
Tiny Tapeout IHP 0p2 Datasheet
Project Repository

https://github.com/TinyTapeout/tinytapeout-ihp-0p2

November 12, 2024

Contents

1

https://github.com/TinyTapeout/tinytapeout-ihp-0p2

Chip map 5

Projects 7
Chip ROM [0] . 7
TinyTapeout Factory Test 1 . 9
VGA Mandelbrot [4] . 11
FazyRV-ExoTiny [10] . 14
8 bit RSA encryption [32] . 18
Retro Console [37] . 23
Chess [43] . 55
2048 sliding tile puzzle game (VGA) [68] 58
1bit_am_sdr [74] . 60
Conway’s Game of Life on UART and VGA [101] 64
mulmul [105] . 66
ROTFPGA v2a [107] . 68
simon_cipher [128] . 76
VGA Screensaver with Tiny Tapeout Logo [130] 78
KianV RISC-V RV32E Baremetal SoC [138] 80
ROTFPGA v2b [161] . 82
Asynchronous Multiplier [163] . 84
SRAM (1024x8) test [167] . 87
Zilog Z80 [171] . 89
Minilogix [198] . 93
Experiment Number Six: Laplace LUT [202] 94
VGA Pong with NES Controllers [225] . 97
DemoSiine [227] . 99
Rounding error [229] . 108
VGA Pride [231] . 114
VGA Nyan Cat [233] . 118
Flame demo [235] . 120
Sequential Shadows Deluxe [TT08 demo competition] [258] 122
No Time For Squares, IHP edition [266] 125
Simon’s Caterpillar [289] . 127
TT08 Pachelbel’s Canon demo [291] . 129
Demo by a1k0n [293] . 130
VGA Drop (audio/visual demo) [295] . 133
Warp [297] . 134
Bouncy Capsule [299] . 136
raybox-zero TTIHP0p2 edition [326] . 137
VGA donut [330] . 140
maddihp [353] . 142
Multimode Modem [355] . 144

2

Frequency Counter SSD1306 OLED [357] 147
I2C BERT [359] . 149
Collatz conjecture brute-forcer [361] . 151
Power gating test (1x2) [363] . 153
Goldcrest RISC-V [394] . 154
Transmit UART [417] . 156
DJ8 8-bit CPU [419] . 157
PILIPINASLASALLE [421] . 163
RLE Video Player [423] . 165
VGA Experiments in Tennis [425] . 168
Gray scale and Sobel filter [427] . 170
Game of Life 8x32 (siLife) [454] . 173
TinyQV Risc-V SoC [458] . 175
Stochastic Multiplier, Adder and Self-Multiplier [481] 179
8 Bit Digital QIF [483] . 184
CEJMU Beers and Adders [485] . 185
Classic 8-bit era Programmable Sound Generator SN76489 [487] 187
MULDIV unit (8-bit signed/unsigned) [489] 195
IHP loopback tile with input skew measurement [491] 200
VGA clock [513] . 201
RGB Mixer demo [515] . 203
Universal Binary to Segment Decoder [517] 204
Hardware UTF Encoder/Decoder [519] 213
Simon Says memory game [521] . 219
VC 16-bit CPU [522] . 222
Latch test [523] . 223
Classic 8-bit era Programmable Sound Generator AY-3-8913 [544] 224
VGA Scroller [545] . 233
Digital Desk Clock v2.0 [546] . 234
Glyph Mode [547] . 236
Giant Ring Oscillator (3853 inverters) [548] 238
cfib Demoscene Entry [549] . 240
DDR throughput and flop aperature test [550] 242
TTIHP VGA FUN! [551] . 244
Example of Bad Synchronizer [552] . 245
Pulse Width Counter [553] . 246
Ring Oscillator (5 inverter) [555] . 247
Frequency counter [577] . 248
SPI Test [579] . 250
One Sprite Pony [581] . 252
I2C EEPROM Project Selection [583] . 254
Color Bars [585] . 256

3

SPELL [586] . 258
Crispy VGA [587] . 263
Snow [608] . 265
TTL Pulse Generator [609] . 266
8-bit ALU based on 2x 74181 [610] . 267
Iterative MAC [611] . 271
VGA Tiny Logo (1 tile) [612] . 273
TTIHP TinyVGA FUN! [613] . 274
SkyKing Demo [614] . 275
One Bit PUF [615] . 277
Cell mux [616] . 279
One Bit PUF [617] . 280
Power gating test (1x1) [618] . 282
INTERCAL ALU [619] . 283

Pinout 288

The Tiny Tapeout Multiplexer 289
Overview . 289
Operation . 289
Pinout . 292

Sponsored by 295

Team 295

4

Chip map

Figure 1: GDS render

5

Figure 2: Logic density (local interconnect layer)

6

Projects

Chip ROM [0]

• Author: Uri Shaked
• Description: ROM with information about the chip
• GitHub repository
• HDL project
• Mux address: 0
• Extra docs
• Clock: 0 Hz

How it works

ROM memory that contains information about the Tiny Tapeout chip. The ROM is
8-bit wide and 256 bytes long.

The ROM layout The ROM layout is as follows:

Address Length Encoding Description
0 8 7-segment Shuttle name (e.g. “tt07”), null-padded
8 8 7-segment Git commit hash
32 96 ASCII Chip descriptor (see below)
248 4 binary Magic value:

&quot;TT\xFA\xBB&quot;
252 4 binary CRC32 of the ROM contents, little-endian

The chip descriptor The chip descriptor is a simple null-terminated string that
describes the chip. Each line is a key-value pair, separated by an equals sign. It
contains the following keys:

Key Description Example value
shuttle The identifier of the shuttle tt07
repo The name of the repository TinyTapeout/tinytapeout-07
commit The commit hash * a1b2c3d4

• The commit hash is only included for Tiny Tapeout 5 and later.

7

https://github.com/TinyTapeout/tt-chip-rom

Here is a complete example of a chip descriptor:

shuttle=tt07
repo=TinyTapeout/tinytapeout-07
commit=a1b2c3d4

How the ROM is generated The ROM is automatically generated by tt-support-
tools while building the final GDS file of the chip. Look at the rom.py file in the
repository for more details.

How to test

Read the ROM contents by setting the address pins and reading the data pins. The
first 16 bytes of the ROM are 7-segment encoded and contain the shuttle name and
commit hash. You can read them by toggling the first four DIP switches and observing
the on-board 7-segment display.

Pinout

Input Output Bidirectional
0 addr[0] data[0]
1 addr1 data1
2 addr2 data2
3 addr[3] data[3]
4 addr[4] data[4]
5 addr[5] data[5]
6 addr[6] data[6]
7 addr[7] data[7]

8

https://github.com/TinyTapeout/tt-support-tools
https://github.com/TinyTapeout/tt-support-tools
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

TinyTapeout Factory Test 1

• Author: Tiny Tapeout
• Description: Factory test module
• GitHub repository
• HDL project
• Mux address: 1
• Extra docs
• Clock: 0 Hz

How it works

The factory test module is a simple module that can be used to test all the I/O pins
of the ASIC.
It has three modes of operation:

1. Mirroring the input pins to the output pins (when rst_n is low).
2. Mirroring the bidirectional pins to the output pins (when rst_n is high sel is

low).
3. Outputing a counter on the output pins and the bidirectional pins (when rst_n

is high and sel is high).

The following table summarizes the modes:

rst_n sel Mode uo_out value uio pins
0 X Input mirror ui_in High-Z
1 0 Bidirectional mirror uio_in High-Z
1 1 Counter counter counter

The counter is an 8-bit counter that increments on every clock cycle, and resets when
rst_n is low.

How to test

1. Set rst_n low and observe that the input pins (ui_in) are output on the output
pins (uo_out).

2. Set rst_n high and sel low and observe that the bidirectional pins (uio_in)
are output on the output pins (uo_out).

3. Set sel high and observe that the counter is output on both the output pins
(uo_out) and the bidirectional pins (uio).

9

https://en.wikipedia.org/wiki/Collatz_conjecture
https://github.com/TinyTapeout/ttihp-factory-test

Pinout

Input Output Bidirectional
0 sel / in_a[0] output[0] /

counter[0]
in_b[0] / counter[0]

1 in_a1 output1 /
counter1

in_b1 / counter1

2 in_a2 output2 /
counter2

in_b2 / counter2

3 in_a[3] output[3] /
counter[3]

in_b[3] / counter[3]

4 in_a[4] output[4] /
counter[4]

in_b[4] / counter[4]

5 in_a[5] output[5] /
counter[5]

in_b[5] / counter[5]

6 in_a[6] output[6] /
counter[6]

in_b[6] / counter[6]

7 in_a[7] output[7] /
counter[7]

in_b[7] / counter[7]

10

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

VGA Mandelbrot [4]

• Author: Mike Bell
• Description: Mandelbrot on VGA, racing the beam
• GitHub repository
• HDL project
• Mux address: 4
• Extra docs
• Clock: 100000000 Hz

How it works

The Mandelbrot fractal is computed “racing the beam” and displayed through the
TinyVGA Pmod.
One iteration of the computation is done every clock cycle, and a maximum iteration
depth of 16 iterations is used. The design is clocked at 100MHz, allowing four clock
cycles per 25MHz pixel clock. This means one value is computed every 4 pixels, giving
a result like this:

Figure 3: The Mandelbrot set

11

https://github.com/MichaelBell/ttihp-mandelbrot
https://github.com/mole99/tiny-vga

The computation uses 16-bit fixed point arithmetic. The multiplications are approxi-
mated to save area, giving a possible error in the least significant bit. This gives at
least 14-bit accuracy on each iteration.
The output image is at a 720x480 resolution (180x480 Mandelbrot pixels).

How to test

Provide a 100MHz clock.
The image position and zoom can be configured using the input and bidir pins.
in[2:0] control the configuration to set, and {io[7:0], in[7:3]} specify a signed value
when setting a register.
These values should only be updated during vsync.

Ctrl Value
0 Enable demo mode (Zooms in and out repeatedly)
1 Set X coordinate for top-left of screen to value / 2^10
2 Set Y coordinate for top-left of screen to value / 2^11
3 No action
4 Set X increment per column to value[9:0] / 2^13
5 Set Y increment per column to value[9:0] / 2^13
6 Set X increment per row to value[7:0] / 2^13
7 Set Y increment per row to value[7:0] / 2^13

Note there are 180 columns and 480 rows displayed.

External hardware

Tiny VGA Pmod in the output socket.

Pinout

Input Output Bidirectional
0 Ctrl 0 R1 Input 5
1 Ctrl 1 G1 Input 6
2 Ctrl 2 B1 Input 7
3 Input 0 vsync Input 8

12

https://github.com/mole99/tiny-vga
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Input Output Bidirectional
4 Input 1 R[0] Input 9
5 Input 2 G[0] Input 10
6 Input 3 B[0] Input 11
7 Input 4 hsync Input 12

13

FazyRV-ExoTiny [10]

• Author: Meinhard Kissich
• Description: A minimal SoC based on FazyRV that uses external QSPI ROM

and RAM.
• GitHub repository
• HDL project
• Mux address: 10
• Extra docs
• Clock: 50000000 Hz

How it works

This TinyTapeout implements a System-on-Chip (SoC) design based on the FazyRV
RISC-V core. Documentation on the SoC can be found in github.com/meiniKi/FazyRV-
ExoTiny. For details on the FazyRV core, please refer to github.com/meiniKi/FazyRV.

Features
• Instantiates FazyRV with a chunk size of 2 bits.
• Uses external instruction memory (QSPI ROM) and external data memory (QSPI

RAM).
• Provides 6 memory-mapped general-purpose outputs and 7 inputs.
• Provides an SPI peripheral with programmable CPOL and a buffer of up to 4

bytes.

Pinout Overview The overview shows the pinout for the TinyTapeout Demo PCB.
A detailed description of the pins is given below.

Block Diagram The block diagram outlines the on-chip peripherals and related
addresses.

How to test

Once the design is enabled and released from reset, it first enables Quad Mode in
the RAM. The Wishbone accesses are converted into QSPI transfers to exchange
data. The first read from ROM (boot address: 0x00000000) enabled Continuous
Mode to reduce the latency. To get started, you can flash the demo firmware in
FazyRV-ExoTiny/demo. See the repo for more information.

14

https://github.com/meiniKi/ttihp-FazyRV-ExoTiny
https://github.com/meiniKi/FazyRV-ExoTiny
https://github.com/meiniKi/FazyRV-ExoTiny
https://github.com/meiniKi/FazyRV

Figure 4: Pinout overview

Figure 5: Block diagram

15

Important: rst_n is not synchronized. Make sure it is released sufficient hold time
after the rising clock edge and sufficient setup time before the falling edge. Do not
release reset while clk is low. The design appears to be on the edge of implementability.
An additional dff breaks convergence.

External hardware

• QSPI ROM: W25Q128JV or compatible
• QSPI RAM: APS6404L-3SQR or compatible

The design uses external ROM (Flash) and external RAM. All bus accesses in these
regions are converted to QSPI transfers to read data from the ROM or to read/write
data from/to the RAM, respectively. Alternatively, you can synthesize a model in an
FPGA and attach it to the BIDIR PMOD header.

Pinout

Input Output Bidirectional
0 General

purpose input
(GPI) 0.

General
purpose
output (GPO)
0.

QSPI ROM chip select
(low active).

1 General
purpose input
(GPI) 1.

General
purpose
output (GPO)
1.

QSPI ROM/RAM SDO[0].

2 General
purpose input
(GPI) 2.

General
purpose
output (GPO)
2.

QSPI ROM/RAM SDO1.

3 General
purpose input
(GPI) 3.

General
purpose
output (GPO)
3.

QSPI ROM/RAM SCK.

4 General
purpose input
(GPI) 4.

General
purpose
output (GPO)
4.

QSPI ROM/RAM SDO2.

16

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
5 General

purpose input
(GPI) 5.

General
purpose
output (GPO)
5.

QSPI ROM/RAM SDO[3].

6 General
purpose input
(GPI) 6.

(User) SPI
SCK.

QSPI RAM chip select
(low active).

7 (User) SPI
SDI.

(User) SPI
SDO.

NC.

17

8 bit RSA encryption [32]

• Author: Caio Alonso da Costa
• Description: 8 bit RSA encryption coprocessor with SPI interface
• GitHub repository
• HDL project
• Mux address: 32
• Extra docs
• Clock: 50000000 Hz

How it works

This project consists of an 8-bit RSA verilog design that implements the RSA
(https://en.wikipedia.org/wiki/RSA_(cryptosystem)) encryption/decryption scheme
with an 8-bit private/public key size.
The design implements modular exponentiation (https://en.wikipedia.org/wiki/Modular_exponentiation)
through a series of Montgomery modular multiplication (https://en.wikipedia.org/wiki/Montgomery_modular_multiplication)
to encrypt/decrypt a message using an 8-bit key.
Due to I/O constraints, a SPI slave peripheral has been created to load/read data
into/from the design.
The SPI Slave peripheral implementation supports all 4 SPI mode of operations (CPOL
is configurable through ui2 and CPHA is configurable through ui[3]), 8 Configurable
(Read/Write) 8-bit registers and 8 Status (Read only) 8-bit registers.
The RP2040 SPI1 peripheral shall be used to communicate with the RSA core. Con-
figure RP2040 SPI1 peripheral to GPIOs 24 to 27.

SPI Limitations:

• Single register access per SPI transaction.
• SPI transaction is limited to 16 bits transfer at a time (Addr + Data). Please

refer to Protocol for timing diagrams.
• Design tested for 8 configuration registers + 8 status registers.
• Even though the number of configuration registers and status registers is config-

urable, design only supports equal number of configuration and status registers
for now.

• Writes targeting Read Only address are dropped, i.e., no configuration registers
gets updated.

18

https://github.com/calonso88/tt09_rsa
http://www.ericr.nl/wondrous/pathrecs.html

Address Space:

Address Type of register
0 Configurable Read/Write register [0]
1 Configurable Read/Write register 1 - bit1

Stop, bit[0] Start - Rising edge detector
to trigger encryption/decryption

2 Configurable Read/Write register 2 -
Plain text [7:0]

3 Configurable Read/Write register [3] - E
[7:0]

4 Configurable Read/Write register [4] - M
[7:0]

5 Configurable Read/Write register [5] -
Montgomery Constant [7:0]

6 Configurable Read/Write register [6]
7 Configurable Read/Write register [7] -

Spare [7:0] - Connected to 7-segment
Display

8 Status Read Only register [0] - bit[0] IRQ
- Encryption/decryption completed

9 Status Read Only register 1 - Fixed data
8’hC4

10 Status Read Only register 2 - Fixed data
8’h10

11 Status Read Only register [3] - Fixed data
8’hDE

12 Status Read Only register [4] - Fixed data
8’hAD

13 Status Read Only register [5] - Fixed data
8’h00

14 Status Read Only register [6] -
Encrypted/Decrypted data [7:0]

15 Status Read Only register [7] - Fixed data
8’hFF

Connection

RP2040 SPI Master <–SPI–> SPI_WRAPPER <–regaccess–> User logic (RSA)

19

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

• SPI: MOSI MISO SCLK CS
• regaccess: config_regs (used to drive/control user logic), status_regs (used to

read/monitor user logic)

Protocol

SPI settings
• Address Bits = 4 and Databits = 8, MSB First
• Tested SPI frequency: spi_clk <= clk / 20

SPI commands
• Write data cmd = 0x80+addr, addr = 0 ~ 7

Bit: | <15> <14> <13> <12> <11> <10> <9> <8> <7> <6> <5> <4> <3> <2> <1> <0> |
MOSI: | 1 | Don't Care | Don't Care | Don't Care | addr[3] | addr[2] | addr[1] | addr[0] | data[7] | data[6] | data[5] | data[4] | data[3] | data[2] | data[1] | data[0] |
MISO: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CS: 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1

• Read data cmd = 0x00+addr, addr = 0 ~ 15

Bit: | <15> <14> <13> <12> <11> <10> <9> <8> <7> <6> <5> <4> <3> <2> <1> <0> |
MOSI: | 0 | Don't Care | Don't Care | Don't Care | addr[3] | addr[2] | addr[1] | addr[0] | Don't Care | Don't Care | Don't Care | Don't Care | Don't Care | Don't Care | Don't Care | Don't Care |
MISO: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | data[addr][7] | data[addr][6] | data[addr][5] | data[addr][4] | data[addr][3] | data[addr][2] | data[addr][1] | data[addr][0] |
CS: 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1

How to test

Key generation example:

1. Choose two large prime numbers p and q : p = 7, q = 13
2. Compute n = p * q : n = 91
3. Compute Euller totient function �(n) = (p - 1) * (q - 1) : �(n) = 72
4. Choose an integer e such that 1 < e < �(n) and gcd(e, �(n)) = 1: e = 11
5. Determine d as d � e^(−1) (mod �(n)); that is, d is the modular multiplicative

inverse of e modulo �(n) : d = 59

20

Private key {e, n} = {11, 91}
Public key {d, n} = {59, 91}
The plain text is limited to a number in the interval [0:91[, as per this example. Since
the design uses the Montgomery mutiplication, a Montgomery Constant shall be used
to map the plain text into the Montgomery integer domain.

6. Compute Montgomery constant (fixed value that depends only on the value of
p and q and the max-key lenght of the RSA core implementation).

Const = (2 ** (2 * hwbits)) mod n, where hwbits = (8 (RSA max key-lenght core
support) + 2).
Const = (2 ** (2 * (8+2))) mod 91 = 74
Now, use SPI Master peripheral in RP2040 to start communication on SPI interface to-
wards this design. Remember to configure the SPI mode in the RP2040 accordingly.
Steps for start an/a encryption/decryption process:

1. Write any value between 0 and n-1 to the configurable Read/Write register 2 -
Plain text [7:0]: Value suggestes: 12

2. Write to configurable Read/Write register [3] the value of e: 11
3. Write to configurable Read/Write register [4] the value of n: 91
4. Write to configurable Read/Write register [5] the value of const: 74
5. Write to configurable Read/Write register 1 the value 1 - (Trigger the start

encryption command).
6. Wait for rising edge of the IRQ output.
7. Read the Status Read Only register [6] - Encrypted data. Valeu expected: 38.

12 ^ 11 mod 91 = 743008370688 mod 91 = 38
https://github.com/calonso88/tt09_rsa/blob/main/test/test.py implements a self-
checking test that verify the encrypted data produced by the RSA core against the
predicted values produced locally on the test. The test randomize the elements for key
generation and the plain text. All derived values needed for the encryption/decryption
are calculated locally in the test through helper functions.

External hardware

Not required.

21

http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture

Pinout

Input Output Bidirectional
0 gpio_start spare[0] irq
1 gpio_stop spare1 ui[4]
2 cpol spare2 ui[5]
3 cpha spare[3] spi_miso
4 spare[4] spi_cs_n
5 spare[5] spi_clk
6 spare[6] spi_mosi
7 spare[7] ui[7]

22

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Retro Console [37]

• Author: Toivo Henningsson
• Description: 8½ bit retro console with sprite and tile graphics + synth
• GitHub repository
• HDL project
• Mux address: 37
• Extra docs
• Clock: 50350000 Hz

Overview

AnemoneGrafx-8 is a retro console containing

• a PPU for VGA graphics output
• an analog emulation polysynth for sound output

The console is designed to work together with the RP2040 microcontroller on the Tiny
Tapeout 06 Demo Board, the RP2040 providing

• RAM emulation,
• connections to the outside world for the console (except VGA output),
• the CPU to drive the console.

Features:

• PPU:

– 320x240 @60 fps VGA output (actually 640x480 @60 fps VGA)
∗ Some lower resolutions are also supported, useful if the design can not

be clocked at the target 50.35 MHz
– 16 color palette, choosing from 256 possible colors
– Two independently scrolling tile planes

∗ 8x8 pixel tiles
∗ color mode selectable per tile:

· 2 bits per pixel, using one of 15 subpalettes per tile
· 4 bits per pixel, halved horizontal resolution

– 64 simultaneous sprites (more can be displayed at once with some Copper
tricks)
∗ mode selectable per sprite:

· 16x8, 2 bits per pixel using one of 15 subpalettes per sprite

23

https://github.com/toivoh/ttihp-tt06-retro-console

· 8x8, 4 bits per pixel
∗ up to 4 sprites can be loaded and overlapping at the same pixel

· more sprites can be visible on same scan line as long as they are
not too cramped together

– Simple Copper-like function for register control synchronized to pixel timing
∗ write PPU registers
∗ wait for x/y coordinate

• AnemoneSynth:

– 16 bit 96 kHz output
– 4 voices, each with

∗ Two oscillators
· sweepable frequency
· noise option

∗ Three waveform generators with 8 waveforms: sawtooth/triangle/2
bit sawtooth/2 bit triangle/square wave/pulse wave with 37.5% /
25% / 12.5% duty cycle

∗ 2nd order low pass filter
· sweepable volume, cutoff frequency, and resonance

The console is designed to be clocked at 50.35 MHz, twice the pixel clock of 25.175
MHz used for VGAmode 640x480 @60 fps. (The frequency does not have to be terribly
precise though, and there are ways to clock the console considerably slower and still
get a useful output.)
Contents:

• Overview
• Design rationale
• How it works
• IO interfaces
• Using the PPU
• Using AnemoneSynth
• How to test
• External interfaces

Design rationale

The design target was

• PPU with 2 bpp graphics, with

24

– VGA output at 640x480 @60 fps, doubled from PPU output at 320x240
@60 fps,

– 2 planes of 8x8 pixel tiles,
– at least 8 sprites per scan line.

• Four voice analog emulation synthesizer with each voice in the style of the
monosynth https://github.com/toivoh/tt05-synth.

Design considerations:

• On chip memory takes a lot of area, maybe 1 tile per 64 bytes

– 8 kB of video RAM for the PPU would be infeasible on-chip
– 192+80 bits per voice would need a lot of space

• Solution: Use the RP2040 microcontroller (with 264 kB of RAM) on the Tiny
Tapeout demo board as a RAM emulator

– Store only what is necessary on chip, use higher bandwidth to reduce
needed on-chip storage
∗ Let PPU render the same scan line contents twice to double pixels

vertically, instead of trying to do it once and store the results

• Limited number of pins ==> use serial interface(s) for RAM emulation
• PPU needs predictable memory access latency, but only reading

– I was able to implement a RP2040 solution that uses PIO (programmable
IO) and DMA but not CPU
∗ Gives fixed read latency, RP2040 can add extra latency to reach suit-

able delay
– PPU designed assuming data arrives just in time to calculate address 4

reads later

• Synth uses context switching to keep track of state of only one voice at a time

– Needs some bandwidth, but low/fixed latency is less important
– Use synchronous serial interface with start bit and TX/RX FIFOs to allow

RP2040 CPU to service the interface

• Sizing:

– PPU
∗ 16 bit address ==> might as well read 16 bit data words
∗ 8 bits/pixel read bandwidth needed for two tile planes with (16 bit)

tile map and 2 bpp graphics

25

∗ 16 bits/pixel read bandwidth gives space to read in new sprites during
scan line
· keeping track of only 4 sprites at a time to reduce on-chip storage

∗ Overhead to keep track of each sprite means that it might as well use
32 bits of pixel data per scan line

∗ Palette registers take a lot of space; limit to 16 palette colors
– Synth:

∗ Context switching cannot be overlapped with processing
∗ 3x 20 bits of extra on-chip buffers allow producing four voice output

samples between context switches, keeping down context switching
time

How it works

The console consists of two parts:

• The PPU generates a stream of pixels that can be output as a VGA signals

– based on tile graphics, map, and sprite data read from memory, and the
contents of the palette registers.

• The synth generates a stream of samples by

– context switching between voices at a rate of 96 kHz
∗ producing four 96 kHz sample contributions from each voice in one

go and adding to internal buffers
– outputting each 96 kHz sample once it has received contributions from

each voice

PPU

index
depth,

sprite unit --->-\ index rgb rgb222
|| | compose --> palette -> dither----->-

tile map unit -->-/ \
|| | index, depth VGA ->
Copper out
|^ | x, y /
|| +<---------raster scan -> delay ------------->-
V| hsync, vsync, active

26

---> read unit --->
data addr

The PPU is composed of a number of components, including:

• The sprite unit reads and buffers sprite data and sprite pixels, outputting color
index and depth for the topmost sprite pixel

• The tile map unit reads and buffers tile map and tile pixel data, outputting color
index and depth for the topmost tile map pixel

• The Copper reads an instruction stream of PPU register write, wait for x/y, and
jump instructions, and updates PPU registers accordingly

• The read unit prioritizes read requests to graphics memory between the sprite
unit, tile map unit, and Copper, and keeps track of the queue of reads that have
been sent but the data has not yet been received

The PPU uses 4 clock cycles to generate each pixel, which is duplicated into two VGA
pixels of two cycles each. (The two VGA pixels can be different due to dithering.)
Many of the registers and memories in the PPU are implemented as shift registers for
compactness.

The read unit The read unit transmits a sequence of 16 bit addresses, and expects
to recieve the corresponding 16 bit data word after a fixed delay. In this way, it can
address a 128 kB address space. The delay is set so that the tile map unit can request
tile map data, and receive it just in time to use it to request pixel data four pixels
later. The read unit transmits 4 address bits per cycle through the addr_out pins,
and recieves 4 data bits per cycle through the data_in pins, completing one 16 bit
read every serial cycle, which corresponds to one pixel or four clock cycles.
The tile map unit has the highest priority, followed by the Copper, and finally the sprite
unit, which is expected to have enough buffering to be able to wait for access. The
tile map unit will only make accesses on every other serial cycle on average, and the
Copper at most once every 6 serial cycles (or every 2 in fast mode), but they can both
be disabled/paused for parts of the frame to give more bandwidth to the sprite unit.

The tile map unit The tile map unit handles two independently scrolling tile planes,
each composed of 8x8 pixel tiles. The two planes get read priority on alternating serial
cycles. Each plane sends a read every four serial cycles, alternating between reading tile
map data and the corresponding pixel data for the scan line. The pixel data for each
plane (16 bits) is stored in a shift register and gradually shifted out until the register
can be quickly refilled. The sequencing of the refill operation is adjusted to provide
one extra pixel of delay in case the pixel data arrives one pixel early (as it might have
to do since the plane only gets read priority every other cycle).

27

The sprite unit The sprite unit is the most complex part of the PPU. It works with
a list of 64 sprites, and has 4 sprite buffers that can hold sprite data for the current
scan line. Once the final x coordinate of a sprite has passed, the corresponding sprite
buffer can be reused to load a new sprite on the same scan line, as long as there is
time to load the data before it should be displayed.
Sprite data is stored in memory in two structures:

• The sorted buffer
• The object attribute buffer

The sorted buffer must list all sprites to be displayed, sorted from left to right, with
y coordinate and index. (16 bits/sprite) The object attribute buffer contains all other
object attributes: coordinates (only 3 lowest bits of y needed), palette, graphic tile,
etc. (32 bits/sprite)
Sprite processing proceeds in three steps, each with its own buffers and head/tail
pointers:

• Scan the sorted list to find sprites that overlap the current y coordinate (in order
of increasing x value), store them into the id buffer (4 entries)

• Load object attributes for sprites in the id buffer, store in a sprite buffer and free
the id buffer entry (4 sprite buffers)

• Load sprite pixels for sprites in the sprite buffers

Each succeeding step has higher priority to access memory, but will only be activated
when the preceeding step can feed it with input data.
Pixel data for each sprite buffer is stored in a 32 bit shift register, and gradually shifted
out as needed. If sprite pixels are loaded after the sprite should start to be displayed,
the shift register will catch up as fast as it can before starting to provide pixels that
can be displayed. This will cause the leftmost pixels of the sprite to disappear (or all
of them, if too many sprites are crowded too close).

AnemoneSynth

phase phase sample sample sample
main wave-
osc --> linear form state FIR output

combin- ==> gene- ===> variable ---> down- ---> buffer
sub --> ations rators filter sampling
osc filter

28

AnemoneSynth does ANalog EMulation ONE voice at a time: it has 4 voices, but there
is only memory for one voice at a time. The synth makes frequent context switches
between the voices to be able to produce an output signal that contains the sum of
the outputs.
Each voice contributes four 96 kHz time steps worth of data to the output buffer before
being switched out for the next. As soon as all voices have contibuted to an output
buffer entry, it is fed to the output, and the space is reused for a new entry. The voices
are processed in a staggered fashion: First voice 0 contributes to output sample 0-3,
finalizing output sample 0, then voice 1 contributes to output sample 1-4, finalizing
output sample 1, etc…
The synth is nominally sampled at 3072 kHz to produce output samples at a rate of 96
kHz. The high sample rate is used so that the main oscillator can always produce an
output that is exactly periodic with a period corresponding to the oscillator frequency,
while maintaing good frequency resolution (< 1.18 cents at up to 3 kHz). The 32x
downsampling is done with a 96 tap FIR filter, so that each input sample contributes
to three output samples. The FIR filter is optimized to minimize aliasing in the 0 -
20 kHz range after the 96 kHz output has been downsampled to 48 kHz with a good
external antialiasing filter, assuming that the input is a sawtooth wave of 3 kHz or
less.
To reduce computations, most of the samples that a voice would feed into the FIR
filter are zeros. Usually, the voice steps eight 3072 kHz samples at a time, adding a
single nonzero sample. Seen from this perspective, each voice is sampled at 384 kHz.
This is just enough so that the state variable filter appears completely open when the
cutoff frequency is set to the maximum.
To maintain frequency resolution, the main oscillator can periodically take a step of
a single 3072 kHz sample, to pad out the period to the correct length. This results
in advancing the state variable filter an eigth of the usual time step, and sending an
output sample with an eigth of the usual amplitude through the FIR filter. The sub-
oscillator does not have the same independent frequency resolution at the 3 highest
octaves since it does not control the small steps, but is often used at a much lower
frequency, and can often sync up harmonically with the main oscillator.
The state variable filter is implemented using the same ideas as described and used in
https://github.com/toivoh/tt05-synth, using a shift-adder for the main computations.
The shift-adder is also time shared with the FIR filter; each FIR coefficient is stored
as a sum / difference of powers of two (the FIR table was optimized to keep down the
number of such terms). The shift-adder saturates the result if it would overflow, which
allows to overdrive the filter.
Each oscillator uses a phase of 10 bits, forming a sawtooth wave. A clock divider is
used to get the desired octave. To get the desired period, the phase sometimes needs

29

to stay on the same value for two steps. To choose which steps, the phase value is bit
reversed and compared to the mantissa of the oscillator’s period value (the exponent
controls the clock divider). This way, only a single additional bit is needed to keep
track of the oscillator state beyond the current phase value.
Each time a voice is switched in, five sweep values are read from memory to decide
if the two oscillator periods and 3 control periods for the state variable filters (see
https://github.com/toivoh/tt05-synth) should be incremented or decremented. A sim-
ilar approach is used as for the oscillator update above, with a clock divider for the
exponent part of the sweep rate, and bit reversing the swept value to decide whether
to take a small or a big step when one should be taken.

IO interfaces

AnemoneGrafx-8 has four IO interfaces:

• VGA output uo / (R1, G1, B1, vsync, R0, G0, B0, hsync)
• Read-only memory interface (addr_out[3:0], data_in[3:0]) for the PPU
• TX/RX interface (tx_out[1:0], rx_in[1:0]) for the synth, system control,

and vblank events

– rx_in[1:0] = uio[7:6] can be remapped to rx_in_alt[1:0] =
ui[5:4] to free up uio[7:6] for use as outputs

• Additional video outputs (Gm1_active_out, RBm1_pixelclk_out). Can
output either

– Additional lower RGB bits to avoid having to dither the VGA output
– Active display signal and pixel clock, useful for e g HDMI output

The pins also have additional functions:

• data_in[0] is sampled into cfg[0] as long as rst_n is high, to choose the
pin configuration:

– cfg[0] = 0: uio[7:6] is used to input rx_in[1:0],
– cfg[0] = 1: uio[7:6] is used to output {RBm1_pixelclk_out,

Gm1_active_out}, rx_in_alt[1:0] is used for RX input.

• When the PPU is in reset (due to rst_n=0 or ppu_en=0), the addr_out pins
loop back the values from data_in, delayed by two register stages. This should
be useful to set up the correct latency for the PPU RAM interface.

