART bridge, 115200 baud rate”

How it works
A USB CDC to UART bridge, based on tinyfpga_bx_usbserial.

How to test
1. Connect usb_p and usb_n pins to D+ / D- USB pins either through

68 ohm resistors or directly (the resistors are recommended, but not
mandatory).

2. Connect a 1.5k ohm resistor between dp_pu_o and usb_p (D+).
3. Connect the RX and TX pins to a UART device or to a logic analyzer.
4. Set the clock frequency to 48 MHz.

The device should appear as a serial port on your computer, with
vendor_id=1209 and product_id=5454 (https://pid.codes/1209/5454/). The
baud rate for the UART interface is hardcoded at 115200.

External Hardware
USB breakout board, 1.5k ohm resistor

Project Pinout
Digital Pins

Input Output Bidirectional
0 — — usb_p
1 — — usb_n
2 — — dp_pu_o
3 RX — —
4 — TX —
5 — — —
6 — — —
7 — configured —

TTGF0P2 Projects 22

https://github.com/urish/tt-usbcdc-device
https://github.com/davidthings/tinyfpga_bx_usbserial
https://pid.codes/1209/5454/

VGA Drop (audio/visual demo)
by ReJ aka Renaldas Zioma, eriQue aka Erik Hemming & Matthias Kampa

0134 25.175 MHz HDL Project

github.com/rejunity/tt08-vga-drop

“Tiny 8 part Megademo! TBL^Nesnausk^SonikClique”

How it works
Compressed VGA Logo

How to test
Connect to VGA monitor and run it!

External hardware
TinyVGA PMOD, VGA monitor

Project Pinout
Digital Pins

Input Output Bidirectional
0 — TinyVGA PMOD - R1 Audio (PWM)
1 — TinyVGA PMOD - G1 Audio (PWM)
2 — TinyVGA PMOD - B1 Audio (PWM)
3 — TinyVGA PMOD - VSync Audio (PWM)
4 — TinyVGA PMOD - R0 Audio (PWM)
5 — TinyVGA PMOD - G0 Audio (PWM)
6 — TinyVGA PMOD - B0 Audio (PWM)
7 — TinyVGA PMOD - HSync Audio (PWM)

23 Projects TTGF0P2

https://github.com/rejunity/tt08-vga-drop

raybox-zero TTGF0p2 edition
by algofoogle (Anton Maurovic)

0135 25.175 MHz HDL Project

github.com/algofoogle/ttgf0p2-raybox-zero

“TTGF0p2 v1.8-dev submission of 'simple VGA ray caster game demo'
from TT07/TTCAD25a”

Figure 135.1: TTGF0p2 raybox-zero showing 3D views including textures and
doors

How it works
This is an experimental GF180 (gf180mcuD Open PDK) updated submission
of ttcad25a-raybox-zero (an updated version of tt07-raybox-zero, from the
raybox-zero project).

This project is a framebuffer-less VGA display generator (i.e. it is ‘racing the
beam’) that produces a simple implementation of a “3D”-like ray casting
game engine… just the graphics part of it. It is inspired by Wolfenstein 3D,
using a map that is a grid of wall blocks, with basic texture mapping.

This version features textured walls (internally-generated or from off-chip
QSPI memory), optional doors (sliding panels), flat-coloured floor and ceiling,
and a variety of other rendering “hacks” for other simple visual effects. No
sprites yet, sorry. Maybe that will come in a future version.

TTGF0P2 Projects 24

https://github.com/algofoogle/ttgf0p2-raybox-zero
https://github.com/algofoogle/ttcad25a-raybox-zero
https://github.com/algofoogle/tt07-raybox-zero
https://github.com/algofoogle/raybox-zero

The ‘player’ POV (“point of view”) registers allow the player position, facing
X/Y vector, and viewplane X/Y vector in one go, and (along with other visual
effects registers) are controlled by a single SPI interface.

NOTE: To optimise the design and make it work without a framebuffer, this
renders what is effectively a portrait view, rotated. A portrait monitor (i.e. one
rotated 90 degrees anti-clockwise) will display this like the conventional first-
person shooter view, but it could still be used in a conventional landscape
orientation if you imagine it is for a game where you have a first-person
perspective of a flat 2D platformer, endless runner, “Descent-style” game,
whatever.

TBC. Please contact me if you want to know something in particular and I’ll
put it into the documentation!

How to test
TBC. Please contact me if you want to know something in particular and I’ll
put it into the documentation!

Supply a clock in the range of 21-31.5MHz; 25.175MHz is ideal because this is
meant to be “standard” VGA 640x480@59.94Hz, and note that the design
may not be stable above that.

Start with gen_texb set low, to use internally-generated textures. You can
optionally attach an external QSPI memory (tex_...) for texture data instead,
and then set gen_texb high to use it.

tex_pmod_type should be set to 0 when using Leo Moser’s Tiny QSPI PMOD,
or 1 for a Digilent QSPI PMOD.

Ideally the reg input should be high to make the VGA outputs registered.
Otherwise, they are just as they come out of internal combo logic, which may
not always meet timing (and hence might be unstable). I’ve done it this way
so I can test the difference (if any).

debug can be asserted to show current state of POV (point-of-view) registers,
which might come in handy when trying to debug SPI writes.

inc_px and inc_py can be set high to continuously increment their respective
player X/Y position register. Normally the registers should be updated via SPI,
but this allows someone to at least see a demo in action without having to
implement the SPI host controller. NOTE: Using either of these will suspend
POV updates via SPI.

Unlike the TT07 version, this one combines the two separate SPI peripheral
interfaces into one, allowing both the POV and other registers to be updated
from the same interface.

25 Projects TTGF0P2

mailto:640x480@59.94Hz

External hardware
Tiny VGA PMOD on dedicated outputs (uo).

Optional SPI controllers to drive ui_in[2:0].

Optional external SPI ROM for textures.

TBC. Please contact me if you want to know something in particular and I’ll
put it into the documentation!

Project Pinout
Digital Pins

Input Output Bidirectional
0 spi_sck red[1] Out: digilent_tex_csb / Out: moser_tex_csb
1 spi_sdi green[1] I/O: digilent_tex_io0 / I/O: moser_tex_io0
2 spi_csb blue[1] In: digilent_tex_io1 / In: moser_tex_io1
3 debug vsync_n Out: digilent_tex_sclk / Out: moser_tex_sclk
4 inc_px red[0] In: SPARE / In: moser_tex_io2
5 inc_py green[0] In: gen_texb / In: moser_tex_io3
6 reg blue[0] In: digilent_tex_io2 / N/A: moser_CS1
7 tex_pmod_type hsync_n In: digilent_tex_io3 / N/A: moser_CS2

TTGF0P2 Projects 26

2048 sliding tile puzzle game (VGA)
by Uri Shaked

0194 25.175 MHz HDL Project

github.com/urish/tt-2048-game

“Slide numbered tiles on a grid to combine them to create a tile with the
number 2048.”

How it works
2048 is a single-player sliding tile puzzle video game. Your goal is to slide
numbered tiles on a grid to combine them and create a tile with the number
2048. The game is won when a tile with the number 2048 appears on the
board, hence the name of the game. The game is lost when the board is full
and no more moves can be made.

The game is played on a 4x4 grid, with numbered tiles that slide when a
player moves them using ui_in pins or using a SNES compatible controller
along with the Gamepad Pmod.

The game starts with two tiles with the number 2 on the board. The player
can move the tiles in four directions: up, down, left, and right. When the
player moves the tiles in a direction, the tiles slide as far as they can in that
direction until they hit the edge of the board or another tile. If two tiles with
the same number collide, they merge into a single tile with the sum of the
two numbers. The resulting tile cannot merge with another tile again in the
same move.

How to test
Use the ui_in pins to move the tiles on the board:

ui_in pin Direction
0 Up
1 Down
2 Left
3 Right

Or use a SNES compatible controller along with the Gamepad Pmod. The
game will automatically detect the presence of the Pmod and switch to
controller input mode.

After resetting the game, you will see a jumping “2048” animation on the
screen. Press any of the ui_in[3:0] pins (or the gamepad buttons) to start

27 Projects TTGF0P2

https://github.com/urish/tt-2048-game

the game. The game will start with two tiles with the number 2 on the board.
Use the ui_in pins (or the gamepad buttons) to move the tiles in the desired
direction. The game will end when the board is full and no more moves can
be made.

The game offers two color themes: modern and retro. You can switch
between the two themes using the select button on the gamepad or by
setting both ui_in[4] and ui_in[5] to 1.

Setting ui_in[7] to 1 will enter unit test mode. In this mode, the game
displays a colorful rectangle on the top of the screen, and accepts debug
commands on the uio pins. Check out the test bench for more information.

External hardware
• TinyVGA Pmod
• Optional: Gamepad Pmod

Project Pinout
Digital Pins

Input Output Bidirectional
0 btn_up R1 debug_cmd
1 btn_down G1 debug_cmd
2 btn_left B1 debug_cmd
3 btn_right VSync debug_cmd
4 gamepad_latch R0 debug_data
5 gamepad_clk G0 debug_data
6 gamepad_data B0 debug_data
7 debug_mode HSync debug_data

TTGF0P2 Projects 28

https://github.com/mole99/tiny-vga
https://github.com/psychogenic/gamepad-pmod

Quickscope
by Frans Skarman

0196 25 MHz HDL Project

github.com/TheZoq2/tt-um-thezoq2-quickscope

“A quick logic analyzer”

How it works
For now, see https://blog.spade-lang.org/quickscope/

How to test
Connect the thing with UART to uo[0] @ 115200 baud, then run the
quickscope client. When ui[0] is high, the logic analyzer will trigger and send
the ui[0]..[7] and uio[0]..[7] values to the host which will generate a .vcd
file that can be viewed in Surfer.

External hardware
You’ll need a UART adapter and something to analyze

Project Pinout
Digital Pins

Input Output Bidirectional
0 data_in[0] and trigger Uart out —
1 data_in[1] — —
2 data_in[2] — —
3 data_in[3] — —
4 data_in[4] — —
5 data_in[5] — —
6 data_in[6] — —
7 data_in[7] — —

29 Projects TTGF0P2

https://github.com/TheZoq2/tt-um-thezoq2-quickscope
https://blog.spade-lang.org/quickscope/

LISA 8-Bit Microcontroller
by Ken Pettit

0197 18 MHz HDL Project

github.com/kdp1965/ttgf-um-lisa

“8-Bit Microcontroller SOC with 128 bytes DFFRAM module”

What is LISA?
LISA is a Microcontroller built around a custom 8-Bit Little ISA (LISA) micro-
processor core. It includes several standard peripherals that would be found
on commercial microcontrollers including timers, GPIO, UARTs and I2C. The
following is a block diagram of the LISA Microcontroller:

• The LISA Core has a minimal set of register that allow it to run C programs:
‣ Program Counter + Return Address Resister
‣ Stack Pointer and Index Register (Indexed DATA RAM access)
‣ 8-bit Accumulator + 16-bit BF16 Accumulator and 4 BF16 registers

Deailed list of the features
• Harvard architecture LISA Core (16-bit instruction, 15-bit address space)
• Debug interface

‣ UART controlled
‣ Auto detects port from one of 3 interfaces

TTGF0P2 Projects 30

https://github.com/kdp1965/ttgf-um-lisa

‣ Auto detects the baud rate
‣ Interfaces with SPI / QSPI SRAM or FLASH
‣ Can erase / program the (Q)SPI FLASH
‣ Read/write LISA core registers and peripherals
‣ Set LISA breakpoints, halt, resume, single step, etc.
‣ SPI/QSPI programmability (single/quad, port location, CE selects)

• (Q)SPI Arbiter with 3 access channels
‣ Debug interface for direct memory access
‣ Instruction fetch
‣ Data fetch
‣ Quad or Single SPI. Hereafter called QSPI, but supports either.

• Onboard 128 Byte RAM for DATA / DATA CACHE
• Data bus CACHE controller with 8 16-byte CACHE lines
• Instruction CACHE with a single 4-instruction CACHE line
• Two 16-bit programmable timers (with pre-divide)
• Debug UART available to LISA core also
• Dedicated UART2 that is not shared with the debug interface
• 8-bit Input port (PORTA)
• 8-bit Output port (PORTB)
• 4-bit BIDIR port (PORTC)
• I2C Master controller
• Hardware 8x8 integer multiplier
• Hardware 16/8 or 16/16 integer divider
• Hardware Brain Float 16 (BF16) Multiply/Add/Negate/Int16-to-BF16
• Programmable I/O mux for maximum flexibility of I/O usage.

It uses a 32x32 1RW DFFRAM macro to implement a 128 bytes (1 kilobit) RAM
module. The 128 Byte ram can be used either as a DATA cache for the proces-
sor data bus, giving a 32K Byte address range, or the CACHE controller can
be disabled, connecting the Lisa processor core to the RAM directly, limiting
the data space to 128 bytes. Inclusion of the DFFRAM is thanks to Uri Shaked
(Discord urish) and his DFFRAM example.

Reseting the project does not reset the RAM contents.

Connectivity
All communication with the microcontroller is done through a UART con-
nected to the Debug Controller. The UART I/O pins are auto-detected by the
debug_autobaud module from the following choices (RX/TX):

ui_in[3] / ui_out[4] RP2040 UART interface
uio_in[4] / uio_out[5] LISA PMOD board (I am developing)
uio_in[6] / uio_out[5] Standard UART PMOD

31 Projects TTGF0P2

https://github.com/AUCOHL/DFFRAM

The RX/TX pair port is auto-detected after reset by the autobaud circuit, and
the UART baud rate can either be configured manually or auto detected by
the autobaud module. After reset, the ui_in[7] pin is sampled to determine
the baud rate selection mode. If this input pin is HIGH, then autobaud is
disabled and ui_in[6:0] is sampled as the UART baud divider and written to
the Baud Rate Generator (BRG). The value of this divider should be: clk_freq /
baud_rate / 8 - 1. Due to last minute additions of complex floating point
operations, and only 2 hours left on the count-down clock, the timing was
relaxed to 20MHz input clock max. So for a 20MHz clock and 115200 baud, the
b_div[6:0] value would be 42 (for instance).

If the ui_in[7] pin is sampled LOW, then the autobaud module will monitor
all three potential RX input pins for LINEFEED (ASCII 0x0A) code to detect
baud rate and set the b_div value automatially. It monitors bit transistions
and searches for three successive bits with the same bit period. Since ASCII
code 0x0A contains a “0 1 0 1 0” bit sequence, the baud rate can be detected
easily.

Regardless if the baud rate is set manually or using autobaud, the input port
selection will be detect automatically by the autobaud. In the case of manual
buad rate selection, it simply looks for the first transition on any of the three
RX pins. For autobaud, it selects the RX line with three successive equivalent
bit periods.

Debug Interface Details
The Debug interface uses a fixed, Verilog coded Finite State Machine (FSM)
that supports a set of commands over the UART to interface with the
microcontroller. These commands are simple ASCII format such that low-
level testing can be performed using any standard terminal software (such
as minicom, tio. Putty, etc.). The ‘r’ and ‘w’ commands must be terminated
using a NEWLINE (0x0A) with an optional CR (0x0D). Responses from the
debug interface are always terminated with a LINFEED plus CR sequence
(0x0A, 0x0D). The commands are as follows (responsce LF/CR ommited):

Command Description

TTGF0P2 Projects 32

v Report Debugger version. Should return: lisav1.2
wAAVVVV Write 16-bit HEX value ‘VVVV’ to register at 8-bit HEX address

‘AA’.
rAA Read 16-bit register value from 8-bit HEX address ‘AA’.

t Reset the LISA core.
l Grant LISA the UART. Further data will be ignored by the

debugger.
+++ Revoke LISA UART. NOTE: a 0.5s guard time before/after is

required.

NOTE: All HEX values must be a-f and not A-F. Uppercase is not supported.

Debug Configuration and Control Registers
The following table describes the configuration and LISA debug register ad-
dresses available via the debug ‘r’ and ‘w’ commands. The individual register
details will be described in the sections to follow.

ADDR Description ADDR Description
0x00 LISA Core Run Control 0x12 LISA1 QSPI base address
0x01 LISA Accumulator / FLAGS 0x13 LISA2 QSPI base address
0x02 LISA Program Counter (PC) 0x14 LISA1 QSPI CE select
0x03 LISA Stack Pointer (SP) 0x15 LISA2 QSPI CE select
0x04 LISA Return Address (RA) 0x16 Debug QSPI CE select
0x05 LISA Index Register (IX) 0x17 QSPI Mode (QUAD, flash,

16b)
0x06 LISA Data bus 0x18 QSPI Dummy read cycles
0x07 LISA Data bus address 0x19 QSPI Write CMD value
0x08 LISA Breakpoint 1 0x1a The ‘+++’ guard time count
0x09 LISA Breakpoint 2 0x1b Mux bits for uo_out
0x0a LISA Breakpoint 3 0x1c Mux bits for uio
0x0b LISA Breakpoint 4 0x1d CACHE control
0x0c LISA Breakpoint 5 0x1e QSPI edge / SCLK speed
0x0d LISA Breakpoint 6 0x20 Debug QSPI Read / Write
0x0f LISA Current Opcode Value 0x21 Debug QSPI custom

command
0x10 Debug QSPI Address

(LSB16)
0x22 Debug read SPI status reg

33 Projects TTGF0P2

0x11 Debug QSPI Address
(MSB8) — —

LISA Processor Interface Details
The LISA Core requires external memory for all Instructions and Data (well,
sort of for data, the data CACHE can be disabled then it just uses internal DF-
FRAM). To accomodate external memory, the design uses a QSPI controller
that is configurable as either single SPI or QUAD SPI, Flash or SRAM access,
16-Bit or 24-Bit addressing, and selectable Chip Enable for each type of
access. To achieve this, a QSPI arbiter is used to allow multiple accessors as
shown in the following diagram:

The arbiter is controlled via configuration registers (accessible by the Debug
controller) that specify the operating mode per CE, and CE selection bits for
each of the three interfaces:

• Debug Interface
• LISA1 (Instruction fetch)
• LISA2 (Data read/write)

The arbiter gives priority to the Debug accesses and processes LISA1 and
LISA2 requests using a round-robbin approach. Each requestor provides a
24-bit address along with 16-bit data read/write. For the Debug interface,
the address comes from the configuration registers directly. For LISA1, the
address is the Program Counter (PC) + LISA1 Base and for LISA2, it is the

TTGF0P2 Projects 34

Data Bus address + LISA2 Base. The LISA1 and LISA2 base addresses are
programmed by the Debug controller and set the upper 16-bits in the 24-
bit address range. The PC and Data address provide the lower 16 bis (8-bits
overlapped that are ’OR’ed together). The BASE addresses allow use of a
single external QSPI SRAM for both instruction and data without needing to
worry about data collisions.

When the arbiter chooses a requestor, it passes its programmed CE selection
to the QSPI controller. The QSPI controller then uses the programmed QUAD,
MODE, FLASH and 16B settings for the chosen CE to process the request.
This allows LISA1 (Instruction) to either execute from the same SRAM as LISA2
(Data) or to execute from a separate CE (such as FLASH with permanent data
storage).

Additionally the Debug interface has special access registers in the 0x20
- 0x22 range that allow special QSPI accesses such as FLASH erase and
program, SRAM programming, FLASH status read, etc. In fact the Debug
controller can send any arbitrary command to a target device, using access
that either provide an associated address (such as erase sector) or no address.
The proceedure for this is:

1. Program Debug register 0x19 with the special 8-bit command to be sent
2. Set the 9-th bit (reg19[8]) to 1 if a 16/24 bit address needs to be sent)
3. Perform a read / write operation to debug address 0x21 to perform the

action.

Simple QSPI data reads/write are accomplished via the Debug interface by
setting the desired address in Debug config register 0x10 and 0x11, then
performing read or write to address 0x20 to perform the request. Reading
from Debug config register 0x22 will perform a special mode read of QSPI
register 0x05 (the FLASH status register).

Data access to the QSPI arbiter come from the Data CACHE interface (de-
scribed later), enabling a 32K address space for data. However the design has
a CACHE disable mode that directs all Data accesses directly to the internal
128 Byte RAM, thus eliminating the need for external SRAM (and limiting the
data bus to 128 bytes).