30

VGA output The VGA output follows the Tiny VGA pinout, giving two bits per
channel. The PPU works with 8 bit color:

Bits 2 1 0
Channel
red | R1 | R0 | RBm1 |
green | G1 | G0 | Gm1 |
blue | B1 | B0 | RBm1 |

where the least significant bit it is identical between the red and blue chan-
nel. By default, dithering is used to reduce the output to 6 bit color (two
bits per channel). Dithering can be disabled (using dither_en=0 in the
ppu_ctrl register), and the low order color bits {RBm1, Gm1} can be output
on {RBm1_pixelclk_out, Gm1_active_out} (using rgb332_out=1 in the
ppu_ctrl register and cfg[0]=1).
The other output option for (Gm1_active_out, RBm1_pixelclk_out) is to output
the active and pixelclk signals: (using rgb332_out=0 in the ppu_ctrl register
and cfg[0]=1)

• active is high when the current RGB output pixel is in the active display area.
• pixelclk has one period per VGA pixel (two clock cycles), and is high during

the second clock cycle that the VGA pixel is valid.

Read-only memory interface The PPU uses the read-only memory interface to
read video RAM. The interface handles only reads, but video RAM may be updated by
means external to the console (and needs to, to make the output image change!).
Each read sends a 16 bit word address and receives the 16 bit word at that address
as data, allowing the PPU to access 128 kB of data. A read occurs during one serial
cycle, or 4 clock cycles. As soon as one serial cycle is finished, the next one begins.
The address addr[15:0] for one read is sent during the serial cycle in order of lowest
bits to highest:

addr_out[3:0] = addr[3:0] // cycle 0
addr_out[3:0] = addr[7:4] // cycle 1
addr_out[3:0] = addr[11:8] // cycle 2
addr_out[3:0] = addr[15:12] // cycle 3

31

https://tinytapeout.com/specs/pinouts/#vga-output

The corresponding data[15:0] should be sent in the same order to data_out[3:0]
with a specific delay that is approximately three serial cycles (TODO: describe the exact
delay needed!). The data_in to addr_out loopback function has been provided to
help calibrate the required data delay.
To respond correctly to reads requests, one must know when a serial cycle starts. This
accomplished by an initial synchronization step:

• After reset, addr_pins start at zero.
• During the first serial cycle, a fixed address of 0x8421 is transmitted, and the

corresponding data is discarded.

TX/RX interface The TX/RX interface is used to send a number of types messages
and responses, mostly for use by the synth. It uses start bits to allow each side to initiate
a message when appropriate; subsequent bits are sent on subsequent clock cycles. The
tx_out and rx_in pins are expected to remain low when no messages are sent.
The tx_out[1:0] pins are used for messages from the console:

• a message is initiated with one cycle of tx_out[1:0] = 1 (low bit set, high
bit clear),

• during the next cycle, tx_out[1:0] contains the 2 bit TX header, specifying
the message type,

• during the following 8 cycles, a 16 bit payload is sent through tx_out[1:0],
from lowest bits to highest.

The rx_in[1:0] pins are used for messages to the console:

• a message is initiated with one cycle when rx_in[1:0] != 0, specifying the
RX header, i e, the message type,

• during the following 8 cycles, a 16 bit payload is sent through rx_in[1:0],
from lowest bits to highest.

TX message types:

• 0: Context switch: Store payload into state vector, return the replaced state
value with RX header=1, increment state pointer.

• 1: Sample out: Payload is the next output sample from the synth, 16 bits signed.
• 2: Read: Payload is address, return corresponding data with RX header=2.
• 3: Vblank event. Payload should be ignored.

RX message types:

• 1: Context switch response with data.

32

• 2: Read response with data.
• 3: Write register. Top byte of payload is register address, bottom is data value.

Available registers:

• 0: sample_credits (initial value 1)
• 1: sbio_credits (initial value 1)
• 2: ppu_ctrl (initial value 0b01011)

The function of the registers is documented in the respective sections.

Using the PPU

The PPU is almost completely controlled through the contents of VRAM (video RAM).
The Copper is restarted when a new frame begins, and starts to read instructions at
address 0xfffe. The Copper should be used to set up the PPU registers for the new
frame before the active area starts, and is the only thing that can write PPU registers.
The PPU registers in turn control the display of tile planes and sprites.

PPU registers There are 32 PPU registers, which control different aspects of the
PPU’s operation. Each register contains up to 9 bits. The registers are laid out as
follows:

Address Category Bits
8 7 6 5 4 3 2 1 0

0 - 15 pal0-pal15 | r2 r1 rb0 g2 g1 g0 b2 b1 | X |
16 scroll | scroll_x0 |
17 . | X | scroll_y0 |
18 . | scroll_x1 |
19 . | X | scroll_y1 |
20 copper_ctrl| cmp_x |
21 . | cmp_y |
22 . | jump_low |
23 . | jump_high |
24 base_addr | base_sorted |
25 . | base_oam |
26 . | base_map1 | base_map0 | X |
27 . | X |b_tile_s | b_tile_p | X |
28 gfxmode1 | r_xe_hsync | r_x0_fp |
29 gfxmode2 |vpol|hpol| vsel | r_x0_bp |
30 gfxmode3 | xe_active |
31 displaymask| X |lspr|lpl1|lpl0|dspr|dpl1|dpl0|

33

where X means that the bit(s) in question are don’t care.
Initial values:

• The gfxmode registers are initialized to 320x240 output (640x480 VGA output;
pixels are always doubled in both directions before VGA output).

• The displaymask register is initialized to load and display sprites as well as
both tile planes (initial value 0b111111).

• The other registers, except in the copper_ctrl category, need to be initialized
after reset.

Each PPU register is described in the appropriate section:

• Palette (pal0-pal15)
• Tile planes (scroll, base_map0, base_map1, b_tile_p, lpl0, lpl1, dpl0,

dpl1)
• Sprites (base_sorted, base_oam, b_tile_s, lspr, dspr)
• Copper (copper_ctrl)
• Graphics mode gfxmode1-gfxmode3)

Palette The PPU has a palette of 16 colors, each specified by 8 bits, which map to
a 9 bit RGB333 color according to

Bits 2 1 0
Channel
red | r2 | r1 | rb0 |
green | g2 | g1 | g0 |
blue | b2 | b1 | rb0 |

where the least significant bit is shared between the red and blue channels. Each palette
color is set by writing the corresponding palN register. The serial cycle when a palette
color register is written, it will be used as the current output pixel if the raster sweep
is inside the active display area.
Tile and sprite graphics typically can 2 or 4 bits per pixel. They have a 4 bit pal
attribute that specifies the subpalette, or mapping from tile pixels to palette colors:

pal Color 0 Color 1 Color 2 Color 3
value (unless

transparent)
0 0 1 2 3
4 4 5 6 7

34

8 8 9 10 11
12 12 13 14 15

2 2 3 4 5
6 6 7 8 9
10 10 11 12 13
14 14 15 0 1

1 0 4 8 12
5 1 5 9 13
9 2 6 10 14
13 3 7 11 15

3 8 12 1 5
7 9 13 2 6
11 10 14 3 7

15 ----------- 16 color mode ------------

Color 0 is always transparent unless the always_opaque bit of the sprite/tile is set.
If no tile or sprite covers a given pixel, palette color 0 is used the background color.
4 color and 16 color mode uses different graphic tile formats (see below). In 16
color mode, each pixel selects a palette directly, but index 0 is still transparent unless
always_opaque=1.

Tile graphic format Tile plane and sprite graphics are both based on 16 byte
graphic tiles, storing 8 rows of pixels with each row as a separate 16 bit word, from
top to bottom:

• 2 bit/pixel tiles are 8x8 pixels
• 4 bit/pixel tiles are 4x8 pixels (strecthed to 8x8 pixels when used in tile planes)

The format of each line is

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
2 bpp | p7 | p6 | p5 | p4 | p3 | p2 | p1 | p0 |
4 bpp | p3 | p2 | p1 | p0 |

where p0 is the leftmost pixel, then comes p1, etc.

35

Tile planes The PPU supports two independently scrolling tile planes, where plane
0 is in front of plane 1. Four display_mask bits control the behavior of the tile
planes:

• When dpl0 (dpl1) is cleared, plane 0 (1) is not displayed.
• When lpl0 (lpl1) is cleared, no data for plane 0 (1) is loaded.

If a plane is not to be displayed, its lplN bit can be cleared to free up more read
bandwidth for the sprites and Copper. The plane’s lplN bit should be set at least 16
pixels before it should be displayed, to avoid visual artifacts.
The tile planes are drawn based on three VRAM regions with starting addresses con-
trolled by PPU registers:

plane_tiles_base = b_tile_p << 14
map0_base = base_map0 << 12
map1_base = base_map1 << 12

The scroll_x and scroll_y registers for each plane are added to the raster posi-
tion of the current pixel to find the pixel position in the corresponding tile map to
display. The raster position is x=128, y=255 for the bottom right corner of the screen,
increasing to the right and decreasing going up.
The tile map for each plane is 64x64 tiles, and is stored row by row. Each map entry
is 16 bits:

15 - 12 11 10 - 0
| pal | always_opaque | tile_index |

where the tile is read from word address

tile_addr = plane_tiles_base + (tile_index << 3)

and pal and always_opaque work as described in the Palette section.

36

Sprites Each sprite can be 16x8 pixels (4 color) or 8x8 pixels (16 color). The PPU
supports up to 64 simultaneous sprites in OAM, but only 4 can overlap at the same
time. More than 64 sprites can be displayed in a single frame by using the Copper to
change base addresses mid frame.
Once a sprite is done for the scan line, the PPU can load a new sprite into the same
slot, to display later on the same scan line, but it takes a number of pixels (partially
depending on how much memory traffic is used by the tile planes and the Copper.)
Five reads are needed to load a new sprite (1 for the sorted list, 2 for OAM, 2 for the
pixels). More may be needed to skip through the sorted list, but the PPU can scan
ahead to gather the next 4 sprite hits on the scan line. The pixel reads are dependent
on the OAM reads, which are dependent on the sorted list reads. With both tile planes
active (and the Copper inactive), a bandwidth of 8 bits/pixel is available to read in
new sprites. With 5*16 = 80 bits/sprite, a new sprite can be loaded every 10 pixels
on average (5 pixels if the tile planes are inactive).
Two display_mask bits control the behavior of the sprite display:

• When dspr is cleared, no sprites are displayed.
• When lspr is cleared, no data for sprites is loaded.

It will take some time after lspr is set before new sprites are completely loaded and
can be displayed. Sprites start loading for a new scan line as soon as the active display
part of the previous scan line is finished.
Sprites are drawn based on three VRAM regions with starting addresses controlled by
PPU registers:

sprite_tiles_base = b_tile_s << 14
sorted_base = base_sorted << 6
oam_base = base_oam << 7

Sprites are described by two lists, each with 64 entries:

• The sorted list lists sprites sorted horizontally.
• Object Attribute Memory (OAM) defines most properties for the sprites.

To display sprites correctly, they must be listed in the sorted list in order of increasing x
coordinate, starting from sorted_base. Each entry in the sorted list is 16 a bit word
with contents

15 14 13 - 8 7 - 0
| m1 | m0 | index | y |

37

where

• m0 (m1) hides the sprite on even (odd) scan lines if it is set, (each output pixel
is displayed on two VGA scan lines)

• index is the sprite’s index in OAM,
• y is the sprite’s y coordinate.

If there are less than 64 sprites to be displayed, the remaining sorted entries should be
masked by setting m0 and m1, or moving the sprite to a y coordinate where it is not
displayed. If there are more sprites than can be displayed in the same area, m0 can be
set to mask some and m1 to mask others, showing them on alternating scan lines.
For each sprite, OAM contains two 16 bit words attr_y and attr_x, which define
most of the sprite’s properties. attr_y for sprite 0 is stored first, followed by attr_x,
then attr_y for sprite 1, etc… The contents are

attr_y: 15 14 13 - 4 3 2 - 0
| X | tile_index | X | ylsb3 |

attr_x: 15 - 12 11 10 - 9 8 - 0
| pal | always_opaque | depth | x |

where

• the sprite’s graphics are fetched from the two consecutive graphic tiles starting
at sprite_tiles_base + (tile_index &lt;&lt; 4),

• ylsb3 is the lowest 3 bits of the sprite’s y coordinate,
• pal and always_opaque work as described in the Palette section,
• depth specifies the sprite’s depth relative to the tile planes,
• x is the sprite’s x coordinate.

If several visible sprites overlap, the lowest numbered sprite with an opaque pixel wins.
The depth value then decides whether the winning sprite is displayed in front of the
tile planes:

• 0: In front of both tile planes.
• 1: Behind plane 0, in front of plane 1.
• 2: Behind both tile planes.
• 3: Not displayed.

38

A sprite with a depth value of 3 will block sprites with higher index from being displayed
in the same location. If a sprite should not be displayed but does not need to block
other sprites in this manner, omit it from the sorted list instead.
The sprite x coordinate value starts at 128 at the left side of the screen, and increases
to the right. The sprite y cooridnate value starts at 255 at the bottom of the screen
and decreases going upward.

Copper The Copper executes simple instructions, which can

• write to PPU registers,
• wait until a given raster position is reached,
• jump to continue Copper execution at a different VRAM location, or
• halt the Copper until the beginning of the next frame.

The Copper is restarted each time a new frame begins, just after the last active pixel of
the previous frame has been displayed. It always starts at VRAM location 0xfffe, with
fast_mode = 0. Placing a jump instruction at 0xfffe-0xffff allows to quickly
switch between prepared lists of Copper instructions, and to choose where they should
be placed in VRAM.
Each Copper instruction is 16 bits:

15 - 7 | 6 5 - 0
| data | fast_mode | addr |

where

• data is the data to be written to a PPU register,
• fast_mode enables the Copper to run 3 times as fast, but is incompatible with

waiting and jumping,
• addr specifies the PPU register to be written (see PPU registers).

The Copper halts if it receives an instruction with addr = 0xb111111, otherwise it
writes data to the PPU register given by addr, if one exists.
The copper_ctrl PPU registers have specific effects on the Copper:

39

Compare registers Writing a value to cmp_x or cmp_y causes the Copper to delay
the next write until the current raster x/y position is >= the specified compare value.
For each scan line, the raster position for x goes through the following phases in order

Phase x raster positions
front porch 24 + r_x0_fp to 31
horizontal sync 32 to 32 + r_xe_hsync
back porch 96 + r_x0_bp to 127
active 128 to xe_active

yielding increasing raster positions for x.
The raster position for y counts as zero until the active region starts in the y direction.
Then, the compare value is 512 - 2*screen_height + y where y is the number of
scan lines since the start of the active region in the y direction.

Jumps Usually, the Copper loads instructions from consecutive addresses. A se-
quence of two instructions is needed to execute a jump:

• First, write the low byte of the jump address to jump_low.
• Then, write the high byte of the jump address to jump_high. The jump is

executed.

There should be no writes to cmp_x or cmp_y between these two instructions, as the
same register is used to store the compare value and the low byte of the jump address
while waiting for the write to jump_high.

Fast mode Whenever an instruction arrives at the Copper, the value of fast_mode
in the instruction overwrites the current value. When fast_mode = 0, the Copper
does not start to read a new instruction until the previous one has finished. This allows
waiting for compare values and jumping to work as intended. When fast_mode = 1,
the Copper can send a new read every other serial cycle (unless blocked by reads
from the tile planes, which have higher priority), queuing up several reads before the
instruction data from the first one arrives. This can allow the Copper to work up to 3
times as fast, and works as intended as long as no writes are done to the copper_ctrl
registers.
The fast_mode bit

• Should be set to zero

40

– at least three instructions before a write to any of the copper_ctrl reg-
isters,

– for instructions that follow a write to cmp_x or cmp_y.

• Can be set to one by an instruction that writes to jump_high (but not the other
copper_ctrl registers) unless it needs to be zero due to any of the above.

Graphics mode registers The gfxmode registers control the timing of the VGA
raster scan. The horizontal timing can be changed in fine grained steps, while the
vertical timing supports 3 options.
The intention of the gfxmode registers is to support output in video modes

VGA mode Frame rate PPU output mode at full PPU clock rate
640x480 60 fps 320x240
640x400 70 fps 320x200
640x350 70 fps 320x175

These VGA modes are all based on a pixel clock of 25.175 MHz, which can be achieved
if the console is clocked at twice the pixel clock, or 50.35 MHz. (VGA monitors should
be quite tolerant of deviations around this frequency, 50.4 MHz should be fine and can
be achieved with the RP2040 PLL.)
The intention is also to support reduced horizontal PPU resolution while generating a
VGA signal according to one of the above VGA modes, in case the console has to be
clocked at a lower frequency. This will lower the output frequency that can be achieved
by the synth as well.

Vertical timing The vsel bits select between vertical timing options:

VGA PPU output
vsel lines height recommended polarity

0 480 240 vpol=1, hpol=1
1 64 32 test mode (not VGA) -
2 400 200 vpol=0, hpol=1
3 350 175 vpol=1, hpol=0

The hpol and vpol bits control the horizontal and vertical sync polarity (0=positive,
1=negative). Original VGA monitors may use these to distinguish between modes;
more modern monitors should be able to detect the mode from the timing.

41

Horizontal timing Possible horizontal timings include

PPU output VGA pixels
width /PPU pixel PPU clock gfxmode1 gfxmode2 gfxmode3
320 2 50.35 MHz 0x0178 0x0188 0x01bf
212 3 33.57 MHz 0x00f9 0x0190 0x0153
208 3 33.57 MHz 0x00f8 0x018d 0x014f
160 4 25.175 MHz 0x00bc 0x0194 0x011f

where the vsel, hpol, and vpol bits have been set to 480 line mode, but can be
easily changed by updating the gfxmode2 value. The 208 width mode is a tweak on
the 212 width mode to fit a whole number of tiles (26) in the horizontal direction.
These modes have been designed to stretch a PPU pixel horizontally into 2, 3, or 4
VGA pixels; other modes are possible with other settings.
The “PPU clock” column lists the recommended clock frequency to feed the console in
order to achieve the 60 fps (vsel=0) or 70 fps (vsel=2 or vsel=3). In practice, VGA
monitors seem quite tolerant of timing variations, and might, e g, accept a 640x480
BGA signal at down to 2/3 of the expected clock rate.
The gfxmode registers control the horizontal parameters timing according to

active: xe_active - 127 PPU pixels
front porch: 8 - r_x0_fp PPU pixels
hsync: 1 + r_xe_hsync PPU pixels
back porch: 32 - r_x0_bp PPU pixels

where xe_active must be >= 128.

The ppu_ctrl register The ppu_ctrl register controls some additional aspects
of the PPU. It can be written through the TX/RX interface.
The contents are

4 3 2 1 0
| rgb332_out | dither_en | vblank_int | X | ppu_en |

with initial value 0b01011. Functions:

• The PPU is kept in reset as long as ppu_en=0.

42

• When vblank_int=1, the PPU sends a vblank message (TX header=3) on the
TX channel whenever a frame is done.

• The dither_en bit controls dithering:

– when dither_en=1, the PPU applies dithering to the output pixels,
– when dither_en=0, {R1, R0}, {G1, G0}, {B1, B0} just contain

the top 2 bits of each color channel.

• The rgb332_out bit controls what is output on the Gm1_active_out and
RBm1_pixelclk_out pins, when they are configured as outputs:

– when rgb332_out=1, the bottom bit of G and RB is output (combine with
dither_en=0 to get the whole RGB332 output)

– when rgb332_out=0, the pixel clock and active signal are output instead.

Using AnemoneSynth

AnemoneSynth has four identical voices, each with

• two oscillators (main and sub-),
• three waveform generators,
• a second order filter.

The synth is designed for an output sample rate of output_freq = 96 kHz (higher
sample rates are used in intermediate steps), which should be achievable if the con-
sole is clocked at close to the target frequency of 50.35 MHz. The user can reduce
output_freq by requesting output samples less frequently.
The hardware processes one voice at a time, and periodically performs a context switch
through the TX/RX interface to write the state of the active voice out to RAM and
read in the state of the next voice to make active. The voice state can be divided into
dynamic state (updated by the synth) and parameters (not updated by the synth).
The periods of the two oscillators, as well as three control periods for the filter, are part
of the dynamic state. These periods are continuously updated according to the voice’s
sweep parameters, which can specify a certain rate of rise or fall, or a replacement value.
Sweep parameters are not stored in the voice state, but are read from RAM as needed
to update the periods. Envelopes can be realized by changing sweep parameters over
time. The behavior of a voice is controlled through its parameters and its sweeps.

43

Voice state The voice state consists of twelve 16 bit words, or 192 bits:

bit bit
address width name

0 1 delayed_s
1 2 delayed_p
3 3 fir_offset_low
6 10 phase[0] main oscillator phase

16 10 phase[1] sub-oscillator phase
26 6 running_counter
32 20 y filter state (output)
52 20 v filter state
72 14 float_period[0] main oscillator period
86 14 float_period[1] sub-oscillator period
100 10 mod[0] control period 0
110 10 mod[1] control period 1
120 10 mod[2] control period 2
130 5 lfsr_extra
135 1 ringmod_state

136 13 wf_params[0] waveform 0 parameters
149 13 wf_params[1] waveform 1 parameters
162 13 wf_params[2] waveform 2 parameters
175 13 voice_params voice parameters
188 4 unused

The parameter part of the state begins at wf_params[0]. There are three sets of
waveform parameters wf_params, each consisting of 13 bits:

bit bit
address width name default

0 3 wf
3 2 phase0_shl 0
5 2 phase1_shl 0
7 2 phase_comb 0/1/2 for waveform 0/1/2
9 2 wfvol 0

11 1 wfsign 0
12 1 ringmod 0

The default values should be seen as a suggestion of an initial point to start from when
experimenting with parameters settings. There is no hardware mechanism to set these
values as defaults.

44

The voice parameters voice_params also consist of 13 bits:

bit bit
address width name default

0 1 lfsr_en 0
1 2 filter_mode 0
3 3 bpf_en 0
6 1 hardsync 0
7 4 hardsync_phase 0

11 2 vol 0

Frequency representation Frequencies are represented by periods in a simple float-
ing point format, with 4 bits for the octave and 10 or 6 bits for the mantissa:

{oct[3:0], mantissa[9:0]} = float_period[i] // for oscillator periods
{oct[3:0], mantissa[5:0]} = mod[i] // for control periods

The period value can be calculated as

osc_period[i] = (1024 + mantissa) << oct // for oscillator periods
mod_period[i] = (64 + mantissa) << oct // for control periods

except that oct=15 corresponds to an infinite period, or a frequecy of zero. The
oscillator frequencies are given by

osc_freq[i] = output_freq * 32 / osc_period[i]

so at output_freq = 96 kHz, the highest achievable oscillator frequency is 3 kHz
(and the lowest is a bit below 0.1 Hz). The control frequencies are given by

mod_freq[i] = output_freq * 256 / mod_period[i]

The floating point representation for the periods helps keep the same relative frequency
resolution over all octaves. It also means that a linear sweep of the floating point period
representation will sound very much like an exponential sweep of the frequency, which
is similar to the linear-to-exponential conversion used by most analog synths.

45

Signal path

phase phase sample sample
main wave-
osc ---> linear form

combin- ===> gene- ===> filter ---> output
sub ---> ations rators
osc

The signal path starts at the two oscillators, which feed 3 waveform generators. Each
waveform generator can be fed with a different linear combination of oscillator phases.
The waveforms are fed into the filter. Finally, the output of the filter is summed for all
the voices to create the synth’s output signal.

Oscillators The main and sub-oscillators are both sawtooth oscillators. When we
talk about phase, it refers to such a sawtooth value, increasing at a constant rate
over the period, and wrapping once per period. The sub-oscillator can produce noise
instead by setting lfsr_en=1. (TODO: Describe noise frequency dependence on
osc_period[1].)
Each voice is nominally sampled at 32 * output_freq, with 32 subsamples per out-
put sample. Most of the time, it advances by 8 subsamples at a time, but occasionally
by a single subsample, which is used to improve the frequency resolution at the three
highest octaves, and avoid aliasing. The choice of when to step by 8 subsamples and
when to step by 1 is controlled by the main oscillator, which means that the sub-
oscillator has less independent frequency resolution for the 3 highest octaves (1 bit less
when its oct=2, 2 bits less when its oct=1, and 3 bits less when its oct=0). The
sub-oscillator will often be at a much lower frequency than the main oscillator.
It is possible to combine the output of the oscillators in different ways to derive new
frequencies, but if possible, the main oscillator’s frequency should be set to the voice’s
intended pitch, (or the pitch divided by an integer that is as small as possible), to allow
the synth’s supersampling to produce the best results and to avoid aliasing artifacts,
especially at high pitches. If the voice’s output signal is periodic with the main oscilla-
tor’s period, there should be very little aliasing artifacts. If the output waveform varies
slowly when the voice output is chopped up into periods equal to the main oscillator
period, there should still be little aliasing.
The sub-oscillator can be hard-synced to the main oscillator by setting hardsync=1.
When enabled, the (10 bit) phase of the sub-oscillator resets to hardsync_phase
&lt;&lt; 6 whenever the main oscillator completes a period.

46

Combining the oscillators The phase_comb, phase0_shl and phase1_shl pa-
rameters of each waveform specify how to calculate the waveform generator’s input
phase from the oscillator phases, with phase_comb selecting between four modes:

phase_comb Waveform generator input phase
0 (main << phase0_shl) + (sub << phase1_shl)
1 (main << phase0_shl) - (sub << phase1_shl)
2 (main << phase0_shl)
3 (sub << phase1_shl)

A good starting point is to set phase_comb to 0 for one waveform, 1 for one, and 2 for
one, leaving the other waveform parameters the same. Combined with a sub-oscillator
at around a 1/1000 of the main oscillator frequency, this creates a detuning effect.
Higher frequency compared to the main oscillator gives more detuning.

Waveform generator The wf parameter selects between 8 waveforms:

wf Waveform
0 sawtooth wave
1 sawtooth wave, 2 bit
2 triangle wave
3 triangle wave, 2 bit
4 square wave
5 pulse wave, 37.5% duty cycle
6 pulse wave, 25% duty cycle
7 pulse wave, 12.5% duty cycle

All waveforms have a zero average level. The peak-to-peak amplitude of the pulse
waves is half that of the other waveforms.
The waveform amplitude is multiplied by 2^-wfvol before feeding into the filter. If
wfsign=1, it is inverted. If wfvol=3, wfsign=1, the waveform is silenced.
If ringmod=1, the waveform is inverted when the output of the previous waveform
generator is negative (before the effects of wfvol, wfsign, and ringmod have been
applied, waveform 2 is previous to waveform 0).

47

Filter The output from each waveform generator is fed into the filter. The
filter_mode parameters selects the filter type:

filter_mode Filter type
0 2nd order filter
1 2nd order filter, transposed
2 2nd order filter, two volumes, default damping
3 Two cascaded 1st order low pass filters

The meaning of the mod states depends on the filter mode:

filter_mode mod_freq[0] mod_freq[1] mod_freq[2]
0 cutoff fdamp fvol
1 cutoff fdamp fvol
2 cutoff fvol2 fvol
3 cutoff cutoff2 fvol

(see Frequency representation for the definition of mod_freq).
The transposed filter mode 1 is expected to be a bit noisier than the default mode
0, and have somewhat different overdrive behavior. The bpf_en[i] parameter can
be used in filter modes 1 and 3 to change the point where waveform i feeds into the
filter:

• For filter_mode=1, bpf_en[i]=1 makes the filter behave as a band pass
filter for that waveform.

• For filter_mode=3, bpf_en[i]=1 feeds the waveform straight into the sec-
ond low pass filter.

The volume feeding into the filter is generally given by

gain = fvol / cutoff

but for filter_mode=3,

• fvol2 is used instead of fvol for waveform 1,
• cutoff2 is used instead of cutoff when bpf_en[i]=1.

It is possible to overdrive the filter, which will saturate. This can be a desirable effect.
For filter modes 0-2, the filter cutoff frequency is given by

48

cutoff_freq = cutoff / (2*pi)

Filter mode 3 uses two cascaded 1st order low pass filters, the first with cutoff frequency
given by cutoff and the second by cutoff2 (TODO: check).
Filter modes 0 and 1 implement resonant filters, the resonance is given by

Q = cutoff / f_damp

where the resonance can start to be noticeable when Q becomes > 1. The resonance
for filter mode 2 is fixed at Q=1.

Output The filter output from each voice is multiplied by 2^(-vol) and the con-
tributions are added together to from the synth’s output.

Sweeps Each voice has five sweep values, which can be used to sweep the oscillator
and control frequencies gradually up or down, or set them to new values without
interfering with synth’s state updates.
Each sweep value is a 16 bit word. A voice will periodically send read messages (TX
header = 2) to read its sweep values, with

address = (voice_index << 3) + sweep_index

where voice_index goes from 0 to 3 and sweep_index describes the target of the
sweep value:

sweep_index target
0 float_period[0]
1 float_period[1]
2 mod[0]
3 mod[1]
4 mod[2]

The sweep value can have two formats:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| X | 0 | replacement value |
| X | 1 | X |sign| oct | mantissa |

49

In the first case, the target value is simply replaced. For mod targets, the lowest four
bits of the replacement value are discarded.
In the second case, the target is incremented (sign=0) or decremented (sign=1) at
a rate that is described by oct and mantissa, which follow the same kind of simple
floating point format as is used for mod values. The maximum rate that the target can
be incremented or decremented by one is output_freq / 2, achieved when oct and
mantissa are zero. In general, the sweep rate is

sweep_rate = 32 * output_freq / ((64 + mantissa) << oct)

Sweeping will never cause the target value to wrap around, but may cause it to stop a
single step short of the extreme value. When oct=15, sweeping is disabled. This can
be accomplished by setting the sweep value to all ones.

Power chords and other frequency combinations A single voice can be set up
to produce power chords, e g, letting the 3 waveform generators produce outputs in
precise or approximate frequency ratio 2 : 3 : 4 or 3 : 4 : 6. It is usually preferable
that the frequency ratios are not exact, to get some detuning.
For the 2 : 3 : 4 case, assume that the sub-oscillator frequency is set to roughly half the
main oscillator frequency, with the sub-oscillator frequency representing one frequency
unit. The desired frequncies can be achieved in different ways, e g:

Frequency Combination Computation
2 main 2 = 2
2 (main<<1) - (sub<<1) 2*2 - 1*2 = 2
3 main + sub 2 + 1 = 3
3 (main<<1) - sub 2*2 - 1 = 3
4 (main<<1) 2*2 = 4
4 main + (sub<<1) 2 + 1*2 = 4

The way that a frequency is achieved matters when the sub-oscillator is not at exactly
half the main oscillator frequency. A mix such as main, main*2 - sub, main +
sub*2 will produce three independent frequencies with some detuned upwards and
some downwards (since different signs for the sub-oscillator are used).
For the 3 : 4 : 6 case, assume that the sub-oscillator frequency is set to roughly one
fourth of the main oscillator frequency, with the sub-oscillator frequency still repre-
senting one frequency unit. In this case, the desired frequncies can, e g, be achieved
as

50

Frequency Combination Computation
3 main - sub 4 - 1 = 3
4 main 4 = 4
4 (main<<1) - (sub<<2) 4*2 - 1*4 = 4
6 main + (sub<<1) 4 + 1*2 = 6
6 (main<<1) - (sub<<1) 4*2 - 1*2 = 6

A mix such as main - sub, main, main + 2*sub might be good.
Power chords work well with overdriving the filter. Filter mode 3 might sometimes be
useful, overdriving the first low pass filter but allowing the second to take out some of
the high end.
These are just some examples of how the phase_comb, phase0_shl, and
phase1_shl parameters can be used to produce waveforms with different frequencies
within the same voice.

Context switching To perform a context switch, the synth

• Sends a sequence of 12 context switch messages on the TX channel, with TX
header=0 and payload equal to the each of its twelve 16 bit state words in turn.

• Receives a sequence of 12 context switch responses on the RX channel, with
RX header=1 and payload equal to the replacement value for the corresponding
state word.

These sequences can and should overlap (for time efficiency); as soon as a context
switch message has been sent on the TX channel, a corresponding response can be
sent on the RX channel. The synth can send several context switch messages before re-
ceiving any response, as long as the sbio_credits register has been set appropriately
(see below).
One way to implement the context switch response mechanism is as a swap operation.
A state buffer of 3 x 12 sixteen bit words is needed, and a pointer into it. Each time
a context switch message arrives,

• the old value at buffer[pointer] is sent back in a context switch response
message,

• the new state value is assigned to buffer[pointer],
• pointer is incremented, and wrapped around if it reaches the end of the buffer.

Only 3 x 12 words of state are needed here because the final 12 state words are stored
in the synth at any time. Which buffer entries correspond to the state of which voice
will shift over time.

51

Another way to implement the context switch response is to keep a state buffer of
4 x 12 words, with each 12 word section dedicated to the state of a specific voice.
This is probably easier to work with. Separate read and write pointers are used, with
read_pointer initialized 12 steps (one voice) ahead of write_pointer. Each time
a context switch message arrives,

• the value at buffer[read_pointer] is sent back in a context switch response
message,

• the new state value is assigned to buffer[write_pointer],
• both pointers are incremented, and wrapped around if they reach the end of the

buffer.

In this case, since the same voice state is always kept at the same buffer position, the
parameter part of the state does not need to be written to the buffer when a context
switch message arrives.

Changing voice parameters The sweep parameters can be changed at any time,
since they are just read by the synth. More care is needed to update voice parameters
that are part of the state, since it is periodically being switched in and out.
The easiest way to change voice parameters is probably if the second scheme described
for context switching above is used, and the parameter part of the state received from
the synth during context switching is ignored. Then, the parameters can be changed
at any time in the corresponding position in the state buffer, and will be read into the
synth as needed when context switching into the voice.
Dynamic state can also be changed between the time it is switched out and in again,
but more care is needed.
The synth begins with the state of the first voice in its on-chip state, but the state is
uninitialized. During the first context switch, the write data can be ignored to throw
away this uninitialized state, making the voice read its state from the state buffer the
next time.

Credit mechanisms The sample credits mechanism lets the user limit the rate at
which the synth produces samples. The two bit sample_credits register is initialized
to one at reset, and decremented each time a new sample is finished and sent as a
message (with TX header=1). When sample_credits is zero, the synth pauses at
some point before sending the next sample. When the user is ready to receive more
samples, it should write a nonzero value to the sample_credits register. By writing
a value that is larger than one, the synth can continue processing also after sending a
sample.

52

The synth tries to limit the number of outstanding messages that have not received a
reply, so as not to overload the receive FIFO in the RP2040 (or whoever receives the
messages). Each context switch and read message (TX header = 0 or 2) expects a
single reply (RX header = 1 or 2). A counter for outstanding messages is increased
whenever a message of the former type is sent, and decreased whenever a message of the
latter type is received. No credited messages will be sent as long as the outstanding
counter equals the value in the sbio_credits register; the synth will wait for a
credited response first to decrease the number of outstanding messages.
Sample out and vblank messages do not expect a response and do not increase the
outstanding counter, but should be infrequent enough that it is enough to reserve one
extra space for each in the receive FIFO. Write register messages (RX header=3) do
not affect the outstanding message counter and can be sent to the synth at any time.

How to test

A RAM emulator program for RP2040 is needed to test the console (TODO: publish
source code). The RAM emulator code can be modified to update VRAM to test the
PPU, and update synth parameters to test the synth. The RAM emulator could also
receive commands to do these things over the RP2040’s USB-UART.

Testing the PPU A Pmod is needed for VGA output, see below.
Write Copper instructions to VRAM to initialize the PPU registers that don’t have
predefined initial values (see PPU registers). Set up tile planes, sprites, or both, the
displaymask register can be used to disable tile planes or sprites if they are not used.
TODO: example (in the RAM emulator code?)

Testing AnemoneSynth Means of sound output is TBD, see below.
Disable all sweeps (set the sweep parameters to all ones) and set the voice parameters
to the default values described in the Voice state section. Set

• the main oscillator frequency to the desired pitch,
• float_period[1] = float_period[0] + (10 &lt;&lt;

10),
• mod[0] and mod[1] to twice the main oscillator frequency,
• mod[2] = mod[0] + (2 &lt;&lt; 6).

TODO: example (in the RAM emulator code?)

53

External hardware

A Pmod for VGA is needed for video output, that can accept VGA output according
to https://tinytapeout.com/specs/pinouts/#vga-output. Means of sound output is
TBD. The RP2040 receives the sound samples and could output them in different
ways depending on programming. The pins ui[7:4] (or at least ui[7:6], depending
on pin configuration) have been left unused in the design so that the RP2040 can drive
them to output sound. Supporting a Pmod for I2S would be one possibility.

Pinout

Input Output Bidirectional
0 data_in[0] R1 addr_out[0]
1 data_in1 G1 addr_out1
2 data_in2 B1 addr_out2
3 data_in[3] vsync addr_out[3]
4 rx_alt_in[0] R0 tx_out[0]
5 rx_alt_in1 G0 tx_out1
6 B0 rx_in[0] / Gm1_active_out
7 hsync rx_in1 / RBm1_pixelclk_out

54

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Chess [43]

• Author: Hannah Ravensloft
• Description: chess move generator
• GitHub repository
• HDL project
• Mux address: 43
• Extra docs
• Clock: 0 Hz

A Reimplementation of Belle’s Move Generator

In honour of about 30 years since the creation of Deep Blue, I decided to recreate the
move generation system that it uses, dating back to Belle from 1983.

How it works Internally, there is a 256-bit chessboard (4 bits per square), along
with a 64-bit square-enable mask.
Each square “transmits” attacks to its neighbour squares, which either propagate at-
tacks along empty squares, or generate their own. These attacks are processed by
“receivers”, which produce a priority level based on opcode and the piece on that
square. The priority levels go through an arbitration network, which chooses the most
promising square, which gets output from the chip.
Due to the space limitations present on Tiny Tapeout, though, there are some very
notable design differences. The original design calculates all 8x8 squares in a single
cycle, handling both positive and negative directions.

Opcodes
To be finalised.

The chip has 16 input bits and 8 output bits.

bit pattern command description
1111 __ss ssss ____ FIND-SRC output the

least-valuable
enabled attacker of
square s.

55

https://github.com/Ravenslofty/ttihp-chess

bit pattern command description
1110 ____ ____ ____ FIND-DST output the

most-valuable
enabled piece on the
board.

1101 __ss ssss ___v ENABLE-SET set the square-enable
bit of square s to v.

1100 ____ ____ ____ ENABLE-ALL set all square-enable
bits.

1011 __ss ssss vvvv SQUARE-SET set the chessboard
on square s to have
value v.

1010 ____ ____ ____ ROTATE rotate the
chessboard 180
degrees.

1001 ____ ____ ____ FLIP-COLOR flip the colours of all
pieces on the
chessboard, so that
friendly becomes
enemy and vice
versa.

1000 ____ ____ ____ ENABLE-US set the square-enable
bits of all friendly
pieces.

How to test Use the test suite.

External hardware The RP2040 microprocessor in the dev board is intended to
be used to drive the move generator, as there isn’t enough room in the chip to do it
itself.

Pinout

Input Output Bidirectional
0 Address bit 0 Square out bit

0
Data in bit 0

1 Address bit 1 Square out bit
1

Data in bit 1

56

Input Output Bidirectional
2 Address bit 2 Square out bit

2
Data in bit 2

3 Address bit 3 Square out bit
3

Data in bit 3

4 Address bit 4 Square out bit
4

Data in bit 4

5 Address bit 5 Square out bit
5

Data in bit 5

6 Address bit 6 End iteration
bit

Data in bit 6

7 Address bit 7
(valid)

Illegal position
bit

Data in bit 7

57

2048 sliding tile puzzle game (VGA) [68]

• Author: Uri Shaked
• Description: Slide numbered tiles on a grid to combine them to create a tile

with the number 2048.
• GitHub repository
• HDL project
• Mux address: 68
• Extra docs
• Clock: 0 Hz

How it works

2048 is a single-player sliding tile puzzle video game. Your goal is to slide numbered
tiles on a grid to combine them and create a tile with the number 2048. The game is
won when a tile with the number 2048 appears on the board, hence the name of the
game. The game is lost when the board is full and no more moves can be made.
The game is played on a 4x4 grid, with numbered tiles that slide when a player moves
them using ui_in pins. The game starts with two tiles with the number 2 on the
board. The player can move the tiles in four directions: up, down, left, and right.
When the player moves the tiles in a direction, the tiles slide as far as they can in that
direction until they hit the edge of the board or another tile. If two tiles with the same
number collide, they merge into a single tile with the sum of the two numbers. The
resulting tile cannot merge with another tile again in the same move.

How to test

Use the ui_in pins to move the tiles on the board:

ui_in pin Direction
0 Up
1 Down
2 Left
3 Right

After resetting the game, you will see a jumping “2048” animation on the screen. Press
any of the ui_in[3:0] pins to start the game. The game will start with two tiles
with the number 2 on the board. Use the ui_in pins to move the tiles in the desired
direction. The game will end when the board is full and no more moves can be made.

58

https://github.com/urish/tt09-2048-game

The game offers two color themes: modern and retro. You can switch between the
two themes by setting ui_in[6].
Setting ui_in[7] to 1 will enter unit test mode. In this mode, the game displays a
colorful rectangle on the top of the screen, and accepts debug commands on the uio
pins. Check out the test bench for more information.

External hardware

TinyVGA PMOD

Pinout

Input Output Bidirectional
0 btn_up R1 debug_cmd
1 btn_down G1 debug_cmd
2 btn_left B1 debug_cmd
3 btn_right VSync debug_cmd
4 R0 debug_data
5 G0 debug_data
6 retro_colors B0 debug_data
7 debug_mode HSync debug_data

59

https://github.com/mole99/tiny-vga

1bit_am_sdr [74]

• Author: James Sharp
• Description: 1bit AM software defined radio
• GitHub repository
• HDL project
• Mux address: 74
• Extra docs
• Clock: 50000000 Hz

How it works

This project is a Software Defined Radio pipeline for AM radio reception written in
verilog. It works using an external comparator as a 1-bit ADC frontend which is
oversampled and decimated 4096 times to give an extra 6 bits of precision. It is based
on this Hackaday Project: https://hackaday.io/project/170916-fpga-3-r-1-c-mw-and-
sw-sdr-receiver by Alberto Garlassi.
Although this is a fully digital core, but there are plans to make an analog frontend
circuit as an analog design in future Tiny Tapeouts, so both designs would be hooked
up together to create a radio with few external components.
Also, this core is very big - 3x2 Tiny Tapeout tiles (@ 64% utilisation). An area of future
development could be to simplify the demodulation pipeline to reduce gate count.

How to test

You need to connect an external comparator and RC network. You will probably need
a simple RF amplifier as well. See below for more information.
The core has a SPI interface for setting the demodulation frequency and gain. It
consists of a single 32-bit shift register. It has the following format:-

Bits 31 - 30 Bits 29 - 26 Bits 25 - 0
Unused Gain NCO Phase incr.

The gain can take on the following values:

“Gain” value Actual Gain
0 x1

60

https://github.com/jamesrosssharp/ttihp-am-sdr
https://hackaday.io/project/170916-fpga-3-r-1-c-mw-and-sw-sdr-receiver
https://hackaday.io/project/170916-fpga-3-r-1-c-mw-and-sw-sdr-receiver

“Gain” value Actual Gain
1 x2
2 x4
3 x8
4 x16
5 - 7 x32

If the gain is set too high, the demodulated signal will wrap and sound distorted, so
adjust the gain down to the minimum needed to hear the station clearly.
The “NCO Phase increment” is the value that is added to the NCO phase every clock
cycle. Use the following python code to calculate the value to write, based on the
desired carrier frequency:

hex(int((1<<26) * <carrier frequency> / <chip clock frequency>))

E.g., for 936kHz (ABC Radio national Hobart) at 50MHz clock frequency, it would
be:

> hex(int((1<<26) * 936000 / 50000000))
'0x132b55'

External hardware

• External comparator
• Resistor bias network
• RC network
• External SPI microcontroller to set station
• RF amplifier

Pinout

Input Output Bidirectional
0 COMP_IN COMP_OUT
1 SPI_MOSI PWM
2 SPI_SCK
3 SPI_CSb
4

61

Input Output Bidirectional
5
6
7

62

Figure 6: Schematic diagram of external circuitry

63

Conway’s Game of Life on UART and VGA [101]

• Author: Ciro Cattuto
• Description: A simulation of Conways’ Game of Life visualized to an ANSI

terminal over UART and to VGA
• GitHub repository
• HDL project
• Mux address: 101
• Extra docs
• Clock: 24000000 Hz

How it works

This projects simulates Conway’s Game of Life in hardware on a small (32x16) grid with
periodic boundary conditions. At each time step, the output of the simulation is printed
to an ANSI serial terminal over a serial (UART) interface. The initial state of the board
is pseudo-random, generated using a linear-feedback shift register. Single characters
received over the serial interface are used to control the simulation, according to the
following table:

• &lt;space&gt;: start/stop simulation
• 0: randomize state
• 1: single-step the simulation

The UART interface of the project is exposed according the the Tiny Tapeout rec-
ommended pinout, with ui_in[3] used for RX signal and uo_out[4] for TX. The
UART is configured as 8N1 at 115200 baud, with no flow control.
VGA output of the simulation state is also exposed on the bidirectional pins, that are
all configured as outputs and wired to work with a TinyVGA PMOD.

How to test

Connected the UART interface of the project to any UART terminal, or to an UART-
to-USB PMOD or adapter, e.g., the one provided by the onboard RP2040 of the PCB.
Configure the serial interface for 8 bits, 1 start bit, no parity bit, 1 stop bit (8N1), with
no hardware or software flow control. Open the terminal and type any character: this
will bring up a welcome message explaining how to control the simulation.

64

https://github.com/ccattuto/ttihp-conway-termvga
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
https://github.com/mole99/tiny-vga

External hardware

UART terminal, or UART-to-USB adapter (PMOD or on-board via RP2040). And/or
TinyVGA PMOD for VGA output.

Pinout

Input Output Bidirectional
0 simulation start hsync
1 simulation randomization B[0]
2 G[0]
3 UART RX R[0]
4 UART TX vsync
5 B1
6 G1
7 R1

65

https://github.com/mole99/tiny-vga
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

mulmul [105]

• Author: JJ Wong
• Description: Small 4-bit vector multiplication engine
• GitHub repository
• HDL project
• Mux address: 105
• Extra docs
• Clock: 0 Hz

How it works

Write the registers and vector length and accumulator value (optional) into the chip’s
registers using the read and write opcodes, then run the system with the run opcode.
The vectors will be multiplied and summed together in two clock cycles and output an
8-bit word.
Input words are 4 bits wide. Write the length of the 4-bit vectors you want to multiply
into address 0. The vectors should be in words 1-32. Word 1 will be multiplied by
word 17, etc. The result will be accumulated into words 33-34 (8 bits).

How to test

You can run the testbench tests in the test dir.

External hardware

Will be programmed by RP2040. No other external hardware.

Pinout

Input Output Bidirectional
0 addr[0] out[0] data[0]
1 addr1 out1 data1
2 addr2 out2 data2
3 addr[3] out[3] data[3]
4 addr[4] out[4] state[0]
5 addr[5] out[5] state1
6 op[0] out[6]

66

https://github.com/jayjaywong12/tt08
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture

Input Output Bidirectional
7 op1 out[7]

67

https://en.wikipedia.org/wiki/Collatz_conjecture

ROTFPGA v2a [107]

• Author: htfab
• Description: A reconfigurable logic circuit made of identical rotatable tiles
• GitHub repository
• HDL project
• Mux address: 107
• Extra docs
• Clock: 10000000 Hz

How it works

D

Q
clk

Figure 7: Logic tile

A reconfigurable logic circuit built from identical copies of the tile above containing a
NAND gate, a D flip-flop and a buffer, with each tile individually rotated or reflected
as described by the FPGA configuration. Port of the original ROTFPGA from Caravel
to TinyTapeout.
Porting the design required a 50-fold decrease in chip area which was achieved using
a combination of cutting corners, heavy optimization and a few design changes. In
particular:

• The FPGA was reduced from 24×24 to 8×8 tiles. There are 8 inputs and 8
outputs instead of 12 each.

• To compensate for smaller size, tiles can also be mirrored in addition to rotation.
• Tiles (being the most repeated part of the design) were rewritten as hand-

optimized gate-level Verilog.

68

https://github.com/htfab/ttihp0p2-rotfpga
https://github.com/htfab/rotfpga

• Each tile only contains 1 flip-flop (the one exposed to the user). Configuration
is now stored in latches.

• Configuration and reset are performed using a routing-efficient scan chain, so
the design is no longer routing constrained. This allows standard cells to be
placed with >80% density.

• Openlane and its components are 2 years more mature, hardening the same HDL
more efficiently.

Configuration Each tile can be configured in 8 possible orientations. Bits 0, 1 and
2 correspond to a diagonal, horizontal and vertical flip respectively. Any rotation or
reflection can be described as a combination:

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

Q

D
clk

QD
clk

Q

D
clk

Q D
clk

000 ≡ 0 101 ≡ 5 110 ≡ 6 011 ≡ 3

001 ≡ 1 100 ≡ 4 111 ≡ 7 010 ≡ 2

(The bottom row looks somewhat different, but we just rearranged the wires so that
the inputs and outputs line up with the unmirrored tiles.)
Tiles are arranged in an 8×8 grid:

• Top, bottom, left and right inputs and outputs are connected to the tile in the
respective direction.

• Tiles mostly wrap around, e.g. the bottom output of a cell in the last line connects
to the top input of the cell in the first line.

• As an exception to the wrapping rules, left inputs in the first column correspond
to chip inputs and right outputs in the last column correspond to chip outputs.

• There is a scan chain meandering through all the tiles, visiting lines from top to
bottom and within each line going from left to right.

69

This is a 4×4 model of the tile grid, showing regular i/o as black and the scan chain
as grey:

Figure 8: Grid model

When the scan enable input is 0, the FPGA operates normally and each tile sets its flip-
flop to the input it receives from one of the neighboring tiles according to its current
rotation/reflection. When scan enable is 1, it sets the flip-flop to the value received
through the scan chain instead. This allows us to set the initial state of each flip-flop
and also to query their state later for debugging. With some extra machinery it also
allows us to change the rotations/reflections.
When the 2-bit configuration input is is 01, each cell updates its vertical flip bit to the
current value of its flip-flop. Similarly, for 10 it sets the horizontal flip and for 11 it
sets the diagonal flip. When configuration is 00, all three flip bits are latched and the
orientation doesn’t change.
One can thus configure the FPGA by sending the sequence of all diagonal flip bits

70

through the scan chain, then setting configuration to 11 and back to 00, then sending
all horizontal flip bits, setting configuration to 10 and back to 00, and finally sending
the vertical flip bits and setting configuration to 01 and back to 00.
Note that in order to save space the flip bits are stored in latches, not registers. Chang-
ing the configuration input from 00 to 11 or vice versa can cause a race condition where
it is temporarily 01 or 10, overwriting the horizontal or vertical flip bits. Therefore one
should configure the diagonal flips first.

Loop breaker The user design may intentionally or inadvertantly contain combina-
tional loops such as ring oscillators. To help debug such designs, the chip has a loop
breaker mechanism using a loop breaker enable input as well as a 2-bit loop breaker
class input.
Tiles are assigned to loop breaker classes:

00

10

11

01

00

10

11

01

11

01

00

10

11

01

00

10

00

10

11

01

00

10

11

01

11

01

00

10

11

01

00

10

Figure 9: Loop breaker tile classes

The loop breaker latches a tile output if and only if the following conditions are all
met:

• The loop breaker enable input is 1.
• The current tile has a non-empty class that is different from the loop breaker

class input.
• The output doesn’t come from the tile’s flip-flop.

The loop breaker has the following properties:

71

• If loop breaker enable is 1 and loop breaker class is constant, there are no
combinational loops running. If we also pause the clock, the circuit keeps a
steady state.

• If loop breaker enable is 1 and we cycle loop breaker class through all possible
values repeatedly while the clock is paused, everything will eventually propagate.
If we also assume that the design has no race conditions, it will behave in the
same way as if loop breaker enable was 0.

Reset Setting the active-low reset input to 0 has the following effect:

• Override scan enable to 1, scan chain input to 0 and disengage the latches for
vertical, horizontal and diagonal flips. When kept low for 64 clock cycles this
will reset the state and configuration in every tile.

• Override loop breaker enable to 1 and loop breaker class to 00. This ensures
that we play nice with other designs on TinyTapeout and keep a steady state
while our design is not selected.

Pin mapping Input pins:

• clk provides a clock signal for the flip-flops
• rst_n is the active-low reset described above
• ui_in[7:0] are passed to the leftmost column of tiles as inputs from the left

Output pins:

• uo_out[7:0] come from the rightwards output of the rightmost column of tiles

Bidirectional pins:

• uio_in[0] is the scan enable input
• uio_in[1] is the scan chain input
• uio_in[3:2] are the configuration input bits
• uio_in[4] is the loop breaker enable input
• uio_in[6:5] are the loop breaker class input bits
• uio_out[7] is the scan chain output

72

 D

 Q
 clk

 D Q
 clk

 D

 Q
 clk

 D Q
 clk

 D

 Q
 clk

 D Q
 clk

 D

 Q
 clk

 D Q
 clk

 D

 Q
 clk

 D Q
 clk

 D

 Q
 clk

 D Q
 clk

 D

 Q
 clk

 D Q
 clk

 D

 Q
 clk

 D Q
 clk

 D

 Q
 clk

 D Q
 clk

 D

 Q
 clk

 D Q
 clk

 Q

 D
 clk

 Q D
 clk

 Q

 D
 clk

 Q D
 clk

 D

 Q
 clk

 D Q
 clk

 D

 Q
 clk

 D Q
 clk

 Q

 D
 clk

 Q D
 clk

 Q

 D
 clk

 Q D
 clk

 D

 Q
 clk

 D Q
 clk

 Q

 D
 clk

 Q D
 clk

 D Q
 clk

 D

 Q
 clk

 Q D
 clk

 Q

 D
 clk

 D

 Q
 clk

 D Q
 clk

 D

 Q
 clk

 D Q
 clk

 Q

 D
 clk

 Q D
 clk

 Q

 D
 clk

 Q D
 clk

 Q

 D
 clk

 Q D
 clk

 Q

 D
 clk

 Q D
 clk

 Q

 D
 clk

 Q D
 clk

 Q

 D
 clk

 Q D
 clk

 Q D
 clk

 Q D
 clk

 Q D
 clk

 Q D
 clk

 Q D
 clk

 Q D
 clk

 Q D
 clk

 Q D
 clk

Figure 10: Diagram corresponding to fpga_config in test.py

73

How to test

Follow the test suite the test directory. It sets up the FPGA with the following two
configurations and runs a battery of tests on each.
Test configuration 1 used for upload, download, single-step and propagation tests:
Test configuration 2 used for testing the loop breaker with manual and automatic
cycles:

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

D

Q
clk

DQ
clk

D

Q
clk

D Q
clk

Figure 11: Diagram corresponding to cfg from the loop breaker test in test.py

74

External hardware

None

Pinout

Input Output Bidirectional
0 tile(0,0) left

in
tile(7,0) right
out

scan enable input

1 tile(0,1) left
in

tile(7,1) right
out

scan chain input

2 tile(0,2) left
in

tile(7,2) right
out

configuration input bit 0

3 tile(0,3) left
in

tile(7,3) right
out

configuration input bit 1

4 tile(0,4) left
in

tile(7,4) right
out

loop breaker enable input

5 tile(0,5) left
in

tile(7,5) right
out

loop breaker class input bit
0

6 tile(0,6) left
in

tile(7,6) right
out

loop breaker class input bit
1

7 tile(0,7) left
in

tile(7,7) right
out

scan chain output

75

simon_cipher [128]

• Author: Simon Cipher
• Description: Bitserial implementation of Simon-128
• GitHub repository
• HDL project
• Mux address: 128
• Extra docs
• Clock: 0 Hz

How it works

This is a bitserial implementation of the SIMON Block Cipher. SIMON is a 128-bit
block cipher, see The SIMON and SPECK families of Lightweight Block Ciphers. A
bit-serial implementation exchanges throughput for area, thereby creating a compact
cipher that is dominated by flip-flops and multiplexer cells. However, the overal design
size becomes minimal. A detailed description of the bitserial implementation technique
for SIMON is available in SIMON Says, Break the Area Records for Symmetric Key
Block Ciphers on FPGAs .

Cell Count
flip-flop 281
mux 588
other logic 199
TOTAL 1068

The design uses a 3-bit input and a 2-bit output, in addition to clock and reset.

Port Function
ui[0] Bitserial Data Input
ui[7:6] Control Word
uo[0] Bitserial Data Output
uo[7] Data Output Valid

The data input is asserted by the control word, and must be valid when the control
word indicates a plaintext-loading or key-loading operation.
The data output is asserted by the valid bit, and should be ignored when the data valid
bit is 0. The output ciphertext is produced in 128 consecutive clock cycles.

76

https://github.com/Secure-Embedded-Systems/ttihp-simon
https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2014/237
https://eprint.iacr.org/2014/237

The 2-bit control word defines the operation of the cipher. The LSB is a debug bit
study to key-loading process and to verify that the key register was correctly loaded.

Control Function
00 Idle
01 Load 128-bit plaintext
10 Load 128-bit key (see LIMITATIONS)
11 Encrypt and return ciphertext

LIMITATIONS

This design forces the key bits to 0 upon loading, so that the effective key value of
the cipher is always hardcoded to 00000000_00000000_00000000_00000000. This
disables the use of the design as a cipher, yet it still demonstrates how a bit-serial
architecture can be designed.

How to test

Study the testbench for example test vectors.

External hardware

No external hardware is needed for this project.

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0]
1 ui_in1 uo_out1
2 ui_in2 uo_out2
3 ui_in[3] uo_out[3]
4 ui_in[4] uo_out[4]
5 ui_in[5] uo_out[5]
6 ui_in[6] uo_out[6]
7 ui_in[7] uo_out[7]

77

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

VGA Screensaver with Tiny Tapeout Logo [130]

• Author: Uri Shaked
• Description: Tiny Tapeout Logo bouncing around the screen (640x480, TinyVGA

Pmod)
• GitHub repository
• HDL project
• Mux address: 130
• Extra docs
• Clock: 0 Hz

How it works

Displays a bouncing Tiny Tapeout logo on the screen, with animated color gradient.

Figure 12: Tiny Tapeout screensaver

How to test

Connect to a VGA monitor. Set the following inputs to configure the design:

• tile (ui_in[0]) to repeat the logo and tile it across the screen,
• solid_color (ui_in1) to use a solid color instead of an animated gradient.

78

https://github.com/TinyTapeout/ttihp0p2-logo-screensaver
https://en.wikipedia.org/wiki/Collatz_conjecture

External hardware

TinyVGA PMOD

Pinout

Input Output Bidirectional
0 tile R1
1 solid_color G1
2 B1
3 VSync
4 R0
5 G0
6 B0
7 HSync

79

https://github.com/mole99/tiny-vga

KianV RISC-V RV32E Baremetal SoC [138]

• Author: Dipl.-Ing. Hirosh Dabui
• Description: A baremetal RISC-V RV32E ASIC with audio, spi, uart
• GitHub repository
• HDL project
• Mux address: 138
• Extra docs
• Clock: 50000000 Hz

How it works

After implementing a KianV uLinux TT06, I felt like implementing a KianV bare metal
edition, which is an RV32E RISC-V32 SoC. This SoC is equipped with a UART, qspi
memory controller (psram/flash), a generic SPI interface, and a sigma-delta emulator
for playing audio files. In the firmware folder, the kernelboot.c and crt0.S files display
all hardware registers and their initialization in the code.

How to test

First, one must build the toolchain for an RV32E, as you can see here:

sudo apt-get update
sudo apt-get install autoconf automake autotools-dev curl python3 libmpc-dev libmpfr-dev libgmp-dev gawk build-essential bison flex texinfo gperf libtool patchutils bc zlib1g-dev libexpat-dev
git clone --recursive https://github.com/riscv/riscv-gnu-toolchain.git
cd riscv-gnu-toolchain
./configure --prefix=/opt/riscv32e --with-arch=rv32e --with-abi=ilp32e
make
export PATH=/opt/riscv32e/bin:$PATH

The following hardware addresses are given:

#define LSR_DR 0x01
#define LSR_TEMT 0x40
#define LSR_THRE 0x20
#define PWM_ADDR (IO_BASE + 0x14)
#define REG_DIV (IO_BASE + 0x10)
#define SPI_DIV (IO_BASE + 0x500010)
#define UART_LSR (IO_BASE + 0x5)

80

https://github.com/splinedrive/RISCV-KianV-BareMetalStyle

#define UART_RX (IO_BASE)
#define UART_TX (IO_BASE)

The use of the registers can be determined from the C, linker script and assembly
program. The CPU starts to execute the instruction stored in the NOR Flash at an
offset of 1MiB. When the chip comes into my hands, I will provide demos that I test
on the chip, including audio playback with appropriate documentation.

External hardware

It’s very important to use the PMOD Flash + PSRAM. We only use 8MB of PSRAM
address space.

Pinout

Input Output Bidirectional
0 uart_rx spi_cen0 ce0 flash
1 spi_sio1_so_miso0 spi_sclk0 sio0
2 spi_sio0_si_mosi0 sio1
3 pwm_o sck
4 uart_tx sd2
5 led[0] sd3
6 led1 cs1 psram
7 led2 always high

81

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

ROTFPGA v2b [161]

• Author: htfab
• Description: A reconfigurable logic circuit made of identical rotatable tiles
• GitHub repository
• HDL project
• Mux address: 161
• Extra docs
• Clock: 10000000 Hz

How it works

This design is a minor modification of ROTFPGA v2a, intended as a “control group”
for testing latches on IHP. If ROTFPGA v2b works but v2a doesn’t, it indicates an
issue with latches. Otherwise it might be a problem with the design itself.
Most of the documentation carries over from ROTFPGA v2a and is not repeated here.
The differences are:

• Latches are simulated using flip-flops
• Some inputs are combined to make room for two extra inputs

Simulation of latches Latches are replaced with flip-flops that operate on the
“latch clock” whereas original flip-flops are modified to act on the “flop-flop clock”.
In practice the “latch clock” and the “flip-flop clock” are gated versions of clk, enabled
by in_l_gate and in_ff_gate respectively.

Input reshuffling To add in_l_gate and in_ff_gate to the inputs, the number
of existing inputs had to be reduced. Since in_cfg is typically only used when in_se
is high and in_lbc is typically only used when in_se is low, they were combined into
in_cfg_lbc.

How to test

The changes above were incorporated into the test suite. Every clock tick in the original
test was replaced by 50 “latch clocks” followed by a single “latch and flip-flop clock”
and then by 50 more “latch clocks”.

82

https://github.com/htfab/ttihp0p2-rotfpga-ff

External hardware

None

Pinout

Input Output Bidirectional
0 tile(0,0) left

in
tile(7,0) right
out

scan enable input

1 tile(0,1) left
in

tile(7,1) right
out

scan chain input

2 tile(0,2) left
in

tile(7,2) right
out

configuration / loop
breaker class input bit 0

3 tile(0,3) left
in

tile(7,3) right
out

configuration / loop
breaker class input bit 1

4 tile(0,4) left
in

tile(7,4) right
out

loop breaker enable input

5 tile(0,5) left
in

tile(7,5) right
out

clock gating for flip-flops

6 tile(0,6) left
in

tile(7,6) right
out

clock gating for simulated
latches

7 tile(0,7) left
in

tile(7,7) right
out

scan chain output

83

Asynchronous Multiplier [163]

• Author: Tommy Thorn
• Description: An asynchronous multiplier
• GitHub repository
• HDL project
• Mux address: 163
• Extra docs
• Clock: 50000000 Hz

How it works

This design emits a sequence of r = x^2+x, for x=0,1,2,… on the outputs using the
handshake protocol (tie ack to req to get free running sequence). Well, in truth, we use
26-bits of internal precision, but we only have 15-bits for outputs, we what is actually
emitted is r ^ (r &gt;&gt; 15).
The very naive algorithm (with the body unrolled once) is

x = 0
loop:
x = x + 1
a = b = c = x
while b != 0:

if (b & 1) == 1:
c += a

a *= 2
b /= 2
if (b & 1) == 1:
c += a

a *= 2
b /= 2

output (c)

which was hand translated (roughly following Introduction to Asynchronous Circuit
Design) into a token flow graph:
Note, I use a simpler, less expensive, construction for the conditional iteration as having
independent control-flow for the trivial condition is overkill.
The graph was realized using four-phase bundled data. Alas, I’m still working on the
timing analysis, so the inserted delays are (hopefully) way oversized.

84

https://github.com/tommythorn/ttihp-tommythorn-async-mult
https://orbit.dtu.dk/files/215895041/JSPA_async_book_2020_PDF.pdf
https://orbit.dtu.dk/files/215895041/JSPA_async_book_2020_PDF.pdf

add1

BUFI1

BUFI2

BUFI3_valid_0

FORK

JOIN

replicate thrice

MERGE

BUF11_valid

BUF2

BUF55

(x != 0, x)

BDEMUX

BUF5 FORK9

mulstep6 BUF10out

BUF7

mulstep54

Figure 13: token-flow graph

85

How to test

The data is presented using the standard 4-phase (RTZ) protocol (idle, Req, Req+Ack,
Ack, idle, …). To get a continuous stream, simply tie ack to req. The values expected
are 0, 2, 6, …, x(x+1)

External hardware

A logic analyzer is convenient to pick up the values on the outputs, but default RP2040
works fine.

Pinout

Input Output Bidirectional
0 ack req result_7
1 result_0 result_8
2 result_1 result_9
3 result_2 result_10
4 result_3 result_11
5 result_4 result_12
6 result_5 result_13
7 result_6 result_14

86

SRAM (1024x8) test [167]

• Author: Uri Shaked
• Description: Tests the foundry provided SRAM macro
• GitHub repository
• HDL project
• Mux address: 167
• Extra docs
• Clock: 0 Hz

How it works

This is a 1 kbyte SRAM controller module. It allows reading or writing a single byte
at a time.
There are 10 address lines, 8 data lines, and 1 write enable line.
To read a byte, set the write enable line (wen) to 0, and the data lines (dout[7:0]) will be
set to the value of the byte at the address specified by the address lines (addr[5:0]).
To write a byte, set the write enable line (wen) to 1, and set the data lines (din[7:0])
to the desired value. Writing is only possible when the bank_sel line is 0.
The lower 6 address bits (addr[5:0]) are exposed as input pins.
The upper 4 address lines are stored in the address_bank register. To change the upper
address bits, set the bank_sel line to 1, and set the data lines (addr[9:6] / uio[3:0]) to
the desired value.

How to test

1. Set addr[5:0] to the desired address, set din[7:0] to the desired value, set wen to
1, and set bank_sel to 0, then pulse the clock line. The value at the specified
address should be updated to the value of din[7:0].

2. Set addr[5:0] to the desired address, set wen to 0, and set bank_sel to 0, then
pulse the clock line. The value at the specified address should be output on
dout[7:0].

3. Set addr[9:6] to the desired value, set bank_sel to 1, then pulse the clock line.
The upper address bits should be updated to the value of addr[9:6].

87

https://github.com/urish/ttihp-sram-test

External hardware

None

Pinout

Input Output Bidirectional
0 addr[0] dout[0] din[0]/addr[6]
1 addr1 dout1 din1/addr[7]
2 addr2 dout2 din2/addr[8]
3 addr[3] dout[3] din[3]/addr[9]
4 addr[4] dout[4] din[4]
5 addr[5] dout[5] din[5]
6 bank_sel dout[6] din[6]
7 wen dout[7] din[7]

88

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Zilog Z80 [171]

• Author: ReJ aka Renaldas Zioma
• Description: Z80 open-source silicon. Goal is to become a silicon proven, pin

compatible, open-source replacement for classic Z80.
• GitHub repository
• HDL project
• Mux address: 171
• Extra docs
• Clock: 16000000 Hz

How it works

On April 15 of 2024 Zilog has announced End-of-Life for Z80, one of the most famous 8-
bit CPUs of all time. It is a time for open-source and hardware preservation community
to step in with a Free and Open Source Silicon (FOSS) replacement for Zilog Z80.
The implementation is based around Guy Hutchison’s TV80 Verilog core.
The future work

• Add thorough instruction (including ‘illegal’) execution tests ZEXALL to test-
bench

• Compare different implementations: Verilog core A-Z80, Netlist based
Z80Explorer

• Create gate-level layouts that would resemble the original Z80 layout. Zilog
designed Z80 by manually placing each transistor by hand.

• Tapeout QFN44 package
• Tapeout DIP40 package

Z80 technical capabilities

• nMOS original frequency 4MHz. CMOS frequency up to 20 MHz. This tapeout
on 130 nm is expected to support frequency up to 50 MHz.

• 158 instructions including support for Intel 8080A instruction set as a subset.
• Two sets of 6 general-purpose reigsters which may be used as either 8-bit or

16-bit register pairs.
• One maskable and one non-maskable interrupt.
• Instruction set derived from Datapoint 2200, Intel 8008 and Intel 8080A.