Programming the QSPI Controller
Before the LISA microcontroller can be used in any meaningful manner, a
SPI / QSPI SRAM (and optionally a NOR FLASH) must be connected to the Tiny
Tapeout PCB. Alternately, the RP2040 controller on the board can be config-
ured to emulate a single SPI (the details for configuring this are outside the
scope of this documentation … search the Tiny Tapeout website for details.).
For the CE signals, there are two operating modes, fixed CE output and Mux
Mode 3 “latched” CE mode. Both will be described here. The other standard
SPI signals are routed to dedicated pins as follows:

35 Projects TTGF0P2

Pin SPI QSPI Notes
uio[0] CE0 CE0 —

uio[1] MOSI DQ0 Also MOSI prior to QUAD mode DQ0
uio[2] MISO DQ1 Also MISO prior to QUAD mode DQ1
uio[3] SCLK SCLK —

uio[4] CE1 CE1 Must be enabled via uio MUX bits
uio[6] - DQ2 Must be enabled via uio MUX bits
uio[7] - DQ3 Must be enabled via uio MUX bits

For Special Mux Mode 3 (Debug register 0x1C uio_mux[7:6] = 2’h3), the pinout
is mostly the same except the CE signals are not constant. Instead they are
“latched” into an external 7475 type latch. This mode is to support a PMOD
board connected to the uio PMOD which supports a QSPI Flash chip, a QSPI
SRAM chip, and either Debug UART or I2C. For all of that functionality, nine
pins would be required for continuous CE0/CE1, however only eight are avail-
able. So the external PMOD uses uio[0] as a CE “latch” signal and the CE0/
CE1 signals are provided on uio[1]/uio[2] during the latch event. This requires a
series resistor as indicated to allow CE updates if the FLASH/SRAM is driving
DQ0/DQ1. The pinout then becomes:

Pin SPI/QSPI Notes
uio[0] ce_latch ce_latch HIGH at beginning of cycle
uio[1] ce0_latch/MOSI/DQ0 Connection to FLASH/SRAM via series

resistor
uio[2] ce1_latch/MISO/DQ1 Connection to FLASH/SRAM via series

resistor
uio[3] SCLK —

uio[6] -/DQ2 Must be enabled via uio MUX bits
uio[7] -/DQ3 Must be enabled via uio MUX bits

This leaves uio[4]/uio[5] available for use as either UART or I2C.

Once the SPI/QSPI SRAM and optional FLASH have been chosen and con-
nected, the Debug configuration registers must be programmed to indicate
the nature of the external device(s). This is accompilished using Debug reg-
isters 0x12 - 0x19 and 0x1C. To programming the proper mode, follow these
steps:

1. Program the LISA1, LISA2 and Debug CE Select registers (0x14, 0x15, 0x16)
indicating which CE to use.

• 0x14, 0x15, 0x16: {6’h0, ce1_en, ce0_en} Active HIGH

TTGF0P2 Projects 36

2. Program the LISA1 and LISA2 base addresses if they use the same SRAM:
• 0x12: {LISA1_BASE, 8’h0} | {8’h0, PC}
• 0x13: {LISA2_BASE, 8’h0} | {8’h0, DATA_ADDR}

3. Program the mode for each Chip Enable (bits active HIGH)
• 0x17: {10’h0, is_16b[1:0], is_flash[1:0], is_quad[1:0]}

4. For Quad SPI, Special Mux Mode 3, or CE1, program the uio_mux mode:
• 0x1C:

‣ [7:6] = 2’h2: Normal QSPI DQ2 select
‣ [7:6] = 2’h3: Special Mux Mode 3 (Latched CE)
‣ [5:4] = 2’h2: Normal QSPI DQ3 select
‣ [5:4] = 2’h3: Special Mux Mode 3
‣ [1:0] = 2’h2: CE1 select on uio[4]

5. For RP2040, you might need to slow down the SPI clock / delay between
successive CE activations:

• 0x1E:
‣ [3:0] spi_clk_div: Number of clocks SCLK HIGH and LOW
‣ [10:4] ce_delay: Number clocks between CE activations
‣ [12:11] spi_mode: Per-CE FALLING SCLK edge data update

6. Set the number of DUMMY ready required for each CE:
• 0x18: {8’h0, dummy1[3:0], dummy0[3:0]

7. For QSPI FLASH, set the QSPI Write opcode (it is different for various
Flashes):

• 0x19: {8’h0, quad_write_cmd}

NOTE: For register 0x1E (SPI Clock Div and CE Delay), there is only a single
register, meaning this register value applies to both CE outputs. Delaying the
clock of one CE will delay both, and adding delay between CE activations
does not keep track of which CE was activated. So if two CE outputs are used
and a CE delay is programmed, it will enforce that delay even if a different
CE is used. This setting is really in place for use when the RP2040 emulation
is being used in a single CE SRAM mode only (i.e. you have no external
PMOD with a real SRAM / FLASH chip. In the case of real chips on a PMOD,
SCLK and CE delays (most likely) are not needed. The Tech Page on the Tiny
Tapeout regarding RP2040 SPI SRAM emulation indicates a delay between
CE activations is likely needed, so this setting is provided in case it is needed.

Architecture Details
Below is a simplified block diagram of the LISA processor core. It uses an
8-bit accumulator for most of its operations with the 2nd argument predom-
inately coming from either immediate data in the instruction word or from a
memory location addressed by either the Stack Pointer (SP) or Index Register
(IX).

37 Projects TTGF0P2

There are also instructions that work on the 15-bit registers PC, SP, IX and RA
(Return Address). As well as floating point operations. These will be covered
in the sections to follow.

Addressing Modes
Like most processors, LISA has a few different addressing modes to get data
in and out of the core. These include the following:

Mode Data Description
Register Rx[n -: 8] Transfers between registers (ix, ra, facc,

etc.).
Direct inst[n:0] N-bit data stored in the instruction

word.
NextOp (inst+1)[14:0] Data stored in the NEXT instruction

word.
Indirect mem[inst[n:0]] Address of the data is in the instruction

word.
Periph periph[inst[n:0]] Accesses to the peripheral bus.

Indexed mem[sp/ix+inst[n:0]] The SP or IX register is added to a fixed
offset.

Stack mem[sp] Stack pointer points to the data (push/
pop).

The Control Registers
To run meaninful programs, the Program Counter (PC) and Stack Pointer (SP)
must be set to useful values for accessing program instructions and data. The

TTGF0P2 Projects 38

PC is automatically reset to zero by rst_n, so that one is pretty much auto-
matic. All programs start at address zero (plus any base address programmed
by the Debug Controller). But as far as the LISA core is concerned, it knows
nothing of base addresses and believes it is starting at address zero.

Next is to program the SP to point to a useful location in memory. The Stack is
a place where C programs store their local variable values and also where we
store the Return Address (RA) if we need to call nested routines, etc. The stack
grows down, meaning it starts at a high RAM address and decrements as
things are added to the stack. Therefore the SP should be programmed with
an address in upper RAM. LISA supports different Data bus modes through
it’s CACHE controller, including CACHE disable where it can only access 128
bytes. But for this example, let’s assume we have a full range of 32K SRAM
available. The LISA ISA doesn’t have an opcode for loading the SP directly.
Instead it can load the IX register directly with a 15-bit value using NextOp
addressing, and it supports “xchg” opcodes to exchange the IX register with
either the SP or RA. So to load the SP, we would write:

Example:
 ldx 0x7FFF // Load IX with value in next opcode
 xchg_sp // Exchange IX with SP

The IX register can be programmed as needed to access other data within
the Data Bus address range. This register is useful especially for accessing
structures via a C pointer. The IX then becomes the value of the pointer to
RAM, and Indexed addressing mode allows fixed offsets from that pointer
(i.e. structure elements) to be accessed for read/write.

Loading the PC indirectly can be done using the “jmp ix” opcode which
does the operation pc <= ix. Loading ix from the pc directly is not supported,
though this can be accomplished using a function call and opcodes to save
RA (sra) and pop ix:

 Example:
 get_pc:
 sra // Push RA to the stack (Save RA)
 pop_ix // Pop IX from the stack
 ret // Return. Upon return, IX is the same as PC

Conditional Flow Processing
Program flow is controlled using flags (zero, carry, sign), arithemetic mode
(amode) and condition flags (cond) to determine when program branches
should occur. Specific opcode update the flags and condition registers based
on results of the operation (AND, OR, IF, etc.). Then conditional branches are
made using bz, bnz and if (and variants ifte “if-then-else” and iftt “if-then-
then”). Also available are rc “Return if Carry” and rz “Return if Zero”, though
these are less useful in C programs as typically a routine uses local variables

39 Projects TTGF0P2

and the stack must be restored prior to return, mandating a branch to the
function epilog to restore the stack and often the return address. Below is a
list of the opcodes used for conditional program processing:

Legend for operations below:

• acc_val = inst[7:0]
• pc_jmp = inst[14:0]
• pc_rel = pc + sign_extend(inst[10:0])

Opcode Operation Encoding Description
jal pc <= pc_jmp 0aaa_aaaa_aaaa_aaaa Jump And Link (call).
— ra <= pc — —

ret pc <= ra 1000_1010_0xxx_xxxx Return
reti pc <= ra 1000_11xx_iiii_iiii Return Immediate.
— acc <= acc_val — —

br pc <= pc_rel 1011_0rrr_rrrr_rrrr Branch Always
bz pc <= pc_rel 1011_1rrr_rrrr_rrrr Branch if Zero.
— if zero=1 — —

bnz pc <= pc_rel 1010_1rrr_rrrr_rrrr Branch if Not Zero.
— if zero=0 — —

rc pc <= ra 1000_1011_0xxx_xxxx Return if Carry
— if carry=1 — —

rz pc <= ra 1000_1011_1xxx_xxxx Return if Zero
— if zero=1 — —

call_ix pc <= ix 1000_1010_100x_xxxx Call indirect via IX
— ra <= pc — —

jump_ix pc <= ix 1000_1010_101x_xxxx Jump indirect via IX
if cond <= ?? 1010_0010_0000_0ccc If. See below.

iftt cond <= ?? 1010_0010_0000_1ccc If then-then. See below.
ifte cond <= ?? 1010_0010_0001_0ccc If then-else. See below.

The IF Opcode
The “if” opcode and it’s variants “if-then-then” and “if-then-else” control pro-
gram flow in a slightly different manner than the others. Instead of affecting
the value of the PC directly, they set the two condition bits “cond[1:0]” to
indicate which (if any) of the two following opcodes should be executed.
the cond[0] bit represents the next instruction and cond[1] represents the
instruction following that. All three “if” forms take an argument that checks

TTGF0P2 Projects 40

the current value of the FLAGS to set the condition bits. The argument is
encoded as the lower three bits of the instruction word ard operate as shown
in the following table:

Condition Test Encoding Description
EQ zflag=1 3’h0 Execute if Equal
NE zflag=0 3’h1 Execute if Not Equal
NC cflag=0 3’h2 Execute if Not Carry
C cflag=1 3’h3 Execute if Carry

GT cSigned & zflag 3’h4 Execute if Greater Than
LT cSigned & zflag 3’h5 Execute if Less Than

GTE cSigned zflag 3’h6
LTE cSigned zflag 3’h7

The “if” opcode will set cond[0] based on the condition above and the cond[1]
bit to HIGH. It only affects the single instruction following the “if” opcode. The
“iftt” opcode will set both cond[0] and cond[1] to the same value based on
the condition above. It means “if true, execute the next two opcodes”. And
the “ifte” opcode will set cond[0] based on the condition above and cond[1] to
the OPPOSITE value, meaning it will execute either the following instruction
OR the one after that (then-else).

Example:
 ldi 0x41 // Load A immediate with ASCII 'A'
 cpi 0x42 // Compare A immediate with ASCII 'B'
 ifte eq // Test if the compare was "Equal"
 jal L_equal // Jump if equal
 jal L_different // Jump if different

The above code will load the “jal L_equal” opcode but will not execute it since
the compare was Not Equal. Then it will execute the “jal L_different” opcode.
Note that if the compare were “ifte ne”, it would call the L_equal function and
then upon return would not execute the “L_different” opcode. This is because
the cond[1] code is saved with the Return Address (RA) during the call and
restored upon return. This means the FALSE cond[1] code would prevent the
2nd opcode from executing. As an opcode gets executed, the cond[1] value
is shifted into the cond[0] location, and the cond[1] is loaded with 1’b1.

Direct Operations
To do any useful work, the LISA core must be able to load and operate on data.
This is done through the accumulator using the various addressing modes.
The diagram below details the Direct addressing mode where data is stored
directly in the opcode / instruction word:

41 Projects TTGF0P2

The instructions that use direct addressing are:

Opcode Operation Encoding Description
adc A <= A + imm + C 1001_00xx_iiii_iiii ADD immediate with

Carry
ads SP <= SP + imm 1001_01ii_iiii_iiii ADD SP + signed

immediate
adx IX <= IX + imm 1001_10ii_iiii_iiii ADD IX + signed

immediate
andi A <= A & imm 1000_01xx_iiii_iiii AND immediate with A
cpi Z,C <= A >= imm 1010_01xx_iiii_iiii Compare A >= immediate
cpi Z,C <= A >= imm 1010_01xx_iiii_iiii Compare A >= immediate

Accumulator Indirect Operations
The Accumulator Indirect operations use immediate data in the instruction
word to index indirectly into Data memory. That memory address is then
used to load, store or both load and store (swap) data with the accumulator.

TTGF0P2 Projects 42

Opcode Operation Encoding Description
lda A <= M[imm] 1111_01pi_iiii_iiii Load A from Memory/Peripheral
sta M[imm] <= A 1111_11pi_iiii_iiii Store A to Memory/Peripheral

swapi A <= M[imm] 1101_11pi_iiii_iiii Swap Memory/Peripheral with A
— M[imm] <= A — —

• p = Select Peripheral (1’b1) or RAM (1’b0)
• iiii = Immediate data

Indexed Operations
Indexed operations use either the IX or SP register plus a fixed offset from
the immediate field of the opcode. The selection to use IX vs SP is also from
the opcode[9] bit. The immediate field is not sign extended, so only positive
direction indexing is supported. This was selected because this mode is
typically used to access either local variables (when using SP) or C struct
members (when using IX), and in both cases, negative index offsets aren’t
very useful. The following is a diagram of indexed addressing:

Opcode Operation Encoding Description
add A <= A+ M[ind] 1100_00si_iiii_iiii ADD index memory to A
and A <= A & M[ind] 1101_00si_iiii_iiii AND A with index memory
cmp A >= M[ind]? 1110_10si_iiii_iiii Compare A with index

memory
dcx M[ind] -= 1 1001_11si_iiii_iiii Decrement the value at

index memory
inx M[ind] += 1 1110_01si_iiii_iiii Increment the value at

index memory

43 Projects TTGF0P2

ldax A <= M[ind] 1111_00si_iiii_iiii Load A from index
memory

ldxx IX <= M[SP+imm] 1100_110i_iiii_iiii Load IX from memory at
SP+imm

mul A <= A*M[ind]L 1100_10si_iiii_iiii Multiply index memory * A,
keep LSB

mulu A <= A*M[ind]H 1000_01si_iiii_iiii Multiply index memory * A,
keep MSB

or A <= A M[ind] 1101_10si_iiii_iiii
stax M[ind] <= A 1111_10si_iiii_iiii Store A to index memory
stxx M[SP+imm] <= IX 1100_111i_iiii_iiii Save IX to memory at

SP+imm
sub A <= A-M[ind] 1100_10si_iiii_iiii SUBtract index memory

from A
swap A <= M[ind] 1110_11si_iiii_iiii Swap A with index

memory
— M[ind] <= A — —

xor A <= A ^ M[ind] 1110_00si_iiii_iiii XOR A with index memory

Legend for table above:

• ind = IX or SP + immediate
• s = Select IX (zero) or SP (one)
• iiii = Immediate data

The Zero and Carry flags are updated for most of the above operations. The
Carry flag is only updated for math operations where a Carry / Borrow could
occur.

Carry Zero
adc add and
add or xor
sub cmp sub
cmp dcx inx
dcx swap ldax
inx mul mulu

Stack Operations
Stack operations use the current value of the SP register to PUSH and POP
items to the stack in opcode. As items are PUSHed to the stack, the SP is

TTGF0P2 Projects 44

decremented after each byte, and as they are POPed, the SP is incremented
prior to reading from RAM.

Opcode Operation Encoding Description
lra RA <= M[SP+1] 1010_0001_0110_01xx Load {cond,RA} from

stack
— SP += 2 — —

sra M[SP] <= RA 1010_0001_0110_00xx Save {cond,RA} to stack
— SP -= 2 — —

push_ix M[SP] <= IX 1010_0001_0110_10xx Save IX to stack
— SP -= 2 — —

pop_ix IX <= M[SP+1] 1010_0001_0110_11xx Load IX from stack
— SP += 2 — —

push_a M[SP] <= A 1010_0000_100x_xxxx Save A to stack
— SP -= 1 — —

pop_a A <= M[SP+1] 1010_0000_110x_xxxx Load A from stack
— SP += 1 — —

How to test
You will need to download and compile the C-based assembler, linker and
C compiler I wrote (will make available) Also need to download the Python
based debugger.

• Assembler is fully functional
‣ Includes limited libraries for crt0, signed int compare, math, etc.

45 Projects TTGF0P2

‣ Libraries are still a work in progress
• Linker is fully functional
• C compiler is somewhat functional (no float support at the moment) but

has many bugs in the generated code and is still a work in progress.
• Python debugger can erase/program the FLASH, program SPI SRAM,

start/stop the LISA core, read SRAM and registers.

Legend for Pinout
• pa: LISA GPIO PortA Input
• pb: LISA GPIO PortB Output
• b_div: Debug UART baud divisor sampled at reset
• b_set: Debug UART baud divisor enable (HIGH) sampled at reset
• baud_clk: 16x Baud Rate clock used for Debug UART baud rate generator
• ce_latch: Latch enable for Special Mux Mode 3 as describe above
• ce0_latch: CE0 output during Special Mux Mode 3
• ce1_latch: CE1 output during Special Mux Mode 3
• DQ1/2/3/4: QUAD SPI bidirection data I/O
• pc_io: LISA GPIO Port C I/O (direction controllable by LISA)

Project Pinout
Digital Pins

Input Output Bidirectional
0 pa[0]/b_div[0]/rx2 pb[0]/tx2 ce0/ce_latch
1 pa[1]/b_div[1]/rx2 pb[1]/tx2 mosi/dq1/ce0_latch
2 pa[2]/b_div[2]/rx2 pb[2]/tx2 miso/dq2/ce1_latch
3 pa[3]/b_div[3]/rx pb[3] sclk
4 pa[4]/b_div[4] pb[4]/tx rx /pc_io[0]/scl/ce1
5 pa[5]/b_div[5] pb[5] tx /pc_io[1]/sda
6 pa[6]/b_div[6] pb[6] scl /pc_io[2]/dq2/rx

TTGF0P2 Projects 46

Input Output Bidirectional
7 pa[7]/b_set(autobaud_disable) pb[7]/baud_clk sda/pc_io[3]/dq3

47 Projects TTGF0P2

easy PAL
by Ken Pettit

0198 HDL Project

github.com/kdp1965/ttgf-um-easy-PAL

“This is a simple PAL (by Matthias Musch) using shift-register based
configuration”

How it works
This project is a PAL (programmable array logic device). It is programmed
with a shift register. It was written by Matthias Musch and included in
TTGF180 by me (Ken).

easy_pal is a simple and naive PAL implementation that can be (re)pro-
grammed via a shift-register chain. The PAL is fully parametric and thus
number of inputs (N), number of intermediate stages (P) and the number of
outputs (M) can be configured in a flexible way in the verilog sources.

TTGF0P2 Projects 48

https://github.com/kdp1965/ttgf-um-easy-PAL

Example configuration
To generate a bitstream the python script has to be run. In the top of the file
the logic function and the size of the PAL-device has to be provided. After
displaying the truth table the script generates the following output:

The logic function was given in the following way in the Python code: “O0 =
 I0 | I1 & (I2 & I3)”

Looking at the following waveform we can see that it does indeed work! :)

Taped-out configuration and pin assignment
Because I do not want to update the text below too often I write the config-
uration of the physical PAL device in terms of:

• Number of inputs
• Number of itermediatory stages
• Number of outputs …only once. In the following this will be refered to

however the exact number is only mentioned here. The numbers are:
• 8 inputs
• 26 intermediatory stages

49 Projects TTGF0P2

• 7 outputs

Pin assignment
• The eight inputs are connected to the eight uio_in wires.
• The enable pin to put the logic function on the outputs is connected to

the uio_in[1] pin.
• The clock for the shift register is connected to uio_in[2]
• The configuration bit pin, which holds the data that is next shifted in is

connected to the uio_in[0]. Aka here the bitstream is fed into - bit by bit!
• The outputs are displayed on the first four uo_out[3:0] bits.
• The rising edges are (clock for the shift register) are supplied via the
uio_in[2] pin.

Programming
At every rising edge of the programming-clock the shift register takes in a
value from the config_bit pin. When the configuration is done the PAL imple-
ments the programmed combinatorial function(s). However in order to get
the programmed function(s) to generate outputs the enable pin has to be
asserted.

Generate bitstreams
To generate bitstreams for the shift register a Python script is provided in
this repository. It is important to set the right number of inputs, intermediate
stages and outputs. This has to be exactly like the physical PAL-device you
have at hand. A boolean logic function is denoted in the following way: O0 =
~I0 | I1 & ~(I2 & I3) It is important to declare the used variables before.
See the Python script as it was done for O0, I1, I2, I3. You can add or remove
variables. However keep in mind that the physical number of variables is
limited. You can check the physical number that will be on the device in the
project.v file.

At this point in time the bitstream generation in the Python script has some
of limitations.

Using the PAL
Okay now that you have transmitted the bitstream onto the PALs shift reg-
ister you can set the enable pin (uio-pin) to output the programmed logic
functions on the outputs.

How to test
By first shifting in a bitstream configuration into the device the AND/OR
matrix of the device can be programmed to implement boolean functions
with a set of inputs and outputs. You can test the design by clocking in a
bitstream with a microcontroller (I will provide some example code for that)
and by connecting buttons to the inputs and maybe LEDs to the outputs.

TTGF0P2 Projects 50

External hardware
No external HW is needed. However to see your glorious boolean functions
come to life you might want to connect some switches to the inputs and
LEDs to the outputs.

Project Pinout
Digital Pins

Input Output Bidirectional
0 Combinatorial input 0 Combinatorial output

0
Config pin: This pin is
used to apply the
config bit that will be
shifted in on a rising
clock edge.

1 Combinatorial input 1 Combinatorial output
1

Enable pin: If HIGH (1)
the result of the logic
function is applied to
all outputs.

2 Combinatorial input 2 Combinatorial output
2

Clock pin: Used for the
shift register to
sample in the [config
pin] data (see uio[0]).

3 Combinatorial input 3 Combinatorial output
3

unused

4 Combinatorial input 4 Combinatorial output
3

unused

5 Combinatorial input 5 unused - tied to 0 unused
6 Combinatorial input 6 unused - tied to 0 unused
7 Combinatorial input 7 unused - tied to 0 unused

51 Projects TTGF0P2

VGA Nyan Cat
by Andy Sloane

0199 25.175 MHz HDL Project

github.com/a1k0n/ttgf0p2-a1k0n-nyan

“Displays the classic nyan.cat animation”

VGA nyan cat

Figure 199.1: nyancat preview

How it works
Outputs nyancat on VGA with music!

Colors and animation are all from the original nyan.cat site, using a 2x2 Bayer
dithering matrix which inverts on alternate frames for better color rendition
on the Tiny VGA Pmod.

Sound is generated from a MIDI file, split into melody and bass parts. Melody
and bass are each square waves mixed with a simple exponential decay
envelope, which is then fed to a low-pass filter and then a sigma-delta DAC.

TTGF0P2 Projects 52

https://github.com/a1k0n/ttgf0p2-a1k0n-nyan

This was designed to fit into 1 tile, and it almost did – the cells take up about
93% of 1 tile, but detailed routing doesn’t finish. With the deadline approach-
ing I was forced to grow it to 1x2, so I threw in a little easter egg.

How to test
Set clock to 25.175MHz or thereabouts, give reset pulse, and enjoy

External hardware
TinyVGA Pmod for video on o[7:0].

1-bit sound on io[7], compatible with Tiny Tapeout Audio Pmod, or any basic
 20kHz RC filter on io7 to an amplifier will work.

Project Pinout
Digital Pins

Input Output Bidirectional
0 — R1 —
1 — G1 —
2 — B1 —
3 — VSync —
4 — R0 —
5 — G0 —
6 — B0 —
7 — HSync AudioPWM

53 Projects TTGF0P2

https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod

Notre Dame - Lockpick Game TT Exam-
ple
by Matthew Morrison

0288 7 MHz HDL Project

github.com/mmorri22/lockpick

“An example SystemVerilog Implementation of a pipelined input/output
for future TinyTapeout use in the classroom”

How it works
There are two 256-bit inputs that are pipelined through the 8-bit inputs using
the enable signal

How to test
The testbench lockpick_game.sv is included to test the design.

External hardware
We will use the conventional 8-bit LED on the tiny tapeout, as well as the
output_valid signal to verify that the output is correct.

Project Pinout
Digital Pins

Input Output Bidirectional
0 ui[0] uo[0] uio_in[0]
1 ui[1] uo[1] uio_in[1]
2 ui[2] uo[2] uio_out[2]
3 ui[3] uo[3] uio_out[3]
4 ui[4] uo[4] uio_out[4]
5 ui[5] uo[5] uio_out[5]
6 ui[6] uo[6] —
7 ui[7] uo[7] —

TTGF0P2 Projects 54

https://github.com/mmorri22/lockpick

KianV uLinux SoC
by Hirosh Dabui

0295 HDL Project

github.com/TinyTapeout/KianV-RV32IMA-RISC-V-uLinux-SoC

“A RISC-V ASIC that can boot μLinux.”

How it works
32-bit RISC-V IMA processor, capable of booting Linux. Features 16 MiB of
external SPI flash memory, 16 MiB of external PSRAM (8 MiB per bank), a UART
peripheral, and a SPI peripheral.

System Memory Map
The system memory map is as follows:

Address Size Purpose
0x10000000 0x14 UART Peripheral
0x10500000 0x14 SPI Peripheral
0x10600000 0x0c GPIO Peripheral
0x11100000 0x04 Reset / HALT control

0x20000000 16 MiB SPI Flash
0x80000000 16 MiB PSRAM

The system boots from the SPI flash memory. After reset, the CPU starts
executing code from 0x20100000 (corresponding to the offset 0x100000 into
the SPI flash memory), where the bootloader is expected to be.

UART Peripheral registers

Address Name Description
0x10000000 UART_DATA Write to transmit, read to receive
0x10000005 UART_LSR UART line status register
0x10000010 UART_DIV Clock divider for UART baud rate

SPI Peripheral registers

Address Name Description
0x10500000 SPI_CTRL0 SPI Peripheral Control
0x10500004 SPI_DATA0 SPI Data

55 Projects TTGF0P2

https://github.com/TinyTapeout/KianV-RV32IMA-RISC-V-uLinux-SoC

0x10500010 SPI_DIV Clock divider for SPI peripheral

GPIO Peripheral registers

Address Name Description
0x10600000 GPIO_UO_EN Enable bits for uo_out pins
0x10600004 GPIO_UO_OUT Write to uo_out pins
0x10600008 GPIO_UI_IN Read from ui_in pins(read-only)

CPU control register

Address Name Description
0x11100000 CPU_RESET Write 0x7777 to reset the CPU, 0x5555 to halt

the CPU.

How to test
Build the system image as described in the kianRiscV repo and load it into
the SPI flash memory:

Flash offset File name Description
0x100000 bootloader.bin Bootloader
0x180000 kianv.dtb Device Tree Blob
0x200000 Image Linux kernel + rootfs

The system runs at 30 MHz, with a maximum tested speed of 34.5 MHz.

External hardware
QSPI Pmod - can be purchased from the Tiny Tapeout store.

Project Pinout
Digital Pins

Input Output Bidirectional
0 gpio[0] spi_cen0 ce0 flash
1 gpio[1] spi_sclk0 sio0
2 spi_sio1_so_miso0 spi_sio0_si_mosi0 sio1
3 uart_rx gpio[3] sck
4 gpio[4] uart_tx sd2
5 gpio[5] gpio[5] sd3
6 gpio[6] gpio[6] cs1 psram

TTGF0P2 Projects 56

https://github.com/splinedrive/kianRiscV/tree/master/asic/os/ulinux_asic_kianv_soc
https://github.com/mole99/qspi-pmod
https://store.tinytapeout.com/products/QSPI-Pmod-p716541602

Input Output Bidirectional
7 gpio[7] gpio[7] cs2 psram

57 Projects TTGF0P2

Notre Dame - CSE 30342 - DIC - Ad-
vanced FSM Final Project Example
by Matthew Morrison

0358 10 kHz HDL Project

github.com/mmorri22/tt_um_mmorri22_cse_30342

“Example of SystemVerilog code with FSM and IO pipelining.”

How it works
This is an example final project SystemVerilog example for the CSE 30342
Digital Integrated Circuits course at the University of Notre Dame The objec-
tive of this project is to develop a robust finite-state machine that instructs
students on how to implement a design in their final course project. Since the
project requirement is that the Finite State Machine has at least five states
(not including the IDLE, INPUT, and OUTPUT states) where at least two of
those five have a self-feedback loop, and two of those five have an edge that
goes backwards, this design goes to an extreme where every state has a self-
feedback loop and every state has at least one edge that goes backwards. I
will explain how this FSM meets the requirement in this report.

The require project diagram is listed below. In the student project, there will
be a purpose behind the FSM, such as a vending machine or stop light or
something the students have developed themselves. In this section, describe
the purpose and operation of your design.

This purpose of this project is a “memory calculator”, where the output of
the states are driven by the initial 128-bit inputs a and b, as well as the
previous result. Each state has a unique calculation that are designed to
help students understand certain SystemVerilog coding techniques, such as
concatenation, as well as an example of how to implement modulo using
loops, which is one of the forbidden operators in Genus Synthesis Solution.
List each input and output, and state the count for ease of grading. The
project has 23 total pins, meeting the project requirement. To meet the input
and output requirements of the project, the pins are implemented as follows:
• One clk pin • One rst pin • One start pin • One input_enable pin • A four-bit
input for a • A four-bit input for b • A two-bit op_val, since each state can have
up to 4 possible transitions • A four-bit out signal representing the output • A
one-bit output_valid signal • A four-bit signal representing the current state,
since there are 11 possible states. In the INPUT state, the inputs for a and b are
read in parallel, and are controlled using an input_enable signal. Parameter
N is set to 128 by default, and N_width is set to 4. The INPUT state requires

TTGF0P2 Projects 58

https://github.com/mmorri22/tt_um_mmorri22_cse_30342

the input_enable signal to be positive to overwrite the previous result. This
choice meets the requirement that there be at least one input that is 32-
bits in length. The OUTPUT state pipelines the output on the out pin, and is
controlled by sending an output_valid signal.

In this design, we define the “internal states” as every state with the exception
of IDLE, INPUT, and OUTPUT. Every internal state has a feedback loop and a
return edge, with the exception of S0, which does not have a return edge,
meeting the project requirements that at least two internal states have a
feedback loop, and that two internal states have a return edge. For example,
S1’s feedback loop occurs when op_val is 01, and its feedback loop occurs
when op_val is 00, and its return edges are 00 (back to S0) and 01 (back to S5).
In your report, list them explicitly to make the grading easier. For example:
To meet the project design requirements, the FSM is designed as follows •
There are eight internal states: S0, S1, S2, S3, S4, S5, S6, and S7 o S0 produces
simple bitwise logic o S1 produces a+b, and then xor with the previous result
o S2 produces the absolute difference of a and b, then XOR with prev_result
o S3 produces the min(a,b) which blended with prev_result using concate-
nation o S4 produces max(a,b) plus a small shift of prev_result o S5 produces
saturation of add of a and b, then AND with prev_result o S6 produces the
average of a and b, then OR with prev_result o S7 produces simple rotate-
left of a by 1, then XOR with b and the previous result • Feedback loops: S0
when op_val is 00 or 01, S1 when op_val is 01, S2 when op_val is 01, and so on…
• Return edges: S1 when op_val is 00 or 01, S2 when op_val is 00 or 01, S3 when
op_val is 00, and so on… The unique case is state S4, which has a transition
to the OUTPUT state when op_val is 01. The OUTPUT state, upon completion,
goes back to the IDLE state to wait for the next start signal.

How to test
The fsm_example_tb.sv file is included

59 Projects TTGF0P2

External hardware
None required other than the TinyTapeout LED.

Project Pinout
Digital Pins

Input Output Bidirectional
0 ui[0] uo[0] uio_in[0]
1 ui[1] uo[1] uio_in[1]
2 ui[2] uo[2] uio_out[2]
3 ui[3] uo[3] uio_out[3]
4 ui[4] uo[4] uio_out[4]
5 ui[5] uo[5] uio_out[5]
6 ui[6] uo[6] —
7 ui[7] uo[7] —

TTGF0P2 Projects 60

Simple RISC-V
by kinako71-2

0359 HDL Project

github.com/kinako71-2/TTGF0p2

“Simple RISC-V based on the university lecture”

How it works
A simple one-stage RISC-V CPU. This CPU was created with reference to
the lecture: https://eeic-vlsi.github.io/2025/. Instructions are 32-bit, while the
input bus is 8-bit, so each instruction is loaded over four clock cycles.

How to test
Very simple instructions are written in the testbench to verify that the calcu-
lations are correct.

External hardware
The chip is not being shipped at this time.

Project Pinout
Digital Pins

Input Output Bidirectional
0 1st bit of xth

instruction byte
1st bit of xth alu_out
byte

reset to CPU

1 2nd bit of xth
instruction byte

2nd bit of xth alu_out
byte

write enable to
instruction memory

2 3rd bit of xth
instruction byte

3rd bit of xth alu_out
byte

not used

3 4th bit of xth
instruction byte

4th bit of xth alu_out
byte

not used

4 5th bit of xth
instruction byte

5th bit of xth alu_out
byte

not used

5 6th bit of xth
instruction byte

6th bit of xth alu_out
byte

not used

6 7th bit of xth
instruction byte

7th bit of xth alu_out
byte

not used

7 8th bit of xth
instruction byte

8th bit of xth alu_out
byte

not used

61 Projects TTGF0P2

https://github.com/kinako71-2/TTGF0p2
https://eeic-vlsi.github.io/2025/

LEDs Racer
by KerCrafter

0384 50 MHz HDL Project

github.com/KerCrafter/FPGA-LEDs-Racer

“Funny electronic game with WS2812B LEDs”

How it works
A fun little game, 4 players (Red, Blue, Green, Yellow) around a table, each
with an arcade button, must challenge each other by pressing their button
as fast as possible.

How to test
Pressing the button causes their led to progress to the center circle. The first
to reach the center wins.

External hardware
I’m putting here the material I used for the project, but of course if it’s
compatible this list can be adapted.

• 4 x Arcade buttons (https://www.amazon.fr/EG-STARTS-Nouveau-
Boutons-poussoirs-lumineux/dp/B01MSNXLN0/)

• 1 x LEDs Circles (with WS2812B Leds) (https://www.amazon.fr/Treedix-
anneaux-WS2812B-adressable-Raspberry/dp/B0CD3DYJRK/)

Should be connected to the FPGA inputs with a pull down resistor

Project Pinout
Digital Pins

Input Output Bidirectional
0 BLUE_BTN LEDS_LINE —
1 RED_BTN TP_SCREEN_0 —
2 GREEN_BTN TP_SCREEN_1 —
3 YELLOW_BTN TP_BLUE_READY_TO_PLAY —
4 — TP_RED_READY_TO_PLAY —
5 — TP_GREEN_READY_TO_PLAY —
6 — TP_YELLOW_READY_TO_PLAY —
7 — TP_UPDATE_FRAME —

TTGF0P2 Projects 62

https://github.com/KerCrafter/FPGA-LEDs-Racer
https://www.amazon.fr/EG-STARTS-Nouveau-Boutons-poussoirs-lumineux/dp/B01MSNXLN0/
https://www.amazon.fr/EG-STARTS-Nouveau-Boutons-poussoirs-lumineux/dp/B01MSNXLN0/
https://www.amazon.fr/Treedix-anneaux-WS2812B-adressable-Raspberry/dp/B0CD3DYJRK/
https://www.amazon.fr/Treedix-anneaux-WS2812B-adressable-Raspberry/dp/B0CD3DYJRK/

Frequency Counter SSD1306 OLED
by Pawel Sitarz (embelon)

0385 1 MHz HDL Project

github.com/embelon/ttgf-frequency-counter-oled

“Simple Frequency Counter displaying result on SSD1306 SPI OLED”

How it works
Project measures frequency on ui[0] input by counting pulses during 100ms
periods. Measured frequency is then displayed on graphical 128x32 pixels
OLED display in form of emulated 7-segment display.

How to test
Internal logic needs 1MHz clock (to be generated by RPi Pico)

• Connect PMOD OLED display to see measurement
• Connect unknown frequency signal to be measured to ui[0]

External hardware
Freqquency is displayed on 128x32 OLED display with SSD1306 controller:
PMOD OLED

Project Pinout
Digital Pins

Input Output Bidirectional
0 clk_x - measured frequency

input
OLED nRST —

1 — OLED nVBAT —
2 — OLED nVDC —
3 — OLED nCS —
4 — OLED Data/Command —
5 — OLED CLK —
6 — OLED Data Out —
7 — — —

63 Projects TTGF0P2

https://github.com/embelon/ttgf-frequency-counter-oled
https://digilent.com/reference/pmod/pmodoled/start?srsltid=AfmBOorLYfaDc8BpQC9A5OXZzMUAsCeca8Y7uBRi8CIp-gxW1e7fsLZP

megabytebeat
by proppy

0391 2.048 MHz HDL Project

github.com/proppy/ttgf-bytebeat

“Best-of compilation of bytebeat 2011's greatest hits on-a-chip.”

░█▀▄░█░█░▀█▀░█▀▀░█▀▄░█▀▀░█▀█░▀█▀░▀░█▀▀
░█▀▄░░█░░░█░░█▀▀░█▀▄░█▀▀░█▀█░░█░░░░▀▀█
░▀▀░░░▀░░░▀░░▀▀▀░▀▀░░▀▀▀░▀░▀░░▀░░░░▀▀▀
 • ▌ ▄ ·. ▄▄▄ . ▄▄ • ▄▄▄·
 ·██ ▐███▪▀▄.▀·▐█ ▀ ▪▐█ ▀█
 ▐█ ▌▐▌▐█·▐▀▀▪▄▄█ ▀█▄▄█▀▀█
 ██ ██▌▐█▌▐█▄▄▌▐█▄▪▐█▐█ ▪▐▌
 ▀▀ █▪▀▀▀ ▀▀▀ ·▀▀▀▀ ▀ ▀
 █████ █████ █████ ███████████ █████████
░░███ ░░███ ░░███ ░█░░░███░░░█ ███░░░░░███
 ░███ ░███ ░███ ░ ░███ ░ ░███ ░░░
 ░███████████ ░███ ░███ ░░█████████
 ░███░░░░░███ ░███ ░███ ░░░░░░░░███
 ░███ ░███ ░███ ░███ ███ ░███
 █████ █████ █████ █████ ░░█████████
░░░░░ ░░░░░ ░░░░░ ░░░░░ ░░░░░░░░░
 ,----, ,----.. ,---, ,---,
 .' .' \ / / \ ,`--.' | ,`--.' |
 ,----,' | / . : / / : / / :
 | : . ;. / ;. \: |.' ': |.' '
 ; |.' /. ; / ` ;`----': |`----': |
 `----'/ ; ; | ; \ ; | ' ' ; ' ' ;
 / ; / | : | ; | ' | | | | | |
 ; / /-, . | ' ' ' : ' : ; ' : ;
 / / /.`| ' ; \; / | | | ' | | '
./__; : \ \ ', / ' : | ' : |
| : .' ; : / ; |.' ; |.'
; | .' \ \ .' '---' '---'
`---' `---`

Extended Play of some of the 2011’s BYTEBEAT greatest hits on-a-chip:

Pin Track Artist
out0 the 42 melody people on irc
out1 fractal trees danharaj
out2 untitled droid
out3 a tune to share Niklas_Roy
out7 sierpinski harmony miiro

TTGF0P2 Projects 64

https://github.com/proppy/ttgf-bytebeat

How it works
The main module accept parameters from 4x 4-bit parameters buses and
generate PWM audio signal on each output pins according to the following
bytebeat formulas:

Pin Formula Original Params
out0 t*({b,a}&t>>{d,c}) a=0xa,b=0x2,c=0xa,d=0x0

out1 t|t%{b,a}|t%(2+{d,c}) a=0xf,b=0xf,c=0xf,d=0xf

out2 t>>a&b?t>>c:-t>>d a=0x6,b=0x1,c=0x5,d=0x4

out3 t*(t>>a|t>>b)&{d,c} a=0x9,b=0xd,c=0x0,d=0x1

out7 t*a&(t>>b)|t*c&(t>>d) a=0x5,b=0x7,c=0x4,d=0xa

How to test
• Connect a speaker to the pin you want to “play”.
• Tweak parameters pins using binary rotary switches.

External hardware
• Rotaty switches w/ 16 positions.
• Speakers or TinyTapeout Audio PMOD if you want to hear out7.