Z80 registers

• AF: 8-bit accumulator (A) and flag bits (F)
• BC: 16-bit data/address register or two 8-bit registers

89

https://github.com/rejunity/z80-open-silicon
https://www.mouser.com/PCN/Littelfuse_PCN_Z84C00.pdf
https://github.com/hutch31/tv80
https://mdfs.net/Software/Z80/Exerciser/
https://github.com/gdevic/A-Z80
https://github.com/gdevic/Z80Explorer
https://en.wikipedia.org/wiki/Intel_8080
https://en.wikipedia.org/wiki/Datapoint_2200
https://en.wikipedia.org/wiki/Intel_8008
https://en.wikipedia.org/wiki/Intel_8080

• DE: 16-bit data/address register or two 8-bit registers
• HL: 16-bit accumulator/address register or two 8-bit registers
• SP: stack pointer, 16 bits
• PC: program counter, 16 bits
• IX: 16-bit index or base register for 8-bit immediate offsets
• IY: 16-bit index or base register for 8-bit immediate offsets
• I: interrupt vector base register, 8 bits
• R: DRAM refresh counter, 8 bits (msb does not count)
• AF': alternate (or shadow) accumulator and flags (toggled in and out with EX

AF, AF')
• BC', DE' and HL': alternate (or shadow) registers (toggled in and out with EXX)

Z80 Pinout

,---------.__.---------.
<-- A11 |1 40| A10 -->
<-- A12 |2 39| A9 -->
<-- A13 |3 Z80 CPU 38| A8 -->
<-- A14 |4 37| A7 -->
<-- A15 |5 36| A6 -->
--> CLK |6 35| A5 -->
<-> D4 |7 34| A4 -->
<-> D3 |8 33| A3 -->
<-> D5 |9 32| A2 -->
<-> D6 |10 31| A1 -->

VCC |11 30| A0 -->
<-> D2 |12 29| GND
<-> D7 |13 28| /RFSH -->
<-> D0 |14 27| /M1 -->
<-> D1 |15 26| /RESET <--
--> /INT |16 25| /BUSRQ <--
--> /NMI |17 24| /WAIT <--
<-- /HALT |18 23| /BUSAK -->
<-- /MREQ |19 22| /WR -->
<-- /IORQ |20 21| /RD -->

`----------------------'

How to test

Hold all bidirectional pins (Data bus) low to make CPU execute NOP instruction.
NOP instruction opcode is 0. Hold all input pins high to disable interrupts and signal
that data bus is ready.

90

Every 4th cycle 8-bit value on output pins (Address bus low 8-bit) should
monotonously increase.

Timing diagram, input pins

Z80CLK____ ____ ____ ____ ____ ____
__/ ____/ ____/ ____/ ____/ ____/ `____ ...
| | | | | |
| | | | | |

/RESET___
__/

/WAIT ___
__/

/INT ___
__/

/NMI ___
__/

/BUSRQ___
__/

D7..D0 NOP NOP NOP NOP NOP
__ XXXXXXXXX ___#00___ ___#00___ ___#00___ ___#00___ ___#00___

Expected signals on output pins
/M1 _________ ____________________

__________________/ _________
/MREQ ___________________ ______________________________

________/
/RD ___________________ ______________________________

________/
A0..A7

__ XXXXXXXXX ___#00___ ___#00___ XXXXXXXXX XXXXXXXXX ___#01___

External hardware

Bus de-multiplexor, external memory, 8-bit computer such as ZX Spectrum.
Alternatively the RP2040 on the TinyTapeout test PCB can be used to simulate RAM
and I/O.

91

https://en.wikipedia.org/wiki/ZX_Spectrum

Pinout

Input Output Bidirectional
0 /WAIT /M1, A0, A8 D0
1 /INT /MREQ, A1, A9 D1
2 /NMI /IORQ, A2, A10 D2
3 /BUSRQ /RD, A3, A11 D3
4 /WR, A4, A12 D4
5 /RFSH, A5, A13 D5
6 /HALT, A6, A14 D6
7 /BUSAK, A7, A15 D7

92

Minilogix [198]

• Author: Harald Pretl
• Description: A configurable 8b in, 8b out logic block with optional feedback
• GitHub repository
• HDL project
• Mux address: 198
• Extra docs
• Clock: 20000000 Hz

How it works

A programmable 8b input, 8b output freely programmable logic block with optional
internal feedback. This can serve many purposes, once an FPGA-style configuration
SW is available.

How to test

• Load the logic block in serial mode.
• Test the logic functionality by applying different digital inputs.

External hardware

Just a way to set digital inputs is needed, plus a way to check the digital outputs.

Pinout

Input Output Bidirectional
0 data in0 data out0 load enable
1 data in1 data out1 load clk
2 data in2 data out2 load data
3 data in3 data out3
4 data in4 data out4
5 data in5 data out5 dbg out0
6 data in6 data out6 dbg out1
7 data in7 data out7 dbg out2

93

https://github.com/iic-jku/ttihp-0p2-hpretl-minilogix

Experiment Number Six: Laplace LUT [202]

• Author: Paul Hansel
• Description: ASCII ROM encoding the LaTeX characters needed to typeset the

Laplace transforms of a few specialized functions.
• GitHub repository
• HDL project
• Mux address: 202
• Extra docs
• Clock: 10000000 Hz

How it works

Figure 14: LaTeX screenshot

This project provides an ASCII encoding of the LaTeX code to typeset a few dozen
Laplace transforms of common functions. When the user sets the lower ui_in pins to a
number, asserts reset and then asserts ui_in 6 high, the project will begin clocking out
the transform char-by-char, with uio_out showing F(s) = L{f(t)} and uo_out showing

94

https://github.com/phansel/ttihp-ens2

f(t) itself. If either one is shorter than the other for a particular transform, empty space
characters are appended.
It uses two different address spaces to do this: mem_addr, which maps each pair
of concatenated ASCII characters (function, transformed function) from all transforms
back-to-back as 16-bit values to a linear 10-bit address space, and pointer_addr, which
maps the concatenated start address and length of each row (within mem_addr space)
as 20-bit values to that row’s line number in an 8-bit address space (with only 6 bits
used).
The read-only Verilog containing the actual ASCII data is generated by a python script
that reads the LaTeX source directly. Verification is achieved in the same way.

How to test

Program a number onto ui_in[5:0] between 0 and 46. Toggle reset_n (high/low/high),
then toggle ui_in[6] high to start printing. Watch uo_out and uio_out for the resulting
ASCII characters.
The input address bus accepts a number (0-46) corresponding to an arbitrary Laplace
tranform encoding; it must be set before asserting start. The active-high character
output enable signal must be high to start or continue character output. The clock
divider disable input must be high to run at full speed or low to run at 1 character per
5x10^7 clocks.

External hardware

Switches or jumpers to 3V3 or 0V will be needed to set the increment on ui_in. It
may be helpful to install LEDs on each of the LHS_x and RHS_x outputs to observe
the output.

Pinout

Input Output Bidirectional
0 Address bit 0 RHS_BIT_0 LHS_BIT_0
1 Address bit 1 RHS_BIT_1 LHS_BIT_1
2 Address bit 2 RHS_BIT_2 LHS_BIT_2
3 Address bit 3 RHS_BIT_3 LHS_BIT_3
4 Address bit 4 RHS_BIT_4 LHS_BIT_4
5 Address bit 5 RHS_BIT_5 LHS_BIT_5
6 Character output enable RHS_BIT_6 LHS_BIT_6

95

Input Output Bidirectional
7 Clock divider disable RHS_BIT_7 LHS_BIT_7

96

VGA Pong with NES Controllers [225]

• Author: Brandon S. Ramos
• Description: Pong using 2 NES Controllers with a VGA display
• GitHub repository
• HDL project
• Mux address: 225
• Extra docs
• Clock: 25175000 Hz

How it works

This project is designed to play Pong with two players using NES controllers which
output to a VGA compatible monitor.

How to test

You will need two NES controllers which will take in 3 wires (not including power and
ground). Hook up the connections as shown in the bidirectional I/O.
Bidirectional:

1. NES_Controller_Left[0] data
2. NES_Controller_Left1 clock
3. NES_Controller_Left2 latch
4. NES_Controller_Right[0] data
5. NES_Controller_Right1 clock
6. NES_Controller_Right2 latch
7. NC
8. NC You will also need the hook up the output to a VGA breakout board. I created

my own using a perfboard and some resistors but you can use the TinyTapeout
VGA PMOD, just ensure that you hook up r0,r1 on the VGA PMOD both to r
from the output as my design only uses 1 bit for each signal.

Output:

1. h_sync
2. v_sync
3. r
4. g

97

https://github.com/J0NTrollston/tt08-VGA-Pong-with-NES-Controllers
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

5. b
6.
7.
8.

External hardware

• VGA PMOD or your own VGA breakout board
• 2 NES controllers
• VGA compatible monitor

Pinout

Input Output Bidirectional
0 h_sync NES_Controller_Left[0]
1 v_sync NES_Controller_Left1
2 r NES_Controller_Left2
3 g NES_Controller_Right[0]
4 b NES_Controller_Right1
5 NES_Controller_Right2
6
7

98

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

DemoSiine [227]

• Author: SagarDevAchar
• Description: A Wavy and Rainbowy TT08 Demoscene Submission
• GitHub repository
• HDL project
• Mux address: 227
• Extra docs
• Clock: 25000000 Hz

How it works

The project structure is as shown below:

Figure 15: DemoSiine Project Structure

The Graphics Engine (driven by the VGA Controller, 640x480 @ 60Hz) is an on-
demand RGB display pixel generator whose output can be altered using a few input
pins. Previews of the different possible display outputs are provided in the last section
of this documentation.
The Audio Engine drives the Frequency Synth to produce a ~28 second looping
sound track @ 140 BPM at the output.

External hardware

• Leo’s TinyVGA Pmod connected to OUTPUT terminal (uo_out)
• Mike’s TT Audio Pmod connected to BIDIR terminal (uio_out)
• Some switches to the INPUT terminal (ui_in)

99

https://github.com/Syntaks-Code-Vault/ttihp0p2-demosiine
https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod

How to test

• Connect the necessary peripherals
• Provide a 25MHz clock to the top module tt_um_demosiine_sda
• Reset the design (if necessary)
• Enjoy the show :)
• Tweak the inputs to customize your show!

Input Configurations

The design takes in 8 digital inputs from the INPUT terminal to modify the on-screen
graphics (and audio) to create funky visual effects. All inputs are expected to be LOW
to render the output as shown in the default preview as shown below.
The effect of each input pin is presented in the table below:

Input Pin Parameter When LOW When HIGH
ui_in[7] Audio State Play Pause
ui_in[6] Animation State Run Stop
ui_in[5] Background Style Black Rolling RGB
ui_in[4] Overlay Style Cycle RGB Rolling RGB
ui_in[3] Overlay State Enabled Disabled
ui_in[2] Big Sine State Enabled Disabled
ui_in[1] Little Sine State Enabled Disabled
ui_in[0] Colour Inversion Normal Negative

Previews

Provided below are a some of my favourite previews generated from DemoSiine along
with the INPUT configuration which generated them:

Pinout

Input Output Bidirectional
0 Frame Positive / Negative Video Red MSB
1 Enable / Disable Little Sine Layer Video Green MSB
2 Enable / Disable Big Sine Layer Video Blue MSB
3 Enable / Disable Overlay Video V-Sync
4 Toggle Overlay Style Video Red LSB

100

Input Output Bidirectional
5 Toggle Background Style Video Green LSB
6 Run / Stop Animation Video Blue LSB
7 Play / Pause Audio Video H-Sync Audio Output

101

Figure 16: DemoSiine Default Video Output Preview

102

Figure 17: DemoSiine Video Output Preview 2

103

Figure 18: DemoSiine Video Output Preview 3

104

Figure 19: DemoSiine Video Output Preview 4

105

Figure 20: DemoSiine Video Output Preview 5

106

Figure 21: DemoSiine Video Output Preview 6

107

Rounding error [229]

• Author: Edwin Török
• Description: Competition entry
• GitHub repository
• HDL project
• Mux address: 229
• Extra docs
• Clock: 25250000 Hz

How it works

Idea This started out as an attempt to implement a ray tracer in 2 TT tiles. However,
there isn’t enough room for a proper one, precision has to be limited, which leads to
unavoidable rounding errors.
So embrace rounding errors, and make them the primary feature!
The end result doesn’t resemble a 3D scene, or a sphere, or in fact not even a properly
rounded circle, but it has rounding errors! And that is the goal of this project now!

HardCaml The RTL was written using HardCaml, an OCaml DSL that emits Ver-
ilog. For convenience the generated Verilog is committed into the source tree, so no
additional tools are needed.
I used registers with asynchronous reset, in theory it should be better for an area
constrained design.

VGA signal generation

ModeLine VGA signal timing is described in “3. DMT Video Timing Parameter
Definitions” in “VESA Display Monitor Timing Standard Version 1.0, Rev. 13”, and
is implemented in src/generator/modeline.ml. Examples on how to implement
them on an FPGA are available in several places.
The code supports several resolutions, however to conserve area for the demo I’ve
chosen only 640x480@59.94Hz, which has negative hsync/vsync polarities. This
resolution would need a 25.175 MHz pixel clock, however that can’t be produced ex-
actly by the TT08 board, it can only approximate it using a PWM. Therefore, the
design is configured to run at the nearest frequency that can be exactly generated:

108

https://github.com/edwintorok/roundingerror-ihp
https://github.com/janestreet/hardcaml
https://digilent.com/reference/learn/programmable-logic/tutorials/vga-display-congroller/start
https://zipcpu.com/blog/2018/11/29/llvga.html
http://www.tinyvga.com/vga-timing/640x480@60Hz

25.25 MHz, which should be within the 0.5% acceptable by the standard. The Mode-
Line implemented is: ModeLine &quot;640x480_59.94&quot; 25.175
640 656 752 800 480 490 492 525 -hsync -vsync. (This has 59.94 refresh
rate and not 60Hz due to the standard preferring NTSC and its 1.001 adjustment).
The design itself runs off the VGA pixel clock, as I didn’t want to deal with potential
clock domain crossing issues.

Counters There are 2 counters: one for H, and one for V synchronization pulses.
When the H counter overflows it enables and increments the V counter for 1 cycle. This
is implemented in generator/vga.ml, together with waveform expectation tests.
Both H and V counters start out in the visible area for convenience (we can directly use
these counters as x/y coordinates, without needing to perform arithmetic in the circuit),
then blank the colour signals for the duration of the front porch, synchronization signal
and back porch. Although the monitor would recognize the hsync+vsync low as the
start of a frame, this is equivalent, but offset by a few clocks.

R, G, B colours The demo supports 2-bit colours, and as usual these would be
sRGB colours, not a linear scale. So we define an internal table indexed by 3 bits
representing a linear RGB value, mapping to the sRGB bits.
A register is used for the output, both to avoid logic glitches becoming visible to the
monitor, and to provide a reg to reg path that OpenSTA can use to compute setup/hold
times.

Generating the colours When test mode is used (pin ui[0] set to 1) the de-
sign outputs vertical colour bars with a white-black-white border. This doesn’t have
rounding errors, everything is sharp.
In normal mode (pin ui[0] is 0) the “rounding error graphics” is rendered, see below.

Ray marching For an explanation of how ray marching works, see this ray marching
tutorial. The “scene” is represented using signed distance functions. The “eye” Z
coordinate is animated between 3.5 and 4.5 in 256 steps, where each frame is one
step.

109

https://en.wikipedia.org/wiki/XFree86_Modeline
https://en.wikipedia.org/wiki/XFree86_Modeline
https://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/
https://jamie-wong.com/2016/07/15/ray-marching-signed-distance-functions/
https://iquilezles.org/articles/distfunctions/

CORDIC Fixed point arithmetic with 9 bits of precision is used in the HDL, with the
exponent tracked by the generator code to reduce register width (though this is not as
good as tracking it in hardware, but that’d require more area). Vector normalization
is implemented using the CORDIC implementation provided by HardCaml, configured
to use 10 bits, and a limited number of iterations (4) to fit into the desired area.
This works by rotating the vector until its angle is 0, and then rotating a second unit
vector to match the rotation of the original. Or equivalently transform the original
from rectangular to polar coordinates, overwrite the length with 1, and convert back
from polar to rectangular. CORDIC is defined for 2D in the library, and I define a 3D
wrapper based on rectangular to spheric coordinate conversions, although there would
be ways to directly compute a 3D version of CORDIC, that is not implemented here.
This is implemented in src/vecmath.

GLSL ES “emulation” The low level operations are wrapped by a higher level
embedded DSL that allows writing code quite similar to GLSL ES, with a very small
number of operators: arithmetic (+, -, *, /), comparison (==, &lt;&gt;),
abs, min, max, clamp, length, distance, dot, normalize, reflect.
Unfortunately the full renderer didn’t fit into 2 tiles, so had to comment out quite a lot
of the “GLSL” code (only 1 step of ray marching, no clamping, very simple gradient
approximation), what is remaining does not resemble a sphere, or in fact it doesn’t
even look 3D.

OpenLane configuration The target density had to be increased to 98% to fit,
and the setup slack margin setting had to be increased, see config.json. There are
max slew and max fanout violations at 100C and 1.6V, but that shouldn’t prevent the
design from working at 25C and 1.8V.
The design was simulated using both tt-vgaviz and vgasim, although had to adjust
the modeline for vgasim to recognize the standard one. A simple cocotb test which
checked vsync/hsync generation was added post submission.

Simulating There is a src/sim/vgasim.ml, which generates a demo.v compati-
ble with vgasim, this uses a different resolution though. vgasim has to be called with
-g 640x480, and videomode.h needs to be edited to use 480 490 492 525 (don’t
know why it wants 521, that doesn’t seem to be the standard timing).
Alternatively the cocotb test in test/ can be run with make -B WAVES=1, and then
tt-vgaviz can be used: tt-vgaviz tb.vcd (actually in FST format).

110

https://eclipse.umbc.edu/robucci/cmpeRSD/Lectures/Lecture20__CORDIC/
https://www.ti.com/document-viewer/lit/html/SLYA069
https://registry.khronos.org/OpenGL/specs/es/3.2/GLSL_ES_Specification_3.20.html#built-in-functions
https://github.com/sylefeb/tt-vgaviz
https://github.com/ZipCPU/vgasim
https://github.com/ZipCPU/vgasim.git
https://github.com/sylefeb/tt-vgaviz.git

How to test

Configuration
• Provide a 25.25 MHz clock on the clk pin (RP2040 should be able to provide

this with no jitter). Or if you can try 25.175 MHz instead, but this will have
some jitter. YMMV.

• Power the design with at least 1.8V

Main demo
• Set pin ui[0] to 0 to run the default demo.
• Reset the design
• You should see circles moving slowly and large rounding errors:

Figure 22: circles

111

Test mode
• Set pin ui[0] to 1 to show a test image with color bars.
• Reset the design again if desired
• You should see:

.

External hardware

Connect according to the Demoscene rules

• VGA output using Leo’s VGA PMOD on pins uo[0-7], connected to a monitor
supporting 640x480 resolution.

Pinout

Input Output Bidirectional
0 test mode (0=no, 1=yes) r1
1 g1

112

https://tinytapeout.com/competitions/demoscene/#what-are-the-rules
https://github.com/mole99/tiny-vga

Input Output Bidirectional
2 b1
3 vsync
4 r0
5 g0
6 b0
7 hsync PWM output

113

VGA Pride [231]

• Author: Rebecca G. Bettencourt
• Description: A VGA demo for showing pride flags
• GitHub repository
• HDL project
• Mux address: 231
• Extra docs
• Clock: 0 Hz

How it works

Displays pride flags on the screen.
To add another flag, create a flag.v file and add it to src/flag_index.v,
test/Makefile, and info.yaml, using the existing flags as examples.

How to test

Connect to a VGA monitor. Set the following inputs to change the displayed flag:

• ui_in[7] to display the first flag
• ui_in[6] to display the next flag
• ui_in[5] to display the previous flag
• ui_in[4] to display the flag whose index is on uio_in

Index Flag
0 Rainbow flag, 6 stripes
1 Rainbow flag, 7 stripes
2 Rainbow flag, 8 stripes
3 Rainbow flag, 9 stripes
4 Philadelphia rainbow flag
5 Progress rainbow flag
6 Progress rainbow flag 2021 version
7 Trans pride flag
8 Abrosexual pride flag
9 Aceflux pride flag
10 Aegosexual pride flag
11 Agender pride flag
12 Androgyne pride flag
13 Androsexual pride flag

114

https://github.com/RebeccaRGB/ttihp-vga-pride

Index Flag
14 Aporagender pride flag
15 Aroace pride flag
16 Aroflux pride flag
17 Aromantic pride flag
18 Asexual pride flag
19 Aspec pride flag
20 Bigender pride flag (pink purple white purple blue)
21 Bigender pride flag (blue white purple white pink)
22 Bigender pride flag (pink yellow white purple blue)
23 Bisexual pride flag
24 Ceterosexual pride flag
25 Demiandrogyne pride flag (pink purple blue)
26 Demiandrogyne pride flag (green white green)
27 Demiboy pride flag
28 Demifluid pride flag
29 Demiflux pride flag
30 Demigender pride flag
31 Demigirl pride flag
32 Demiromantic pride flag
33 Demisexual pride flag
34 Disability rights flag (gold silver bronze tricolor)
35 Disability rainbow flag
36 Gender-neutral pride flag
37 Genderfluid pride flag
38 Genderflux pride flag
39 Genderqueer pride flag
40 Greygender pride flag
41 Greysexual pride flag
42 Gynosexual pride flag
43 Intersex pride flag (purple circle)
44 Intersex pride flag (blue/pink gradient)
45 Thislesbianlife lesbian pride flag (pink and red)
46 Sadlesbeandisaster lesbian pride flag, 7 stripes (orange and pink)
47 Sadlesbeandisaster lesbian pride flag, 5 stripes (orange and pink)
48 Lydiandragon lesbian pride flag (violet crocus dill rose)
49 Maya Kern lesbian pride flag (violet rose crocus dill)
50 RebeccaRGB femme lesbian pride flag (violet lavender pink rose)
51 Littleender pride flag
52 Maverique pride flag
53 Leonis Ignis MLM pride flag (brown and blue)

115

Index Flag
54 Vincian MLM pride flag, 7 stripes (green and blue)
55 Vincian MLM pride flag, 5 stripes (green and blue)
56 Vincian MLM pride flag (light blue and light green)
57 Multigender pride flag
58 Multisexual pride flag
59 Neptunic pride flag
60 Neutrois pride flag
61 Nonbinary pride flag
62 Objectum pride flag
63 Omnisexual pride flag
64 Pangender pride flag
65 Pansexual pride flag
66 Polyamory pride flag (blue, red, black with yellow pi)
67 Polyamory pride flag (blue, magenta, purple with yellow heart)
68 Polygender pride flag
69 Polysexual pride flag
70 Pomosexual pride flag
71 Proculsexual pride flag
72 IBM PS/2 pride flag
73 Queer pride flag
74 Trains pride flag (Train Landscape, Ellsworth Kelly, 1953)
75 Transfeminine pride flag
76 Transmasculine pride flag
77 Transneutral pride flag
78 Trigender pride flag
79 Unlabeled pride flag
80 Uranic pride flag
81 Voidpunk pride flag

External hardware

TinyVGA PMOD

Pinout

Input Output Bidirectional
0 address mode R1 A0
1 G1 A1

116

https://github.com/mole99/tiny-vga

Input Output Bidirectional
2 B1 A2
3 VSync A3
4 set R0 A4
5 prev G0 A5
6 next B0 A6
7 reset HSync A7

117

VGA Nyan Cat [233]

• Author: Andy Sloane
• Description: Displays the classic nyan.cat animation
• GitHub repository
• HDL project
• Mux address: 233
• Extra docs
• Clock: 25175000 Hz

VGA nyan cat

Figure 23: nyancat preview

How it works Outputs nyancat on VGA with music!
Colors and animation are all from the original nyan.cat site, using a 2x2 Bayer dithering
matrix which inverts on alternate frames for better color rendition on the Tiny VGA
Pmod.

118

https://github.com/a1k0n/ttihp-nyan

Sound is generated from a MIDI file, split into melody and bass parts. Melody and
bass are each square waves mixed with a simple exponential decay envelope, which is
then fed to a low-pass filter and then a sigma-delta DAC.
This was designed to fit into 1 tile, and it almost did – the cells take up about 93% of
1 tile, but detailed routing doesn’t finish. With the deadline approaching I was forced
to grow it to 1x2, so I threw in a little easter egg.

How to test Set clock to 25.175MHz or thereabouts, give reset pulse, and enjoy

External hardware TinyVGA Pmod for video on o[7:0].
1-bit sound on io[7], compatible with Tiny Tapeout Audio Pmod, or any basic ~20kHz
RC filter on io7 to an amplifier will work.

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VSync
4 R0
5 G0
6 B0
7 HSync AudioPWM

119

https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod

Flame demo [235]

• Author: Konrad Beckmann & Linus Mårtensson
• Description: Flame demo
• GitHub repository
• HDL project
• Mux address: 235
• Extra docs
• Clock: 25000000 Hz

Flame - Konrad & Linus tinytapeout08 demo compo entry

Figure 24: preview

How it works It shows a flame and plays audio. The VGA output is standard
640x480@60Hz, audio is simple 1 bit PWM.

How to test Run clock at 25MHz, connect VGA and sound Pmods, and give it a
reset pulse.

120

https://github.com/kbeckmann/ttihp0p2-kbeckmann-flame

External hardware Follows the democompo hardware rules:
TinyVGA Pmod for video on o[7:0].
1-bit sound on io[7], compatible with Tiny Tapeout Audio Pmod, or any basic ~20kHz
RC filter on io7 to an amplifier will work.

Pinout

Input Output Bidirectional
0 ui_in[0] ui_out[0] uio_out[0]
1 ui_in1 ui_out1 uio_out1
2 ui_in2 ui_out2 uio_out2
3 ui_in[3] ui_out[3] uio_out[3]
4 ui_in[4] ui_out[4] uio_out[4]
5 ui_in[5] ui_out[5] uio_out[5]
6 ui_in[6] ui_out[6] uio_out[6]
7 ui_in[7] ui_out[7] uio_out[7]

121

https://tinytapeout.com/competitions/demoscene/#what-are-the-rules
https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Sequential Shadows Deluxe [TT08 demo competition]
[258]

• Author: Toivo Henningsson
• Description: My contribution to the TT08 demo competition, extended version
• GitHub repository
• HDL project
• Mux address: 258
• Extra docs
• Clock: 50400000 Hz

Intro

Curly / Medieval presents

my contribution to the Tiny Tapeout 8 demo competition. Code, graphics, and music
by Curly (Toivo Henningsson) of Medieval.
This is the deluxe version, with Pmod VGA RGB444 output support and a few changes
from the original, in 2x2 tiles compared to the original’s 1x2.
The demo can be seen at https://youtu.be/pkiTu3iLA_U (captured from a Verilator
simulation).

How it works

See the documentation for the original version: https://github.com/toivoh/tt08-
demo/blob/main/docs/info.md / Tiny Tapeout 8 project [770]. The deluxe version
adds some tweaks such as a shadow beneath the logo, and credits.

122

https://github.com/toivoh/ttihp-tt08-demo-deluxe

How to test

Plug in a TinyVGA compatible Pmod on the TT08 demo board’s out Pmod. Plug in
a Pmod compatible with Mike’s audio Pmod on the TT08 demo board’s bidir Pmod.
Set all inputs to zero to get the default behavior. Warning: The default behavior
includes some flashing ligts. Set v_bass_off and v_drums_off (keep ui_in
at 3 instead of 0) to remove flashing. The demo starts directly after reset.
This demo is best viewed with the monitor rotated 90 degrees, with the left side facing
down.

Inputs There is no guarantee that changing the inputs after reset is released works
as intended, but it probably does. Some of the inputs provide options on how the demo
is run:

• v_bass_off: Setting this high reduces flashing when the audio visualizer is on
by turning off the bass.

• v_drums_off: Setting this high reduces flashing when the audio visualizer is
on by turning off the drums.

• v_bass_low: Setting this high keeps the bass at its default octave even when
the audio visualizer is on, which increases flashing.

• pause: While this is high, the demo is paused and the sound is turned off. Can
probably be used to start the demo paused.

• step_frame: While this is high, the the demo advances one frame per cycle.
Used for testing.

• rgb444_mode: Setting this high sets the output to RGB444 mode instead of
the default RGB222

• pmod_vga_pinout: Setting this high enables the alternative Pmod VGA pinout.

– The t_ outputs are used when pmod_vga_pinout is low. This fits the
TinyVGA Pmod pinout. (p_ only outputs are not driven.)

– The p_ outputs are used when pmod_vga_pinout is high. This fits the
Pmod VGA pinout.

• logo_shadow_off: When high, removes the logo’s shadow (like in the non-
deluxe version).

If using A Pmod VGA as output, you can set rgb444_mode to increase the color depth,
or leave it unset to get the original RGB222 experience. Please try both: which to
prefer is a matter of taste.
For the demo competition, only use a Pmod VGA if you have one and can get sound
output while using it. If using Pmod VGA, set pmod_vga_pinout, and you can set

123

https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod

rgb444_mode as well. Don’t set any other inputs. If using TinyVGA for output, set
all inputs to zero.

External hardware

This project needs

• either

– a TinyVGA VGA Pmod.
– Mike’s audio Pmod.

• or a Pmod VGA

– There is no ready option to output the audio in this case, but it’s still
present on the same pins, so you may be able to get it out with some
creative wiring, and e g feed it to Mike’s audio Pmod.

The choice of pinout is controlled by the pmod_vga_pinout input.

Pinout

Input Output Bidirectional
0 v_bass_off t_R1 / p_R0 p_G0
1 v_drums_off t_G1 / p_R1 p_G1
2 v_bass_low t_B1 / p_R2 p_G2
3 pause t_vsync / p_R3 p_G3
4 rgb444_mode t_R0 / p_B0 p_hsync
5 pmod_vga_pinout t_G0 / p_B1 p_vsync
6 logo_shadow_off t_B0 / p_B2 audio_out_n
7 step_frame t_hsync / p_B3 audio_out

124

https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod
https://digilent.com/reference/pmod/pmodvga/start
https://github.com/MichaelBell/tt-audio-pmod

No Time For Squares, IHP edition [266]

• Author: Tommy Thorn
• Description: It’s a 12-hour clock, drawn with triangles rendered by a race-the-

beam triangle render
• GitHub repository
• HDL project
• Mux address: 266
• Extra docs
• Clock: 31500000 Hz

How it works

The main part is a state machine that incrementally rasterizes three triangles based
on their edge equations while generating the timing for VGA. Every frame the second,
minute, and hour are updated which are indexed into tables to get the edge equations
corresponding to the moving hands.

How to test

Hook up the TinyVGA to the output (not bidir) port and that to a VGA monitor.
Marvel at the display. Assert input pin 6 and 7 to move the minute and hour hand
respectively.

External hardware

TinyVGA is required, otherwise this is a pretty boring design.

Pinout

Input Output Bidirectional
0 debugsel0 R1
1 debugsel1 G1
2 debugsel2 B1
3 debugsel3 vsync
4 unused0 R0
5 unused1 G0
6 minute, advance minute B0

125

https://github.com/tommythorn/ttihp-no-time-for-squares

Input Output Bidirectional
7 hour, advance hour hsync

126

Simon’s Caterpillar [289]

• Author: htfab
• Description: Port of Caterpillar Logic to Simon Says PMOD
• GitHub repository
• HDL project
• Mux address: 289
• Extra docs
• Clock: 50000 Hz

How it works

Simon’s Caterpillar is a re-implementation of the game Caterpillar Logic by Fuks
Michael targeting Tiny Tapeout with the Simon Says PMOD.
The game consists of 20 levels. Each level has a secret rule that is valid for certain
sequences of colors. For instance, if the rule is “contains exactly two yellow tokens” then
blue-yellow-green-yellow is a valid sequence and yellow-red-blue is an invalid one.
A new level starts in exploration mode. You can ask an unlimited number of questions
where you learn whether a particular sequence is valid or not. Once you know the rule
you can activate challenge mode. Now the roles are reversed and the game asks you
15 questions. If you can answer all of them correctly, you advance to the next level.

How to test

Set the clock to 50 kHz. Activate and reset the project. The 7-segment display should
indicate level 1 and only the blue led should light up. You are in exploration mode.

Exploration mode A sequence of up to 7 colors can be typed into the buffer with
short presses of the buttons. The leds indicate the sequence status in real time:

• red: sequence is invalid
• green: sequence is valid
• blue: buffer is empty
• yellow: buffer is full

(The empty sequence is neither valid nor invalid.)
Further operations are available as long button presses or a combination of two but-
tons:

127

https://github.com/htfab/ttihp0p2-caterpillar
https://github.com/gromozeka1980/kivy_contest_2014/tree/master/caterpillars
https://github.com/urish/tt-simon-pmod/

• long-press red: clear buffer
• long-press yellow: erase last color from buffer (“backspace”)
• long-press blue: show buffer contents (as a series of led flashes)
• long-press green: activate challenge mode
• short-press green & yellow: show a random valid sequence (and load into buffer)
• short-press red & blue: show a random invalid sequence (and load into buffer)
• short-press blue & yellow: switch to next level
• short-press red & green: switch to previous level
• short-press green & blue: toggle sound

Challenge mode A sequence of up to 6 colors is shown as a series of led flashes.
Press the green or red button to mark it as valid or invalid respectively.
Each correct answer adds a notch (turns on a new segment on the 7-segment display).
After the 15th one the next level is loaded. An incorrect answer switches back to
exploration mode.
Other keys and combinations:

• short-press or long-press blue: repeat the current question
• short-press red & yellow: switch back to exploration mode
• short-press blue & yellow: add a notch
• short-press red & green: remove a notch
• short-press green & blue: toggle sound

External hardware

Simon Says PMOD

Pinout

Input Output Bidirectional
0 red button red led segment A
1 green button green led segment B
2 blue button yellow led segment C
3 yellow button blue led segment D
4 display polarity speaker segment E
5 digit 1 segment F
6 digit 2 segment G
7

128

TT08 Pachelbel’s Canon demo [291]

• Author: Mike Bell
• Description: Tiny Tapeout visuals with the classic Canon soundtrack
• GitHub repository
• HDL project
• Mux address: 291
• Extra docs
• Clock: 36000000 Hz

How it works

The project plays Pachelbel’s Canon along with some fun visuals.

How to test

Set the inputs to 0, clock at 36MHz.

External hardware

Tiny Tapeout Audio Pmod in the bidir Tiny VGA Pmod in the output

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 vsync
4 R[0]
5 G[0]
6 B[0]
7 hsync PWM output

129

https://github.com/htfab/ttihp0p2-demo-canon
https://github.com/MichaelBell/tt-audio-pmod
https://github.com/mole99/tiny-vga
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Demo by a1k0n [293]

• Author: Andy Sloane
• Description: Tiny Tapeout demo competition entry
• GitHub repository
• HDL project
• Mux address: 293
• Extra docs
• Clock: 48000000 Hz

a1k0n’s tinytapeout08 demo compo entry

Figure 25: preview

How it works It’s a standalone VGA+sound demo that fits in two tiles; you’ll just
have to see. The demo is short, looping after about 25 seconds.