Project Pinout
Digital Pins

Input Output Bidirectional
0 param a bit 0/3 track #0 PWM output param c bit 0/3
1 param a bit 1/3 track #1 PWM output param c bit 1/3
2 param a bit 2/3 track #2 PWM output param c bit 2/3
3 param a bit 3/3 track #3 PWM output param c bit 3/3
4 param b bit 0/3 N/A param d bit 0/3
5 param b bit 1/3 N/A param d bit 1/3
6 param b bit 2/3 N/A param d bit 2/3
7 param b bit 3/3 track #7 PWM output param d bit 3/3

65 Projects TTGF0P2

https://akizukidenshi.com/catalog/g/g102276/
https://github.com/MichaelBell/tt-audio-pmod

Asicle v2
by htfab

0451 25.175 MHz HDL Project

github.com/htfab/ttgf0p2-asicle2

“Wordle clone in raw silicon”

How it works

Figure 451.1: VGA screenshot with questions CRATE and ANGLE

Asicle is a Wordle clone implemented directly in hardware. A first version of
it was taped out on the Google-Skywater MPW6 shuttle. This second version
is a rewrite for Tiny Tapeout.

The 25-fold decrease in area mostly comes from moving the word list and
font bitmaps to external flash on the QSPI Pmod, with some architectural
changes to compensate for slower memory access. The design was also
adapted to the Tiny Tapeout ecosystem by using the Gamepad Pmod for
input and the Tiny VGA Pmod for output.

TTGF0P2 Projects 66

https://github.com/htfab/ttgf0p2-asicle2
https://github.com/htfab/asicle
https://github.com/mole99/qspi-pmod
https://github.com/psychogenic/gamepad-pmod
https://github.com/mole99/tiny-vga

How to test
• Connect the Pmods:

‣ Gamepad to input port (optional, you can also drive the input pins
using the commander app or momentary push buttons)

‣ QSPI to bidirectional port
‣ Tiny VGA to output port

• Flash the data file to the QSPI Pmod using the Tiny Tapeout flasher
• Select the design
• Set the clock to 25.175 MHz and reset the design
• Play the game

If you haven’t played Wordle before, the aim is to guess a five-letter English
word in six attempts. Each time you get feedback: a green square indicates
that the letter is correct, a yellow square indicates that it appears in the
hidden word but at a different position, and a grey square means that the
letter doesn’t appear in the solution at all.

Gamepad controls:

• 🠝 🠟: change the letter in the selected position
• 🠜 🠞: move the selection
• A: make a guess
• START: start a new game (if the current one is finished)
• SELECT+START: start a new game (any time)
• SELECT+X: show the solution*
• SELECT+Y: re-roll the solution*

(* only in debug mode)

Direct input using ui_in:

• 0 1: change the letter in the selected position
• 2 3: move the selection
• 4: make a guess
• 5: start a new game
• 6: show the solution
• 7: re-roll the solution

External hardware
• Tiny VGA Pmod
• QSPI Pmod
• Gamepad Pmod (optional)

67 Projects TTGF0P2

https://github.com/htfab/asicle2/blob/main/data/asicle.bin
https://tinytapeout.github.io/tinytapeout-flasher/
https://github.com/mole99/tiny-vga
https://github.com/mole99/qspi-pmod
https://github.com/psychogenic/gamepad-pmod

Project Pinout
Digital Pins

Input Output Bidirectional
0 up tinyvga: r1 qspi: cs0 (flash)
1 down tinyvga: g1 qspi: sd0/mosi
2 left tinyvga: b1 qspi: sd1/miso
3 right tinyvga: vsync qspi: sck
4 guess / gamepad: latch tinyvga: r0 qspi: sd2
5 new game / gamepad: clock tinyvga: g0 qspi: sd3
6 peek (debug) / gamepad: data tinyvga: b0 qspi: cs1 (unused)
7 roll (debug) tinyvga: hsync qspi: cs2 (unused)

TTGF0P2 Projects 68

CAN Controller for Rocket
by Noritsuna Imamura

0454 HDL Project

github.com/noritsuna/ttgf0p2-tt_um_noritsuna_CAN_CTRL

“CAN Controller for Rocket”

How it works
This CAN only has a transmit function.
It is intended only to transmit GPS data.

How to test
• Arty Z7

‣ This code is running.
• ZYBO Z7

‣ This board is transmitting dummy GPS data to Arty Z7.
• Raspberry Pi

‣ This is the destination for CAN data.
• Analog Discovery 3

‣ This generates the clock.

Figure 454.1: Development Environment

69 Projects TTGF0P2

https://github.com/noritsuna/ttgf0p2-tt_um_noritsuna_CAN_CTRL

External hardware
A GPS data receiver and a mechanism to transmit that data to this chip are
required.

Project Pinout
Digital Pins

Input Output Bidirectional
0 CAN_RX CAN_TX transmit_data[0]
1 send_data TXING transmit_data[1]
2 CLOCK_SIGNAL_IN TT_Enable transmit_data[2]
3 RESET_N TT_Clock transmit_data[3]
4 can_addr[0] TT_Reset transmit_data_counter[0]
5 can_addr[1] — transmit_data_counter[1]
6 can_addr[2] — transmit_data_counter[2]
7 can_addr[3] — transmit_data_counter[3]

TTGF0P2 Projects 70

Zilog Z80
by ReJ aka Renaldas Zioma

0455 4 MHz HDL Project

github.com/rejunity/z80-open-silicon

“Z80 open-source silicon. Goal is to become a silicon proven, pin com-
patible, open-source replacement for classic Z80.”

How it works
On April 15 of 2024 Zilog has announced End-of-Life for Z80, one of the most
famous 8-bit CPUs of all time. It is a time for open-source and hardware
preservation community to step in with a Free and Open Source Silicon
(FOSS) replacement for Zilog Z80.

The implementation is based around Guy Hutchison’s TV80 Verilog core.

The future work

• Add thorough instruction (including ‘illegal’) execution tests ZEXALL to
testbench

• Compare different implementations: Verilog core A-Z80, Netlist based
Z80Explorer

• Create gate-level layouts that would resemble the original Z80 layout.
Zilog designed Z80 by manually placing each transistor by hand.

• Tapeout QFN44 package
• Tapeout DIP40 package

Z80 technical capabilities

• nMOS original frequency 4MHz. CMOS frequency up to 20 MHz. This
tapeout on 130 nm is expected to support frequency up to 50 MHz.

• 158 instructions including support for Intel 8080A instruction set as a
subset.

• Two sets of 6 general-purpose reigsters which may be used as either 8-
bit or 16-bit register pairs.

• One maskable and one non-maskable interrupt.
• Instruction set derived from Datapoint 2200, Intel 8008 and Intel 8080A.

Z80 registers

• AF: 8-bit accumulator (A) and flag bits (F)
• BC: 16-bit data/address register or two 8-bit registers
• DE: 16-bit data/address register or two 8-bit registers
• HL: 16-bit accumulator/address register or two 8-bit registers
• SP: stack pointer, 16 bits

71 Projects TTGF0P2

https://github.com/rejunity/z80-open-silicon
https://www.mouser.com/PCN/Littelfuse_PCN_Z84C00.pdf
https://github.com/hutch31/tv80
https://mdfs.net/Software/Z80/Exerciser/
https://github.com/gdevic/A-Z80
https://github.com/gdevic/Z80Explorer
https://en.wikipedia.org/wiki/Intel_8080
https://en.wikipedia.org/wiki/Datapoint_2200
https://en.wikipedia.org/wiki/Intel_8008
https://en.wikipedia.org/wiki/Intel_8080

• PC: program counter, 16 bits
• IX: 16-bit index or base register for 8-bit immediate offsets
• IY: 16-bit index or base register for 8-bit immediate offsets
• I: interrupt vector base register, 8 bits
• R: DRAM refresh counter, 8 bits (msb does not count)
• AF': alternate (or shadow) accumulator and flags (toggled in and out with
EX AF, AF')

• BC', DE' and HL': alternate (or shadow) registers (toggled in and out with
EXX)

Z80 Pinout

 ,---------.__.---------.
 <-- A11 |1 40| A10 -->
 <-- A12 |2 39| A9 -->
 <-- A13 |3 Z80 CPU 38| A8 -->
 <-- A14 |4 37| A7 -->
 <-- A15 |5 36| A6 -->
 --> CLK |6 35| A5 -->
 <-> D4 |7 34| A4 -->
 <-> D3 |8 33| A3 -->
 <-> D5 |9 32| A2 -->
 <-> D6 |10 31| A1 -->
 VCC |11 30| A0 -->
 <-> D2 |12 29| GND
 <-> D7 |13 28| /RFSH -->
 <-> D0 |14 27| /M1 -->
 <-> D1 |15 26| /RESET <--
 --> /INT |16 25| /BUSRQ <--
 --> /NMI |17 24| /WAIT <--
 <-- /HALT |18 23| /BUSAK -->
 <-- /MREQ |19 22| /WR -->
 <-- /IORQ |20 21| /RD -->
 `----------------------'

How to test
Hold all bidirectional pins (Data bus) low to make CPU execute NOP
instruction. NOP instruction opcode is 0. Hold all input pins high to disable
interrupts and signal that data bus is ready.

Every 4th cycle 8-bit value on output pins (Address bus low 8-bit) should
monotonously increase.

 Timing diagram, input pins

 Z80CLK____ ____ ____ ____ ____

 __/ ____/ ____/ ____/ ____/ ____/
`____ ...

TTGF0P2 Projects 72

 | | | | | |
 | | | | | |

 /
RESET___
 __/
 /WAIT

 __/
 /INT

 __/
 /NMI

 __/
 /
BUSRQ___
 __/

 D7..D0 NOP NOP NOP NOP
NOP
 __ XXXXXXXXX ___#00___ ___#00___ ___#00___ ___#00___
___#00___

 Expected signals on output pins
 /M1 _________ ____________________
 __________________/

 /MREQ ___________________

 ________/
 /RD ___________________

 ________/
 A0..A7
 __ XXXXXXXXX ___#00___ ___#00___ XXXXXXXXX XXXXXXXXX
___#01___

External hardware
Bus de-multiplexor, external memory, 8-bit computer such as ZX Spectrum.

Alternatively the RP2040 on the TinyTapeout test PCB can be used to simu-
late RAM and I/O.

73 Projects TTGF0P2

https://en.wikipedia.org/wiki/ZX_Spectrum

Project Pinout
Digital Pins

Input Output Bidirectional
0 /WAIT /M1, A0, A8 D0
1 /INT /MREQ, A1, A9 D1
2 /NMI /IORQ, A2, A10 D2
3 /BUSRQ /RD, A3, A11 D3
4 CONFIG – 00: short MREQ IORQ RD /

01: short MREQ IORQ RD starts early
/WR, A4, A12 D4

5 CONFIG – 10: long MREQ IORQ / 11: long
MREQ IORQ RD starts early

/RFSH, A5, A13 D5

6 MUX – address lo/hi bits on the output
pins

/HALT, A6, A14 D6

7 MUX – control signals on the output
pins

/BUSAK, A7, A15 D7

TTGF0P2 Projects 74

ROTFPGA v2
by htfab

0481 10 MHz HDL Project

github.com/htfab/ttgf0p2-rotfpga

“A reconfigurable logic circuit made of identical rotatable tiles”

How it works

D

Q
clk

Figure 481.1: Logic tile

A reconfigurable logic circuit built from identical copies of the tile above
containing a NAND gate, a D flip-flop and a buffer, with each tile individually
rotated or reflected as described by the FPGA configuration. Port of the
original ROTFPGA from Caravel to TinyTapeout.

Porting the design required a 50-fold decrease in chip area which was
achieved using a combination of cutting corners, heavy optimization and a
few design changes. In particular:

• The FPGA was reduced from 24×24 to 8×8 tiles. There are 8 inputs and 8
outputs instead of 12 each.

• To compensate for smaller size, tiles can also be mirrored in addition to
rotation.

• Tiles (being the most repeated part of the design) were rewritten as hand-
optimized gate-level Verilog.

• Each tile only contains 1 flip-flop (the one exposed to the user). Configu-
ration is now stored in latches.

• Configuration and reset are performed using a routing-efficient scan
chain, so the design is no longer routing constrained. This allows standard
cells to be placed with >80% density.

75 Projects TTGF0P2

https://github.com/htfab/ttgf0p2-rotfpga
https://github.com/htfab/rotfpga

• Openlane and its components are 2 years more mature, hardening the
same HDL more efficiently.

Configuration
Each tile can be configured in 8 possible orientations. Bits 0, 1 and 2 corre-
spond to a diagonal, horizontal and vertical flip respectively. Any rotation or
reflection can be described as a combination:

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

Q

D
clk

QD
clk

Q

D
clk

Q D
clk

000 ≡ 0 101 ≡ 5 110 ≡ 6 011 ≡ 3

001 ≡ 1 100 ≡ 4 111 ≡ 7 010 ≡ 2

(The bottom row looks somewhat different, but we just rearranged the wires
so that the inputs and outputs line up with the unmirrored tiles.)

Tiles are arranged in an 8×8 grid:

• Top, bottom, left and right inputs and outputs are connected to the tile
in the respective direction.

• Tiles mostly wrap around, e.g. the bottom output of a cell in the last line
connects to the top input of the cell in the first line.

• As an exception to the wrapping rules, left inputs in the first column cor-
respond to chip inputs and right outputs in the last column correspond
to chip outputs.

• There is a scan chain meandering through all the tiles, visiting lines from
top to bottom and within each line going from left to right.

This is a 4×4 model of the tile grid, showing regular i/o as black and the scan
chain as grey:

TTGF0P2 Projects 76

Figure 481.2: Grid model

When the scan enable input is 0, the FPGA operates normally and each tile
sets its flip-flop to the input it receives from one of the neighboring tiles
according to its current rotation/reflection. When scan enable is 1, it sets the
flip-flop to the value received through the scan chain instead. This allows
us to set the initial state of each flip-flop and also to query their state later
for debugging. With some extra machinery it also allows us to change the
rotations/reflections.

When the 2-bit configuration input is is 01, each cell updates its vertical flip
bit to the current value of its flip-flop. Similarly, for 10 it sets the horizontal flip
and for 11 it sets the diagonal flip. When configuration is 00, all three flip bits
are latched and the orientation doesn’t change.

One can thus configure the FPGA by sending the sequence of all diagonal
flip bits through the scan chain, then setting configuration to 11 and back to
00, then sending all horizontal flip bits, setting configuration to 10 and back
to 00, and finally sending the vertical flip bits and setting configuration to 01
and back to 00.

77 Projects TTGF0P2

Note that in order to save space the flip bits are stored in latches, not registers.
Changing the configuration input from 00 to 11 or vice versa can cause a race
condition where it is temporarily 01 or 10, overwriting the horizontal or vertical
flip bits. Therefore one should configure the diagonal flips first.

Loop breaker
The user design may intentionally or inadvertantly contain combinational
loops such as ring oscillators. To help debug such designs, the chip has a loop
breaker mechanism using a loop breaker enable input as well as a 2-bit loop
breaker class input.

Tiles are assigned to loop breaker classes:

00

10

11

01

00

10

11

01

11

01

00

10

11

01

00

10

00

10

11

01

00

10

11

01

11

01

00

10

11

01

00

10

Figure 481.3: Loop breaker tile classes

The loop breaker latches a tile output if and only if the following conditions
are all met:

• The loop breaker enable input is 1.
• The current tile has a non-empty class that is different from the loop

breaker class input.
• The output doesn’t come from the tile’s flip-flop.

The loop breaker has the following properties:

• If loop breaker enable is 1 and loop breaker class is constant, there are no
combinational loops running. If we also pause the clock, the circuit keeps
a steady state.

• If loop breaker enable is 1 and we cycle loop breaker class through
all possible values repeatedly while the clock is paused, everything will
eventually propagate. If we also assume that the design has no race
conditions, it will behave in the same way as if loop breaker enable was 0.

TTGF0P2 Projects 78

Reset
Setting the active-low reset input to 0 has the following effect:

• Override scan enable to 1, scan chain input to 0 and disengage the
latches for vertical, horizontal and diagonal flips. When kept low for 64
clock cycles this will reset the state and configuration in every tile.

• Override loop breaker enable to 1 and loop breaker class to 00. This
ensures that we play nice with other designs on TinyTapeout and keep a
steady state while our design is not selected.

Pin mapping
Input pins:

• clk provides a clock signal for the flip-flops
• rst_n is the active-low reset described above
• ui_in[7:0] are passed to the leftmost column of tiles as inputs from the

left

Output pins:

• uo_out[7:0] come from the rightwards output of the rightmost column
of tiles

Bidirectional pins:

• uio_in[0] is the scan enable input
• uio_in[1] is the scan chain input
• uio_in[3:2] are the configuration input bits
• uio_in[4] is the loop breaker enable input
• uio_in[6:5] are the loop breaker class input bits
• uio_out[7] is the scan chain output

How to test
Follow the test suite the test directory. It sets up the FPGA with the following
two configurations and runs a battery of tests on each.

Test configuration 1 used for upload, download, single-step and propagation
tests:

79 Projects TTGF0P2

 D

 Q
 clk

 D Q
 clk

 D

 Q
 clk

 D Q
 clk

 D

 Q
 clk

 D Q
 clk

 D

 Q
 clk

 D Q
 clk

 D

 Q
 clk

 D Q
 clk

 D

 Q
 clk

 D Q
 clk

 D

 Q
 clk

 D Q
 clk

 D

 Q
 clk

 D Q
 clk

 D

 Q
 clk

 D Q
 clk

 D

 Q
 clk

 D Q
 clk

 Q

 D
 clk

 Q D
 clk

 Q

 D
 clk

 Q D
 clk

 D

 Q
 clk

 D Q
 clk

 D

 Q
 clk

 D Q
 clk

 Q

 D
 clk

 Q D
 clk

 Q

 D
 clk

 Q D
 clk

 D

 Q
 clk

 D Q
 clk

 Q

 D
 clk

 Q D
 clk

 D Q
 clk

 D

 Q
 clk

 Q D
 clk

 Q

 D
 clk

 D

 Q
 clk

 D Q
 clk

 D

 Q
 clk

 D Q
 clk

 Q

 D
 clk

 Q D
 clk

 Q

 D
 clk

 Q D
 clk

 Q

 D
 clk

 Q D
 clk

 Q

 D
 clk

 Q D
 clk

 Q

 D
 clk

 Q D
 clk

 Q

 D
 clk

 Q D
 clk

 Q D
 clk

 Q D
 clk

 Q D
 clk

 Q D
 clk

 Q D
 clk

 Q D
 clk

 Q D
 clk

 Q D
 clk

Figure 481.4: Diagram corresponding to fpga_config in test.py

Test configuration 2 used for testing the loop breaker with manual and auto-
matic cycles:

TTGF0P2 Projects 80

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

Figure 481.5: Diagram corresponding to cfg from the loop breaker test in
test.py

External hardware
None

Project Pinout
Digital Pins

Input Output Bidirectional
0 tile(0,0) left in tile(7,0) right out scan enable input
1 tile(0,1) left in tile(7,1) right out scan chain input
2 tile(0,2) left in tile(7,2) right out configuration input bit 0

81 Projects TTGF0P2

Input Output Bidirectional
3 tile(0,3) left in tile(7,3) right out configuration input bit 1
4 tile(0,4) left in tile(7,4) right out loop breaker enable input
5 tile(0,5) left in tile(7,5) right out loop breaker class input bit 0
6 tile(0,6) left in tile(7,6) right out loop breaker class input bit 1
7 tile(0,7) left in tile(7,7) right out scan chain output

TTGF0P2 Projects 82

7-Segment Digital Desk Clock
by Samuel Ellicott

0483 50 MHz HDL Project

github.com/sellicott/digital_clock_gf0p2

“7-Segment Desk Clock”

How it works
This is a rehardening of a test design from Skywater and IHP processes for
GF180

Simple digital clock, displays hours, minutes, and seconds in either a 24h
format. Since there are not enough output pins to directly drive a 6x 7-
segment displays, the data is shifted out over SPI to a MAX7219 in 7-segment
mode. The time can be set using the hours_set and minutes_set inputs. If
set_fast is high, then the the hours or minutes will be incremented at a rate
of 5Hz, otherwise it will be set at a rate of 2Hz. Note that when setting either
the minutes, rolling-over will not affect the hours setting. If both hours_set
and minutes_set are presssed at the same time the seconds will be cleared
to zero.

A block diagram of the system is shown below.

1

0

clk_gen_inst
i_clk

i_refclk

i_reset_n

o_1hz_stb

o_debounce_stb

o_fast_set_stb

o_slow_set_stb

clock_reg_inst
i_1hz_stb

i_clk

i_reset_n

i_set_hours

i_set_minutes

i_set_stb

o_hours

o_minutes

o_seconds

display_control_inst
i_1hz_stb

i_clk

i_clk_set

i_clk_set_stb

i_display_ack

i_reset_n

o_display_stb

o_write_config

display_inst
i_clk

i_dp

i_hours

i_minutes

i_reset_n

i_seconds

i_stb

i_write_config

o_ack

o_busy

o_serial_clk

o_serial_dout

o_serial_load

dp_control_inst
i_am_pm

i_seconds

i_set_time

o_dp

input_debounce
i_12h_mode

i_clk

i_debounce_stb

i_fast_set

i_reset_n

i_set_hours

i_set_minutes

o_12h_mode_db

o_fast_set_db

o_set_hours_db

o_set_minutes_db

mode_conv_inst
i_12h_mode

i_hours

i_minutes

i_seconds

o_am_pm

o_hours

o_minutes

o_seconds

refclk_sync_inst
i_clk

i_refclk

i_reset_n

o_refclk_sync

i_reset_n

i_clk

i_en

i_refclk

i_fast_set

i_set_hours

i_set_minutes

i_12h_mode

o_serial_load

o_serial_dout

o_serial_clk

/6/

/5/

/6/

/6//6/

/5/

/6/

/6/

How to test
Apply a 5MHz clock to the clock pin and 32.786Khz signal to the refclk pin.
Use the hours_set and minutes_set pins to set the time.

External hardware
Connect the BIDIR PMOD to a MAX7219 7-segment display, For reference Tiny
Tapeout SPI

83 Projects TTGF0P2

https://github.com/sellicott/digital_clock_gf0p2
https://tinytapeout.com/specs/pinouts/#spi
https://tinytapeout.com/specs/pinouts/#spi

Project Pinout
Digital Pins

Input Output Bidirectional
0 refclk — Display CS
1 — — Display MOSI
2 Fast/Slow Set — —
3 Set Hours — Display SCK
4 Set Minutes — —
5 12-Hour Mode — —
6 — — —
7 — — —

TTGF0P2 Projects 84

MarcoPolo
by Javier Munoz Saez

0485 50 MHz HDL Project

github.com/javiBajoCero/ttgf-verilog-template

“when this UART receives 'MARCO' answers 'POLO!' , adapted from
https://github.com/javiBajoCero/ttihp-verilog-template”

How it works
This is just an UART + small WS2812b single led driver copied from my old
ttsky submission https://github.com/javiBajoCero/ttsky-verilog-template

Listens to ascii ‘MARCO’ and once detected, with 10us delay (mega fast)
replies with ’! and blips the LED from red to green.

FPGA tested :)

How to test
The device will need 50Mhz clock. (provided by the RP2)

Connect ui[0]: “uartRX” and uo[0]: “uartTX” with your favourite UART gizmo,
i used my PC and FTDI FT2232HQ USB-UART bridge builtin my ArtyS7 evalu-
ation board.

with default putty serial settings 9600 bauds 8 data bits 1 stop bit parity NONE

and type uppercase ‘MARCO’ trough UART RX pin you should receive a ’! on
UART TX pin

Some extra debugging signals are also exposed :

85 Projects TTGF0P2

https://github.com/javiBajoCero/ttgf-verilog-template
https://github.com/javiBajoCero/ttsky-verilog-template
https://www.linkedin.com/posts/javiermu%C3%B1oz_verilog-uart-fsms-activity-7348657715633647617-CXaE/

• uo[1]: “baud_tick_rx”
• uo[2]: “baud_tick_tx”
• uo[3]: “trigger_send”
• uo[4]: “uartTxbusy”
• uo[5]: “led_data_out”

External hardware
probably a USB to TTL dongle like CP2102, and a WS2812b led

Project Pinout
Digital Pins

Input Output Bidirectional
0 uartRX uartTX unused
1 — baud_tick_rx —
2 — baud_tick_tx —
3 — trigger_send —
4 — uartTxbusy —
5 — led_data_out —
6 — 1 —
7 — 1 —

TTGF0P2 Projects 86

Linear Timecode (LTC) generator
by Thomas Flummer

0487 12 MHz HDL Project

github.com/flummer/tt-um-flummer-ltc

“Timecode generator for audio video syncronization”

How it works
Multiple counters to maintain time and framecount, with serial output of the
LTC (80 bit frames, biphase mark code)

How to test
The project should have 12 MHz clock signal applied and after reset, will start
out with a 00:00:00:00 timecode and starts to count.

Framerate is controlled by the ui[2] and ui[3]

ui[3] ui[2] Framerate Comment
0 0 24 —

0 1 25 —

1 0 29.97 Not implemented
1 1 30 —

External hardware
This should work with the audio PMOD connected to the bidirectional port,
to give levels useable for audio gear.

If testing with logic analyzer or similar, uio[7] can be directly connected. The
signal is a digital signal.

Project Pinout
Digital Pins

Input Output Bidirectional
0 — — —
1 — — —
2 FRAMERATE_0 — —
3 FRAMERATE_1 — —
4 — — —

87 Projects TTGF0P2

https://github.com/flummer/tt-um-flummer-ltc

Input Output Bidirectional
5 — — —
6 — — —
7 — — LTC_OUT

TTGF0P2 Projects 88

Classic 8-bit era Programmable Sound
Generator SN76489
by ReJ aka Renaldas Zioma

0513 4 MHz HDL Project

github.com/rejunity/tt05-psg-sn76489

“The SN76489 Digital Complex Sound Generator (DCSG) is a program-
mable sound generator chip from Texas Instruments.”

How it works
This Verilog implementation is a replica of the classical SN76489 program-
mable sound generator. With roughly a 1400 logic gates this design fits on a
single tile of the TinyTapeout.

The goals of this project

1. closely replicate the behavior and eventually the complete design of the
original SN76489

2. provide a readable and well documented code for educational and
hardware preservation purposes

3. leverage the modern fabrication process

A significant effort was put into a thorough test suite for regression testing
and validation against the original chip behavior.

The future work

The next step is to incorporate analog elements into the design to match the
original SN76489 - DAC for each channel and an analog OpAmp for channel
summation.

Chip technical capabilities

• 3 square wave tone generators
• 1 noise generator
• 2 types of noise: white and periodic
• Capable to produce a range of waves typically from 122 Hz to 125 kHz,

defined by 10-bit registers.
• 16 different volume levels

Registers The behavior of the SN76489 is defined by 8 “registers” - 4 x 4 bit
volume registers, 3 x 10 bit tone registers and 1 x 3 bit noise configuration
register.

Channel Volume registers Tone & noise registers

89 Projects TTGF0P2

https://github.com/rejunity/tt05-psg-sn76489
https://en.wikipedia.org/wiki/Texas_Instruments_SN76489

0 Channel #0 attenuation Tone #0 frequency
1 Channel #1 attenuation Tone #1 frequency
2 Channel #2 attenuation Tone #2 frequency
3 Channel #3 attenuation Noise type and frequency

Square wave tone generators Square waves are produced by counting
down the 10-bit counters. Each time the counter reaches the 0 it is reloaded
with the corresponding value from the configuration register and the output
bit of the channel is flipped producing square waves.

Noise generator Noise is produced with 15-bit Linear-feedback Shift Register
(LFSR) that flips the output bit pseudo randomly. The shift rate of the LFSR
register is controller either by one of the 3 hardcoded power-of-two dividers
or output from the channel #2 tone generator is used.

Attenuation Each of the four SN76489 channels have dedicated attenuation
modules. The SN76489 has 16 steps of attenuation, each step is 2 dB and
maximum possible attenuation is 28 dB. Note that the attenuation definition
is the opposite of volume / loudness. Attenuation of 0 means maximum
volume.

Finally, all the 4 attenuated signals are summed up and are sent to the output
pin of the chip.

Historical use of the SN76489

The SN76489 family of programmable sound generators was introduced by
Texas Instruments in 1980. Variants of the SN76489 were used in a number
of home computers, game consoles and arcade boards:

• home computers: TI-99/4, BBC Micro, IBM PCjr, Sega SC-3000, Tandy 1000
• game consoles: ColecoVision, Sega SG-1000, Sega Master System, Game

Gear, Neo Geo Pocket and Sega Genesis
• arcade machines by Sega & Konami and would usually include 2 or 4

SN76489 chips

The SN76489 chip family competed with the similar General Instrument
AY-3-8910.

The original pinout of the SN76489AN

 ,--._.--.
 D5 -->|1 16|<-- VCC
 D6 -->|2 15|<-- D4
 D7 -->|3 14|<-- CLOCK
 ready* <--|4 13|<-- D3
 /WE -->|5 12|<-- D2
 /ce* -->|6 11|<-- D1
 AUDIO OUT <--|7 10|<-- D0

TTGF0P2 Projects 90

https://en.wikipedia.org/wiki/Linear-feedback_shift_register
https://en.wikipedia.org/wiki/Linear-feedback_shift_register
https://en.wikipedia.org/wiki/TI-99/4A
https://en.wikipedia.org/wiki/BBC_Micro
https://en.wikipedia.org/wiki/IBM_PCjr
https://en.wikipedia.org/wiki/SG-1000#SC-3000
https://en.wikipedia.org/wiki/Tandy_1000
https://en.wikipedia.org/wiki/ColecoVision
https://en.wikipedia.org/wiki/SG-1000
https://en.wikipedia.org/wiki/Master_System
https://en.wikipedia.org/wiki/Game_Gear
https://en.wikipedia.org/wiki/Game_Gear
https://en.wikipedia.org/wiki/Neo_Geo_Pocket
https://en.wikipedia.org/wiki/Sega_Genesis
https://en.wikipedia.org/wiki/General_Instrument_AY-3-8910
https://en.wikipedia.org/wiki/General_Instrument_AY-3-8910

 GND ---|8 9| not connected*
 `-------'
 * -- omitted from this Verilog implementation

Difference from the original hardware

This Verilog implementation is a completely digital and synchronous design
that differs from the original SN76489 design which incorporated analog
parts.

Audio signal output While the original chip had integrated OpAmp to
sum generated channels in analog fashion, this implementation does digital
signal summation and digital output. The module provides two alternative
outputs for the generated audio signal:

1. digital 8-bit audio output suitable for external Digital to Analog Con-
verter (DAC)

2. pseudo analog output through Pulse Width Modulation (PWM)

Separate 4 channel output Outputs of all 4 channels are exposed along
with the master output. This allows to validate and mix signals externally. In
contrast the original chip was limited to a single audio output pin due to the
PDIP-16 package.

No DC offset This implementation produces output 0/1 waveforms without
DC offset.

No /CE and READY pins Chip enable control pin /CE is omitted in this design
for simplicity. The behavior is the same as if /CE is tied low and the chip is
considered always enabled.

Unlike the original SN76489 which took 32 cycles to update registers, this
implementation handles register writes in a single cycle and chip behaves as
always READY.

Synchronous reset and single phase clock The original design employed
2 phases of the clock for the operation of the registers. The original chip had
no reset pin and would wake up to a random state.

To make it easier to synthesize and test on FPGAs this implementation uses
single clock phase and synchronous reset for registers.

A configurable clock divider was introduced in this implementation.

1. the original SN76489 with the master clock internally divided by 16. This
classical chip was intended for PAL and NTSC frequencies. However in
BBC Micro 4 MHz clock was employed.

2. SN94624/SN76494 variants without internal clock divider. These chips
were intended for use with 250 to 500 KHz clocks.

91 Projects TTGF0P2

https://en.wikipedia.org/wiki/BBC_Micro

3. high frequency clock configuration for TinyTapeout, suitable for a range
between 25 MHz and 50 Mhz. In this configuration the master clock is
internally divided by 128.

The reverse engineered SN76489

This implementation is based on the results from these reverse engineering
efforts:

1. Annotations and analysis of a decapped SN76489A chip.
2. Reverse engineered schematics based on a decapped VDP chip from

Sega Mega Drive which included a SN76496 variant.

How to test
Summary of commands to communicate with the chip

The SN76489 is programmed by updating its internal registers via the data
bus. Below is a short summary of the communication protocol of SN76489.
Please consult SN76489 Technical Manual for more information.

Command Description Parameters
1cc0ffff Set tone fine frequency f - 4 low bits, c - channel #
00ffffff Follow up with coarse

frequency
f - 6 high bits

11100bff Set noise type and frequency b - white/periodic, f -
frequency control

1cc1aaaa Set channel attenuation a - 4 bit attenuation, c -
channel #

NF1 NF0 Noise frequency control
0 0 Clock divided by 512
0 1 Clock divided by 1024
1 0 Clock divided by 2048
1 1 Use channel #2 tone frequency

Write to SN76489 Hold /WE low once data bus pins are set to the desired
values. Pull /WE high before setting different value on the data bus.

Note frequency

Use the following formula to calculate the 10-bit period value for a particular
note :

𝑡𝑜𝑛𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑐𝑦𝑐𝑙𝑒𝑠 = 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(32𝑐𝑦𝑐𝑙𝑒𝑠*𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

TTGF0P2 Projects 92

https://github.com/gchiasso/76489A-analysis
https://github.com/emu-russia/SEGAChips/tree/main/VDP/PSG
https://github.com/rejunity/tt05-psg-sn76489/blob/main/docs/SN76489AN_Manual.pdf

For example 10-bit value that plays 440 Hz note on a chip clocked at 4 MHz
would be:

𝑡𝑜𝑛𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑐𝑦𝑐𝑙𝑒𝑠 = 4000000𝐻𝑧/(32𝑐𝑦𝑐𝑙𝑒𝑠*440𝐻𝑧) = 284 = 11𝐶ℎ𝑒𝑥

An example to play a note accompanied with a lower volume noise

/WE D7 D6/5 D4..D0 Explanation
0 1 00 01100 Set channel #0 tone low 4-bits to 𝐶ℎ𝑒𝑥 =

1100𝑏𝑖𝑛
0 0 00 10001 Set channel #0 tone high 6-bits to 11ℎ𝑒𝑥 =

010001𝑏𝑖𝑛
0 1 00 10000 Set channel #0 volume to 100%, attenuation

4-bits are 0𝑑𝑒𝑐 = 0000𝑏𝑖𝑛
0 1 11 00100 Set channel #3 noise type to white and

divider to 512
0 1 11 11000 Set channel #3 noise volume to 50%,

attenuation 4-bits are 8𝑑𝑒𝑐 = 1000𝑏𝑖𝑛

Timing diagram

CLK ____ ____ ____ ____ ____

 __/ `____/ `____/ `____/ `____/ `____/
`___ ...
 | | | | | |
 | | | | | |

/WE _ __ __ __ __ _______
 `_____/ `______/ `______/ `______/ `______/ *
 ^
D7..D0_______ ________ ________ ________ ________ |
 /10001100 00010001 10010000 11100100 11111000`|______
 chan#0 chan#0 chan#0 chan#3 chan#3 |
 tone=h??C =h11C atten=0 div=16 atten=8 |
 h011C = 440 Hz /16 = ~1 Khz |
 white noise |
 |
 noise restarts
 after /WE goes high and
 there was a write to noise
register

Configurable clock divider

Clock divider can be controlled through SEL0 and SEL1 control pins and
allows to select between 3 chip variants.

93 Projects TTGF0P2

SEL1 SEL0 Description Clock frequency
0 0 SN76489 mode, clock divided by 16 3.5 .. 4.2 MHz
1 1 —–/ /—– 3.5 .. 4.2 MHz
0 1 SN76494 mode, no clock divider 250 .. 500 kHZ
1 0 New mode for TT05, clock div. 128 25 .. 50 MHz

SEL1 SEL0 Formula to calculate the 10-bit tone period value for a note
0 0 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 / (32𝑐𝑦𝑐𝑙𝑒𝑠*𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
1 1 —–/ /—–
0 1 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 / (2𝑐𝑦𝑐𝑙𝑒𝑠*𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
1 0 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 / (256𝑐𝑦𝑐𝑙𝑒𝑠*𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

Some examples of music recorded from the chip simulation

• Crazee Rider BBC Micro game
• MISSION76496 tune for Sega Master System

External hardware
DAC (for ex. Digilent R2R PMOD), RC filter, amplifier, speaker.

The data bus of the SN76489 chip has to be connected to microcontroller and
receive a regular stream of commands. The SN76489 produces audio output
and has to be connected to a speaker. There are several ways how the overall
schematics can be established.

8-bit parallel output via DAC One option is to connect off the shelf data
parallel Digital to Analog Converter (DAC) for example Digilent R2R Pmod
to the output pins and route the resulting analog audio to piezo speaker or
amplifier.

uController SN76489
,---------. ,---._.---.
| | 4 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|D0 SEL1|<-- 0
| GPIOx|----------->|D1 | ,----------.
| GPIOx|----------->|D2 OUT0|-------->|LSB |
| GPIOx|----------->|D3 OUT1|-------->| |
| GPIOx|----------->|D4 OUT2|-------->| pDAC | Headphones
| GPIOx|----------->|D5 OUT3|-------->| or | or
| GPIOx|----------->|D6 OUT4|-------->| RESISTOR |
Buzzer
| GPIOx|----------->|D7 OUT5|-------->| ladder | /|
| GPIOx|----------->|/WE OUT6|-------->| | .--/ |
`---------' | OUT7|-------->|MSB |-----| |
 `---------' `----------' `--` |

TTGF0P2 Projects 94

https://www.youtube.com/watch?v=ghBGasckpSY
https://www.youtube.com/watch?v=HXLAdA02I-w
https://digilent.com/reference/pmod/pmodr2r/start

 | `|
 |
 GND ---

AUDIO OUT through RC filter Another option is to use the Pulse Width Mod-
ulated (PWM) AUDIO OUT pin that combines 4 channels with the Resistor-
Capacitor based low-pass filter or better the Operation Amplifier (Op-amp) &
Capacitor based integrator:

uController SN76489
,---------. ,---._.---.
| | 4 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|D0 SEL1|<-- 0
| GPIOx|----------->|D1 |
| GPIOx|----------->|D2 |
| GPIOx|----------->|D3 | C1
| GPIOx|----------->|D4 | ,----||----.
| GPIOx|----------->|D5 | | |
| GPIOx|----------->|D6 | | Op-amp |
Speaker
| GPIOx|----------->|D7 AUDIO| | |X | /|
| GPIOx|----------->|/WE OUT |-----+---|-X | C2 .--/ |
`---------' `---------' | }---+---||---| |
 ,--|+/ `--` |
 | |/ | `|
 | |
 GND --- GND ---

Separate channels through the Op-amp The third option is to externally
combine 4 channels with the Operational Amplifier and low-pass filter:

uController SN76489
,---------. ,---._.---.
| | 4 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|D0 SEL1|<-- 0
| GPIOx|----------->|D1 |
| GPIOx|----------->|D2 |
| GPIOx|----------->|D3 | C1
| GPIOx|----------->|D4 | ,----||----.
| GPIOx|----------->|D5 chan0|---. | |
| GPIOx|----------->|D6 chan1|---+ | Op-amp | Speaker
| GPIOx|----------->|D7 chan2|---+ | |X | /|
| GPIOx|----------->|/WE chan3|---+--+---|-X | C2 .--/ |
`---------' `---------' | }---+---||---| |
 ,--|+/ `--` |
 | |/ | `|
 | |
 GND --- GND ---

95 Projects TTGF0P2

Project Pinout
Digital Pins

Input Output Bidirectional
0 D0 data bus digital audio LSB (in) /WE write enable
1 D1 data bus digital audio (in) SEL0 clock divider
2 D2 data bus digital audio (in) SEL1 clock divider
3 D3 data bus digital audio (out) channel 0 (PWM)
4 D4 data bus digital audio (out) channel 1 (PWM)
5 D5 data bus digital audio (out) channel 2 (PWM)
6 D6 data bus digital audio (out) channel 3 (PWM)
7 D7 data bus digital audio MSB (out) AUDIO OUT master (PWM)

TTGF0P2 Projects 96

VGA Tiny Logo
by Renaldas Zioma

0515 25.175 MHz HDL Project

github.com/rejunity/ttgf-vga-tiny-tapeout-animated-logo

“Large 480x480 pixels Tiny Tapeout logo with bling and dithered colors
crammed into 1 tile!”

How it works
Compressed VGA Logo

How to test
Connect to VGA monitor and run it!

External hardware
TinyVGA PMOD, VGA monitor

Project Pinout
Digital Pins

Input Output Bidirectional
0 — TinyVGA PMOD - R1 —
1 — TinyVGA PMOD - G1 —
2 — TinyVGA PMOD - B1 —
3 — TinyVGA PMOD - VSync —
4 — TinyVGA PMOD - R0 —
5 — TinyVGA PMOD - G0 —
6 — TinyVGA PMOD - B0 —
7 — TinyVGA PMOD - HSync —

97 Projects TTGF0P2

https://github.com/rejunity/ttgf-vga-tiny-tapeout-animated-logo

Ring Oscillator (5 inverter)
by Darryl Miles

0517 HDL Project

github.com/dlmiles/ttgf0p2-ringosc-5inv

“Ring Oscillator (5 inverter)”

How it works
Set rst_n to 1 to make reset inactive. Set ui_in[0] to 1 to enable oscillator.