130

https://github.com/htfab/ttihp0p2-demo-a1k0n

This was developed with a 48MHz clock, so it’s in a funky VGA video mode – it’s
standard 640x480@60Hz VGA timing and 4:3 aspect ratio, but with 1220 horizontal
pixels instead of 640. All graphics are dithered down to RGB222 with a Bayer matrix
which alternates each frame. Because of the dithering and the weird resolution, it looks
best on a real CRT, but any VGA monitor ought to work.
Sound is generated using a 16-bit sigma-delta DAC on io7 from an internal 3-channel
synth (triangle, noise, and square waves).
Sines and cosines are generated by an old HAKMEM trick which generates a slightly
off-center circle but that doesn’t matter in this application:

cos_new = cos - (sin>>k)
sin_new = sin + (cos_new(!)>>k)

The plane is rendered by doing a bit-by-bit non-restoring division of the y coordinate
during the horizontal blanking interval to find a fixed point reciprocal, which is then
used as an x increment for the plane u coordinate. As a drastic simplification, the
plane v coordinate is also the x increment value (when you do the math, it turns out
they are proportional).
Starfield is generated by an LFSR that increments every line which provides an x-offset
and speed for each star by picking out individual bits of the LFSR state.
The “TT08” logo uses the outline of an old demo font, but the actual coloring is
procedural as it would take too much combinational logic to reproduce exactly.
Soundtrack is a riff on “Crooner” by Drax/Vibrants, composed as a bunch of text in
a Python script with limitations on song structure and octave range. Kick drum and
bass share the triangle channel, lead arpeggios on square, and hihat noise.
I’m not super happy about the “programmer colors” everywhere, but I ran out of room
trying to add palettes.

How to test Run clock at 48MHz, connect VGA and sound Pmods, and give it a
reset pulse (falling edge).

External hardware Follows the democompo hardware rules:
TinyVGA Pmod for video on o[7:0].
1-bit sound on io[7], compatible with Tiny Tapeout Audio Pmod, or any basic ~20kHz
RC filter on io7 to an amplifier will work.

131

https://tinytapeout.com/competitions/demoscene/#what-are-the-rules
https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VSync
4 R0
5 G0
6 B0
7 HSync AudioPWM

132

VGA Drop (audio/visual demo) [295]

• Author: ReJ aka Renaldas Zioma, eriQue aka Erik Hemming, Matthias Kampa
• Description: Tiny 8 part Megademo! TBLNesnauskSonikClique
• GitHub repository
• HDL project
• Mux address: 295
• Extra docs
• Clock: 25200000 Hz

How it works

VGA signal generator

How to test

We are learning how VGA and Sky130 works here

External hardware

VGA PMOD

Pinout

Input Output Bidirectional
0 R1 Audio (PWM)
1 G1 Audio (PWM)
2 B1 Audio (PWM)
3 VSYNC Audio (PWM)
4 R0 Audio (PWM)
5 G0 Audio (PWM)
6 B0 Audio (PWM)
7 HSYNC Audio (PWM)

133

https://github.com/htfab/ttihp0p2-demo-drop

Warp [297]

• Author: sylefeb
• Description: Demo on TinyTapeout? Let’s do something!
• GitHub repository
• HDL project
• Mux address: 297
• Extra docs
• Clock: 25000000 Hz

Warp

Please make sure to watch the demo for a few minutes as various effects
play out before it loops. At start it waits for a few seconds to ensure VGA
sync is achieved.

How it works
But does it work?

Preface This demo is written in Silice, my HDL. Here is the actual source. Silice
now fully support TinyTapeout as a build target.

Graphics The core effect is a classical tunnel effect ; however this is normally done
with a “huge” pre-computed table having one entry per-pixel. So I thought it’d be
challenging and fun to do it while racing the beam! Plus, I really like this effect.
There are several tricks at play: a shallow CORDIC pipeline to compute an atan
and length, and a few precomputed 1/x distances to interpolate between – these form
keypoint rings along the tunnel. All the effects are then obtained by combining multiple
layers in various ways (like a tunnel effect processor which registers can be configured
for various effects).
The demo uses a lot of dithering (ordered Bayer dithering) given the output is RGB
2-2-2. All computations are grayscale and the RGB lense effect is obtained by delaying
the grayscale values using the tunnel distance in R and B.
I also tried to make the logo interesting by deviating from a classical pixelated look. It
is composed of tiles, either full or triangular, with a comparator and a bit of logic to
do all four possible triangles.

134

https://github.com/htfab/ttihp0p2-demo-warp
https://github.com/sylefeb/Silice/
../src/silice/vga_demo.si
https://lodev.org/cgtutor/tunnel.html
https://htmlpreview.github.io/?https://github.com/sylefeb/gfxcat/blob/main/runtime/gfxcat_tunnel.html
https://en.wikipedia.org/wiki/CORDIC

The tunnel viewpoint change is obtained simply by shifting the tunnel center. I was
surprised that a simple translation gives such a convincing effect (almost as if the
viewpoint was rotating).
The ‘blue-orange’ tunnel effect is obtained through temporal dithering, one frame being
the standard tunnel, the other the rotated tunnel. This gets combined with the RGB
lense distortion, achieving the final look.

Audio I am no musician, so making a soundtrack was a challenge for me, but that’s
something I’ve always wanted to try. In the end it was a very enjoyable part of the
design, and I was surprised at how compact this can be made, the soundtrack using
perhaps around 10% of the entire design.
I tried to make a track that matches the spirit and rhythm of the graphics. It is what
is is, but I’m happy that there’s sound at all!

How to test Plug the VGA+audio PMODs to the board and run. Maybe it
works?
Simulation of both audio and video can run on an ECPIX5, with the Diligent VGA
PMOD on ports 0,1 and an I2S audio PMOD on port 2 (upper row). The audio also
runs on an ULX3S using its DAC (but no video in this case).

External hardware
• VGA PMOD
• Audio PMOD

See https://tinytapeout.com/competitions/demoscene/

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VS
4 R0
5 G0
6 B0
7 HS Audio

135

Bouncy Capsule [299]

• Author: htfab
• Description: Demoscene project featuring… well, a bouncy capsule
• GitHub repository
• HDL project
• Mux address: 299
• Extra docs
• Clock: 25000000 Hz

How it works

This is an entry to the Tiny Tapeout demoscene competition

How to test

• Attach the standard PMODs
• Run the clock at 25 (or 25.175) MHz
• Reset the design
• Sit back and enjoy
• Optionally change the input switches

External hardware

• Tiny VGA PMOD
• TT Audio PMOD (or MuseLab’s Audio PMOD)

Pinout

Input Output Bidirectional
0 Pause kinematics Tiny VGA R1 PDM audio out
1 Reset kinematics Tiny VGA G1 PDM audio out
2 Mute sound Tiny VGA B1 PDM audio out
3 Kill sound Tiny VGA VSync PDM audio out
4 Hide background Ting VGA R0 PDM audio out
5 Hide text Tiny VGA G0 PDM audio out
6 Lock colors Tiny VGA B0 PDM audio out
7 No re-orientation Tiny VGA HSync PDM audio out

136

https://github.com/htfab/ttihp0p2-bouncy-capsule
https://tinytapeout.com/competitions/demoscene/
https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod
https://www.tindie.com/products/johnnywu/pmod-audio-expansion-board/

raybox-zero TTIHP0p2 edition [326]

• Author: algofoogle (Anton Maurovic)
• Description: TTIHP0p2 experimental resub of ‘simple VGA ray caster game

demo’ from TT07
• GitHub repository
• HDL project
• Mux address: 326
• Extra docs
• Clock: 25175000 Hz

Figure 26: TT07 raybox-zero showing 3D views in simulation and on an FPGA

How it works

This resubmission of tt07-raybox-zero on TTIHP0p2 is a framebuffer-less VGA display
generator (i.e. it is ‘racing the beam’) that produces a simple implementation of a “3D”-
like ray casting game engine… just the graphics part of it. It is inspired by Wolfenstein
3D, using a map that is a grid of wall blocks, with basic texture mapping.
There is nothing yet but textured walls, and flat-coloured floor and ceiling. No doors
or sprites, sorry. Maybe that will come in a future version.
The ‘player’ POV (“point of view”) is controlled by SPI, which can be used to write
the player position, facing X/Y vector, and viewplane X/Y vector in one go.

137

https://github.com/algofoogle/ttihp0p2-raybox-zero
https://github.com/algofoogle/tt07-raybox-zero

NOTE: To optimise the design and make it work without a framebuffer, this renders
what is effectively a portrait view, rotated. A portrait monitor (i.e. one rotated 90
degrees anti-clockwise) will display this like the conventional first-person shooter view,
but it could still be used in a conventional landscape orientation if you imagine it is
for a game where you have a first-person perspective of a flat 2D platformer, endless
runner, “Descent-style” game, whatever.
TBC. Please contact me if you want to know something in particular and I’ll put it
into the documentation!

How to test

TBC. Please contact me if you want to know something in particular and I’ll put it
into the documentation!
Supply a clock in the range of 21-31.5MHz; 25.175MHz is ideal because this is meant
to be “standard” VGA 640x480@59.94Hz.
Start with gen_tex set high, to use internally-generated textures. You can optionally
attach an external QSPI memory (tex_...) for texture data instead, and then set
gen_tex low to use it.
debug can be asserted to show current state of POV (point-of-view) registers, which
might come in handy when trying to debug SPI writes.
If reg input is high, VGA outputs are registered. Otherwise, they are just as they
come out of internal combo logic. I’ve done it this way so I can test the difference (if
any).
inc_px and inc_py can be set high to continuously increment their respective player
X/Y position register. Normally the registers should be updated via SPI, but this allows
someone to at least see a demo in action without having to implement the SPI host
controller. NOTE: Using either of these will suspend POV updates via SPI.
The “SPI2” ports (reg_sclk, etc.) are for access to all other registers that we can
play with. I decided to keep these separate because I implemented them very late, and
didn’t want to break the existing SPI interface for POV register access.

External hardware

Tiny VGA PMOD on dedicated outputs (uo).
Optional SPI controllers to drive ui_in[2:0] (point-of-view aka vectors) and
uio_in[4:2] (other control/display registers).

138

Optional external SPI ROM for textures.
TBC. Please contact me if you want to know something in particular and I’ll put it
into the documentation!

Pinout

Input Output Bidirectional
0 SPI in: pov_sclk red1 Out: tex_csb
1 SPI in: pov_mosi green1 Out: tex_sclk
2 SPI in: pov_ss_n blue1 In: “SPI2” reg_sclk
3 debug vsync_n In: “SPI2” reg_mosi
4 inc_px red[0] In: “SPI2” reg_ss_n
5 inc_py green[0] I/O: tex_io0
6 reg blue[0] In: tex_io1
7 gen_tex hsync_n In: tex_io2

139

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

VGA donut [330]

• Author: Andy Sloane
• Description: Renders a 3D torus on a VGA display
• GitHub repository
• HDL project
• Mux address: 330
• Extra docs
• Clock: 48000000 Hz

VGA Donut

Figure 27: preview

140

https://github.com/a1k0n/tt08-vga-donut

How it works Renders a faceted donut to a VGA monitor.
Like my other demo on tt08, this runs in a weird VGA resolution: 1220x480, but still
4:3 aspect ratio like 640x480.
Interestingly, it is not actually rendering any polygons; this is sphere traced (AKA
raymarched), using a CORDIC unit to calculate the distance between a point and the
surface of the torus. But, because we don’t have much time (we’re racing the VGA
beam!), we do just two or three CORDIC iterations, which causes the donut surface
to actually become polyhedral. This trick was accidentally discovered by Bruno Levy
while playing with a C version of my original donut code and I had to try it out in
Verilog – so here we are.
The reason it has such low horizontal resolution is because it’s doing 16 ray marching
steps per “pixel”, with five CORDIC iterations unrolled into one clock cycle (three
iterations for the major axis, and two for the minor axis).
In order to fit this into 2x2 TinyTapeout tiles, a lot of sacrifices were made; for one,
it doesn’t have a multiplier so the ray steps are by approximate orders of magnitude.
New donut “pixels” are rendered every 16 clock cycles, so the demo makes heavy use
of dithering in both space and time – the video looks much better than the screenshot
above.

How to test Connect VGA Pmod to output, set clock to 48MHz, and give it a
reset pulse.

External hardware TinyVGA Pmod for video on o[7:0].

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VSync
4 R0
5 G0
6 B0
7 HSync

141

https://x.com/BrunoLevy01/status/1718674786954399798
https://github.com/mole99/tiny-vga

maddihp [353]

• Author: Jonny Edwards
• Description: a multi use multi-hit dot product accelerator V2
• GitHub repository
• HDL project
• Mux address: 353
• Extra docs
• Clock: 0 Hz

How it works

This is a simple circuit to calculate:

• a vector dot product ie the sum of w_i*x_i where i can be anything up to
about 40 (insn=2)

• Minimum of a list of data (insn=0)
• Maximum of a list of data (insn=1)

It has been designed as a coprocessor. The data is first added by setting load=1
and then supplying the data for the dot product the index and data. Each set is a
w,x pair. Its a 4 bit system and runs when run=1 and needs at least 16 clock cycles
produce the answer. The answer is 12 bit value.

How to test

I’ve tested this using a verilator simulation included below - I like the cpp workbench
for this. The testing has been mainly for numerical stability.

External hardware

I intend for this to be driven by the RP2040 and to work as a “coprocessor” for vector
calculations Other.

142

https://github.com/Fountaincoder/maddihp

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 index[0] out[0] out[8]
1 index1 out1 out[9]
2 index2 out2 out[10]
3 index[3] out[3] out[11]
4 data[0] out[4] instruction [0]
5 data1 out[5] instruction 1
6 data2 out[6] load
7 data[3] out[7] run

143

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Multimode Modem [355]

• Author: Joerdson Silva
• Description: Performs digital modulation and demodulation in amplitude, fre-

quency and phase schemes.
• GitHub repository
• HDL project
• Mux address: 355
• Extra docs
• Clock: 10000000 Hz

How it works

The multimode modem uses a clock signal to generate digitized signals over time, in
sinusoidal format. From this digitized sinusoid, the modulation process is applied using
different methods for each scheme, implemented through specific internal blocks to
perform modulations ASK (switching the amplitude of the sine wave), FSK (switching
the frequency of the sine wave through a digital signal modulator) and PSK (phase
coding). In the demodulation stage, these three modulation schemes are analyzed to
recover the original information, manifesting as ‘0’ or ‘1’ values that reflect the data
signal already restored after the process.

Inputs and Outputs

The multimode modem has the following inputs and outputs: | Type | Function | Size
| |——–|———–|——–| | Input | clk | 1 bit | | Input | rst_n | 1 bit | | Input | sel | 2
bits | | Output | mod_out | 7 bits | | Output | demod_out | 1 bit |

How to test

Apply a clock of 10 MHz. Next, apply a “1” logic level “reset” signal to synchronize
the modem system and then make the “reset” signal a “0” logic level. Then select the
type of modulation to be used, according to the sequence below. After selecting the
modulation type, the modulated signal is expressed at the “mod_out” output and the
demodulated signal at the “demod_out” output.

• Sel = “01” <= ASK modulation and demodulation
• Sel = “10” <= FSK modulation and demodulation
• Sel = “11” <= PSK modulation and demodulation

144

https://github.com/joerdsonsilva/ttihp-multimode-modem

Figure 28: 01

Figure 29: 10

145

Figure 30: 11

External hardware

Analog Discovery 2.

Pinout

Input Output Bidirectional
0 selection_0 modulation_out_0
1 selection_1 modulation_out_1
2 modulation_out_2
3 modulation_out_3
4 modulation_out_4
5 modulation_out_5
6 modulation_out_6
7 demodulation_out

146

Frequency Counter SSD1306 OLED [357]

• Author: Pawel Sitarz (embelon)
• Description: Simple Frequency Counter displaying result on SSD1306 SPI OLED
• GitHub repository
• HDL project
• Mux address: 357
• Extra docs
• Clock: 1000000 Hz

How it works

Project measures frequency on ui[0] input by counting pulses during 100ms periods.
Measured frequency is then displayed on graphical 128x32 pixels OLED display in form
of emulated 7-segment display.

How to test

Internal logic needs 1MHz clock (to be generated by RPi Pico)

• Connect PMOD OLED display to see measurement
• Connect unknown frequency signal to be measured to ui[0]

External hardware

Freqquency is displayed on 128x32 OLED display with SSD1306 controller: PMOD
OLED

Pinout

Input Output Bidirectional
0 clk_x - measured frequency input OLED nRST
1 OLED nVBAT
2 OLED nVDC
3 OLED nCS
4 OLED Data/Command
5 OLED CLK
6 OLED Data Out

147

https://github.com/embelon/ttihp-frequency-counter-oled
https://digilent.com/reference/pmod/pmodoled/start?srsltid=AfmBOorLYfaDc8BpQC9A5OXZzMUAsCeca8Y7uBRi8CIp-gxW1e7fsLZP
https://digilent.com/reference/pmod/pmodoled/start?srsltid=AfmBOorLYfaDc8BpQC9A5OXZzMUAsCeca8Y7uBRi8CIp-gxW1e7fsLZP

Input Output Bidirectional
7

148

I2C BERT [359]

• Author: Darryl Miles
• Description: I2C Bit Error Rate Test
• GitHub repository
• HDL project
• Mux address: 359
• Extra docs
• Clock: 10000000 Hz

How it works

Documentation is up with asciidoc on https://github.com/dlmiles/tt05-i2c-bert
Issue synchronous reset, ensure interface inputs are set to zero. Power-on-reset config-
uration is possible via the input pins, see documentation.
This design is an I2C peripheral that implements an 8-bit ALU over I2C. The purpose of
the ALU is to allow pattern testing to occur and read back the accumulated result.
There are a few clocking modes, the default uses SCL pin as per the standard.
Connection to I2C interface:

• uio2 = SDA (should be direct to RP2040 pin with capable mode)
• uio[3] = SCL (shouid be direct to RP2040 pin with capable mode)

When in open-drain mode the standard pull-up resistor is in the order of 4k7 to 10k
and no more than 400pF capacitance on lines. Higher speeds my require attention to
those metrics for your setup. The project is peripheral only and does not drive SCL.
So open-drain or push-pull can be used by the controller no matter the mode setup in
this project.
Power-on-reset configuration (set all zero for standard mode):

• ui_in1 sets CLOCKMUX to use divider
• ui_in2 sets PUSHPULL I2C bus mode (by default open-drain is in use)
• ui_in[3] activates DIV12 divider setup on reset (default is 10Mhz for 10Khz)
• {uio_in[7:0], ui_in[7:4]} is the DIV12 value to use

The design is based around a high-speed clock, at default speed of 10MHz.
Other than the default divider setup for CLOCKMUX mode there is no restriction upon
the system clock used, other than trying to operate at low ratios of system-clock:SCL.
The design has been simulated from “3:1” upto 1000000:1. Maybe lower than 3:1 is
possible.

149

https://github.com/dlmiles/ttihp0p2-i2c-bert
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

How to test

RP2040 code is expected to be provided to conduct testing based on simulation expec-
tations.

External hardware

I2C Controller/RP2040

Pinout

Input Output Bidirectional
0 i2cSampleDivisor bit0 segment a
1 i2cSampleDivisor bit1 segment b
2 segment c I2C SCL (bidi) old
3 segment d I2C SDA (bidi)
4 segment e I2C SCL (bidi) new
5 segment f
6 segment g
7 7seg or accm dot powerOnSense (out)

150

Collatz conjecture brute-forcer [361]

• Author: Vytautas Šaltenis
• Description: Runs a Collatz sequence calculation for a given number
• GitHub repository
• HDL project
• Mux address: 361
• Extra docs
• Clock: 0 Hz

How it works

The module takes a (large) integer number N as an input and computes the Collatz
sequence until it reaches 1. When it does, it allows reading back two numbers:

1) The orbit length (i.e. the number of steps it took to reach 1)
2) The highest recorded value of the upper 16 bits of the 144-bit internal iterator

The latter number is an indicator for good candidates for computing path records. The
non-zero upper bits indicate that the highest iterator value Mx(N) is in the range of
the previous path records and should be recomputed in the full offline. (Holding on to
the entire 144 bits of Mx(N) number would be more obvious, but this almost doubles
the footprint of the design, hence, this optimisation).

How to test

The module can be in 2 states: IO and COMPUTE. After reset, the chip will be in IO
mode. Since the input is intended to be much larger than the available pins, the input
number is uploaded one byte at a time, increasing the address of where in the internal
144-bit-wide register that byte should be stored.
Same for reading the output, except that the output numbers are limited to 16-bits
each, so it takes much fewer operations to read them.
The full loop of computations works like this:

1) Set input (see below)
2) Pull start compute pin to high. The chip will start computations and will pull

compute busy indicator pin to high
3) Keep reading compute busy indicator pin until it gets low again
4) Read the output (see below)

Writing input:

151

https://github.com/rtfb/ttihp-collatz-rev1
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

1) Set write enable pin to low
2) Wait at least one cycle
3) Expose your input byte to input0-7
4) Expose the target address for that byte to address0-4
5) Wait at least one cycle
6) Set write enable pin to high

Reading output:

1) Set orbit/max select pin to low
2) Set address0-4 to 0
3) Read low byte of orbit length from output0-7
4) Set address0-4 to 1
5) Read high byte of orbit length from output0-7
6) Set orbit/max select pin to high
7) Repeat steps 2-5 to read the upper Mx(N) bits

Pinout

Input Output Bidirectional
0 input0 output0 address0
1 input1 output1 address1
2 input2 output2 address2
3 input3 output3 address3
4 input4 output4 address4
5 input5 output5 orbit/max select
6 input6 output6 start compute
7 input7 output7 write enable or compute

busy indicator

152

Power gating test (1x2) [363]

• Author: htfab
• Description: Placeholder for a power gated test design (preliminary work on

supporting power gated designs on later IHP shuttles)
• GitHub repository
• HDL project
• Mux address: 363
• Extra docs
• Clock: 0 Hz

How it works

To be filled later

How to test

To be filled later

External hardware

None

Pinout

Input Output Bidirectional
0 TODO TODO
1
2
3
4
5
6
7

153

https://github.com/htfab/ttihp0p2-pg-1x2

Goldcrest RISC-V [394]

• Author: Felix Roithmayr, Lucas Klemmer, Daniel Große
• Description: A microcoded RISC-V based on SUBLEQ
• GitHub repository
• HDL project
• Mux address: 394
• Extra docs
• Clock: 20000000 Hz

How it works

A Microcoded RISC-V processor, based on subleq.

How to test

Can’t test it yet, they will follow soon.

External hardware

Two SPI memory chips, one for ROM one for RAM, as well as a UART output, 4 GPIO
input pins, 4 GPIO output pins and support for 3 further SPI devices.

Pinout

Input Output Bidirectional
0 UART rx UART tx Other SPI MOSI
1 External SPI

ROM MISO
External SPI
ROM SCK

Other SPI CS1

2 External SPI
RAM MISO

External SPI
ROM MOSI

Other SPI CS2

3 Other SPI
MISO

External SPI
ROM CS

Other SPI CS3

4 GPIO in 0 External SPI
RAM SCK

GPIO out 0

5 GPIO in 1 External SPI
RAM MOSI

GPIO out 1

154

https://github.com/ics-jku/ttihp-goldcrest

Input Output Bidirectional
6 GPIO in 2 External SPI

RAM CS
GPIO out 2

7 GPIO in 3 Other SPI
SCK

GPIO out 3

155

Transmit UART [417]

• Author: Tom Keddie
• Description: Simple UART transmitting strings
• GitHub repository
• HDL project
• Mux address: 417
• Extra docs
• Clock: 115200 Hz

How it works

The clock is used to generate and async serial stream from a fixed set of strings.

How to test

Apply a clock to match the desired baud rate and hook one of the active outputs to
an async serial input.

External hardware

Aync serial port on a system to read the data

Pinout

Input Output Bidirectional
0 UART 0 output
1 UART 1 output
2 UART 2 output
3 UART 3 output
4
5
6
7

156

https://github.com/TomKeddie/tinytapeout-2024-ihp0p2b

DJ8 8-bit CPU [419]

• Author: DaveX
• Description: DJ8 8-bit CPU with parallel Flash / RAM interface
• GitHub repository
• HDL project
• Mux address: 419
• Extra docs
• Clock: 13760000 Hz

How it works

DJ8 is a 8-bit CPU featuring:

• 8 x 8-bit register file
• 3-4 cycles per instruction
• 15-bit external address bus
• 8-bit external data bus
• Built-in 256-bytes demo ROM with 2 demos

Thanks to its external parallel bus, it could be connected to parallel flash or RAM and
can run at full speed without (de)serialization overhead.
Sample assembly code could be found in test bench and demo ROM.
Previous implementations:

• TT07 DJ8 8-bit CPU w/ DAC - Verilog, Mixed-signal, 8-bit DAC
• TT06 DJ8 8-bit CPU - VHDL

Memory Map

From To Description
0x0000 0x7fff External memory
0x8000 0xffff Internal Test ROM (256 bytes, mirrored)

External memory map if using the recommended setup (see pinout)

From To Description
0x2000 0x3fff External RAM (32 bytes)
0x4000 0x5fff External Flash ROM (16KB)

157

https://github.com/dvxf/ttiph0p2-dj8v
../test/test.py
../src/project.v
https://github.com/dvxf/tt07-dj8v-dac
https://github.com/dvxf/tt06-dj8

Registers There are 8 general purposes 8-bit registers (A,B,C,D,E,F,G,H), two flag
registers (CF, ZF), and 16-bit PC.
For memory addressing, 16-bit combined registers EF and GH are used.
At reset time, PC is set to 0x4000. All other registers are set to 0x80.

Instruction Set For future compatibility, please set the don’t care bits (?) to 0.

ALU reg, imm8: Immediate ALU operation

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 A A A D D D I I I I I I I I

• A : ALU operation

– 000: ADD: reg = reg + imm8
– 001: ADC: reg = reg + imm8 + CF
– 010: SUBC: reg = reg - (imm8 + CF)
– 011: MOVR: reg = reg
– 100: XOR: reg = reg ^ imm8
– 101: OR: reg = reg | imm8
– 110: AND: reg = reg & imm8
– 111: MOVI: reg = imm8

• D : register
• I : imm8

ALU dest, src, A {,shift}: ALU operation with src register & register A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 A A A D D D S S S ? F F 0 0

• A : ALU operation

– 000: ADD: dest = src + A
– 001: ADC: dest = src + A + CF
– 010: SUBC: dest = src - (A + CF)
– 011: MOVR: dest = src
– 100: XOR: dest = src ^ A

158

– 101: OR: dest = src | A
– 110: AND: dest = src & A
– 111: MOVI: dest = A

• D : dest register
• S : src register
• F : final shift operation

– 00: No shift
– 01: Shift right logical (shr)
– 10: Shift right arithmetic (sar)

ALU dest, [mem], A {,shift}: ALU operation with memory & register A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 A A A D D D ? ? ? M F F 1 0

• A : ALU operation

– 000: ADD: dest = [mem] + A
– 001: ADC: dest = [mem] + A + CF
– 010: SUBC: dest = [mem] - (A + CF)
– 011: MOVR: dest = [mem]
– 100: XOR: dest = [mem] ^ A
– 101: OR: dest = [mem] | A
– 110: AND: dest = [mem] & A
– 111: MOVI: dest = A

• D : dest register
• M: memory mode

– 0: [GH]
– 1: [EF]

• F : final shift operation

– 00: No shift
– 01: Shift right logical (shr)
– 10: Shift right arithmetic (sar)

MOVR [mem], reg: Store content of register in memory

159

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 0 1 1 D D D ? ? ? M ? ? 0 1

• D: register
• M: memory mode

– 0: [GH]
– 1: [EF]

Jxx imm12: Conditional or unconditional jump to absolute address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 J J I I I I I I I I I I I I

• J: jmpcode

– 01: Jump if zero (JZ)
– 10: Jump if not zero (JNZ)
– 11: Unconditional jump (JMP)

• I: imm12

– PC = (PC & 0xe000) | (imm12 « 1)

JMP GH: Unconditional jump to address GH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Pinout Due to TTIHP IO constraints, pins are shared between Address bus LSB and
Data bus OUT. It means that during memory write instructions, the address space is
only 128 bytes.

Pins Standard mode During memory write execute+writeback cycles
ui[7..0] Data bus IN Data bus IN
uio[7..0] Address bus LSB (7..0) Data bus OUT
uo[6..0] Address bus MSB (14..8) Address bus MSB (14..8)
uo[7] Write Enable Write Enable

160

You can connect a 8KB parallel Flash ROM + 32b SRAM without external logic and
use uo[6] for RAM OE# and uo[5] for Flash ROM OE#.
To get a bidirectional data bus (needed for SRAM), uio bus must be connected to ui
bus with resistors. To be tested!

How to test

An internal test ROM with two demos is included for easy testing. Just select the
corresponding DIP switches at reset time to start the demo (technically, a jmp GH
instruction will be seen on the data bus thanks to the DIP switches values, with
GH=0x8080 at reset).

Demo 1: Rotating LED indicator

SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8
0 0 0 0 0 0 1 0

No external hardware needed. This demo shows a rotating indicator on the 7-segment
display. Its speed can be changed with DIP switches, the internal delay loop is entirely
deactivated when all switches are reset.

Demo 2: Bytebeat Synthetizer

SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8
0 0 0 0 0 1 1 0

Modem handshakes sound like music to your hears? It’s your lucky day! Become a
bit-crunching DJ thanks to 256 lo-fi glitchy settings.
Connect a speaker to uo[4] or use Tiny Tapeout Simon Says PMOD. Play with the
DIP switches to change the loop settings.

161

https://github.com/urish/tt-simon-pmod

It is highly recommended to add a simple low-pass RC filter on the speaker line to
filter out the buzzing 8kHz carrier. Ideal cut-off frequency between 3kHz and 8kHz,
TBD.
Set SW1 and/or SW2 at reset time to adjust speed in case the design doesn’t run at
14MHz.

External hardware

• No external hardware for Demo 1
• Speaker for Demo 2
• Otherwise: Parallel Flash ROM + optional SRAM

Pinout

Input Output Bidirectional
0 data in 0 address out 8 address out 0 / data out 0
1 data in 1 address out 9 address out 1 / data out 1
2 data in 2 address out 10 address out 2 / data out 2
3 data in 3 address out 11 address out 3 / data out 3
4 data in 4 address out 12 address out 4 / data out 4
5 data in 5 address out 13 address out 5 / data out 5
6 data in 6 address out 14 address out 6 / data out 6
7 data in 7 write enable address out 7 / data out 7

162

PILIPINASLASALLE [421]

• Author: Alexander Co Abad and Dino Dominic Ligutan
• Description: 7-seg Display for PILIPINASLASALLE
• GitHub repository
• HDL project
• Mux address: 421
• Extra docs
• Clock: 0 Hz

How it works

Based from https://wokwi.com/projects/341279123277087315
On power-up, the 7-segment display should display the text PILIPINASLASALLE one
at a time per clock cycle. The “dp” output toggles every clock cycle.

How to test

Default mode: Set the clock input to a low frequency such as 1 Hz to see the text
transition per clock cycle.
Manual mode: Set the input pin 7 to HIGH and toggle input pins 0-3. The character
displayed for each input combination should be according to the table above.

External hardware

7-segment display

Pinout

Input Output Bidirectional
0 BCD Bit 3 (A) segment a
1 BCD Bit 2 (A) segment b
2 BCD Bit 1 (A) segment c
3 BCD Bit 0 (A) segment d
4 segment e
5 segment f
6 segment g

163

https://github.com/alexandercoabad/PILIPINASLASALLE

Input Output Bidirectional
7 Manual Input Mode segment dp

164

RLE Video Player [423]

• Author: Mike Bell
• Description: Reads run length encoded data from QSPI flash, displays on VGA
• GitHub repository
• HDL project
• Mux address: 423
• Extra docs
• Clock: 25175000 Hz

How it works

A 6bpp run length encoded image or video is read from a W25Q128JV or similar QSPI
flash, and output to 640x480 VGA.
This is perfect for displaying the Bad Apple music video.

Figure 31: A frame from Bad Apple, rendered by the FPGA version of this design

Run Length Encoding The encoding uses 16-bit words. Most words are a run
length in the top 10 bits, and a colour in the bottom 6 bits. A run must come to the
end at the end of each row.

165

https://github.com/MichaelBell/ttihp-rle-vga

A row can be repeated by encoding a word 0xF800 + number of repeats at the end
of a row.
A run must be at least 2 pixels, and any group of 3 consecutive runs within a row must
be at least 24 pixels, otherwise the data buffer will empty. This could definitely be
improved!
If input 3 is high, each frame is repeated once, so playback is 30Hz instead of 60Hz.
The data is read starting at address 0. The special word 0xFFC0 causes the player
to stop and restart from address 0 at the beginning of the next frame, restarting the
video. This could also be used to display a still image.

How to test

Create a RLE binary file (docs/scripts to do this TBD) and load onto the flash. The
pinout matches the QSPI PMOD. Connect that to the bidi pins. Note the flash must
support the h6B Fast Read Quad Output command, with 8 dummy cycles between
address and data.
Connect the Tiny VGA PMOD to the output pins.
Inputs 2-0 set the read latency for the SPI in half clock cycles, it’s likely that will need
to be set to 2 (set input 1 high and inputs 0 and 2 low). This latency depends on the
total round trip time through the mux and out to the flash and back. Valid values are
1 to 4.
Run with a 25MHz clock (or ideally 25.175MHz).

External hardware

• QSPI PMOD
• Tiny VGA PMOD

Pinout

Input Output Bidirectional
0 SPI latency[0] R1 CS
1 SPI latency1 G1 SD0
2 SPI latency2 B1 SD1
3 30Hz select vsync SCK
4 R[0] SD2

166

https://github.com/mole99/qspi-pmod
https://github.com/mole99/tiny-vga
https://github.com/mole99/qspi-pmod
https://github.com/mole99/tiny-vga
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture

Input Output Bidirectional
5 G[0] SD3
6 B[0] Unused CS
7 hsync Unused CS

167

VGA Experiments in Tennis [425]

• Author: Tom Keddie
• Description: Simple Game
• GitHub repository
• HDL project
• Mux address: 425
• Extra docs
• Clock: 25175000 Hz

How it works

VGA game using paddles attached to input.