How to test
Measure frequency at outputs.

External hardware
Frequency counter.

Project Pinout
Digital Pins

Input Output Bidirectional
0 ring enable divide-by-1 divide-by-256
1 — divide-by-2 divide-by-512
2 — divide-by-4 divide-by-1024
3 — divide-by-8 divide-by-2048
4 — divide-by-16 divide-by-4096
5 — divide-by-32 divide-by-8192
6 — divide-by-64 divide-by-16738
7 — divide-by-128 divide-by-32768

TTGF0P2 Projects 98

https://github.com/dlmiles/ttgf0p2-ringosc-5inv

Simon Says memory game
by Uri Shaked

0519 50 kHz HDL Project

github.com/urish/tt-simon-game

“Repeat the sequence of colors and sounds to win the game”

Figure 519.1: Simon Says Game

How it works
Simon says is a simple electronic memory game: the user has to repeat a
growing sequence of colors. The sequence is displayed by lighting up the
LEDs. Each color also has a corresponding tone.

In each turn, the game will play the sequence, and then wait for the user
to repeat the sequence by pressing the buttons according to the color
sequence. If the user repeated the sequence correctly, the game will play a

99 Projects TTGF0P2

https://github.com/urish/tt-simon-game

“leveling-up” sound, add a new color at the end of the sequence, and move
to the next turn.

The game continues until the user has made a mistake. Then a game over
sound is played, and the game restarts.

Check out the online simulation at https://wokwi.com/projects/
408757730664700929 (including wiring diagram).

Clock settings
The clk_sel input selects the clock source:

• 0: external 50 KHz clock, provided through the clk input.
• 1: internal clock, generated by the ring_osc module, with unknown

frequency.

The internal clock is generated by a 9-stage ring oscillator, divided by 8192, to
get a frequency of about 50.7 KHz (as measured in simulation).

When using the internal clock, its signal is also output on the uo_out[7] pin
for debugging purposes.

How to test
Use a Simon Says Pmod to test the game.

Provide a 50 KHz clock input, reset the game, and enjoy!

If you don’t have the Pmod, you can still connect the hardware manually as
follows:

1. Connect the four push buttons to pins btn1, btn2, btn3, and btn4. Also
connect each button to a pull down resistor.

2. Connect the LEDs to pins led1, led2, led3, and led4, matching the colors
of the buttons (so led1 and btn1 have the same color, etc.). Don’t forget
current-limiting resistors!

3. Connect the speaker to the speaker pin (optional).
4. Connect the seven segment display as follows: seg_a through sev_g to

individual segments, dig1 to the common pin of the tens digit, dig2 to
the common pin of the ones digit. Set seginv according to the type of
7 segment display you have: high for common anode, low for common
cathode.

5. Reset the game, and then press any button to start it. Enjoy!

External Hardware
Simon Says Pmod or four push buttons (with pull-down resistors), four LEDs,
and optionally a speaker/buzzer and two digit 7-segment display.

TTGF0P2 Projects 100

https://wokwi.com/projects/408757730664700929
https://wokwi.com/projects/408757730664700929
https://github.com/urish/tt-simon-pmod
https://github.com/urish/tt-simon-pmod

Project Pinout
Digital Pins

Input Output Bidirectional
0 btn1 led1 seg_a
1 btn2 led2 seg_b
2 btn3 led3 seg_c
3 btn4 led4 seg_d
4 seginv speaker seg_e
5 — dig1 seg_f
6 — dig2 seg_g
7 clk_sel clk_internal —

101 Projects TTGF0P2

Flame demo
by Konrad Beckmann & Linus Mårtensson

0545 25 MHz HDL Project

github.com/kbeckmann/ttgf0p2-kbeckmann-flame

“Flame demo”

Figure 545.1: preview

How it works
It shows a flame and plays audio. The VGA output is standard
640x480@60Hz, audio is simple 1 bit PWM.

How to test
Run clock at 25MHz, connect VGA and sound Pmods, and give it a reset pulse.

External hardware
Follows the democompo hardware rules:

TinyVGA Pmod for video on o[7:0].

1-bit sound on io[7], compatible with Tiny Tapeout Audio Pmod, or any basic
 20kHz RC filter on io7 to an amplifier will work.

TTGF0P2 Projects 102

https://github.com/kbeckmann/ttgf0p2-kbeckmann-flame
mailto:640x480@60Hz
https://tinytapeout.com/competitions/demoscene/#what-are-the-rules
https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod

Project Pinout
Digital Pins

Input Output Bidirectional
0 — R1 —
1 — G1 —
2 — B1 —
3 — VSync —
4 — R0 —
5 — G0 —
6 — B0 —
7 — HSync AudioPWM

103 Projects TTGF0P2

WokwiPWM
by Ken Pettit

0547 10 kHz Wokwi Project

github.com/kdp1965/ttgf-um-wokwi-pwm

wokwi.com/projects/445338187869298689

“A 4-channel PWM impelemented in PWM gates”

Wokwi 4-Channel PWM
As it says, this is a 4-channel PWM coded in Wokwi. Each channel has 3 8-bit
values to control their frequency, duty cycle and relative (starting) phase to
each other. Values are loaded by setting 8-bit data in on ui_in[7:0] and loading
to the current address which auto-increments.

Block diagram

How it works
After reset, there is an 4-bit counter that is the address where the next 8-bit
input data at in[7:0] will be loaded. The ‘load’ signal loads the 8-bit input to the
register at that current counter address and then increments the counter.

The ‘skip’ input will skip an address without loading it. And the ‘zero’ input
will reset the counter back to zero.

TTGF0P2 Projects 104

https://github.com/kdp1965/ttgf-um-wokwi-pwm
https://wokwi.com/projects/445338187869298689

None of the ‘load’, ‘skip’, ‘zero’ or ‘disp’ inputs are debounced, but they are
riging edge detected (at least the load and skip are).

The current count (register address) is displayed on the 7-segment display
via a 4-to-7 decoder. Each of 4 PWM channels use two 8-bit control registers
to set frequency and duty cycle. The first (lowest address) register controls
the duty cycle and the second (highest address) controls the period of that
channel. Only channels with non-zero period value will operate (the counter
does not count when period_val is zero). For PWM channels 2-4, there is an
additional 8-bit register (address 8-10) to control the starting phase of that
channel relative to channel 1. This means that if channels 2-4 are to be used,
channel 1 must also be used.

Program PWM channel control registers to create independent PWMs:

Address Meaning 0x0 PWM1 duty 0x1 PWM1 period 0x2 PWM2 duty 0x3
PWM2 period 0x4 PWM3 duty 0x5 PWM3 period 0x5 PWM4 duty 0x7 PWM4
period 0x8 PWM2 phase 0x9 PWM3 phase 0xa PWM4 phase 0xb Control
BIT0: BIT1: BIT2: BIT3: Write ‘1’ to clear and synchronize all PWM channels. Self
clearing.

How to test
1. Start the clock and reset the circuit.
2. Set the DIP switches so only switch 7 is on (8’h40)
3. Press ‘load’. The display should now show ‘1’.
4. Set the DIP switches so only switch 8 is on (8’h80).
5. Press ‘load’. The display should show ‘2’ and the first LED should start

blinking at about 50% rate.
6. Continue programming values for the other 3 PWMs by setting DIP

switch value and pressing ‘load’ even values (duty cycle) must be less
that the associated odd address value (period).

7. When the 7-segment display shows “8”, this is the phase offset value
for PWM channel 2 relative to channel 1. Loading a value here will force
a known phase for channel 2 WHEN THE CHANNELS ARE SYNCHRO-
NIZED.

8. Load additional relative phase values for PWM channels 3 and 4 at the
next two addresses (9 and A).

9. To synchronize the PWM channels, write a value of 4 to address B.

External hardware
LEDs should be connected to the PWM channel outputs. The 7-Segement
display shows the current register address to be written.

105 Projects TTGF0P2

Project Pinout
Digital Pins

Input Output Bidirectional
0 D0 seg_a load
1 D1 seg_b skip
2 D2 seg_c zero
3 D3 seg_d disp
4 D4 seg_e pwm_0
5 D5 seg_f pwm_1
6 D6 seg_g pwm_2
7 D7 seg_dp pwm_3

TTGF0P2 Projects 106

Dog Battle Game
by Sophus Andreassen

0549 50 MHz HDL Project

github.com/jorgenkraghjakobsen/tt_gf_dog_fight

“A simple VGA dog battle game with 2 moving boxes that collide.”

How it works
Dog Battle Game is a VGA-based game engine featuring 4 animated
“dogs” (colored boxes) that bounce around the screen with physics simula-
tion.

The design includes:

• Physics engine: Friction (0.99x decay per frame), elastic collisions, wall
bouncing

• 4 dogs: Each with individual position, velocity, mass, and color
• Collision detection: Hit counters track when dogs collide with each other
• VGA output: 640x480 @ 25MHz pixel clock with RGB color and sync

signals

The game runs continuously, updating positions once per frame (60 FPS)
with realistic physics including momentum conservation and energy loss on
collisions.

How to test
Connect a VGA monitor to the output pins. The game will start automatically
on power-up and run continuously.

Output pin mapping:

• Pins 0-1: VGA sync signals (HS, VS)
• Pins 2-3: VGA blue (2 bits)
• Pins 4-5: VGA green (2 bits MSB)
• Pins 6-7: VGA red (2 bits MSB)

External hardware
VGA monitor with 640x480 resolution support. Connect via standard VGA
cable or appropriate PMOD adapter.

107 Projects TTGF0P2

https://github.com/jorgenkraghjakobsen/tt_gf_dog_fight

Project Pinout
Digital Pins

Input Output Bidirectional
0 — vga_vs —
1 — vga_hs —
2 — vga_b0 —
3 — vga_b1 —
4 — vga_g1 —
5 — vga_g2 —
6 — vga_r1 —
7 — vga_r2 —

TTGF0P2 Projects 108

PVTMonitorSuite
by Susumu Yamazaki

0551 50 MHz HDL Project

github.com/zacky1972/ttgf0p2-PVTMonitorSuite

“PVTMonitorSuite: A fully digital, modular suite for measuring gate
delays, flip-flop timings, and clock skew under varying process, voltage,

and temperature conditions.”

How it works
PVTMonitorSuite integrates ring oscillators and flip-flop-based measure-
ment circuits to quantify the timing characteristics of digital logic.

The suite supports the following measurements:

• An inverter-based ring oscillator provides high-resolution estimates of
gate propagation delay of an inverter (𝑡𝑝𝑑,𝐼𝑁𝑉).

• A NAND2-based ring oscillator provides high-resolution estimates of gate
propagation delay of NAND2 (𝑡𝑝𝑑,𝑁𝐴𝑁𝐷2).

• Standard, DICE, and LEAP-DICE D flip-flops measure clock-to-Q and
setup timing (𝑡𝑐𝑙𝑘𝑞 + 𝑡𝑠𝑒𝑡𝑢𝑝).

• Clock skew timing (𝑡𝑠𝑘𝑒𝑤) is determined using a time digitizer between
two clock signals.

High-speed counters driven by the ring oscillators convert these delays into
digital values, enabling precise evaluation of process, voltage, and tempera-
ture variations on a fully digital, open-access platform.

To meet TinyTapeout’s requirements, no standard cells from the GF180MCU
PDK process are used, and the design passes all strict error and warning
checks.

How to test
Measure 𝑡𝑝𝑑,𝐼𝑁𝑉

1. Connect uo_out[0] to your equipment to measure frequency.
2. Turn on ui_in[0].
3. Measure the frequency.
4. Calculate 𝑡𝑝𝑑,𝐼𝑁𝑉 = 1

32×51×𝑓 .

Measure 𝑡𝑝𝑑,𝑁𝐴𝑁𝐷2
1. Connect uo_out[1] to your equipment to measure frequency.
2. Turn on ui_in[0].
3. Measure the frequency.

109 Projects TTGF0P2

https://github.com/zacky1972/ttgf0p2-PVTMonitorSuite

4. Calculate 𝑡𝑝𝑑,𝑁𝐴𝑁𝐷2 = 1
32×41×𝑓 .

Measure 𝑡𝑐𝑙𝑘𝑞 + 𝑡𝑠𝑒𝑡𝑢𝑝 of standard D-FF
1. Connect ui_in[1] to a device that generates exactly 50 MHz.
2. Set ui_in[7:5] to 3’b000, to choose measurement of 𝑡𝑐𝑙𝑘𝑞 + 𝑡𝑠𝑒𝑡𝑢𝑝.
3. Turn off ui_in[3].
4. Turn off ui_in[2] to reset.
5. Turn on ui_in[2].
6. Turn on ui_in[3] to start.
7. Read uio.
8. Calculate 𝑡𝑐𝑙𝑘𝑞 + 𝑡𝑠𝑒𝑡𝑢𝑝 = 𝑢𝑖𝑜×20

16 − 2 × 𝑡𝑝𝑑,𝑁𝐴𝑁𝐷2.

Measure 𝑡𝑐𝑙𝑘𝑞 + 𝑡𝑠𝑒𝑡𝑢𝑝 of DICE D-FF
1. Connect ui_in[1] to a device that generates exactly 50 MHz.
2. Set ui_in[7:5] to 3’b001, to choose measurement of 𝑡𝑐𝑙𝑘𝑞 + 𝑡𝑠𝑒𝑡𝑢𝑝.
3. Turn off ui_in[3].
4. Turn off ui_in[2] to reset.
5. Turn on ui_in[2].
6. Turn on ui_in[3] to start.
7. Read uio.
8. Calculate 𝑡𝑐𝑙𝑘𝑞 + 𝑡𝑠𝑒𝑡𝑢𝑝 = 𝑢𝑖𝑜×20

16 .

Measure 𝑡𝑐𝑙𝑘𝑞 + 𝑡𝑠𝑒𝑡𝑢𝑝 of Leap DICE D-FF
1. Connect ui_in[1] to a device that generates exactly 50 MHz.
2. Set ui_in[7:5] to 3’b011, to choose measurement of 𝑡𝑐𝑙𝑘𝑞 + 𝑡𝑠𝑒𝑡𝑢𝑝.
3. Turn off ui_in[3].
4. Turn off ui_in[2] to reset.
5. Turn on ui_in[2].
6. Turn on ui_in[3] to start.
7. Read uio.
8. Calculate 𝑡𝑐𝑙𝑘𝑞 + 𝑡𝑠𝑒𝑡𝑢𝑝 = 𝑢𝑖𝑜×20

16 .

Measure 𝑡𝑠𝑘𝑒𝑤
1. Connect ui_in[1] to a device that generates exactly 50 MHz.
2. Connect ui_in[4] to a device of the target clock.
3. Set ui_in[7:5] to 3’b100, to choose measurement of 𝑡𝑠𝑘𝑒𝑤.
4. Turn off ui_in[2] to reset.
5. Turn on ui_in[2] to start.
6. Read uio.
7. Calculate 𝑡𝑠𝑘𝑒𝑤 = 𝑢𝑖𝑜 × 𝑡𝑝𝑑,𝐼𝑁𝑉 .

External hardware
• An equipment to measure frequency.

TTGF0P2 Projects 110

• A device that generates a precise 50 MHz signal, such as a ceramic
resonator.

• A device that generates the target clock.

Project Pinout
Digital Pins

Input Output Bidirectional
0 enable_ring_osc inv_ring_osc_signal counter_output[0]
1 measurement_clock nand2_ring_osc_signal counter_output[1]
2 reset_counter_n — counter_output[2]
3 d_input — counter_output[3]
4 target_clock — counter_output[4]
5 select[0] — counter_output[5]
6 select[1] — counter_output[6]
7 select[2] — counter_output[7]

111 Projects TTGF0P2

PILIPINAS_IC
by Alexander Co Abad & Dino Dominic Ligutan

0577 1 Hz Wokwi Project

github.com/alexandercoabad/PILIPINAS_IC

wokwi.com/projects/392873974467527681

“7-seg Display for PILIPINASLASALLE”

How it works
Based from https://wokwi.com/projects/341279123277087315

On power-up, the 7-segment display should display the text PILIP-
INASLASALLE one at a time per clock cycle. The “dp” output toggles every
clock cycle.

Setting the input pin 7 to HIGH allows for manual override of the BCD value.
In this mode, input pins 0-3 controls the BCD value. The text displayed for
each BCD value are tabulated below: | in0 | in1 | in2 | in3 | Character | |:——-:|:
——-:|:——-:|:——-:|:————-:| | LOW | LOW | LOW | LOW | P | | LOW | LOW |
LOW | HIGH | I | | LOW | LOW | HIGH | LOW | L | | LOW | LOW | HIGH | HIGH | I
| | LOW | HIGH | LOW | LOW | P | | LOW | HIGH | LOW | HIGH | I | | LOW | HIGH
| HIGH | LOW | N | | LOW | HIGH | HIGH | HIGH | A | | HIGH | LOW | LOW | LOW
| S | | HIGH | LOW | LOW | HIGH | L | | HIGH | LOW | HIGH | LOW | A | | HIGH |
LOW | HIGH | HIGH | S | | HIGH | HIGH | LOW | LOW | A | | HIGH | HIGH | LOW
| HIGH | L | | HIGH | HIGH | HIGH | LOW | L | | HIGH | HIGH | HIGH | HIGH | E |

How to test
Default mode: Set the clock input to a low frequency such as 1 Hz to see the
text transition per clock cycle.

Manual mode: Set the input pin 7 to HIGH and toggle input pins 0-3. The
character displayed for each input combination should be according to the
table above.

External hardware
7-segment display

TTGF0P2 Projects 112

https://github.com/alexandercoabad/PILIPINAS_IC
https://wokwi.com/projects/392873974467527681
https://wokwi.com/projects/341279123277087315

Project Pinout
Digital Pins

Input Output Bidirectional
0 BCD Bit 3 (A) segment a —
1 BCD Bit 2 (A) segment b —
2 BCD Bit 1 (A) segment c —
3 BCD Bit 0 (A) segment d —
4 — segment e —
5 — segment f —
6 — segment g —
7 Manual Input Mode segment dp —

113 Projects TTGF0P2

PRISM 8 with TinySnake
by Ken Pettit

0579 10 kHz Wokwi Project

github.com/kdp1965/ttgf-um-pettit-prism

wokwi.com/projects/442081253563458561

“PRISM plus Tiny Snake implemented in Wowki”

How it works
This is a very simple Wokwi example that incorporaates two different designs.

Design 1 - 7-Seg Snake
The first design uses the 7-Segment display to show a 3-segment “snake” as
it moves around the display. It uses three 3-bit registers to store the current
location of the “head”, “body” and “tail”, along with a register identifying the
direction (0=clockwise, 1=counter clockwise).

There are two larger registers also, one a simple counter for speed control and
the other a Linear Feedback Shift Register (LFSR) to randomize the direction
of travel.

Design 2 - Mini PRISM
The second design is a small implementation of the Programmable Recon-
figurable Indexed State Machine (PRISM). This is a Verilog programmable 8-
state finite state machine that uses an 8-entry, 22 wide State Table Execution
Word (STEW) to define state transitions and output values based on current
state and input values. The PRISM includes a counter

How to test
Supply a 10 KHz clock. Then set the speed using the ui_in[7:0] pins. Larger
binary values represent slower speed. Start off with something like 8’h20
(i.e. ui_in[5] HIGH, the rest LOW). Watch the snake move around. Try different
speeds.

NOTE: When changing from a slower to a faster speed, the initial update
may take a few seconds. This is because the This is because the counter may
already be larger than the newly entered “speed” value, and therefore must
count all the way up until it wraps to zero. The speed compare is a simple
EQUAL circuit and doesn’t check for GREATER-THAN-OR-EQUAL.

External hardware
Only need the 7-Segment display on the demo board.

TTGF0P2 Projects 114

https://github.com/kdp1965/ttgf-um-pettit-prism
https://wokwi.com/projects/442081253563458561

PRISM
PRISM (Programmable Reconfigurable Indexed State Machine) is a block
that executes a Verilog-coded Mealy state machine loaded via a runtime
loadable configuration bitstream generated by a custom branch of Yosys.
PRISM includes it’s own counter and compare sub-peripheral for performing
timing operation as well.

The PRISM controller block is a programmable state machine that uses an N-
bit (3 in this case) index register to track the current FSM state. That index is a
pointer into the State Information Table (SIT) to request the State Execution
Word (STEW).

115 Projects TTGF0P2

What can it do?

Operating priciples of PRISM
PRISM supports FSM designs up to 8 states and includes controllable periph-
erals such as counters, communication shift register, FIFO and interrupt
support. It also features an integrated debugger with 2 breakpoints, single-
stepping and readback of state information. Due to long combinatorial
delays, PRISM operates from a divide-by-two clock (32Mhz max). The follow-
ing is a block diagram of the PRISM controller:

Each state is encoded with a 22-bit execution word that controls the FSM
output values, input values and state transition decision tree for that state.
The peripheral is operated by loading a “Chroma” (more on that below), or
execution personality in the 192 bit configuration array as well as configuring
the 3 bits of operational mode configurtaion. The 3-bits of operational config-
uration include:

• Debug output bit: Sends internal state operations to uo_out[7:0]
• Auto-clear bit: Auto clears the counter when compare match occurs
• Split-coiunter: Splits the 15-bit conter into an 8-bit plus 7-bit each with

individual compare.

Once a chroma has been loaded, the control register programmed and the
PRISM enabled, the FSM will start at state 0. Eight of the bits in the State
Execution Word (STEW) specify which of 16 inputs get routed to the 2-input
Look Up Table (LUT) that makes the decision for jumping to the specified
state (stored in 3 bits of the STEW). While in any state, there is a set of 11
(from the STEW) output bits that drive the PRISM block outputs when the

TTGF0P2 Projects 116

LUT output is zero (no jump) and 11 more that are output during a jump
(transitional outputs).

Each state also has an independent 16-input mux (4-bits from STEW) driving
a 1-input LUT to drive a “conditional output”. This is an output who’s value is
not strictly depedent on the static values in the STEW for the current state,
but rather depends on the selected input during that state.

State Looping (important)
In larger PRISM implementations, each state has “dual-compare” with two
N-bit LUTs which allows jumping to one of two possible states. Due to size re-
strictions, this peripheral does not include dual-compare. Instead the PRISM
implementation has (in each state’s STEW), a single “increment state” bit.

In any state where the ‘inc’ bit is set and the LUT output is FALSE (i.e no jump),
then the state will increment to the next state, and the “starting state” of the
first occurance of this will be saved (i.e. start of loop). Then each successive
state can test a different set of inputs to jump to different states. When a
state is encountered with the ‘inc’ bit NOT set, PRISM will loop back to the
“starting state” and loop through that set of states until the first TRUE from
a LUT causing a jump, clearing the loop.

TL/DR
1. Load a Chroma defining the FSM and enable PRISM.
2. State starts at zero.
3. Each state chooses up to 3 of 16 inputs via config bits.
4. 2-input LUT decides if “jump to defined state” occurs.
5. Increment bit decides if “state looping” is in effect.
6. State looping ends when first LUT jump occurs.
7. Outputs bits from STEW for “non-jump” and “transitional jump”.
8. One conditional output based on single selected input per state.

External PRISM Inputs
Inputs to the PRISM engine come from the uio_in[2:0] pins of the TinyTapeout
ASIC (in 2-0) as well as the counter compare logic (in 3). The in3 compare logic
has special modes as follows:

1. If not split-mode (i.e. 15-bit counter), in3 goes high when count[14:0] ==
compare.

2. If split-mode counter, in3 goes high when the 7-bit count compare
matches, then again when 8-bit count compare matches.

External PRISM Outputs
The PRISM has 5 outputs, all of which are visible on uio_out[7:3]. Outputs [5]
and [4] also have special internal functions as follows:

117 Projects TTGF0P2

out[5]: Counter increment out[4]: Counter clear (when not in auto-clear
mode)

All outputs are registered via the main clock to prevent output glitching
caused by combinatoril transitions during state decision switching.

15-Bit Counter
The 15-bit counter is an up/clear counter controllable from the PRISM chroma.

Chroma
Chroma are PRISM’s version of “personalities”. Each chroma is a unique
hue of PRISM’s spectrum of behavior. Chroma’s are coded as Mealy state
machines in Verilog to define FSM inputs, outputs and state transitions:

always @(posedge clk or negedge rst_n)
 if (~rst_n)
 curr_state <= 3'h0;
 else
 curr_state <= fsm_enable ? next_state : 'h0;

always_comb
begin
 pin_out[5:0] = 6'h0;
 count1_dec = 1'b0;
 etc.

TTGF0P2 Projects 118

 case (curr_state)
 STATE_IDLE: // State 0
 begin
 // Detect I/O shift start
 if (host_in[HOST_START])
 begin
 // Load inputs
 pin_out[GPIO_LOAD] = 1'b0;

 // Load 24-bit shift register from preload (our
OUTPUTS)
 count1_load = 1'b1;
 next_state = STATE_LATCH_INPUTS;
 end
 end
 STATE_LATCH_INPUTS: // State 1
 begin
 next_state = STATE_SHIFT_BITS;
 end
 etc.
end

Chroma are compiled into PRISM programmable bitstreams via a custom
fork of Yosys (see link below) using a configuration file describing the PRISM
architecture. In addition to bitstream generation, the Yosys PRISM backend
also calculates the ctrl_reg value for configuring the PRISM peripheral muxes,
etc. There are several output formats including C, Python and columnar list:

ST Mux0 Mux1 Inc JmpA OutA Out CfgA STEW
0 0 0 0 1 08 08 e 039082
1 3 0 0 2 11 11 a 0ea314
2 3 0 0 0 12 12 a 0ea520
3 0 0 0 0 00 00 f 03c000
4 0 0 0 0 00 00 f 03c000
5 0 0 0 0 00 00 f 03c000
6 0 0 0 0 00 00 f 03c000
7 0 0 0 0 00 00 f 03c000

The table has the following fields

• ST: the state (obvious)
• Mux0: Selects input for LUT2 input 0 (jump decision)
• Mux1: Selects input for LUT2 input 1
• Inc: Set when next state looping is requested (i.e. ‘else state <= ST_A’)
• JmpA: The “Jump to” state if LUT2 output is TRUE

119 Projects TTGF0P2

• OutA: Outputs during “jump to” JmpA state (LSB is PRISM out[0])
• Out: Output during no-jump, steady-state dwelling
• CfgA: The LUT2 4-bit lookup table values
• STEW: The complete word aggregrated in proper bit order

Project Pinout
Digital Pins

Input Output Bidirectional
0 speed[0]/prism_enable seg_a prism_in[0]
1 speed[1]/prism_cfg_data seg_b prism_in[1]
2 speed[2]/prism_array_clk seg_c prism_in[2]
3 speed[3]/prism_cfg_clk seg_d prism_out[0]
4 speed[4] seg_e prism_out[1]
5 speed[5] seg_f prism_out[2]
6 speed[6] seg_g prism_out[3]
7 speed[7] prism_debug prism_out[4]

TTGF0P2 Projects 120

Register bank accessible through SPI
and I2C
by Caio Alonso da Costa

0581 50 MHz HDL Project

github.com/calonso88/tt_spi_i2c_reg_bank

“Register bank accessible through SPI and I2C”

How it works
Register bank accessible throught two different serial interfaces: SPI and I2C.
Use digital input to select prefered interface.

There are 8 read/write 8 bit registers and 8 read only 8 bit registers.

Address 0 (first byte in read/write register space) drives the 7 segment display.

Digital input ui_in[7] = 0 selects SPI and ui_in[7] = 1 selects I2C.

SPI peripheral design based on https://github.com/calonso88/tt07_alu_74181

See that design’s docs for information about the SPI peripheral.

Small improvement done on the spi_peripheral module. There used to be
two buffer counters (one for RX and one for TX). Since the counters are not
used together, it was possible to remove one of them and use a single buffer
counter. This has reduced 4 flip flops in total and some combinatorial logic
as well.

Added logic to control driver for MISO. On previous submissions of this
design, the MISO was always driven. Logic has been added to put MISO into
high impedance when CS_N is driven high. Due to a 2-stage synchronizer,
the MISO goes to high impedance after 2 clock cycles.

I2C peripheral design based on https://github.com/sanojn/tt06_ttrpg_dice

See that design’s docs for information about the I2C peripheral.

How to test
Use SPI1 Master peripheral in RP2040 to start communication on SPI inter-
face towards this design. Remember to configure the SPI mode using the
switches in DIP switch (if you’d like to have CPOL=1 and CPHA=1). Alternatively,
don’t use the DIP switches and use the RP2040 GPIOs to configure the SPI
mode in the desired mode.

Example code to initialize SPI in REPL:

121 Projects TTGF0P2

https://github.com/calonso88/tt_spi_i2c_reg_bank
https://github.com/calonso88/tt07
https://github.com/calonso88/tt07_alu_74181
https://github.com/sanojn/tt06
https://github.com/sanojn/tt06_ttrpg_dice

spi_miso = tt.pins.pin_uio3
spi_cs = tt.pins.pin_uio4
spi_clk = tt.pins.pin_uio5
spi_mosi = tt.pins.pin_uio6
spi_miso.init(spi_miso.IN, spi_miso.PULL_DOWN)
spi_cs.init(spi_cs.OUT)
spi_clk.init(spi_clk.OUT)
spi_mosi.init(spi_mosi.OUT)
spi = machine.SoftSPI(baudrate=10000, polarity=0, phase=0, bits=8,
firstbit=machine.SPI.MSB, sck=spi_clk, mosi=spi_mosi,
miso=spi_miso)
spi_cs(1)

Example code to write 0xF8 to address[0]:

spi_cs(0); spi.write(b'\x80\xF8'); spi_cs(1)

This should set the 7 segment LED to 0xF8 which will display “t.”

Seg A - OFF, Seg B - OFF, Seg C - OFF, Seg D - ON, Seg E - ON, Seg F - ON,
Seg G - ON, Seg DP - ON

Example code to read from address[0]:

spi_cs(0); spi.write(b'\x00'); spi.read(1); spi_cs(1)

The result should be 0xF8 or whatever you wrote to address[0].

TODO: I2C documentation.

External hardware
Not required. Write to the first register to set the LEDs on the demoboard.

External hardware
None.

Project Pinout
Digital Pins

Input Output Bidirectional
0 cpol spare[0] —
1 cpha spare[1] i2c_sda
2 — spare[2] i2c_scl
3 — spare[3] spi_miso
4 — spare[4] spi_cs_n
5 — spare[5] spi_clk
6 sel[1] spare[6] spi_mosi

TTGF0P2 Projects 122

Input Output Bidirectional
7 sel[0] spare[7] —

123 Projects TTGF0P2

Cell mux
by htfab

0583 HDL Project

github.com/htfab/ttgf0p2-cells

“All the gf180mcu 7-track standard cells”

How it works
Instantiates one copy of each standard cell from the GF180mcu 7-track
library, and multiplexes the project i/o pins so that the functional behaviour
of each cell can be verified.

The instantiated cells have a total of 210 output pins, arranged into 27 pages
of 8 pins each. Once a certain page is selected, those 8 outputs are mapped
to the project output pins.

How to test
Select a page using ui_in[4:0].

Set the cell inputs using ui_in[7:5] and uio_in[2:0].

The cell outputs for the selected page should appear on uo_out.

External hardware
None

Project Pinout
Digital Pins

Input Output Bidirectional
0 page bit 0 output bit 8*page input bit 3
1 page bit 1 output bit 8*page+1 input bit 4
2 page bit 2 output bit 8*page+2 input bit 5
3 page bit 3 output bit 8*page+3 enable tristate cells
4 page bit 4 output bit 8*page+4 —
5 input bit 0 output bit 8*page+5 —
6 input bit 1 output bit 8*page+6 —
7 input bit 2 output bit 8*page+7 —

TTGF0P2 Projects 124

https://github.com/htfab/ttgf0p2-cells

Super-Simple-SPI-CPU
by James Ashie Kotey

0609 30 MHz HDL Project

github.com/Sheffield-Chip-Design-Team/SPI-CPU-Final

“A 4-bit CPU using the SPI Flash RAM from the QSPI PMOD to load
programs.”

How it works
The Super-Simple-SPI-CPU has uses the emulated RP40-RAM to make load
and run programs.

How to test
Use the ram flasher app to load a program into the ram and then reset the
CPU.

External hardware
Ram Flasher.

Project Pinout
Digital Pins

Input Output Bidirectional
0 DATA_A[0] OUT_REG[0] SPI_CS_N
1 DATA_A[1] OUT_REG[1] SPI_MOSI
2 DATA_A[2] OUT_REG[2] SPI_MISO
3 DATA_A[3] OUT_REG[3] SPI_SCK
4 DATA_B[0] OUT_REG[4] —
5 DATA_B[1] OUT_REG[5] —
6 DATA_B[2] OUT_REG[6] —
7 DATA_B[3] OUT_REG[7] CPU_VALID

125 Projects TTGF0P2

https://github.com/Sheffield-Chip-Design-Team/SPI-CPU-Final

Example of Bad Synchronizer
by Darryl Miles project from Eric Smith

0610 HDL Project

github.com/dlmiles/ttgf25a-bad-synchronizer

“Figure 29.3 from Dally & Harting”

How it works
Badly

This project is based on (https://github.com/ericsmi/tt07-bad-synchronizer)
but for GF180MCU.

How to test
Align clocks, push them apart, look for bit errors

External hardware
A way to generate a clock

Project Pinout
Digital Pins

Input Output Bidirectional
0 clk1 stage3[0] stage2[0]
1 0=Base-2 1=GrayCode stage3[1] stage2[1]
2 counter enable stage3[2] stage2[2]
3 — stage3[3] stage2[3]
4 — skew stage1[0]
5 — — stage1[1]
6 — — stage1[2]
7 — — stage1[3]

TTGF0P2 Projects 126

https://github.com/dlmiles/ttgf25a-bad-synchronizer
https://github.com/ericsmi/tt07-bad-synchronizer

Video mode tester
by htfab

0611 64 MHz HDL Project

github.com/htfab/ttgf0p2-vga-tester

“Experiment with different VGA timing parameters”

Author: htfab

Peripheral index: 28

What it does
There is quite some variability between screens (and VGA/HDMI adapters) in
the set of VGA timing configurations they support.

Due to constraints and optimization pressures, VGA designs on Tiny Tapeout
typically use a single resolution that cannot be changed without a respin.
It would therefore be useful to gather some crowdsourced information on
what VGA modes are well supported among the community.

This peripheral facilitates gathering that information.

It allows setting the horizontal and vertical timing parameters (visible pixels,
front porch, sync pulse, back porch) and displays a simple test pattern on the
screen. There is a thin white border along the screen edges to quickly check
whether anything was cut off.

Each phase (visible pixels, front porch, sync pulse, back porch) is described
by its length in pixels (a 13-bit integer) and 3 single-bit flags. Internally all 4
phases are identical and the flags are the mechanism to differentiate their
behaviour:

• bit 15: keep hsync/vsync high during this phase
• bit 14: allow data on the r/g/b pins during this phase
• bit 13: advance to the next line/frame at the end of this phase

For instance, a video mode with positive hsync/vsync polarity could use flags
010 for the visible pixels, 000 for the front porch, 100 for the sync pulse and
001 for the back porch.

Register map
Address Name Access Description

0x00 DATA R/W Horizontal visible pixels, high byte (incl. flags)
0x01 DATA R/W Horizontal visible pixels, low byte

127 Projects TTGF0P2

https://github.com/htfab/ttgf0p2-vga-tester

0x02 DATA R/W Horizontal front porch, high byte (incl. flags)
0x03 DATA R/W Horizontal front porch, low byte
0x04 DATA R/W Horizontal sync pulse, high byte (incl. flags)
0x05 DATA R/W Horizontal sync pulse, low byte
0x06 DATA R/W Horizontal back porch, high byte (incl. flags)
0x07 DATA R/W Horizontal back porch, low byte
0x08 DATA R/W Vertical visible pixels, high byte (incl. flags)
0x09 DATA R/W Vertical visible pixels, low byte
0x0a DATA R/W Vertical front porch, high byte (incl. flags)
0x0b DATA R/W Vertical front porch, low byte
0x0c DATA R/W Vertical sync pulse, high byte (incl. flags)
0x0d DATA R/W Vertical sync pulse, low byte
0x0e DATA R/W Vertical back porch, high byte (incl. flags)
0x0f DATA R/W Vertical back porch, low byte

How to test
To use the universally supported 640x480 @ 60 Hz video mode, we would
like to set

• Horizontal visible pixels: 640 (high byte 2, low byte 128)
‣ 0x00: 66 (“visible” flag adds 64)
‣ 0x01: 128

• Horizontal front porch: 16 (high byte 0, low byte 16)
‣ 0x02: 0
‣ 0x03: 16

• Horizontal sync pulse: 96 (high byte 0, low byte 96)
‣ 0x04: 128 (“sync” flag adds 128)
‣ 0x05: 96

• Horizontal back porch: 48 (high byte 0, low byte 48)
‣ 0x06: 32 (“advance” flag adds 32)
‣ 0x07: 48

• Vertical visible pixels: 480 (high byte 1, low byte 224)
‣ 0x08: 65 (“visible” flag adds 64)
‣ 0x09: 224

• Vertical front porch: 10 (high byte 0, low byte 10)
‣ 0x0a: 0
‣ 0x0b: 10

• Vertical sync pulse: 2 (high byte 0, low byte 2)
‣ 0x0c: 128 (“sync” flag adds 128)

TTGF0P2 Projects 128

‣ 0x0d: 2
• Vertical back porch: 33 (high byte 0, low byte 33)

‣ 0x0e: 32 (“advance” flag adds 32)
‣ 0x0f: 33

After setting the pixel clock to 25 MHz and writing these registers the test
pattern should appear on the screen connected to the Tiny VGA PMOD.

External hardware
Tiny VGA PMOD

Project Pinout
Digital Pins

Input Output Bidirectional
0 — TinyVGA red 1 —
1 — TinyVGA green 1 —
2 — TinyVGA blue 1 —
3 — TinyVGA vsync spi_miso
4 — TinyVGA red 0 spi_cs_n
5 — TinyVGA green 0 spi_clk
6 — TinyVGA blue 0 spi_mosi
7 — TinyVGA hsync —

129 Projects TTGF0P2

One Bit PUF
by Yimin Gao & Ceylan Morgul

0612 HDL Project

github.com/Capulus123/ttihp03-multi-bit-puf

“It is a PUF based on a difference of two registers”

How it works
This is a PUF design that includese 2**ADDR_BITS x OUT_BITS one_bit_pufs
The addr is the address to read OUT_bits of the PUF bits For instance if
ADDR_BITS = 2, OUT_BITS = 2 The design will include 8 one_bit_pufs, addr =
2’b10 will read 2 puf bits (OUT[5:4])

Figure 612.1: PUF block diagram

How to test
The output is 0 in the reset condition.

External hardware
List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Project Pinout
Digital Pins

Input Output Bidirectional
0 addr[0] puf_out[0] —

TTGF0P2 Projects 130

https://github.com/Capulus123/ttihp03-multi-bit-puf

Input Output Bidirectional
1 addr[1] puf_out[1] —
2 addr[2] puf_out[2] —
3 addr[3] puf_out[3] —
4 — puf_out[4] —
5 — puf_out[5] —
6 — puf_out[6] —
7 start_signal puf_out[7] —

131 Projects TTGF0P2

DDR throughput and flop aperature test
by Darryl Miles project from Eric Smith

0613 HDL Project

github.com/dlmiles/ttgf25a-ddr-throughput-test

“Grab data on every edge of clock with varying pos pulse width”

How it works
Badly probably.

Use a positive edge detector on the clock and its compliment. Or together
those dectors to get 2 positive pulses per period or a 2x clock. Vary clk 2x pos
pulse width by varying number of inv per detect.

Figure 613.1: Concept Diagram

How to test
Carefully.

External hardware
Analog Discovery 3

TTGF0P2 Projects 132

https://github.com/dlmiles/ttgf25a-ddr-throughput-test

Project Pinout
Digital Pins

Input Output Bidirectional
0 pulse = 1 inv q for pulse = 1 inv —
1 pulse = 3 inv q for pulse = 3 inv —
2 pulse = 5 inv q for pulse = 5 inv —
3 pulse = 7 inv q for pulse = 7 inv —
4 — q for normal flop —
5 — 1 —
6 — 1 —
7 — clk —

133 Projects TTGF0P2

Ring osc on VGA
by algofoogle (Anton Maurovic)

0614 25.175 MHz HDL Project

github.com/algofoogle/ttgf0p2-vga-ring-osc

“VGA display visualisation of a ring oscillator doing work”

How it works
Manually-instantiated gf180mcuD inverter cells form a chain out of chain
segments of varying lengths, allowing the user to select given points in the
overall chain to loop back to produce a ring oscillator. This makes a config-
urable ring oscillator that is expected to be able to oscillate from about 15MHz
up to 350MHz.