How to test

Attach VGA pmod and connect to monitor. Use the inputs to move the paddles

External Hardware

Digilent VGA PMOD or mole99 vga pmod. Buttons to play game on in0-in3

Pinout

Input Output Bidirectional
0 left paddle up r1/r0

(mole99/digilent)
g0

1 left paddle
down

g1/r1
(mole99/digilent)

g1

2 right paddle
up

b1/r2
(mole99/digilent)

g2

3 right paddle
down

vsync/r3
(mole99/digilent)

g3

4 score reset r0/b0
(mole99/digilent)

hsync

5 Speed LSB g0/b1
(mole99/digilent)

vsync

168

https://github.com/TomKeddie/tinytapeout-2024-ihp0p2a

Input Output Bidirectional
6 Speed MSB b0/b2

(mole99/digilent)
tied low

7 pmod sel
(high=mole99,
low=digilent)

hsync/b3
(mole99/digilent)

tied low

169

Gray scale and Sobel filter [427]

• Author: Diana Natali Maldonado Ramirez
• Description: Grayscale and Sobel filter.
• GitHub repository
• HDL project
• Mux address: 427
• Extra docs
• Clock: 10000000 Hz

How it works

This project performs grayscale conversion and Sobel filtering with the aim of detecting
edges in an image.
Below is a block diagram of the implementation:

Figure 32: arc

How to test

It is necessary for the pixels to be sent via an SPI protocol; for this purpose, the input
ui_in[2:0] is designated as follows:

• ui_in[0] → SPI Clock

170

https://github.com/DianaNatali/ttihp_grayscale_sobel

• ui_in[1] → Chip Select
• ui_in[2] → Input Pixel

As shown in the previous image, there are some processing options:

1. Bypass → Returns the input pixel unprocessed.
2. Grayscale → Returns the pixel converted to grayscale, so it is recommended that

the input pixel be RGB.
3. Sobel → Returns the edge detection corresponding to the input pixel, so it is

recommended that the input pixel be grayscale.
4. Grayscale + Sobel → Returns the edge detection of the input pixel by performing

both grayscale processing and the Sobel filter, so it is recommended that the
input pixel be RGB.

To select one of the processing options, the input ui_in[4:3] is designated as fol-
lows:

• ui_in[4:3] = 00 → Grayscale + Sobel
• ui_in[4:3] = 01 → Sobel
• ui_in[4:3] = 10 → Grayscale
• ui_in[4:3] = 11 → Bypass

To perform the Sobel filter processing, it must be enabled according to the selected
processing. This can be enabled or disabled as needed through the input ui_in[5],
where 1 enables and 0 disables.
The result of the processing corresponds to the output uo_out[0].
There is also a functionality for the input to the different processing options to come
from an internal LFSR block; for this purpose, the pins uio_in[3:2] are dedicated
for input.

External hardware

Any device that allows sending and receiving data via an SPI protocol, like a Raspberry
Pi.

171

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 spi_sck_i spi_sdo_o LFSR_enable_i
1 spi_cs_i lfsr_done seed_stop_i
2 spi_sdi_i ena lfsr_en_i
3 select_process_i[0] output_px[0]
4 select_process_i1 output_px1
5 start_sobel_i output_px2
6 output_px[3]
7 output_px[4]

172

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Game of Life 8x32 (siLife) [454]

• Author: Uri Shaked
• Description: Silicon implementation of Conway’s Game of Life with LED Dot

Matrix Output
• GitHub repository
• HDL project
• Mux address: 454
• Extra docs
• Clock: 10000000 Hz

How it works

It is a silicon implementation of Conway’s Game of Life. The game is played on a 8x32
grid, and the rules are as follows:

• Any live cell with fewer than two live neighbours dies, as if by underpopulation.
• Any live cell with two or three live neighbours lives on to the next generation.
• Any live cell with more than three live neighbours dies, as if by overpopulation.
• Any dead cell with exactly three live neighbours becomes a live cell, as if by

reproduction.

How to test

Demo mode: The demo mode loads a pre-defined game into the grid and advances it
automatically. To enter the demo mode, wr_en high while reseting the design (rst_n
low). Use the pattern_sel inputs to select the desired demo pattern. Set en to 1
to automatically advance one generation every 0.4 seconds (assuming a 10MHz clock).
To pause the game, set en to 0.
Manual mode: Load the initial grid row by row. Each row is loaded by selecting the
row number (using the row_sel[4:0] inputs), setting the cell_in[7:0] inputs to
the desired state, and pulsing the wr_en input.
Once the grid is loaded, set the en input to 1 to start the game. The game will advance
one step in each clock cycle. To pause the game, set the en input to 0.
To view the current state of the grid, set the row_sel[4:0] inputs to the desired row
number, max7219_en to 0, and read the cell_out[7:0] outputs.
Alternatively, set max7129_en to 1 to display the grid on a MAX7219 LED Matrix
(FC-16 module).

173

https://github.com/urish/ttihp-silife-max

External Hardware

MAX7219 LED Matrix (FC-16 module)

Pinout

Input Output Bidirectional
0 row_sel[0] /

pattern_sel
cell_out[0] /
max7129_cs

cell_in[0]

1 row_sel1 cell_out1 /
max7129_clk

cell_in1

2 rol_sel2 cell_out2 /
max7129_din

cell_in2

3 rol_sel[3] cell_out[3] cell_in[3]
4 rol_sel[4] cell_out[4] cell_in[4]
5 max7129_en cell_out[5] cell_in[5]
6 en cell_out[6] cell_in[6]
7 wr_en cell_out[7] cell_in[7]

174

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

TinyQV Risc-V SoC [458]

• Author: Michael Bell
• Description: A Risc-V SoC for Tiny Tapeout
• GitHub repository
• HDL project
• Mux address: 458
• Extra docs
• Clock: 64000000 Hz

How it works

TinyQV is a small Risc-V SoC, implementing the RV32EC instruction set plus the Zcb
and Zicond extensions, with a couple of caveats:

• Addresses are 28-bits
• Program addresses are 24-bits
• gp is hardcoded to 0x1000400, tp is hardcoded to 0x8000000.

Instructions are read using QSPI from Flash, and a QSPI PSRAM is used for memory.
The QSPI clock and data lines are shared between the flash and the RAM, so only one
can be accessed simultaneously.
Code can only be executed from flash. Data can be read from flash and RAM, and
written to RAM.
The SoC includes a UART and an SPI controller.

Address map

Address range Device
0x0000000 - 0x0FFFFFF Flash
0x1000000 - 0x17FFFFF RAM A
0x1800000 - 0x1FFFFFF RAM B
0x8000000 - 0x8000007 GPIO
0x8000010 - 0x800001F UART
0x8000020 - 0x8000027 SPI
0x8000028 - 0x800002B PWM

GPIO

175

https://github.com/MichaelBell/ttihp-tinyQV

Register Address Description
OUT 0x8000000 (W) Control out0-7, if the

corresponding bit in SEL is high
OUT 0x8000000 (R) Reads the current state of out0-7
IN 0x8000004 (R) Reads the current state of in0-7
SEL 0x800000C (R/W) Bits 0-7 enable general purpose

output on the corresponding bit
on out0-7. Bit 8 enables PWM
output on out7, bit 9 enables
PWM output on io7.

UART

Register Address Description
DATA 0x8000010 (W) Transmits the byte
DATA 0x8000010 (R) Reads any received byte
STATUS 0x8000014 (R) Bit 0 indicates whether the UART

TX is busy, bytes should not be
written to the data register while
this bit is set. Bit 1 indicates
whether a received byte is
available to be read.

Debug UART (Transmit only)

Register Address Description
DATA 0x8000018 (W) Transmits the byte
STATUS 0x800001C (R) Bit 0 indicates whether the UART

TX is busy, bytes should not be
written to the data register while
this bit is set.

SPI

176

Register Address Description
DATA 0x8000020 (W) Transmits the byte in bits 7-0, bit

8 is set if this is the last byte of
the transaction, bit 9 controls
Data/Command on out3

DATA 0x8000020 (R) Reads the last received byte
CONFIG 0x8000024 (W) The low 2 bits set the clock

divisor for the SPI clock to
2*(value + 1), bit 2 adds half a
cycle to the read latency when set

STATUS 0x8000024 (R) Bit 0 indicates whether the SPI is
busy, bytes should not be written
or read from the data register
while this bit is set.

How to test

Load an image into flash and then select the design.
Reset the design as follows:

• Set rst_n high and then low to ensure the design sees a falling edge of rst_n. The
bidirectional IOs are all set to inputs while rst_n is low.

• Program the flash and leave flash in continuous read mode, and the PSRAMs
in QPI mode

• Drive all the QSPI CS high and set SD2:SD0 to the read latency of the QSPI
flash and PSRAM in cycles.

• Clock at least 8 times and stop with clock high
• Release all the QSPI lines
• Set rst_n high
• Set clock low
• Start clocking normally

Based on the observed latencies from tt3p5 testing, at the target 64MHz clock a read
latency of 2 or 3 is likely required. The maximum supported latency is currently 3, but
should get up to 5 to have a chance at running at faster clock speeds.
The above should all be handled by some MicroPython scripts for the RP2040 on the
TT demo PC.
Build programs using the riscv32-unknown-elf toolchain and the tinyQV-sdk, some
examples are here.

177

https://github.com/MichaelBell/tinyQV-sdk
https://github.com/MichaelBell/tinyQV-projects

External hardware

The design is intended to be used with this QSPI PMOD on the bidirectional PMOD.
This has a 16MB flash and 2 8MB RAMs.
The UART is on the correct pins to be used with the hardware UART on the RP2040
on the demo board.
The SPI controller is intended to make it easy to drive an ST7789 LCD display (more
details to be added).
It may be useful to have buttons to use on the GPIO inputs.

Pinout

Input Output Bidirectional
0 Interrupt 0 UART TX Flash CS
1 Interrupt 1 UART RTS SD0
2 SPI MISO SPI DC SD1
3 GP in3 SPI MOSI SCK
4 GP in4 SPI CS SD2
5 GP in5 SPI SCK SD3
6 GP in6 Debug UART TX RAM A CS
7 UART RX Debug signal / PWM RAM B CS / PWM

178

https://github.com/mole99/qspi-pmod

Stochastic Multiplier, Adder and Self-Multiplier [481]

• Author: Ciecen Lestari, Chih-Kuan Ho, David Parent
• Description: Multiplier, Adder and Self-Multiplier using stochastic computing
• GitHub repository
• HDL project
• Mux address: 481
• Extra docs
• Clock: 100 Hz

How it works

Figure 33: image

REFERENCES USED
General Stochastic Computing Design:
1 A. Alaghi, W. Qian, and J. P. Hayes, “The Promise and Challenge of Stochastic
Computing,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 37, no. 8,
pp. 1515–1531, Aug. 2018, doi: 10.1109/TCAD.2017.2778107.
2 B. R. Gaines, “Stochastic computing,” in Proceedings of the April 18-20, 1967, spring
joint computer conference, in AFIPS ’67 (Spring). New York, NY, USA: Association
for Computing Machinery, Apr. 1967, pp. 149–156. doi: 10.1145/1465482.1465505.

179

https://github.com/davidparent/tt_um_stochastic_math
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Figure 34: image

Figure 35: image

180

Figure 36: image

Figure 37: image

181

[3] Gross, W. J., & Gaudet, V. C. (Eds.). (2019). Stochastic Computing:
Techniques and Applications (1st ed. 2019.). Springer International Publishing.
https://doi.org/10.1007/978-3-030-03730-7
[4] Qian, W. (2011). Digital yet deliberately random: Synthesizing logical computation
on stochastic bit streams (Order No. 3466985). Available from ProQuest Dissertations
& Theses Global: The Sciences and Engineering Collection. (885872145). Retrieved
from http://search.proquest.com.libaccess.sjlibrary.org/dissertations-theses/digital-
yet-deliberately-random-synthesizing/docview/885872145/se-2
LFSR Design in Stochastic Computing:
[5] Jason H. Anderson, Yuko Hara-Azumi, and Shigeru Yamashita. 2016. Effect
of LFSR seeding, scrambling and feedback polynomial on stochastic computing
accuracy. In Proceedings of the 2016 Conference on Design, Automation &
Test in Europe (DATE ’16). EDA Consortium, San Jose, CA, USA, 1550–1555.
https://dl.acm.org/doi/abs/10.5555/2971808.2972171
Digital QIF neuron:
[6] E. J. Basham and D. W. Parent, “Compact digital implementation of a quadratic
integrate-and-fire neuron,” 2012 Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society, San Diego, CA, USA, 2012, pp. 3543-3548,
doi: 10.1109/EMBC.2012.6346731.
keywords: {Mathematical model;Clocks;Equations;Vectors;Computational model-
ing;Field programmable gate arrays;Neurons},

How to test

Input 2 repeating streams of 9 bits (+1 bit buffer) that represent the numbers to be
multiplied/added. The self multiplier only processes input from the 1st stream. Read
the serial output result, which is also 9bits (+1 bit buffer).

External hardware

ADALM2000

182

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 serial_input_1 serial_output_mul
1 serial_input_2 serial_output_add
2 serial_output_smul
3 clk_counter_reset
4
5
6
7

183

8 Bit Digital QIF [483]

• Author: David Parent
• Description: The circuit will spike when the input is positive. It will reset when

the signal exceeds a predetermined value
• GitHub repository
• HDL project
• Mux address: 483
• Extra docs
• Clock: 0 Hz

How it works

8 bit QIF

How to test

Sne in 8 bit 2’s complement positive number, read out spikes

External hardware

adlam 2000

Pinout

Input Output Bidirectional
0 B0 AS0
1 B1 S1
2 B2 S2
3 B3 S3
4 B4 S4
5 B5 S5
6 B6 S6
7 B7 S7

184

https://github.com/davidparent/ttihp-verilog-QIF

CEJMU Beers and Adders [485]

• Author: Prof. Dr.-Ing. Matthias Jung, Philipp Wetzstein, Derek Christ, Jonathan
Hager

• Description: Several projects to show in lectures. Includes a simple state-
machine, a decoder and two 24 bit adders. Refer to documentation for details

• GitHub repository
• HDL project
• Mux address: 485
• Extra docs
• Clock: 12000000 Hz

How it works

The goal of our design is to be able to show different RTL designs on a real chip in our
lectures. Therefore, an internal multiplexer selects different projects. The multiplexer
is controlled by uio_in[1:0]. The following designs can be selected:

• state machine that models a vending machine
• decoder to attach the vending machine to a coin acceptor
• 24 bit Ripple Carry Adder
• 24 bit Carry Lookahead Adder

How to test

• 00: A state machine, which models a vending machine. This state machine
outputs 1, if 1.50€ have been fed into it. Inputs are taken from ui_in[1:0] with
the following meaning: 00 = 0€ (nothing changes), 01 = 0.50€, 10 = 1€, 11
= undefined

• 01: A module that decodes pulses coming from a coin acceptor into coin ids.
The number of pulses is equivalent with the decoded id. With a second instance
of the vending machine automaton, this module makes it possible to physically
insert coins into the machine.

• 10: Ripple Carry Adder with 24 bit input and 25 bit output
• 11: Carry Lookahead Adder with 24 bit input and 25 bit output

Since we only have 8 bit input and output, an internal logic is responsible for taking
the inputs in 8 bit chunks and outputting the results in 8 bit chunks. This logic can
be used as follows:

1. Select the adder you want to use: uio_in[1:0] == 10 (RCA) or 11 (CLA)

185

https://github.com/CEJMU/tt08_cejmu

2. Reset the chip for at least one cycle
3. ui_in[7:0] should now be assigned a[23:16]
4. Wait for one cycle, repeat with a[15:8], a[7:0]
5. Repeat with b[23:16], b[15:8], b[7:0]
6. The inputs are now read into the design and will be send to the adders by

asserting uio_in2 to 1 (this is done to have a reference signal when measuring)
7. If you are ready to read the outputs, set uio_in[3] to 1 and wait one cycle
8. z[23:16] can now be read from uo_out
9. Wait one cycle, z[15:8] can now be read
10. Repeat for z[7:0]

Note that the overflows of both adders are always brought out to uio_out[7:6] to allow
measurements. A reset upon changing the design is required to ensure valid results

External hardware

No external hardware is strictly required. Since the goal of both adders is to measure
the difference in execution speed, an oscilloscope is helpful. The decoder for the coin
acceptor was designed for the HX-916

Pinout

Input Output Bidirectional
0 Multiplexed

to all designs
(refer to docu-
mentation for
details)

Multiplexed
from all
designs (refer
to documenta-
tion for
details)

Select design (input)

1 … … Select design (input)
2 … … start_calc
3 … … output_result
4 … … unused
5 … … unused
6 … … overflow bit of RCA

(output)
7 … … overflow bit of CLA

(output)

186

http://www.ericr.nl/wondrous/pathrecs.html

Classic 8-bit era Programmable Sound Generator SN76489
[487]

• Author: ReJ aka Renaldas Zioma
• Description: The SN76489 Digital Complex Sound Generator (DCSG) is a pro-

grammable sound generator chip from Texas Instruments.
• GitHub repository
• HDL project
• Mux address: 487
• Extra docs
• Clock: 4000000 Hz

How it works

This Verilog implementation is a replica of the classical SN76489 programmable sound
generator. With roughly a 1400 logic gates this design fits on a single tile of the
TinyTapeout.
The goals of this project

1. closely replicate the behavior and eventually the complete design of the orig-
inal SN76489

2. provide a readable and well documented code for educational and hardware
preservation purposes

3. leverage the modern fabrication process

A significant effort was put into a thorough test suite for regression testing and
validation against the original chip behavior.
The future work
The next step is to incorporate analog elements into the design to match the original
SN76489 - DAC for each channel and an analog OpAmp for channel summation.
Chip technical capabilities

• 3 square wave tone generators
• 1 noise generator
• 2 types of noise: white and periodic
• Capable to produce a range of waves typically from 122 Hz to 125 kHz, defined

by 10-bit registers.
• 16 different volume levels

187

https://github.com/rejunity/tt05-psg-sn76489
https://en.wikipedia.org/wiki/Texas_Instruments_SN76489

Registers The behavior of the SN76489 is defined by 8 “registers” - 4 x 4 bit volume
registers, 3 x 10 bit tone registers and 1 x 3 bit noise configuration register.

Channel Volume registers Tone & noise registers
0 Channel #0 attenuation Tone #0 frequency
1 Channel #1 attenuation Tone #1 frequency
2 Channel #2 attenuation Tone #2 frequency
3 Channel #3 attenuation Noise type and frequency

Square wave tone generators Square waves are produced by counting down the 10-
bit counters. Each time the counter reaches the 0 it is reloaded with the corresponding
value from the configuration register and the output bit of the channel is flipped
producing square waves.
Noise generator Noise is produced with 15-bit Linear-feedback Shift Register (LFSR)
that flips the output bit pseudo randomly. The shift rate of the LFSR register is
controller either by one of the 3 hardcoded power-of-two dividers or output from the
channel #2 tone generator is used.
Attenuation Each of the four SN76489 channels have dedicated attenuation modules.
The SN76489 has 16 steps of attenuation, each step is 2 dB and maximum possible
attenuation is 28 dB. Note that the attenuation definition is the opposite of volume /
loudness. Attenuation of 0 means maximum volume.
Finally, all the 4 attenuated signals are summed up and are sent to the output pin of
the chip.
Historical use of the SN76489
The SN76489 family of programmable sound generators was introduced by Texas In-
struments in 1980. Variants of the SN76489 were used in a number of home computers,
game consoles and arcade boards:

• home computers: TI-99/4, BBC Micro, IBM PCjr, Sega SC-3000, Tandy 1000
• game consoles: ColecoVision, Sega SG-1000, Sega Master System, Game Gear,

Neo Geo Pocket and Sega Genesis
• arcade machines by Sega & Konami and would usually include 2 or 4 SN76489

chips

The SN76489 chip family competed with the similar General Instrument AY-3-8910.
The original pinout of the SN76489AN

188

https://en.wikipedia.org/wiki/Linear-feedback_shift_register
https://en.wikipedia.org/wiki/TI-99/4A
https://en.wikipedia.org/wiki/BBC_Micro
https://en.wikipedia.org/wiki/IBM_PCjr
https://en.wikipedia.org/wiki/SG-1000#SC-3000
https://en.wikipedia.org/wiki/Tandy_1000
https://en.wikipedia.org/wiki/ColecoVision
https://en.wikipedia.org/wiki/SG-1000
https://en.wikipedia.org/wiki/Master_System
https://en.wikipedia.org/wiki/Game_Gear
https://en.wikipedia.org/wiki/Neo_Geo_Pocket
https://en.wikipedia.org/wiki/Sega_Genesis
https://en.wikipedia.org/wiki/General_Instrument_AY-3-8910

,--._.--.
D5 -->|1 16|<-- VCC
D6 -->|2 15|<-- D4
D7 -->|3 14|<-- CLOCK

ready* <--|4 13|<-- D3
/WE -->|5 12|<-- D2
/ce* -->|6 11|<-- D1

AUDIO OUT <--|7 10|<-- D0
GND ---|8 9| not connected*

`-------'
* -- omitted from this Verilog implementation

Difference from the original hardware
This Verilog implementation is a completely digital and synchronous design that differs
from the original SN76489 design which incorporated analog parts.
Audio signal output While the original chip had integrated OpAmp to sum generated
channels in analog fashion, this implementation does digital signal summation and
digital output. The module provides two alternative outputs for the generated audio
signal:

1. digital 8-bit audio output suitable for external Digital to Analog Converter (DAC)
2. pseudo analog output through Pulse Width Modulation (PWM)

Separate 4 channel output Outputs of all 4 channels are exposed along with the
master output. This allows to validate and mix signals externally. In contrast the
original chip was limited to a single audio output pin due to the PDIP-16 package.
No DC offset This implementation produces output 0/1 waveforms without DC
offset.
No /CE and READY pins Chip enable control pin /CE is omitted in this design for
simplicity. The behavior is the same as if /CE is tied low and the chip is considered
always enabled.
Unlike the original SN76489 which took 32 cycles to update registers, this implemen-
tation handles register writes in a single cycle and chip behaves as always READY.
Synchronous reset and single phase clock The original design employed 2 phases
of the clock for the operation of the registers. The original chip had no reset pin and
would wake up to a random state.
To make it easier to synthesize and test on FPGAs this implementation uses single
clock phase and synchronous reset for registers.
A configurable clock divider was introduced in this implementation.

189

1. the original SN76489 with the master clock internally divided by 16. This clas-
sical chip was intended for PAL and NTSC frequencies. However in BBC Micro
4 MHz clock was employed.

2. SN94624/SN76494 variants without internal clock divider. These chips were
intended for use with 250 to 500 KHz clocks.

3. high frequency clock configuration for TinyTapeout, suitable for a range between
25 MHz and 50 Mhz. In this configuration the master clock is internally divided
by 128.

The reverse engineered SN76489
This implementation is based on the results from these reverse engineering efforts:

1. Annotations and analysis of a decapped SN76489A chip.
2. Reverse engineered schematics based on a decapped VDP chip from Sega Mega

Drive which included a SN76496 variant.

How to test

Summary of commands to communicate with the chip
The SN76489 is programmed by updating its internal registers via the data bus. Be-
low is a short summary of the communication protocol of SN76489. Please consult
SN76489 Technical Manual for more information.

Command Description Parameters
1cc0ffff Set tone fine frequency f - 4 low bits, c - channel #
00ffffff Follow up with coarse

frequency
f - 6 high bits

11100bff Set noise type and frequency b - white/periodic, f - frequency control
1cc1aaaa Set channel attenuation a - 4 bit attenuation, c - channel #

NF1 NF0 Noise frequency control
0 0 Clock divided by 512
0 1 Clock divided by 1024
1 0 Clock divided by 2048
1 1 Use channel #2 tone frequency

Write to SN76489 Hold /WE low once data bus pins are set to the desired values.
Pull /WE high before setting different value on the data bus.

190

https://en.wikipedia.org/wiki/BBC_Micro
https://github.com/gchiasso/76489A-analysis
https://github.com/emu-russia/SEGAChips/tree/main/VDP/PSG
https://github.com/rejunity/tt05-psg-sn76489/blob/main/docs/SN76489AN_Manual.pdf

Note frequency
Use the following formula to calculate the 10-bit period value for a particular note :

𝑡𝑜𝑛𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑐𝑦𝑐𝑙𝑒𝑠 = 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(32𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

For example 10-bit value that plays 440 Hz note on a chip clocked at 4 MHz would
be:

𝑡𝑜𝑛𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑐𝑦𝑐𝑙𝑒𝑠 = 4000000𝐻𝑧/(32𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 440𝐻𝑧) = 284 = 11𝐶ℎ𝑒𝑥

An example to play a note accompanied with a lower volume noise

/WE D7 D6/5 D4..D0 Explanation
0 1 00 01100 Set channel #0 tone low 4-bits to 𝐶ℎ𝑒𝑥 = 1100𝑏𝑖𝑛
0 0 00 10001 Set channel #0 tone high 6-bits to

11ℎ𝑒𝑥 = 010001𝑏𝑖𝑛
0 1 00 10000 Set channel #0 volume to 100%, attenuation 4-bits

are 0𝑑𝑒𝑐 = 0000𝑏𝑖𝑛
0 1 11 00100 Set channel #3 noise type to white and divider to

512
0 1 11 11000 Set channel #3 noise volume to 50%, attenuation

4-bits are 8𝑑𝑒𝑐 = 1000𝑏𝑖𝑛

Timing diagram

CLK ____ ____ ____ ____ ____ ____
__/ `____/ `____/ `____/ `____/ `____/ `___ ...
| | | | | |
| | | | | |

/WE _ __ __ __ __ _______
`_____/ `______/ `______/ `______/ `______/ *

^
D7..D0_______ ________ ________ ________ ________ |

/10001100 00010001 10010000 11100100 11111000`|______
chan#0 chan#0 chan#0 chan#3 chan#3 |

tone=h??C =h11C atten=0 div=16 atten=8 |
h011C = 440 Hz /16 = ~1 Khz |

191

white noise |
|

noise restarts
after /WE goes high and

there was a write to noise register

Configurable clock divider
Clock divider can be controlled through SEL0 and SEL1 control pins and allows to
select between 3 chip variants.

SEL1 SEL0 Description Clock frequency
0 0 SN76489 mode, clock divided by 16 3.5 .. 4.2 MHz
1 1 —–//—– 3.5 .. 4.2 MHz
0 1 SN76494 mode, no clock divider 250 .. 500 kHZ
1 0 New mode for TT05, clock div. 128 25 .. 50 MHz

SEL1 SEL0 Formula to calculate the 10-bit tone period value for a note
0 0 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(32𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
1 1 —–//—–
0 1 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(2𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
1 0 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(256𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

Some examples of music recorded from the chip simulation

• https://www.youtube.com/watch?v=ghBGasckpSY
• https://www.youtube.com/watch?v=HXLAdA02I-w

External hardware

DAC (for ex. Digilent R2R PMOD), RC filter, amplifier, speaker.
The data bus of the SN76489 chip has to be connected to microcontroller and receive
a regular stream of commands. The SN76489 produces audio output and has to be
connected to a speaker. There are several ways how the overall schematics can be
established.
8-bit parallel output via DAC One option is to connect off the shelf data parallel
Digital to Analog Converter (DAC) for example Digilent R2R Pmod to the output pins
and route the resulting analog audio to piezo speaker or amplifier.

192

https://digilent.com/reference/pmod/pmodr2r/start

uController SN76489
,---------. ,---._.---.
| | 4 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|D0 SEL1|<-- 0
| GPIOx|----------->|D1 | ,----------.
| GPIOx|----------->|D2 OUT0|-------->|LSB |
| GPIOx|----------->|D3 OUT1|-------->| |
| GPIOx|----------->|D4 OUT2|-------->| pDAC | Headphones
| GPIOx|----------->|D5 OUT3|-------->| or | or
| GPIOx|----------->|D6 OUT4|-------->| RESISTOR | Buzzer
| GPIOx|----------->|D7 OUT5|-------->| ladder | /|
| GPIOx|----------->|/WE OUT6|-------->| | .--/ |
`---------' | OUT7|-------->|MSB |-----| |

`---------' `----------' `--` |
| `|
|

GND ---

AUDIO OUT through RC filter Another option is to use the Pulse Width Modu-
lated (PWM) AUDIO OUT pin that combines 4 channels with the Resistor-Capacitor
based low-pass filter or better the Operation Amplifier (Op-amp) & Capacitor based
integrator:

uController SN76489
,---------. ,---._.---.
| | 4 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|D0 SEL1|<-- 0
| GPIOx|----------->|D1 |
| GPIOx|----------->|D2 |
| GPIOx|----------->|D3 | C1
| GPIOx|----------->|D4 | ,----||----.
| GPIOx|----------->|D5 | | |
| GPIOx|----------->|D6 | | Op-amp | Speaker
| GPIOx|----------->|D7 AUDIO| | |X | /|
| GPIOx|----------->|/WE OUT |-----+---|-X | C2 .--/ |
`---------' `---------' | }---+---||---| |

,--|+/ `--` |
| |/ | `|
| |

GND --- GND ---

193

Separate channels through the Op-amp The third option is to externally combine
4 channels with the Operational Amplifier and low-pass filter:

uController SN76489
,---------. ,---._.---.
| | 4 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|D0 SEL1|<-- 0
| GPIOx|----------->|D1 |
| GPIOx|----------->|D2 |
| GPIOx|----------->|D3 | C1
| GPIOx|----------->|D4 | ,----||----.
| GPIOx|----------->|D5 chan0|---. | |
| GPIOx|----------->|D6 chan1|---+ | Op-amp | Speaker
| GPIOx|----------->|D7 chan2|---+ | |X | /|
| GPIOx|----------->|/WE chan3|---+--+---|-X | C2 .--/ |
`---------' `---------' | }---+---||---| |

,--|+/ `--` |
| |/ | `|
| |

GND --- GND ---

Pinout

Input Output Bidirectional
0 D0 data bus digital audio

LSB
(in) /WE write enable

1 D1 data bus digital audio (in) SEL0 clock divider
2 D2 data bus digital audio (in) SEL1 clock divider
3 D3 data bus digital audio (out) channel 0 (PWM)
4 D4 data bus digital audio (out) channel 1 (PWM)
5 D5 data bus digital audio (out) channel 2 (PWM)
6 D6 data bus digital audio (out) channel 3 (PWM)
7 D7 data bus digital audio

MSB
(out) AUDIO OUT master
(PWM)

194

MULDIV unit (8-bit signed/unsigned) [489]

• Author: Darryl Miles
• Description: Combinational Multiply and Divide Unit (signed and unsigned)
• GitHub repository
• HDL project
• Mux address: 489
• Extra docs
• Clock: 0 Hz

Background

Combinational multiply / divider unit (8bit+8bit input)
This is an updated version of the original project that was submitted and manufac-
tured in TT04 (https://github.com/dlmiles/tt04-muldiv4). The previous project was
hand crafted in Logisim-Evolution then exported as verilog and integrated into a TT04
project.
This version is the same design, extended to 8-bit wide inputs, but instead of hand
crafting the logic gates in a GUI we convert functional blocks into SpinalHDL language
constructs. Part of the purpose of this design is to understand the area and timing
changes introduced by adding more bits, then to explore alternative topologies.
The goal of the next iteration of this design maybe to introduce a FMA (Fused Mul-
tiply Add/Accumulate) function and ALU function to explore if there is some useful
composition of these functions (that might be useful in an 8bit CPU/MCU design, or
scale to something bigger). The next iteration on from this could explore how to draw
the transistors directly (instead of using standard cell library) for such an arrangement,
this may result in non-rectangular cells that interlock to improve both area density and
timing performance. Or it might go up in smoke… who knows.

How It Works

Due to the limited total IOs available at the external TT interface it is necessary to
clock the project and setup UI_IN[0] to load each of the 2 8-bit input registers.
The input side uses latches to capture, which means during the appropiate phase CLK
(high) and ADDR state, it alternatively opens/closes, the data is becomes captured
into the latches at the CLK NEGEDGE. During the whole time it is open and closed it
is providing the data into the appropiate input side of both MUL and DIV units (which
are seperate logic modules).

195

https://github.com/dlmiles/ttihp0p2-muldiv8

The result becomes immediately available (after propagation and ripple settling time)
at the outputs. While the latch it open, maybe artificially by extending duty-cycle of
CLK, you should also be able to conduct experiments on modifying input and observing
output (when in immediate result mode)
The result output is also multiplexed and has an immediate and registered mode. The
immediate mode provides a direct visibility of the MUL/DIV combintational output
and should allos timing between input and outputs to be observed. (you need to
account for address multiplex of high-low 8bit sides of result). The registered mode
capture the result in full at the time of the last ADDR and a CLK posedge. This
allows you to change the values for the input side during the next few cycles, while
the module ensures to sustain the result value of the last computation at the output.
With an appropiate pipeline interleave request and result information to achieve higher
throughput.

FIXME
FIXME please check out the original github for any enhanced documentation for this
project, potentially improved information nearer PCB+IC delivery (to customer) sched-
ule but also post-production post-physically testing results and information. I hope to
produce some kind graphs showing the timing capture and reliability to show and
demonstrate the cascade effect. This assumes I have the design correct to allow this
to happen, but there are some tricks (like extending CLK on-duty cycle when latches
are open) enough to see result capture output.
FIXME provide wavedrom diagram (MULU, MULS, DIVU, DIVS)
FIXME explain IMMediate mode and REGistered mode (to pipeline)

FIXME provide blockdiagram of functional units
// D
// MUX
// X Y registers (loaded from multiplexed D)
// OP -> res flags
// P P registers
// DEMUX
// R

FIXME explain architective difference to previous example and considerations why to
change.
FIXME explain addressing mode to allow much wider units and potentially uneven
input sizes.

196

Multiplier (signed/unsigned) Method uses Ripple Carry Array as ‘high speed multiplier’
Setup operation mode bits MULDIV=0 and OPSIGNED(unsigned=0/signed=1) Setup
A (multiplier 8-bit) * B (multiplicand 8-bit) Expect result P (product 16-bit)
Divider (signed/unsigned) Method uses Full Adder with Mux as ‘combinational
restoring array divider algorithm’. Setup operation mode bits MULDIV=1 and
OPSIGNED(unsigned=0/signed=1) Setup Dend (dividend 8-bit) / Dsor (divisor 8-bit)
Expect result Q (quotient 8-bit) with R (remainder 8-bit)
Divider has error bit indicators that take precedence over any result. If any error bit
is set then the output Q and R should be disregarded. When in multiplier mode error
bits are muted to 0. No input values can cause an overflow error so the bit is always
reset.

How to test

Please check back with the project github main page and the published docs/ directory.
There is expected to be some instructions provided around the time the TT05 chips a
received (Q4 2024).
At the time of writing receiving a physical chip (from a previous TT edition) back has
not occured, so there is no experience on the best way to test this project, so I defer
the task of writing this section to a later time.
There should be sufficient instructions here start you own journey.

External hardware

It is expect the RP2040 and a Python REPL should be sufficient test this project.

Thoughts to the future (next iteration)

uio_in[3] might moved to bit4 and DIV0/OVER combined into bit5 This would allow
the address the contigious area below. However during a test build of a MULDIV16
version it easily exceeds 1x1, as this stage looking towards making builds with permu-
tations of design/topology and method to generate GDS. So 1x1 is good to achieve
this.

197

The uio_in[3] feature wants to use registered mode to lock result when last address is
clocked in this way we can pipeline result and demonstration of what pipelining can do
to increase thoughput.
The TB is limited to the 4bit version. Ran out of time to validate registered output
and pipeline.
Encapsulate the SpinalHDL Scala netlist generation, and write a yosys JVM module
harness (a yosys C++ module that is a JVM thread/process runner, with communi-
cation interface, data/ffi API/lifecycle). Then write a yosys plugin that allows it to
directly include, use and call for generated data based on parametric details.
Consider emitting a custom cell/macro/GDS_object that yosys can call for, then emit
verilog like a regular standard cell module.
Consider modifying OpenROAD/OpenLane to incorporate generated macros directly
into other detailed routing environment then have the existing detailed routing work
around it as-is.

TODO

Fixup the original logisim schematic labels.
The input re-ordering (which made the SpinalHDL algo easier)
Relabel the P6_EXTND_EN to P7_EXTND_EN the original product index label was
a bad choice in retrospect.
Provide the SpinalHDL directory to the project with the sbt project and netlist gener-
ation code.
Fill out SpinalHDL unit testing testing.
Test support for SUPPORT_SIGNED=false (try to completely remove nets from out-
put instead of assigning constant False and letting synthesis optimize away)
Implement support for seperate SUPPORT_SIGNED for each input with 3 modes of
operation ALWAYS/NEVER/BOTH(like now using control input bit)
Implement and test support for odd-sized inputs, so the width of X and Y or DEND
and DSOR can be different sizes.
When input width can be unequal, test out the EOVERFLOW in the divider is wired
to the correct port and works in this scenarios.
Provide unit testing for common multipler sizes, obvious byte boundaries but also the
sizes common in FPGA DSP primitives.

198

Pinout

Input Output Bidirectional
0 Data0 see

docs
Result0 see
docs

Addr bit0 HI=1/lo=0 mux
of Data and Result (input
only)

1 Data1 see
docs

Result1 see
docs

2 Data2 see
docs

Result2 see
docs

3 Data3 see
docs

Result3 see
docs

Result mux regis-
tered=1/immediate=0
(input only)

4 Data4 see
docs

Result4 see
docs

DIV error overflow (output
only)

5 Data5 see
docs

Result5 see
docs

DIV error divide-by-zero
(output only)

6 Data6 see
docs

Result6 see
docs

OPSIGNED mode (input
only)

7 Data7 see
docs

Result7 see
docs

MULDIV mode (input
only)

199

IHP loopback tile with input skew measurement [491]

• Author: Darryl Miles project from Eric Smith
• Description: Count up to 10, one second at a time.
• GitHub repository
• HDL project
• Mux address: 491
• Extra docs
• Clock: 10000000 Hz

How it works

This project is based on (https://github.com/ericsmi/tt05-loopback-with-skew) but for
IHP30.

How to test

Clock the project and modiify the timing and examine FF capture reliabiliy.

External hardware

Skewable clock and data source.

Pinout

Input Output Bidirectional
0 compare bit 11 segment a second counter bit 0
1 compare bit 12 segment b second counter bit 1
2 compare bit 13 segment c second counter bit 2
3 compare bit 14 segment d second counter bit 3
4 compare bit 15 segment e second counter bit 4
5 compare bit 16 segment f second counter bit 5
6 compare bit 17 segment g second counter bit 6
7 compare bit 18 dot second counter bit 7

200

https://github.com/dlmiles/ttihp0p2-loopback-with-skew

VGA clock [513]

• Author: Matt Venn
• Description: Shows the time on a VGA screen
• GitHub repository
• HDL project
• Mux address: 513
• Extra docs
• Clock: 31500000 Hz

How it works

Races the beam! Font is pre generated and loaded into registers. 6 bit colour keeps
register count low.
Every minute the colours cycle.

How to test

Hook up a VGA monitor to the outputs and provide a clock at 31.5 MHz.
Adjust time with the inputs[2:0], and choose the type of VGA PMOD with the in-
put[3].

External hardware

VGA PMOD - you can use one of these VGA PMODs:

• https://github.com/mole99/tiny-vga
• https://github.com/TinyTapeout/tt-vga-clock-pmod

Set input[3] low to use tiny-vga and high to use vga-clock

201

https://github.com/mattvenn/tt08-vga-clock

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 adjust hours hsync / R1
1 adjust minutes vsync / G1
2 adjust seconds B0 / B1
3 PMOD type select B1 / VS
4 G0 / R0
5 G1 / G0
6 R0 / B0
7 R1 / HS

202

RGB Mixer demo [515]

• Author: Matt Venn
• Description: Zero to ASIC demo project
• GitHub repository
• HDL project
• Mux address: 515
• Extra docs
• Clock: 10000000 Hz

How it works

Debounce the inputs, drive an encoder module, and output a PWM signal for each
encoder.

How to test

Twist each encoder and the LEDs attached to the outputs should change in bright-
ness.
By setting the debug port to 0, 1 or 2, the internal value of each encoder is output on
the bidirectional outputs.

External hardware

Use 3 digital encoders attached to the first 6 inputs.

Pinout

Input Output Bidirectional
0 enc0 a pwm0 encoder bit 0
1 enc0 b pwm1 encoder bit 1
2 enc1 a pwm2 encoder bit 2
3 enc1 b encoder bit 3
4 enc2 a encoder bit 4
5 enc2 b encoder bit 5
6 debug bit 0 encoder bit 6
7 debug bit 1 encoder bit 7

203

https://github.com/mattvenn/tt08-rgb-mixer

Universal Binary to Segment Decoder [517]

• Author: Rebecca G. Bettencourt
• Description: Decodes various binary codes to various segmented displays.
• GitHub repository
• HDL project
• Mux address: 517
• Extra docs
• Clock: 0 Hz

How it works

This project is composed of four modules:

• A BCD to seven segment decoder with a wide variety of options for customizing
the appearance of digits

• An ASCII to seven segment decoder with two different “fonts”
• A dual BCD to Cistercian numeral decoder
• A BCV (binary-coded vigesimal) to Kaktovik numeral decoder

BCD to seven segment decoder

This mode converts a decimal digit in BCD to its representation on a standard seven
segment display. There are inputs that affect the display of the digits 6, 7, and 9,
and eight different options for handling out-of-range values. These inputs allow this
decoder to match the behavior of just about any other BCD to seven segment decoder,
making it universal.

204

https://github.com/RebeccaRGB/ttihp-ubcd
https://en.wikipedia.org/wiki/Cistercian_numerals
https://en.wikipedia.org/wiki/Kaktovik_numerals

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

1010 1011 1100 1101 1110 1111 1010 1011 1100 1101 1110 1111

V0=0
V1=0
V2=0

V0=1
V1=0
V2=0

V0=0
V1=1
V2=0

V0=1
V1=1
V2=0

V0=0
V1=0
V2=1

V0=1
V1=0
V2=1

V0=0
V1=1
V2=1

V0=1
V1=1
V2=1

The signals used in this mode are:

• /AL - Active low. If HIGH, outputs will be HIGH when lit. If LOW, outputs
will be LOW when lit.

• /BI - Blanking input. If LOW, all segments will be blank regardless of other
inputs, including /LT.

• /LT - Lamp test. When /BI is HIGH and /LT is LOW, all segments will be lit.
• /RBI - Ripple blanking input. If the BCD value is zero and /RBI is LOW, all

segments will be blank.
• V0, V1, V2 - Selects the output when the BCD value is out of range.
• X6 - When HIGH, the extra segment a will be lit on the digit 6.
• X7 - When HIGH, the extra segment f will be lit on the digit 7.
• X9 - When HIGH, the extra segment d will be lit on the digit 9.
• A, B, C, D - BCD input from least significant bit A to most significant bit D.
• a, b, c, d, e, f, g - Outputs for a seven segment display.
• /RBO - Ripple blanking output. HIGH when BCD value is nonzero or /RBI is

HIGH.

The pin assignments in this mode are:

Dedicated Input Dedicated Output Bidirectional
0 A Segment a Input - X6

205

Dedicated Input Dedicated Output Bidirectional
1 B Segment b Input - X7
2 C Segment c Input - X9
3 D Segment d Input - /LT
4 V0 Segment e Input - /BI
5 V1 Segment f Input - /AL
6 V2 Segment g Input - LOW
7 /RBI /RBO Input - LOW

ASCII to seven segment decoder

This mode converts an ASCII character to a representation on a standard seven segment
display. Like with the BCD decoder, there are inputs that affect the display of the digits
6, 7, and 9. There are also two choices of “font” and the option to display lowercase
letters as uppercase or as lowercase.

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

D6=0
D5=1
D4=0

D6=0
D5=1
D4=1

D6=1
D5=0
D4=0

D6=1
D5=0
D4=1

D6=1
D5=1
D4=0

D6=1
D5=1
D4=1

FS=0:

206

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

D6=0
D5=1
D4=0

D6=0
D5=1
D4=1

D6=1
D5=0
D4=0

D6=1
D5=0
D4=1

D6=1
D5=1
D4=0

D6=1
D5=1
D4=1

FS=1:

The signals used in this mode are:

• /AL - Active low. If HIGH, outputs will be HIGH when lit. If LOW, outputs
will be LOW when lit.

• /BI - Blanking input. If LOW, all segments will be blank regardless of other
inputs.

• FS - Font select. Selects one of two “fonts.”
• LC - Lower case. If LOW, lowercase letters will appear as uppercase.
• X6 - When HIGH, the extra segment a will be lit on the digit 6.
• X7 - When HIGH, the extra segment f will be lit on the digit 7.
• X9 - When HIGH, the extra segment d will be lit on the digit 9.
• D0…D6 - ASCII input from least significant bit D0 to most significant bit D6.
• a, b, c, d, e, f, g - Outputs for a seven segment display.
• /LTR - Letter. LOW when the input is a letter (A…Z or a…z).

The pin assignments in this mode are:

Dedicated Input Dedicated Output Bidirectional
0 D0 Segment a Input - X6
1 D1 Segment b Input - X7
2 D2 Segment c Input - X9
3 D3 Segment d Input - FS
4 D4 Segment e Input - /BI

207

Dedicated Input Dedicated Output Bidirectional
5 D5 Segment f Input - /AL
6 D6 Segment g Input - HIGH
7 LC /LTR Input - LOW

Dual BCD to Cistercian numeral decoder

This mode converts two decimal digits in BCD to their representations on the seg-
mented display for Cistercian numerals shown below.

UU

UU

VV
VV

W

W
X

XX

X
W

W

X

X
W

W
W

W
X

X

Y

Y

Y

Y

Z

Z

Z

The patterns produced for each input value are shown below.

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

0 1 2 3 4

1+4=5 6 1+6=7 2+6=8 1+2+6=9

1+2+3+4=10 5+6=11 3+9=12 4+9=13 3+4+7=14 3+4+8=15

Patterns as seen in top right (units) position:

The signals used in this mode are:

208

https://en.wikipedia.org/wiki/Cistercian_numerals

• /AL - Active low. If HIGH, outputs will be HIGH when lit. If LOW, outputs
will be LOW when lit.

• /BI - Blanking input. If LOW, all segments will be blank regardless of other
inputs, including /LT1 and /LT2.

• /LT1 - Lamp test for digit 1. When /BI is HIGH and /LT1 is LOW, all
segments for digit 1 will be lit.

• /LT2 - Lamp test for digit 2. When /BI is HIGH and /LT2 is LOW, all
segments for digit 2 will be lit.

• A1, B1, C1, D1 - BCD input for digit 1 from least significant bit A1 to most
significant bit D1.

• A2, B2, C2, D2 - BCD input for digit 2 from least significant bit A2 to most
significant bit D2.

• U1, V1, W1, X1, Y1 - Outputs for digit 1 on a Cistercian segmented display.
• U2, V2, W2, X2, Y2 - Outputs for digit 2 on a Cistercian segmented display.

The pin assignments in this mode are:

Dedicated Input Dedicated Output Bidirectional
0 A1 Segment U1 Output - Y1
1 B1 Segment U2 Output - Y2
2 C1 Segment V1 Input - /LT1
3 D1 Segment V2 Input - /LT2
4 A2 Segment W1 Input - /BI
5 B2 Segment W2 Input - /AL
6 C2 Segment X1 Input - LOW
7 D2 Segment X2 Input - HIGH

BCV to Kaktovik numeral decoder

This mode converts a vigesimal (base 20) digit in BCV (binary-coded vigesimal) to its
representation on the segmented display for Kaktovik numerals shown below.

a b
c
d e

f
g

h

dp

The patterns produced for each input value are shown below.

209

https://en.wikipedia.org/wiki/Kaktovik_numerals

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

In
-R
a
n
g
e

O
v
e
rf
lo
w

The signals used in this mode are:

• /AL - Active low. If HIGH, outputs will be HIGH when lit. If LOW, outputs
will be LOW when lit.

• /BI - Blanking input. If LOW, all segments will be blank regardless of other
inputs, including /LT.

• /LT - Lamp test. When /BI is HIGH and /LT is LOW, all segments will be lit.
• /RBI - Ripple blanking input. If the BCV value is zero and /RBI is LOW, all

segments will be blank.
• /VBI - Overflow blanking input. If the BCV value is out of range and /VBI is

LOW, all segments will be blank.
• A, B, C, D, E - BCV input from least significant bit A to most significant bit

E.
• a, b, c, d, e, f, g, h - Outputs for a Kaktovik segmented display.
• /RBO - Ripple blanking output. HIGH when BCV value is nonzero or /RBI is

HIGH.
• V - Overflow. HIGH when BCV value is out of range (greater than or equal to

20).

The pin assignments in this mode are:

Dedicated Input Dedicated Output Bidirectional
0 A Segment a Output - h
1 B Segment b Output - V
2 C Segment c

210

Dedicated Input Dedicated Output Bidirectional
3 D Segment d Input - /LT
4 E Segment e Input - /BI
5 Segment f Input - /AL
6 /VBI Segment g Input - HIGH
7 /RBI /RBO Input - HIGH

How to test

The test directory includes extensive tests for each of the four modules.

External hardware

For the BCD and ASCII modes, a standard seven-segment display is used.
For the Cistercian mode, a segmented display like the one below is used. There are
design files for such a display here.

UU

UU

VV
VV

W

W
X

XX

X
W

W

X

X
W

W
W

W
X

X

Y

Y

Y

Y

Z

Z

Z

For the Kaktovik mode, a segmented display like the one below is used. There are
design files for such a display here.

a b
c
d e

f
g

h

dp

211

https://github.com/RebeccaRGB/buck/tree/main/cistercian-display
https://github.com/RebeccaRGB/buck/tree/main/kaktovik-display

Pinout

Input Output Bidirectional
0 A; D0; A1; A Segment a;

U1; a
X6; X6; Y1; h

1 B; D1; B1; B Segment b;
U2; b

X7; X7; Y2; V

2 C; D2; C1; C Segment c;
V1; c

X9; X9; /LT1; -

3 D; D3; D1; D Segment d;
V2; d

/LT; FS; /LT2; /LT

4 V0; D4; A2; E Segment e;
W1; e

/BI (blanking input)

5 V1; D5; B2; - Segment f;
W2; f

/AL (active low)

6 V2; D6; C2;
/VBI

Segment g;
X1; g

M0 (mode select)

7 /RBI; LC; D2;
/RBI

/RBO; /LTR;
X2; /RBO

M1 (mode select)

212

Hardware UTF Encoder/Decoder [519]

• Author: Rebecca G. Bettencourt
• Description: Converts Unicode code points between UTF-8, UTF-16, and UTF-

32.
• GitHub repository
• HDL project
• Mux address: 519
• Extra docs
• Clock: 0 Hz

How it works

This project contains hardware logic to convert between the UTF‑8, UTF‑16, and
UTF‑32 encodings for Unicode text.
It will detect and raise an error signal on overlong encodings, out of range code point
values, and invalid byte sequences.
(You can optionally disable range checking if you wish to use the original UTF‑8 spec
that supports values up to 0x7FFFFFFF.)

Basic operation

• In the initial state, all dedicated inputs should be set HIGH.
• At any time, set /RESET (rst_n) LOW and pulse CLK to reset all inputs and

outputs to initial state.
• At any time, set /ROUT (input 0) LOW and pulse CLK to seek to the beginning

of the output.
• You can set ERRS or /PROPS (input 1) HIGH to get an error status on the

dedicated outputs.
• You can set ERRS or /PROPS (input 1) LOW to get character properties on

the dedicated outputs.
• You can set CHK (input 2) HIGH to raise an error signal when the code point

value is out of range (�0x110000).
• You can set CHK (input 2) LOW to ignore out of range code point values and

encode/decode values up to 0x7FFFFFFF.
• You can set CBE (input 3) HIGH to specify big endian order for UTF‑32 and

UTF‑16 input and output.
• You can set CBE (input 3) LOW to specify little endian order for UTF‑32 and

UTF‑16 input and output.

213

https://github.com/RebeccaRGB/ttihp-hardware-utf8

Inputting UTF‑32

1. Set READ or /WRITE (input 4) LOW.
2. Set /CIO (input 5, character I/O) LOW.
3. Set bidirectional I/O to the first byte of the UTF‑32 word and pulse CLK.
4. Set bidirectional I/O to the second byte of the UTF‑32 word and pulse CLK.
5. Set bidirectional I/O to the third byte of the UTF‑32 word and pulse CLK.
6. Set bidirectional I/O to the fourth byte of the UTF‑32 word and pulse CLK.
7. Set /CIO (input 5, character I/O) HIGH.
8. Set READ or /WRITE (input 4) HIGH.
9. If READY (output 0) is HIGH and ERROR (output 5) is LOW, the input and

output are both valid.
10. If READY (output 0) is LOW or ERROR (output 5) is HIGH, the input was out

of range (�0x110000 or, if CHK is LOW, �0x80000000).

Inputting UTF‑16

1. Set ERRS or /PROPS (input 1) LOW.
2. Set READ or /WRITE (input 4) LOW.
3. Set /UIO (input 6, UTF‑16 I/O) LOW.
4. Set bidirectional I/O to the first byte of the first UTF‑16 word and pulse CLK.
5. Set bidirectional I/O to the second byte of the first UTF‑16 word and pulse CLK.
6. If HIGHCHAR (output 3) is LOW, skip to step 9.
7. Set bidirectional I/O to the first byte of the second UTF‑16 word and pulse CLK.
8. Set bidirectional I/O to the second byte of the second UTF‑16 word and pulse

CLK.
9. Set /UIO (input 6, UTF‑16 I/O) HIGH.
10. Set READ or /WRITE (input 4) HIGH.
11. Set ERRS or /PROPS (input 1) HIGH.
12. If READY (output 0) is HIGH and ERROR (output 5) is LOW, the input and

output are both valid.
13. If RETRY (output 1) is HIGH, the first word was a high surrogate but the second

word was not a low surrogate. The output will be the high surrogate only; the
last word will need to be processed again.

Inputting UTF‑8

1. Set READ or /WRITE (input 4) LOW.
2. Set /BIO (input 7, byte I/O) LOW.
3. Set bidirectional I/O to the current byte of the UTF‑8 sequence and pulse CLK.

214

4. Repeat step 3 until READY (output 0) or ERROR (output 5) is HIGH.
5. If READY (output 0) is HIGH and ERROR (output 5) is LOW, the input and

output are both valid.
6. If RETRY (output 1) is HIGH, the UTF‑8 sequence was truncated (not enough

continuation bytes). The output will be the truncated sequence only; the last
byte will need to be processed again.

7. If INVALID (output 2) is HIGH, the UTF‑8 sequence was a single continuation
byte or invalid byte (0xFE or 0xFF).

8. If OVERLONG (output 3) is HIGH, the UTF‑8 sequence was an overlong encod-
ing.

9. If NONUNI (output 4) is HIGH, the UTF‑8 sequence was out of range
(�0x110000).

Outputting UTF‑32

1. Set READ or /WRITE (input 4) HIGH.
2. Set /CIO (input 5, character I/O) LOW.
3. Pulse CLK and read the first byte of the UTF‑32 word from the bidirectional

I/O.
4. Pulse CLK and read the second byte of the UTF‑32 word from the bidirectional

I/O.
5. Pulse CLK and read the third byte of the UTF‑32 word from the bidirectional

I/O.
6. Pulse CLK and read the fourth byte of the UTF‑32 word from the bidirectional

I/O.
7. Set /CIO (input 5, character I/O) HIGH.
8. If the UTF‑32 word is within range, the input and output are both valid.
9. If the UTF‑32 word is not within range, then the input was either incomplete or

invalid.

Outputting UTF‑16

1. Set READ or /WRITE (input 4) HIGH.
2. If UEOF (output 6) is HIGH, then the input was either incomplete or invalid.
3. Set /UIO (input 6, UTF‑16 I/O) LOW.
4. Pulse CLK and read the next byte of the UTF‑16 sequence from the bidirectional

I/O.
5. Repeat step 4 until UEOF (output 6) is HIGH.
6. Set /UIO (input 6, UTF‑16 I/O) HIGH.

215

Outputting UTF‑8

1. Set READ or /WRITE (input 4) HIGH.
2. If BEOF (output 7) is HIGH, then the input was either incomplete or invalid.
3. Set /BIO (input 7, byte I/O) LOW.
4. Pulse CLK and read the next byte of the UTF‑8 sequence from the bidirectional

I/O.
5. Repeat step 4 until BEOF (output 7) is HIGH.
6. Set /BIO (input 7, byte I/O) HIGH.

Error status

When ERRS or /PROPS (input 1) is HIGH, the dedicated outputs will be:

Name Meaning
0 READY The input and output are complete

sequences.
1 RETRY The previous input was invalid or the

start of another sequence and was
ignored. Process the output, reset,
and try the previous input again.

2 INVALID The input and output are invalid.
3 OVERLONG The UTF‑8 input was an overlong

sequence.
4 NONUNI The code point value is out of range

(�0x110000). (This is set
independently of the CHK input; the
CHK input only changes whether this
counts as an error.)

5 ERROR Equivalent to (RETRY or INVALID or
OVERLONG or (NONUNI and CHK)).

If all of these outputs are LOW, the accumulated input is incomplete and more input
is required (underflow).

Character properties

When ERRS or /PROPS (input 1) is LOW, the dedicated outputs will be:

216

Name Meaning
0 NORMAL The code point value is valid and not

a C0 or C1 control character,
surrogate, private use character, or
noncharacter.

1 CONTROL The code point value is valid and a C0
or C1 control character (0x00-0x1F or
0x7F-0x9F).

2 SURROGATE The code point value is valid and a
UTF‑16 surrogate (0xD800-0xDFFF).

3 HIGHCHAR The code point value is valid and
either a high surrogate
(0xD800-0xDBFF) or a non-BMP
character (�0x10000).

4 PRIVATE The code point value is valid and
either a private use character
(0xE000-0xF8FF, �0xF0000) or the
high surrogate of a private use
character (0xDB80-0xDBFF).

5 NONCHAR The code point value is valid and a
noncharacter (0xFDD0-0xFDEF or the
last two code points of any plane).

If all of these outputs are LOW, there is no valid code point in the output.

How to test

The test.py file covers a comprehensive set of test cases which are listed in a separate
file to avoid bloating the TT09 manual.

External hardware

Any device that needs to process Unicode text.

Pinout

217

https://github.com/RebeccaRGB/hardware-utf8/blob/main/docs/test_cases.md
https://github.com/RebeccaRGB/hardware-utf8/blob/main/docs/test_cases.md

Input Output Bidirectional
0 /ROUT READY; NORMAL I/O LSB
1 ERRS, /PROPS RETRY; CONTROL I/O
2 CHK INVALID; SURROGATE I/O
3 CBE, /CLE OVERLONG; HIGHCHAR I/O
4 READ, /WRITE NONUNI; PRIVATE I/O
5 /CIO ERROR; NONCHAR I/O
6 /UIO UEOF I/O
7 /BIO BEOF I/O MSB

218

Simon Says memory game [521]

• Author: Uri Shaked
• Description: Repeat the sequence of colors and sounds to win the game
• GitHub repository
• HDL project
• Mux address: 521
• Extra docs
• Clock: 50000 Hz

Figure 38: Simon Says Game

How it works

Simon says is a simple electronic memory game: the user has to repeat a growing
sequence of colors. The sequence is displayed by lighting up the LEDs. Each color also
has a corresponding tone.

219

https://github.com/urish/ttihp-simon-game

In each turn, the game will play the sequence, and then wait for the user to repeat the
sequence by pressing the buttons according to the color sequence. If the user repeated
the sequence correctly, the game will play a “leveling-up” sound, add a new color at
the end of the sequence, and move to the next turn.
The game continues until the user has made a mistake. Then a game over sound is
played, and the game restarts.
Check out the online simulation at https://wokwi.com/projects/408757730664700929
(including wiring diagram).

How to test

Use a Simon Says Pmod to test the game.
Provide a 50 KHz clock input, reset the game, and enjoy!
If you don’t have the Pmod, you can still connect the hardware manually as follows:

1. Connect the four push buttons to pins btn1, btn2, btn3, and btn4. Also
connect each button to a pull down resistor.

2. Connect the LEDs to pins led1, led2, led3, and led4, matching the colors
of the buttons (so led1 and btn1 have the same color, etc.). Don’t forget
current-limiting resistors!

3. Connect the speaker to the speaker pin (optional).
4. Connect the seven segment display as follows: seg_a through sev_g to individ-

ual segments, dig1 to the common pin of the tens digit, dig2 to the common
pin of the ones digit. Set seginv according to the type of 7 segment display
you have: high for common anode, low for common cathode.

5. Reset the game, and then press any button to start it. Enjoy!

External Hardware

Simon Says Pmod or four push buttons (with pull-down resistors), four LEDs, and
optionally a speaker/buzzer and two digit 7-segment display.

Pinout

Input Output Bidirectional
0 btn1 led1 seg_a
1 btn2 led2 seg_b

220

https://github.com/urish/tt-simon-pmod
https://github.com/urish/tt-simon-pmod

Input Output Bidirectional
2 btn3 led3 seg_c
3 btn4 led4 seg_d
4 seginv speaker seg_e
5 dig1 seg_f
6 dig2 seg_g
7

221

VC 16-bit CPU [522]

• Author: Paul Campbell
• Description: VC 16-bit CPU - RISV-C cpu
• GitHub repository
• HDL project
• Mux address: 522
• Extra docs
• Clock: 0 Hz

How it works

CPU plus MMU

How to test

needs external RAM system

External hardware

external RAM

Pinout

Input Output Bidirectional
0 ReadData0 AddressData0 AddressLSB
1 ReadData1 AddressData1 WriteStrobe
2 ReadData2 AddressData2 AddressLatchHi
3 ReadData3 AddressData3 AddressLatchLo
4 ReadData4 AddressData4 unused4
5 ReadData5 AddressData5 unused5
6 ReadData6 AddressData6 unused6
7 ReadData7 AddressData7 InterruptIn

222

https://github.com/MoonbaseOtago/ttihp-vc16

Latch test [523]

• Author: htfab
• Description: Verify that $DLATCH_N can be properly techmapped
• GitHub repository
• HDL project
• Mux address: 523
• Extra docs
• Clock: 0 Hz

How it works

Provides a P latch and an N latch to test if they can be hardened correctly.

How to test

The P latch should transparently pass through P_D to P_Q when P_E is high and keep
its state when P_E is low.
The N latch should transparently pass through N_D to N_Q when N_E is low and keep
its state when N_E is high.

External hardware

None

Pinout

Input Output Bidirectional
0 p_e p_q
1 p_d n_q
2 n_e
3 n_d
4
5
6
7

223

https://github.com/htfab/ttihp0p2-latchtest

Classic 8-bit era Programmable Sound Generator AY-3-8913
[544]

• Author: ReJ aka Renaldas Zioma
• Description: The AY-3-8913 is a 3-voice programmable sound generator (PSG)

chip from General Instruments. The AY-3-8913 is a smaller variant of AY-3-8910
or its analog YM2149.

• GitHub repository
• HDL project
• Mux address: 544
• Extra docs
• Clock: 2000000 Hz

How it works

This Verilog implementation is a replica of the classical AY-3-8913 programmable
sound generator. With roughly a 1500 logic gates this design fits on a single tile of
the TinyTapeout.
The goals of this project

1. closely replicate the behavior and eventually the complete design of the orig-
inal AY-3-891x with builtin DACs

2. provide a readable and well documented code for educational and hardware
preservation purposes

3. leverage the modern fabrication process

A significant effort was put into a thorough test suite for regression testing and
validation against the original chip behavior.
Chip technical capabilities

• 3 square wave tone generators
• A single white noise generator
• A single envelope generator able to produce 10 different shapes
• Chip is capable to produce a range of waves from a 30 Hz to 125 kHz, defined

by 12-bit registers.
• 16 different volume levels

Registers The behavior of the AY-3-891x is defined by 14 registers.

224

https://github.com/rejunity/tt05-psg-ay8913
https://en.wikipedia.org/wiki/General_Instrument_AY-3-8910

Register Bits used Function Description
0 xxxxxxxx Channel A Tone 8-bit fine frequency
1xxxx —//— 4-bit coarse frequency
2 xxxxxxxx Channel B Tone 8-bit fine frequency
3xxxx —//— 4-bit coarse frequency
4 xxxxxxxx Channel C Tone 8-bit fine frequency
5xxxx —//— 4-bit coarse frequency
6 ...xxxxx Noise 5-bit noise frequency
7 ..CBACBA Mixer Tone and/or Noise per

channel
8 ...xxxxx Channel A Volume Envelope enable or 4-bit

amplitude
9 ...xxxxx Channel B Volume Envelope enable or 4-bit

amplitude
10 ...xxxxx Channel C Volume Envelope enable or 4-bit

amplitude
11 xxxxxxxx Envelope 8-bit fine frequency
12 xxxxxxxx —//— 8-bit coarse frequency
13xxxx Envelope Shape 4-bit shape control

Square wave tone generators Square waves are produced by counting down the
12-bit counters. Counter counts up from 0. Once the corresponsding register value is
reached, counter is reset and the output bit of the channel is flipped producing square
waves.
Noise generator Noise is produced with 17-bit Linear-feedback Shift Register (LFSR)
that flips the output bit pseudo randomly. The shift rate of the LFSR register is
controller by the 5-bit counter.
Envelope The envelope shape is controlled with 4-bit register, but can take only 10
distinct patterns. The speed of the envelope is controlled with 16-bit counter. Only a
single envelope is produced that can be shared by any combination of the channels.
Volume Each of the three AY-3-891x channels have dedicated DAC that converts 16
levels of volume to analog output. Volume levels are 3 dB apart in AY-3-891x.
Historical use of the AY-3-891x
The AY-3-891x family of programmable sound generators was introduced by General
Instrument in 1978. Soon Yamaha Corporation licensed and released a very similar
chip under YM2149 name.
Both variants of the AY-3-891x and YM2149 were broadly used in home computers,
game consoles and arcade machines in the early 80ies.

225

https://en.wikipedia.org/wiki/Linear-feedback_shift_register

• home computers: Apple II Mockingboard sound card, Amstrad CPC, Atari ST,
Oric-1, Sharp X1, MSX, ZX Spectrum 128/+2/+3

• game consoles: Intellivision, Vectrex, Amstrad GX4000
• arcade machines: Frogger, 1942, Spy Hunter and etc.

The AY-3-891x chip family competed with the similar Texas Instruments SN76489.
The original pinout of the AY-3-8913
The AY-3-8913 was a 24-pin package release of the AY-3-8910 with a number of
internal pins left simply unconnected. The goal of AY-3-8913 was to reduce complexity
for the designer and reduce the foot print on the PCB. Otherwise the functionality of
the chip is identical to AY-3-8910 and AY-3-8912.

,--._.--.
GND ---|1 24|<-- /cs*
BDIR -->|2 23|<-- a8*
BC1 -->|3 22|<-- /a9*
DA7 <->|4 21|<-- /RESET
DA6 <->|5 20|<-- CLOCK
DA5 <->|6 19|--- GND
DA4 <->|7 18|--> CHANNEL C OUT
DA3 <->|8 17|--> CHANNEL A OUT
DA2 <->|9 16| not connected
DA1 <->|10 15|--> CHANNEL B OUT
DA0 <->|11 14|<-- test*

test* <--|12 13|<-- VCC
`-------'

* -- omitted from this Verilog implementation

Difference from the original hardware
This Verilog implementation is a completely digital and synchronous design that dif-
fers from the original AY-3-8913 design which incorporated internal DACs and analog
outputs.
Audio signal output While the original chip had no summation The module provides
two alternative outputs for the generated audio signal:

1. digital 8-bit audio output suitable for external Digital to Analog Converter (DAC)
2. pseudo analog output through Pulse Width Modulation (PWM)

226

https://en.wikipedia.org/wiki/Mockingboard
https://en.wikipedia.org/wiki/Amstrad_CPC
https://en.wikipedia.org/wiki/Atari_ST
https://en.wikipedia.org/wiki/Oric
https://en.wikipedia.org/wiki/Sharp_X1
https://en.wikipedia.org/wiki/MSX
https://en.wikipedia.org/wiki/ZX_Spectrum
https://en.wikipedia.org/wiki/Intellivision
https://en.wikipedia.org/wiki/Vectrex
https://en.wikipedia.org/wiki/Amstrad_GX4000
https://www.vgmpf.com/Wiki/index.php/AY-3-8910#Games
https://en.wikipedia.org/wiki/Texas_Instruments_SN76489

Master output channel In contrast to the original chip which had only separate
channel outputs, this implementation also provides an optional summation of the chan-
nels into a single master output.
No DC offset This implementation produces output 0/1 waveforms without DC
offset.
No /A8, A9 and /CS pins The combination of /A8, A9 and /CS pins orginially
were intended to select a specific sound chip out the larger array of devices connected
to the same bus. In this implementation this mechanism is omitted for simplicity, /A8,
A9 and /CS are considered to be tied low and chip behaves as always enabled.
Synchronous reset and single phase clock The original design employed 2 phases
of the clock and asynchronous reset mechanism for operation of the registers.
To make it easier to synthesize and test on FPGAs this implementation uses single
clock phase and synchronous reset for registers.
The reverse engineered AY-3-891x
This implementation would not be possible without the reverse engineered schematics
and analysis based on decapped AY-3-8910 and AY-3-8914 chips.
Explain how your project works

How to test

Summary of commands to communicate with the chip
The AY-3-8913 is programmed by updating its internal registers via the data bus. Below
is a short summary of the communication protocol of AY-3-891x. Please consult AY-
3-891x Technical Manual for more information.