This (or an external clock) then can be selected to drive a “worker” module: a
counter which counts up to 3000.

Alongside this is a VGA sync generator which takes its pixel colour from
whatever is in the upper 6 bits of the worker’s counter at the time. The worker
is reset during HBLANK of each VGA line.

It’s expected that at the faster ring oscillator speeds, the counter will reach
its target of 3000 sooner than the width of the VGA line but with some jitter…
or the counter/compare logic will break down because it’s too fast.

How to test
Set clksel2[1:0] to 0.

Set clksel[3:0] to (say) 10, or anything greater than 1.

Set mode[1:0] to 0 (though these are unused at the time of writing; TBA).

Set vga_mode to 0.

Attach a Tiny VGA PMOD to uo_out.

Supply a 25MHz clock to the system clk, and assert reset for at least 2 clocks.

Expect to see vertical coloured bars on screen, but expect some jitter. Their
width should increase as you increase clksel.

Measure the ring oscillator (or rather, the selected clock source) on
uio_out[7:4]: uio_out[4] is the raw oscillator output, and the higher bits are
the oscillator divided by powers of 2.

More testing notes:

TTGF0P2 Projects 134

https://github.com/algofoogle/ttgf0p2-vga-ring-osc

• When vga_mode==1, clk should be 26.6175MHz (106.47 MHz ÷ 4) to drive a
1440x900 60Hz VGA display.

• When clksel2 is:

‣ 0: Just rely on clksel.
‣ 1: Use fixed 5-deep inv_1 ring oscillator.
‣ 2: Use fixed 5-deep inv_4 ring oscillator.
‣ 3: Use inverted clk.
‣ NOTE: options 1 and 2 require clksel > 1 (any value will do) to enable

the rings.

• When clksel2==0 and clksel is:

‣ 0: Use clk.
‣ 1: Use altclk.
‣ For values 2 and above, use an inv_2-based ring oscillator tapped at…
‣ 2: => 3
‣ 3: => 5
‣ 4: => 7
‣ 5: => 9
‣ 6: => 13
‣ 7: => 17
‣ 8: => 21
‣ 9: => 25
‣ 10: => 33
‣ 11: => 41
‣ 12: => 49
‣ 13: => 65
‣ 14: => 97
‣ 15: => 161

External hardware
Tiny VGA PMOD and a VGA monitor.

Project Pinout
Digital Pins

Input Output Bidirectional
0 clksel[0] r7 IN: clksel2[0]
1 clksel[1] g7 IN: clksel2[1]
2 clksel[2] b7 —
3 clksel[3] vsync —
4 altclk r6 OUT: osc

135 Projects TTGF0P2

http://www.tinyvga.com/vga-timing/1440x900@60Hz

Input Output Bidirectional
5 mode[0] g6 OUT: div2
6 mode[1] b6 OUT: div4
7 vga_mode hsync OUT: div8

TTGF0P2 Projects 136

GF180MCU loopback tile with input
skew measurement
by Darryl Miles project from Eric Smith

0615 10 MHz HDL Project

github.com/dlmiles/ttgf25a-loopback-with-skew

“Count up to 10, one second at a time.”

How it works
This project is based on (https://github.com/ericsmi/tt05-loopback-with-
skew) but for GF180MCU.

How to test
Clock the project and modiify the timing and examine FF capture reliabiliy.

External hardware
Skewable clock and data source.

Project Pinout
Digital Pins

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

137 Projects TTGF0P2

https://github.com/dlmiles/ttgf25a-loopback-with-skew
https://github.com/ericsmi/tt05-loopback-with-skew
https://github.com/ericsmi/tt05-loopback-with-skew

Pinout
The chip is packaged in a 64-pin QFN package. The pinout is shown below.

Pin 1
1 16

uio[1]
uio[2]

uio[3]
uio[4]
uio[5]
uio[6]
uio[7]

8 17

3233

ctrl_ena

11

ctrl_sel_inc
ctrl_sel_rst_n

48

clk

37

rst_n

41

ui_in[0]
ui_in[1]

ui
_i

n[
2]

ui
_i

n[
3]

ui
_i

n[
4]

ui
_i

n[
5]

ui
_i

n[
6]

49

an
al

og
[0

]

53

uo_out[0]
uo

_o
ut

[1]

64

uo
_o

ut
[2

]

57

uo
_o

ut
[3

]
uo

_o
ut

[4
]

uo
_o

ut
[5

]
uo

_o
ut

[6
]

uo
_o

ut
[7

]

uio[0]

62

Bottom View

ui
_i

n[
7]

an
al

og
[1]

an
al

og
[2

]
an

al
og

[3
]

an
al

og
[4

]
an

al
og

[5
]

an
al

og
[6

]

an
al

og
[8

]
an

al
og

[7
]

an
al

og
[9

]
an

al
og

[10
]

an
al

og
[11

]

22

Note: You will receive the chip mounted on a breakout board (github.com/
tinytapeout/breakout-pcb). The pinout is provided for advanced users, as
most users will not need to solder the chip directly.

TTGF0P2 Pinout 138

https://github.com/tinytapeout/breakout-pcb
https://github.com/tinytapeout/breakout-pcb

The Tiny Tapeout Multiplexer
Overview
The Tiny Tapeout Multiplexer distributes a single set of user IOs to multiple
user designs. It is the backbone of the Tiny Tapeout chip.

It has the following features:
• 10 dedicated inputs
• 8 dedicated outputs
• 8 bidirectional outputs
• Supports up to 512 user designs (32 mux units, each with up to 16 designs)
• Designs can have different sizes. The basic unit is called a tile, and each

design can occupy up to 16 tiles.

Operation
The multiplexer consists of three main units:

1. The controller — used to set the address of the active design
2. The spine — a bus that connects the controller with all the mux units
3. Mux units — connects the spine to individual user designs

The Controller
The mux controller has 3 input lines:

Input Description
ena Sent as-is (buffered) to the downstream mux units

sel_rst_n Resets the internal address counter to 0 (active low)
sel_inc Increments the internal address counter by 1

It outputs the address of the currently selected design on the si_sel port of
the spine (see below).

For instance, to select the design at address 12, you need to pulse sel_rst_n
low, and then pulse sel_inc 12 times:

ena
sel_inc
sel_rst_n

Figure 1: Mux signals for activating the design at address 12

139 The Tiny Tapeout Multiplexer TTGF0P2

Legend

Controller

Spine

Mux unit
User design tile

Figure 2: Mux Diagram

Figure 3: Mux Controller Diagram

Internally, the controller is just a chain of 10 D-flip-flops. The sel_inc signal is
connected to the clock of the first flip-flop, and the output of each flip-flop is
connected to the clock of the next flip-flop. The sel_rst_n signal is connected
to the reset of all flip-flops.

TTGF0P2 The Tiny Tapeout Multiplexer 140

The following Wokwi project demonstrates this setup: wokwi.com/pro-
jects/36434780766. It contains an Arduino Nano that decodes the currently
selected mux address and displays it on a 7-segment display. Click on the
button labeled RST_N to reset the counter, and click on the button labeled
INC to increment the counter.

The Spine
The controller and all muxes are connected together through the spine. The
spine has the following signals going to it:

From controller to mux:
• si_ena — the ena input
• si_sel — selected design address (10 bits)
• ui_in — user clock, user rst_n, user_inputs (10 bits)
• uio_in — bidirectional I/O inputs (8 bits)

From mux to controller:
• uo_out — user outputs (8 bits)
• uio_oe — bidirectional I/O output enable (8 bits)
• uio_out — bidirectional I/O outputs (8 bits)

The only signal which is actually generated by the controller is si_sel (using
sel_rst_n and sel_inc, as explained above). The other signals are just going
through from/to chip I/O pads.

The Multiplexer
Each mux branch is connected to up to 16 designs. It also has 5 bits of a
hard-coded address (each unit gets assigned a different address, based on
its position on the die).

The mux implements the following logic: If si_ena is 1, and si_sel matches
the mux address, we know the mux is active. Then, it activates the specific
user design port that matches the remaining bits of si_sel.

For the active design:
• clk, rst_n, ui_in, uio_in are connected to the respective pins coming

from the spine (through a buffer)
• uo_out, uio_oe, uio_out are connected to the respective pins going out to

the spine (through a tristate buffer)

For all others, inactive designs (including all designs in inactive muxes):
• clk, rst_n, ui_in, uio_in are all tied to zero
• uo_out, uio_oe, uio_out are disconnected from the spine (the tristate

buffer output enable is disabled)

141 The Tiny Tapeout Multiplexer TTGF0P2

https://wokwi.com/projects/36434780766
https://wokwi.com/projects/36434780766

Pinout
QFN64 Pin Function Signal
1 Mux Control ctrl_ena

2 Mux Control ctrl_sel_inc

3 Mux Control ctrl_sel_rst_n

4 Reserved (none)
5 Reserved (none)
6 Reserved (none)
7 Reserved (none)
8 Reserved (none)
9 Output uo_out[0]

10 Output uo_out[1]

11 Output uo_out[2]

12 Output uo_out[3]

13 Output uo_out[4]

14 Output uo_out[5]

15 Output uo_out[6]

16 Output uo_out[7]

17 Power VDD IO
18 Ground GND IO
19 Analog analog[0]

20 Analog analog[1]

21 Analog analog[2]

22 Analog analog[3]

23 Power VAA Analog
24 Ground GND Analog
25 Analog analog[4]

26 Analog analog[5]

27 Analog analog[6]

28 Analog analog[7]

29 Ground VDD Core
30 Power VDD Core
31 Ground GND IO
32 Power VDD IO
33 Bidirectional uio[0]

34 Bidirectional uio[1]

35 Bidirectional uio[2]

TTGF0P2 The Tiny Tapeout Multiplexer 142

QFN64 Pin Function Signal
36 Bidirectional uio[3]

37 Bidirectional uio[4]

38 Bidirectional uio[5]

39 Bidirectional uio[6]

40 Bidirectional uio[7]

41 Input ui_in[0]

42 Input ui_in[1]

43 Input ui_in[2]

44 Input ui_in[3]

45 Input ui_in[4]

46 Input ui_in[5]

47 Input ui_in[6]

48 Input ui_in[7]

49 Input rst_n †
50 Input clk †
51 Ground GND IO
52 Power VDD IO
53 Analog analog[8]

54 Analog analog[9]

55 Analog analog[10]

56 Analog analog[11]

57 Ground GND Analog
58 Power VDD Analog
59 Analog analog[12]

60 Analog analog[13]

61 Analog analog[14]

62 Analog analog[15]

63 Ground GND Core
64 Power VDD Core

† Internally, there’s no difference between clk, rst_n and ui_in pins. They are
all just bits in the pad_ui_in bus. However, we use different names to make
it easier to understand the purpose of each signal.

143 The Tiny Tapeout Multiplexer TTGF0P2

Team
Tiny Tapeout would not be possible without a lot of people helping. We would
especially like to thank:

• Uri Shaked for Wokwi development and lots more
• Patrick Deegan for PCBs, software, documentation and lots more
• Sylvain Munaut for help with scan chain improvements
• Mike Thompson and Mitch Bailey for verification expertise
• Tim Edwards and Harald Pretl for ASIC expertise
• Jix for formal verification support
• Proppy for help with GitHub actions
• Maximo Balestrini for all the amazing renders and the interactive GDS

viewer
• James Rosenthal for coming up with digital design examples
• All the people who took part in TinyTapeout 01 and volunteered time

to improve docs and test the flow
• The team at YosysHQ and all the other open source EDA tool makes
• Jeff and the Efabless Team for running the shuttles and providing

OpenLane and sponsorship
• Tim Ansell and Google for supporting the open source silicon movement
• Zero to ASIC course community for all your support
• Jeremy Birch for help with STA

TTGF0P2 Team 144

https://wokwi.com
https://psychogenic.com/
https://twitter.com/tnt
https://www.linkedin.com/in/michael-thompson-0a581a/
https://www.linkedin.com/in/mitch-bailey-8ba0b45/
https://www.linkedin.com/in/tim-edwards-4376a18/
https://www.linkedin.com/in/harald-pretl-4911ba10/
https://twitter.com/jix_
https://twitter.com/proppy
https://twitter.com/maxiborga
https://www.yosyshq.com/
https://efabless.com/
https://www.youtube.com/watch?v=EczW2IWdnOM
https://www.youtube.com/watch?v=EczW2IWdnOM
https://www.youtube.com/watch?v=EczW2IWdnOM
https://zerotoasiccourse.com/

Using This Datasheet
Structure
Projects are ordered by their mux address, in ascending order. Documenta-
tion is user-provided from their GitHub repositories and are merged into the
final shuttle once the deadline is reached.

In general, each project should contain:
• The user-provided title & a list of authors
• A link to the GitHub repository used for submission
• A link to the Wokwi project (if applicable)
• A “How it works” section
• A “How to test” section
• An “External hardware” section (if applicable)
• A pinout table for both digital & analog designs

Badges
This datasheet uses “badges” to quickly convey some information about the
content. These badges are explained in the table below.

Badge Description

Artwork Used to showcase artwork from our community.

0123

0423/2

Mux address of the project, in decimal. For microtile
designs, their sub-address is placed after the forward
slash. In this example, it would be 2.

25.175 MHz
Clock frequency of the project. May be truncated from
actual value or omitted completely.

HDL Project

Wokwi Project

Analog Project

Project type, indicating if it was made with a HDL,
Wokwi, or if it is analog.

Medium Danger

High Danger

Indicates the risk that the project presents to the
ASIC. Medium danger projects can damage the ASIC
under certain conditions, whilst high danger projects
will damage the ASIC.

145 Using This Datasheet TTGF0P2

Callouts
In addition to Medium Danger and High Danger badges being used, a call-
out is placed before the project documentation begins to alert the user.

A callout for Medium Danger may look something like:

This project will damage the ASIC under certain conditions.

There is an error in the schematic which may lead to ASIC failure
under certain clocking conditions.

Similarly, a callout for High Danger may look something like:

This project will damage the ASIC.

There is an error in the schematic which may cause permanent
damage when powered on in a certain configuration.

Should there be a project that poses a danger, the callout will explain the
reasoning behind the danger level.

Callouts may also provide some additional information, and look something
like so:

Information

Silicon melts at 1414°C, and boils at 3265°C. Don't let your chip
get too hot!

Figures & Footnotes
Numbering for figures and footnotes within the “Project” chapter is formed
by combining the address of the project with the current figure number.
For example, the second figure for a project with an address of 256 will be
captioned with “Figure 256.2”. Likewise, the third footnote for a project of
address 128 will be shown as “128.3”.

The numbering outside of the “Project” chapter resumes as normal, being
formatted with a simple number, e.g. “Figure 3”.

Updates
This datasheet is intended to be a living and breathing document. Please
update your projects’ datasheet with new information if you have it, by cre-
ating a pull request against the shuttle repository.

TTGF0P2 Using This Datasheet 146

Where is your design?
Go from idea to chip design in minutes, without breaking the bank.

Interested and want to get your own design manufactured? Visit our website
and check out our educational material and previous submissions!

How?
New to this? Use our basic Wokwi template to see what’s possible. If you’re
ready for more, use our advanced Wokwi template and unlock some extra
pins.

Know Verilog and CocoTB? Get stuck in with our HDL templates.

When?
Multiple shuttles are run per year, meaning you’ve got an opportunity to
manufacture your design at any time.

Stuck? Need help? Want inspiration?
Come chat to us and our community on Discord! Scan the QR code below.

Website

tinytapeout.com

Digital design guide

tinytapeout.com/
digital_design

Discord server

tinytapeout.com/
discord

https://tinytapeout.com
https://tinytapeout.com/digital_design
https://tinytapeout.com/digital_design
https://tinytapeout.com/discord
https://tinytapeout.com/discord

	Table of Contents
	Projects
	Chip ROM
	How it works
	The ROM layout
	The chip descriptor
	How the ROM is generated
	Reading the ROM

	How to test
	Project Pinout
	Digital Pins

	Tiny Tapeout Factory Test
	How it works
	How to test
	Project Pinout
	Digital Pins

	Zedulo TestChip1
	How it works
	How to test
	Project Pinout
	Digital Pins

	Wafer.space Logo VGA Screensaver
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	Wildcat RISC-V
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	TinyQV Risc-V SoC
	Address map
	DEBUG
	TIME
	GPIO
	UART

	Project Pinout
	Digital Pins

	SCµM-BLE-RX
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	Silly-Faust
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	Simon's Caterpillar
	How it works
	How to test
	Exploration mode
	Challenge mode

	External hardware
	Project Pinout
	Digital Pins

	VGA clock
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	2x2 MAC Systolic array with DFT
	Project Pinout
	Digital Pins

	USB CDC (Serial) Device
	How it works
	How to test
	External Hardware
	Project Pinout
	Digital Pins

	VGA Drop (audio/visual demo)
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	raybox-zero TTGF0p2 edition
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	2048 sliding tile puzzle game (VGA)
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	Quickscope
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	LISA 8-Bit Microcontroller
	What is LISA?
	Deailed list of the features

	Connectivity
	Debug Interface Details
	Debug Configuration and Control Registers
	LISA Processor Interface Details
	Programming the QSPI Controller

	Architecture Details
	Addressing Modes
	The Control Registers
	Conditional Flow Processing
	The IF Opcode
	Direct Operations
	Accumulator Indirect Operations
	Indexed Operations
	Stack Operations

	How to test
	Legend for Pinout

	Project Pinout
	Digital Pins

	easy PAL
	How it works
	Example configuration
	Taped-out configuration and pin assignment
	Pin assignment

	Programming
	Generate bitstreams
	Using the PAL

	How to test
	External hardware
	Project Pinout
	Digital Pins

	VGA Nyan Cat
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	Notre Dame - Lockpick Game TT Example
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	KianV uLinux SoC
	How it works
	System Memory Map
	UART Peripheral registers
	SPI Peripheral registers
	GPIO Peripheral registers
	CPU control register

	How to test
	External hardware
	Project Pinout
	Digital Pins

	Notre Dame - CSE 30342 - DIC - Advanced FSM Final Project Example
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	Simple RISC-V
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	LEDs Racer
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	Frequency Counter SSD1306 OLED
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	megabytebeat
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	Asicle v2
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	CAN Controller for Rocket
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	Zilog Z80
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	ROTFPGA v2
	How it works
	Configuration
	Loop breaker
	Reset
	Pin mapping

	How to test
	External hardware
	Project Pinout
	Digital Pins

	7-Segment Digital Desk Clock
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	MarcoPolo
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	Linear Timecode (LTC) generator
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	Classic 8-bit era Programmable Sound Generator SN76489
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	VGA Tiny Logo
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	Ring Oscillator (5 inverter)
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	Simon Says memory game
	How it works
	Clock settings
	How to test
	External Hardware
	Project Pinout
	Digital Pins

	Flame demo
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	WokwiPWM
	Wokwi 4-Channel PWM
	Block diagram
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	Dog Battle Game
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	PVTMonitorSuite
	How it works
	How to test
	Measure tp d , I N V
	Measure tp d , N A N D 2
	Measure tc l k q + ts e t u p of standard D-FF
	Measure tc l k q + ts e t u p of DICE D-FF
	Measure tc l k q + ts e t u p of Leap DICE D-FF
	Measure ts k e w

	External hardware
	Project Pinout
	Digital Pins

	PILIPINAS_IC
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	PRISM 8 with TinySnake
	How it works
	Design 1 - 7-Seg Snake
	Design 2 - Mini PRISM

	How to test
	External hardware
	PRISM
	What can it do?
	Operating priciples of PRISM
	State Looping (important)
	TL/DR

	External PRISM Inputs
	External PRISM Outputs
	15-Bit Counter
	Chroma
	Project Pinout
	Digital Pins

	Register bank accessible through SPI and I2C
	How it works
	How to test
	External hardware
	External hardware
	Project Pinout
	Digital Pins

	Cell mux
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	Super-Simple-SPI-CPU
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	Example of Bad Synchronizer
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	Video mode tester
	What it does
	Register map
	How to test
	External hardware
	Project Pinout
	Digital Pins

	One Bit PUF
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	DDR throughput and flop aperature test
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	Ring osc on VGA
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	GF180MCU loopback tile with input skew measurement
	How it works
	How to test
	External hardware
	Project Pinout
	Digital Pins

	Pinout
	The Tiny Tapeout Multiplexer
	Overview
	Operation
	The Controller
	The Spine
	The Multiplexer

	Pinout

	Team
	Using This Datasheet
	Structure
	Badges
	Callouts
	Figures & Footnotes
	Updates

	Where is your design?