BDIR BC1 Bus state description
0 0 Bus is inactive
0 1 (Not implemented)
1 0 Write bus value to the previously latched register #
1 1 Latch bus value as the destination register #

Latch register address First, put the destination register adress on the bus of the
chip and latch it by pulling both BDIR and BC1 pins high.
Write data to register Put the desired value on the bus of the chip. Pull BC1 pin
low while keeping BDIR pin high to write the value of the bus to the latched register
address.

227

https://github.com/lvd2/ay-3-8910_reverse_engineered
https://github.com/lvd2/ay-3-8910_reverse_engineered
https://siliconpr0n.org/map/gi/ay-3-8910
https://siliconpr0n.org/map/gi/ay-3-8914
https://github.com/rejunity/tt05-psg-ay8913/blob/main/docs/AY-3-8910_Manual.pdf
https://github.com/rejunity/tt05-psg-ay8913/blob/main/docs/AY-3-8910_Manual.pdf

Inactivate bus by pulling both BDIR and BC1 pins low.

Register Format Description Parameters
0,2,4 ffffffff A/B/C tone period f - low bits
1,3,5 0000FFFF —//— F - high bits
6 000fffff Noise period f - noise period
7 00CBAcba Noise / tone per channel CBA - noise off,

cba - tone off
8,9,10 000Evvvv A/B/C volume E - envelope on,

v - volume level
11 ffffffff Envelope period f - low bits
12 FFFFFFFF —//— F - high bits
13 0000caAh Envelope Shape c - continue, a -

attack, A - alternate,
h - hold

Note frequency
Use the following formula to calculate the 12-bit period value for a particular note:

𝑡𝑜𝑛𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑐𝑦𝑐𝑙𝑒𝑠 = 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(16𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

For example 12-bit period that plays 440 Hz note on a chip clocked at 2 MHz would
be:

𝑡𝑜𝑛𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑐𝑦𝑐𝑙𝑒𝑠 = 2000000𝐻𝑧/(16𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 440𝐻𝑧) = 284 = 11𝐶ℎ𝑒𝑥

An example to play a note at a maximum volume

BDIR BC1 DA7..DA0 Explanation
1 1 xxxx0000 Latch tone A coarse register address 0 = 0000𝑏𝑖𝑛
1 0 xxxx0001 Write high 4-bits of the 440 Hz note 1 = 0001𝑏𝑖𝑛
1 1 xxxx0001 Latch tone A fine register address 1𝑑𝑒𝑐 = 0001𝑏𝑖𝑛
1 0 00011100 Write low 8-bits of the note 1𝐶ℎ𝑒𝑥 = 00011100𝑏𝑖𝑛
1 1 xxxx1000 Latch channel A volume register address 8 = 1000𝑏𝑖𝑛
1 0 xxx01111 Write maximum volume level 15𝑑𝑒𝑐 = 1111𝑏𝑖𝑛 with the

envelope disabled

228

Timing diagram

CLK ____ ____ ____ ____ ____ ____
__/ `____/ `____/ `____/ `____/ `____/ `____ ...
| | | | | |
| | | | | |

BDIR ______ ______ ______ ______ ______ ______
_/ `__/ `__/ `__/ `__/ `__/ `__

BC1 _______ _______ ________
_/ `___________/ `__________/ `___________

DA7..DA0_____ ________ ________ ________ ________ ________
_/ 0000 `/xxxx0001`/ 0001 `/00011100`/ 1000 `/xxx01111`

latch write latch write latch

Externally configurable clock divider

SEL1 SEL0 Description Clock frequency
0 0 Standard mode, clock divided by 8 1.7 .. 2.0 MHz
1 1 —–//—– 1.7 .. 2.0 MHz
0 1 New mode for TT05, no clock divider 250 .. 500 kHZ
1 0 New mode for TT05, clock div. 128 25 .. 50 MHz

SEL1 SEL0 Formula to calculate the 12-bit tone period value for a note
0 0 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(16𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
1 1 —–//—–
0 1 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(2𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
1 0 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(128𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

External hardware

The data bus of the AY-3-8913 chip has to be connected to microcontroller and receive
a regular stream of commands. The AY-3-8913 produces audio output and has to be
connected to a speaker. There are several ways how the overall schematics can be
established.

229

8-bit parallel output via DAC One option is to connect off the shelf data parallel
Digital to Analog Converter (DAC) for example Digilent R2R Pmod to the output pins
and route the resulting analog audio to piezo speaker or amplifier.

uController AY-3-8913
,---------. ,---._.---.
| | 2 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|BC1 SEL1|<-- 0
| GPIOx|----------->|BDI | ,----------.
| GPIOx|----------->|DA0 OUT0|-------->|LSB |
| GPIOx|----------->|DA1 OUT1|-------->| |
| GPIOx|----------->|DA2 OUT2|-------->| pDAC | Headphones
| GPIOx|----------->|DA3 OUT3|-------->| or | or
| GPIOx|----------->|DA4 OUT4|-------->| RESISTOR | Buzzer
GPIOx	----------->	DA5 OUT5	-------->	ladder	/	
GPIOx	----------->	DA6 OUT6	-------->		.--/	
GPIOx	----------->	DA7 OUT7	-------->	MSB	-----	
`---------' `---------' `----------' `--` |

| `|
|

GND ---

AUDIO OUT through RC filter Another option is to use the Pulse Width Modu-
lated (PWM) AUDIO OUT pin that combines 4 channels with the Resistor-Capacitor
based low-pass filter or better the Operation Amplifier (Op-amp) & Capacitor based
integrator:

uController AY-3-8913
,---------. ,---._.---.
| | 2 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|BC1 SEL1|<-- 0
GPIOx	----------->	BDIR
GPIOx	----------->	DA0
GPIOx	----------->	DA1
GPIOx	----------->	DA2
GPIOx	----------->	DA3
GPIOx	----------->	DA4
GPIOx	----------->	DA5
GPIOx	----------->	DA6 AUDIO
GPIOx	----------->	DA7 OUT
`---------' `---------' | }---+---||---| |

230

https://digilent.com/reference/pmod/pmodr2r/start

,--|+/ `--` |
| |/ | `|
| |

GND --- GND ---

Separate channels through the Op-amp The third option is to externally combine
4 channels with the Operational Amplifier and low-pass filter:

uController AY-3-8913
,---------. ,---._.---.
| | 2 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|BC1 SEL1|<-- 0
GPIOx	----------->	BDIR
GPIOx	----------->	DA0
GPIOx	----------->	DA1
GPIOx	----------->	DA2
GPIOx	----------->	DA3
GPIOx	----------->	DA4
GPIOx	----------->	DA5 A
GPIOx	----------->	DA6 B
GPIOx	----------->	DA7 C
`---------' `---------' | }---+---||---| |

,--|+/ `--` |
| |/ | `|
| |

GND --- GND ---

Pinout

Input Output Bidirectional
0 DA0 -

multiplexed
data/address
bus LSB

audio out
(PWM)

(in) BC1 bus control

1 DA1 -
multiplexed
data/address
bus

digita audio
LSB

(in) BDIR bus direction

231

Input Output Bidirectional
2 DA2 -

multiplexed
data/address
bus

digita audio (in) SEL0 clock divider

3 DA3 -
multiplexed
data/address
bus

digita audio (in) SEL1 clock divider

4 DA4 -
multiplexed
data/address
bus

digita audio (out) channel A (PWM)

5 DA5 -
multiplexed
data/address
bus

digita audio (out) channel B (PWM)

6 DA6 -
multiplexed
data/address
bus

digita audio (out) channel C (PWM)

7 DA7 -
multiplexed
data/address
bus MSB

digita audio
MSB

(out) AUDIO OUT master
(PWM)

232

VGA Scroller [545]

• Author: FavoritoHJS
• Description: Scrolls across a very pixelated cityscape
• GitHub repository
• HDL project
• Mux address: 545
• Extra docs
• Clock: 25000000 Hz

How it works

The terrain is based on an LFSR, using the deterministic randomness of one to generate
each layer of the city.

How to test

Set Clock to 25.18MHz, and use a Tiny VGA carrier board for video.

External hardware

This project requires a Tiny VGA carrier board to display video.

Pinout

Input Output Bidirectional
0 Rh
1 Gh
2 Bh
3 vsync
4 Rl
5 Gl
6 Bl
7 hsync

233

https://github.com/htfab/ttihp0p2-demo-scroller

Digital Desk Clock v2.0 [546]

• Author: Sam Ellicott
• Description: 7-Segment Digital Desk Clock for ihp Tapeout
• GitHub repository
• HDL project
• Mux address: 546
• Extra docs
• Clock: 5000000 Hz

How it works

Simple digital clock, displays hours, minutes, and seconds in either a 24h format. Since
there are not enough output pins to directly drive a 6x 7-segment displays, the data is
shifted out over SPI to a MAX7219 in 7-segment mode. The time can be set using
the hours_set and minutes_set inputs. If set_fast is high, then the the hours or
minutes will be incremented at a rate of 5Hz, otherwise it will be set at a rate of 2Hz.
Note that when setting either the minutes, rolling-over will not affect the hours setting.
If both hours_set and minutes_set are presssed at the same time the seconds will
be cleared to zero.
A block diagram of the system is shown below.

1

0

clk_gen_inst
i_clk

i_refclk

i_reset_n

o_1hz_stb

o_debounce_stb

o_fast_set_stb

o_slow_set_stb

clock_reg_inst
i_1hz_stb

i_clk

i_reset_n

i_set_hours

i_set_minutes

i_set_stb

o_hours

o_minutes

o_seconds

display_control_inst
i_1hz_stb

i_clk

i_clk_set

i_clk_set_stb

i_display_ack

i_reset_n

o_display_stb

o_write_config

display_inst
i_clk

i_dp

i_hours

i_minutes

i_reset_n

i_seconds

i_stb

i_write_config

o_ack

o_busy

o_serial_clk

o_serial_dout

o_serial_load

dp_control_inst
i_seconds

i_set_time

o_dp

input_debounce
i_clk

i_debounce_stb

i_fast_set

i_reset_n

i_set_hours

i_set_minutes

o_fast_set_db

o_set_hours_db

o_set_minutes_db

refclk_sync_inst
i_clk

i_refclk

i_reset_n

o_refclk_sync

i_reset_n

i_clk

i_refclk

i_en

i_fast_set

i_set_hours

i_set_minutes

o_serial_dout

o_serial_load

o_serial_clk

/6/

/5/

/6/

/6//6/

How to test

Apply a 5MHz clock to the clock pin and 32.786Khz signal to the refclk pin. Use the
hours_set and minutes_set pins to set the time.

234

https://github.com/sellicott/sellicott_ttihp_digital_desk_clock

External hardware

Connect the BIDIR PMOD to a MAX7219 7-segment display, For reference Tiny Tape-
out SPI

Pinout

Input Output Bidirectional
0 refclk Display CS
1 Display MOSI
2 Fast/Slow Set
3 Set Hours Display SCK
4 Set Minutes
5
6
7

235

https://tinytapeout.com/specs/pinouts/#spi
https://tinytapeout.com/specs/pinouts/#spi

Glyph Mode [547]

• Author: James Ross
• Description: Submission for VGA Demoscene
• GitHub repository
• HDL project
• Mux address: 547
• Extra docs
• Clock: 25175000 Hz

How it works

This is a standalone VGA demo that runs with or without input. It will accept two
pins ui_io[0] and ui_io[1] for palette color selection:

ui_io[1:0] Palette
0 Green (default)
1 Red
2 Blue
3 Pride

How to test

Plug into a VGA monitor and select this circuit to test

External hardware

Requires the TinyVGA PMOD

Pinout

Input Output Bidirectional
0 Palette 0 R1
1 Palette 1 G1
2 B1
3 VSync
4 R0

236

https://github.com/htfab/ttihp0p2-demo-glyph
https://github.com/mole99/tiny-vga

Input Output Bidirectional
5 G0
6 B0
7 HSync

237

Giant Ring Oscillator (3853 inverters) [548]

• Author: Uri Shaked
• Description: Configurable ring oscillator with up to 3853 inverters
• GitHub repository
• HDL project
• Mux address: 548
• Extra docs
• Clock: 0 Hz

How it works

A giant, configurable ring oscillator with up to 3853 stages. To enable the ring oscillator,
connect one of the output pins to the first input pin (ring_in / ui_in[0]). Each
output pin is connected at a different point in the ring oscillator chain, making it
possible to create rings of different lengths:

Pin Chain length
uo[0] 1
uo1 3
uo2 5
uo[3] 7
uo[4] 11
uo[5] 21
uo[6] 51
uo[7] 101
uio[0] 201
uio1 501
uio2 1001
uio[3] 2001
uio[4] 3001
uio[5] 3853

How to test

Connect one of the output pins (e.g. uio_out[5]) to ring_in, and measure the
output frequency.

238

https://github.com/urish/ttihp-giant-ring-oscillator
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

External hardware

A scope / logic analyzer to measure the output frequency and the delay between
different points in the inverter chain.

Pinout

Input Output Bidirectional
0 ring_in len1 len201
1 len3 len501
2 len5 len1001
3 len7 len2001
4 len11 len3001
5 len21 len3853
6 len51
7 len101

239

cfib Demoscene Entry [549]

• Author: Christian Fibich
• Description: Generates VGA video and PWM audio
• GitHub repository
• HDL project
• Mux address: 549
• Extra docs
• Clock: 50000000 Hz

How it works

My entry to the Tinytapeout Demoscene Competition.
It (pseudo-randomly) generates a soundtrack via PWM and displays a waveform via
VGA.

How to test

Connect VGA and PWM Pmod.
Then just apply clock and (asynchronous) reset.

External hardware

The project uses:

• Tiny VGA Pmod via uo_out[7:0] (https://github.com/mole99/tiny-vga)
• Mike’s audio Pmod via uio_out[7] (https://github.com/MichaelBell/tt-audio-

pmod)

Pinout

Input Output Bidirectional
0 r1
1 g1
2 b1
3 vsync
4 r[0]

240

https://github.com/htfab/ttihp0p2-demo-cfib
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Input Output Bidirectional
5 g[0]
6 b[0]
7 hsync pwm

241

DDR throughput and flop aperature test [550]

• Author: Darryl Miles project from Eric Smith
• Description: Grab data on every edge of clock with varying pos pulse width
• GitHub repository
• HDL project
• Mux address: 550
• Extra docs
• Clock: 0 Hz

How it works

Badly probably.
Use a positive edge detector on the clock and its compliment. Or together those
dectors to get 2 positive pulses per period or a 2x clock. Vary clk 2x pos pulse width
by varying number of inv per detect.

Figure 39: Concept Diagram

242

https://github.com/dlmiles/ttihp0p2-ddr-throughput-test

How to test

Carefully.

External hardware

Analog Discovery 3

Pinout

Input Output Bidirectional
0 pulse = 1 inv q for pulse = 1 inv
1 pulse = 3 inv q for pulse = 3 inv
2 pulse = 5 inv q for pulse = 5 inv
3 pulse = 7 inv q for pulse = 7 inv
4 q for normal flop
5 1
6 1
7 clk

243

TTIHP VGA FUN! [551]

• Author: algofoogle (Anton Maurovic) + htfab
• Description: The digital part of TT08 VGA FUN! with a simple sequencer loop
• GitHub repository
• HDL project
• Mux address: 551
• Extra docs
• Clock: 0 Hz

How it works

It’s the digital block from algofoogle’s TT08 VGA FUN! project, with a simple se-
quencer loop to make it work standalone and some dithering to simulate 8 bit output
on the 4 bit Digilent PmodVGA.

How to test

Plug it into a VGA monitor, reset the project, then sit back and enjoy.
You can also manually select the mode and bit depth if you override the sequencer by
pulling bit 7 of the input high.

External hardware

Digilent PmodVGA

Pinout

Input Output Bidirectional
0 (mode bit 0) r0 g0
1 (mode bit 1) r1 g1
2 (mode bit 2) r2 g2
3 (depth bit 0) r3 g3
4 (depth bit 1) b0 hsync
5 (depth bit 2) b1 vsync
6 (depth bit 3) b2
7 override sequencer b3

244

https://github.com/htfab/ttihp0p2-demo-vgafun
https://github.com/algofoogle/tt08-vga-fun/

Example of Bad Synchronizer [552]

• Author: Darryl Miles project from Eric Smith
• Description: Figure 29.3 from Dally & Harting
• GitHub repository
• HDL project
• Mux address: 552
• Extra docs
• Clock: 0 Hz

How it works

Badly
This project is based on (https://github.com/ericsmi/tt07-bad-synchronizer) but for
IHP130.

How to test

Align clocks, push them apart, look for bit errors

External hardware

A way to generate a clock

Pinout

Input Output Bidirectional
0 clk1 stage3[0] stage2[0]
1 stage31 stage21
2 stage32 stage22
3 stage3[3] stage2[3]
4 skew stage1[0]
5 stage11
6 stage12
7 stage1[3]

245

https://github.com/dlmiles/ttihp0p2-bad-synchronizer
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Pulse Width Counter [553]

• Author: Devin Atkin
• Description: Pulse Width Counter Accessible Over UART
• GitHub repository
• HDL project
• Mux address: 553
• Extra docs
• Clock: 50000000 Hz

How it works

Simple Test Project which counts the width of an input square wave returning the time
high, time low, and period.

How to test

This project works by counting the time high, time low, and period of the input signal.
The design can be tested by feeding in a PWM signal and reading how the output
changes.

External hardware

No external hardware is required for this proejct ot function.

Pinout

Input Output Bidirectional
0 freq_in time_hi_lo_per[0] uart_tx
1 out_sel[0] time_hi_lo_per1 uart_rx
2 out_sel1 time_hi_lo_per2 uart_tx_ready
3 out_sel2 time_hi_lo_per[3] uart_tx_valid
4 out_sel[3] time_hi_lo_per[4] uart_rx_valid
5 time_hi_lo_per[5] uart_rx_ready
6 time_hi_lo_per[6]
7 time_hi_lo_per[7]

246

https://github.com/devinatkin/ttihp-pulsewidth-counter
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Ring Oscillator (5 inverter) [555]

• Author: Darryl Miles
• Description: Ring Oscillator (5 inverter)
• GitHub repository
• HDL project
• Mux address: 555
• Extra docs
• Clock: 0 Hz

How it works

Set ui_in[0] to 1 to enable oscillator.

How to test

Measure frequency at outputs.

External hardware

Frequency counter.

Pinout

Input Output Bidirectional
0 ring enable divide-by-1 divide-by-256
1 divide-by-2 divide-by-512
2 divide-by-4 divide-by-1024
3 divide-by-8 divide-by-2048
4 divide-by-16 divide-by-4096
5 divide-by-32 divide-by-8192
6 divide-by-64 divide-by-16738
7 divide-by-128 divide-by-32768

247

https://github.com/dlmiles/ttihp0p2-ringosc-5inv

Frequency counter [577]

• Author: Matt Venn
• Description: measured frequency of a signal on pin 0 and displays on the 7

segment display
• GitHub repository
• HDL project
• Mux address: 577
• Extra docs
• Clock: 10000000 Hz

Figure 40: demo

How it works

Debounces the input signal and counts how many transistions occur in a given period.
A state machine then divides the count by ten by repeatedly subtracting ten and then
displays the tens and units on the seven segment display.

How to test

Apply a signal to the signal input and the frequency will be measured and displayed on
the seven segment. The dot is used to select between display tens and units.

248

https://github.com/mattvenn/ttihp-freq-counter

To change the count period (to get accurate counts), set it to match the clock fre-
quency: clock_mhz * 100 - 1. So for a 10MHz clock, set to 999. Set the desired
period (top 4 bits ui_in and all of uio_in) on the bidirectional inputs and toggle load
input.
To debug, enable debug mode and check the bidirectional outputs for state machine,
clock count and edge count information.

External hardware

A dual seven segment PMOD and a frequency source.

Pinout

Input Output Bidirectional
0 signal to

measure
segment a count period bit 00 or

debug state bit 0
1 debug mode segment b count period bit 01 or

debug state bit 1
2 load new

period
segment c count period bit 02 or

debug clock bit 0
3 none segment d count period bit 03 or

debug clock bit 1
4 count period

bit 11
segment e count period bit 04 or

debug clock bit 2
5 count period

bit 10
segment f count period bit 05 or

debug edge bit 0
6 count period

bit 9
segment g count period bit 06 or

debug edge bit 1
7 count period

bit 8
digit select count period bit 07 or

debug edge bit 2

249

SPI Test [579]

• Author: Harald Pretl
• Description: Simple SPI-based register file (for the testing the flow)
• GitHub repository
• HDL project
• Mux address: 579
• Extra docs
• Clock: 20000000 Hz

How it works

A simple serial 16b register (mini SPI) with magic cookie detection is implemented. In
addition, a 16bit sigma-delta modulator of 1st or 2nd order is included.
Further, a sine generator (based on a LUT) with programmable frequency can be
selected to drive the input of the DAC.

How to test

• Load the shift register in a serial way.
• Check the magic cookie detection.
• Check the digital output (low- and high-byte) of the loaded data word.
• Check the dc output voltage of the delta-sigma modulator by using an external

RC lowpass filter.
• Check the sine output of the delta-sigma modulator by using an external RC

lowpass filter.

External hardware

Just a way to set digital inputs is needed. A scope for monitoring output signals would
be good. A voltmeter can be used to inspect the DAC output voltage. If the sine
generator is used for the DAC input, a scope can be used to monitor the sine signal.

Pinout

250

https://github.com/iic-jku/ttihp0p2-um-hpretl-spi

Input Output Bidirectional
0 SPI clk

(SCLK)
SPI data out
(MISO)

register b0

1 SPI data in
(MOSI)

cookie
detected
(loaded
0xCAFE)

register b1

2 SPI load (CS) XOR of SPI
clk and SPI
data in

register b2

3 select output
byte (0 = low,
1 = high)

register b3

4 sinegen scale
factor (LSB)

register b4

5 sinegen scale
factor (MSB)

register b5

6 select
ds-modulator
input (0 =
SPI register, 1
= sine
generator)

inverted
output of
delta-sigma
modulator

register b6

7 order of
delta-sigma
modulator (0
= 1st, 1 =
2nd)

output of
delta-sigma
modulator

register b7

251

One Sprite Pony [581]

• Author: Leo Moser
• Description: This SVGA design has exactly one trick up its sleeve: it displays a

sprite!
• GitHub repository
• HDL project
• Mux address: 581
• Extra docs
• Clock: 40000000 Hz

How it works

A one-trick pony is someone or something that is good at doing only one thing. Ac-
cordingly, a one-sprite pony can display only one sprite, and that’s exactly what this
design does:
This Verilog design produces SVGA 800x600 60Hz output with a background and one
sprite. Internally, the resolution is reduced to 100x75, thus one pixel of the sprite is
actually 8x8 pixels. The design operates at a 40 MHz pixel clock.
The sprite is 12x12 pixel in size and is initialized at startup with a pixelated version of
the Tiny Tapeout logo.
An SPI receiver accepts various commands, e.g. to replace the sprite data, change the
colors or set the background.

How to test

Connect a Tiny VGA to the output Pmod connector. By default, you should see
the TinyTapeout logo moving around the screen. By sending commands over SPI via
the bidirectional Pmod you can change the sprite and the background, set the sprite
position and much more. See the longer documentation for all commands.

External hardware

Tiny VGA Pmod

Pinout

252

https://github.com/mole99/ttihp0p2-one-sprite-pony
https://github.com/mole99/tiny-vga

Input Output Bidirectional
0 SPI mode R1 CS
1 G1 MOSI
2 B1 MISO
3 VS SCK
4 R0 Vertical Pulse
5 G0 Horizontal Pulse
6 B0
7 HS

253

I2C EEPROM Project Selection [583]

• Author: Uri Shaked
• Description: Prototype for reading the selected Tiny Tapeout design address

from an I2C EEPROM
• GitHub repository
• HDL project
• Mux address: 583
• Extra docs
• Clock: 20000000 Hz

How it works

This is a prototype for automatic project selection in Tiny Tapeout. It reads the design
id from an I2C EEPROM and selects the corresponding project. The design id is stored
in the first two bytes of the EEPROM memory as a big endian 16-bit number. The
design id is then used to select the project by setting the ctrl_sel_inc signal to the
lowest 10 bits of the design id.
The project also prints the 16-bit number read from the EEPROM to the UART port
on uo_out[4] (baud rate 115200, 8N1) for debugging purposes.

How to test

You need to connect a 1 kbit or 2 kbit I2C EEPROM (e.g. 24C01 or 24C02), program
the selected Tiny Tapeout design address into the first two bytes of the EEPROM
memory, and connect the EEPROM to the SCL/SDA pins with a 10k pull-up resistor.
After connecting the EEPROM, reset the design, and and then observe the ctrl output
pins to see if the design id is correctly read from the EEPROM:

• ctrl_sel_rst_n should go low, and then high
• ctrl_sel_inc should pulse high according to the lowest 10 bits of the number

stored in the EEPROM
• ctrl_ena should go high

For more information about those signals, please refer to the Tiny Tapeout Multiplexer
documentation.

External hardware

I2C EEPROM (24C01 or 24C02) and two 10k pull-up resistors on SCL and SDA pins.

254

https://github.com/TinyTapeout/ttihp-autosel
https://github.com/TinyTapeout/tt-multiplexer/blob/main/docs/INFO.md
https://github.com/TinyTapeout/tt-multiplexer/blob/main/docs/INFO.md

Pinout

Input Output Bidirectional
0 ctrl_sel_rst_n SCL
1 ctrl_sel_inc SDA
2 ctrl_ena
3
4 uart_tx
5
6
7

255

Color Bars [585]

• Author: Rebecca G. Bettencourt
• Description: VGA demo resembling NTSC color bars
• GitHub repository
• HDL project
• Mux address: 585
• Extra docs
• Clock: 0 Hz

How it works

Displays a test pattern on the screen resembling NTSC color bars. Optionally, you can
add a station ID, make the ID scroll, and make the color bars scroll.
The colors displayed are NOT accurate to actual NTSC color bars. This cannot be
used to adjust NTSC video equipment; it’s just for fun.

Figure 41: Color bars with station ID

256

https://github.com/RebeccaRGB/ttihp-colorbars

How to test

Connect to a VGA monitor. Set the following inputs to configure the design:

• show_id (ui_in[0]) to add a station ID,
• custom_id (ui_in[1]) to use a custom ID (address on uio_out, data on

ui_in[7:4]),
• scroll_id (ui_in[2]) to make the ID scroll,
• scroll_bars (ui_in[3]) to make the color bars scroll.

External hardware

TinyVGA PMOD

Pinout

Input Output Bidirectional
0 show_id R1 A0 (custom id)
1 custom_id G1 A1 (custom id)
2 scroll_id B1 A2 (custom id)
3 scroll_bars VSync A3 (custom id)
4 D3 (custom id) R0 A4 (custom id)
5 D2 (custom id) G0 A5 (custom id)
6 D1 (custom id) B0 A6 (custom id)
7 D0 (custom id) HSync A7 (custom id)

257

https://github.com/mole99/tiny-vga

SPELL [586]

• Author: Uri Shaked
• Description: SPELL is a minimal, cryptic, stack-based programming language

crafted for The Skull CTF
• GitHub repository
• HDL project
• Mux address: 586
• Extra docs
• Clock: 10000000 Hz

How it works

SPELL is a minimal, stack-based programming language created for The Skull CTF.
The language is defined by the following cryptic piece of Arduino code:

void spell() {

uint8_t*a,pc=16,sp=0,
s[32]={0},op;while(!0){op=

EEPROM.read(pc);switch(+op){case
',':delay(s[sp-1]);sp--;break;case'>':
s[sp-1]>>=1|1;break;case'<':s[sp-1]<<=1;

break;case'=':pc=s[sp-1]-1;sp--;break;case
'@':if(s[sp-2]){s[sp-2]--;pc=s[sp-1]-1;sp+=
1;}sp-=2;break;case'&':s[sp-2]&=s[sp-1];sp-=1;
break;case'|':s[sp-2]|=s[sp-1];sp-=1;break;case

'^':s[sp-2]^=s[sp-1];sp--;break;case'+':s[sp-2]+=
s[sp-1];sp=sp-1;break;case'-':s[sp-2]-=s[sp-1];sp--;
break;case'2':s[sp]=s[sp-1];sp=sp+1;break;case'?':s[

sp-1]=EEPROM. read(s[sp-1]|0);break;case
"!!!"[0]: 666,EEPROM .write(s
[sp-1] ,s[sp-2]);sp=+
sp-02; ;break; 1;case
"Arr"[1]: s[+ sp-1]=
(char) (s[+ sp-1]);break
;case'w':* (char*)(s[+sp-1]) =s[sp-+2];
sp-=2;break;case+ 'x':s[sp] =s[sp-1

];s[sp-1]=s[sp + -2];s[sp-2]=s[
0|sp];break; ;; case"zzz"[0
]:sleep();" Arrr ";break;case

258

https://github.com/urish/ttihp-spell
https://skullctf.com
https://skullctf.com/spell

255 :return;; default:s [sp]
=+ op;sp+= 1,1 ;}pc=
+ pc + 1; %>

}

This design is an hardware implementation of SPELL with the following features:

• 256 bytes of program memory (volatile, simulates EEPROM)
• 32 bytes of stack memory
• 32 bytes of data memory
• 8 bidirectional pins and up to 8 output-only pins

Initially, all the program memory is filled with 0xFF, and the stack and data memory
are filled with 0x00. The program counter is set to 0x00, and the stack pointer is set
to 0x00.
To load a program or inspect the internal state, the design provides access to the
following registers via a simple serial interface:

Address Register name Description
0x00 PC Program counter
0x01 SP Stack pointer
0x02 EXEC Execute-in-place (write-only)
0x03 STACK Stack access (read the top value, or push a value)

The serial interface is implemented using a shift register, which is controlled by the
following signals:

Pin Type Description
reg_sel input Select the register to read/write
load input Load the selected register with the value from the shift

register
dump input Dump the selected register value to the shift register
shift_in input Serial data input
shift_out output Serial data output (when porta[3] is disabled)

When load is high, the value from the shift register is loaded into the selected register.
When dump is high, the value of the selected register is dumped into the shift register,
and can be read after two clock cycles by reading shift_out (MSB first).
For example, if you want to read the value of the program counter (PC), you would:

259

1. Set reg_sel to 0x00 and set dump to 1
2. Wait for two clock cycles for the first bit (MSB) to appear on shift_out.
3. Read the remaining bits from shift_out on each clock cycle.

To write a value to the program counter, you would:

1. Write the value to the shift register, one bit at a time, starting with the MSB.
2. Set reg_sel to 0x00 and set load to 1.
3. Wait for a single clock cycle for the value to be loaded.

Writing an opcode to the EXEC register will execute the opcode in place, without
modifying the program counter (unless the opcode is a jump instruction).
The STACK register is used to push a value onto the stack or read the top value from
the stack (for debugging purposes).

Data memory and registers The data memory space is divided into two regions:

Address range Description
0x00 - 0x1F General-purpose data storage (data memory)
0x20 - 0x5F I/O and control registers

Other addresses are reserved for future use, and should not be accessed.
The following registers are available in the data memory space:

Address Name Description
0x36 PINB Read the value of the portb pins, or toggle the output when

written to
0x37 DDRB Set the direction of the portb pins (0 = input, 1 = output)
0x38 PORTBWrite to the portb pins
0x39 PINA Toggle the output on porta pins (write only; read returns 0x00)
0x3A DDRA Enables of the porta pins (0 = disabled, 1 = output)
0x3B PORTA Write to the porta (output only) pins

For example, to toggle the value of the portb[2] (uio[2]) pin, you would write
0x04 to the PINB register.
The porta[3:0] pins are also used for debug output, and their function is determined
by the DDRA register:

260

Output pin DDRA[n] == 0 DDRA[n] == 1
0 sleep porta[0]
1 stop porta[1]
2 wait_delay porta[2]
3 shift_out porta[3]
4 0 porta[4]
5 0 porta[5]
6 0 porta[6]
7 0 porta[7]

How to test

To test SPELL, you need to load a program into the program memory and execute it.
You can load the program by repeatedly executing the following steps for each byte of
the program:

1. Write the byte to the top of the stack (using the STACK register)
2. Write the address of the byte in the program memory to top of the stack
3. Write the opcode ! to the EXEC register

After loading the program, you can execute it by writing the address of the first byte
in the program memory to the PC register, and then pulsing the run signal.

Test programs The following program will spell “SPELL” on the Tiny Tapeout
demo board’s 7-segment display: (see what we did there?)

[127, 58, 119, 0, 129, 57, 57, 244, 62, 116, 109, 50, 0, 38, 94, 59, 119, 250, 44, 0, 59, 119, 25, 44, 11, 64, 3, 61]

The program bytes should be loaded into the program memory starting at address 0.
And of course, the obligatory blink, rapidly blinking an LED connected to the uio[0]
pin:

[1, 55, 119, 1, 54, 119, 250, 44, 3, 61]

External hardware

None

261

Pinout

Input Output Bidirectional
0 run sleep/porta[0] portb[0]
1 step stop/porta1 portb1
2 load wait_delay/porta2 portb2
3 dump shift_out/porta[3] portb[3]
4 shift_in porta[4] portb[4]
5 reg_sel[0] porta[5] portb[5]
6 reg_sel1 porta[6] portb[6]
7 porta[7] portb[7]

262

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture

Crispy VGA [587]

• Author: James Meech
• Description: The scrolling VGA example from the vga playground but as you set

more inputs high it gets successively more crispy
• GitHub repository
• HDL project
• Mux address: 587
• Extra docs
• Clock: 0 Hz

How it works

This project “Crispy VGA” takes as input the output of a standard tiny tapeout VGA
project. Crispy VGA then adds a programmable amount of random noise to the VGA
signal and passes it through to the output. The uio_in[0] input sets the noise on the
hsync signal. The uio_in1 input sets the noise on the B signal. The uio_in2 input
sets the noise on the G signal. The uio_in[3] input sets the noise on the R signal.
The uio_in[4] input sets the noise on the vsync. The uio_in[5] signal sets the noise
level applied to the R, G, and B wires to high or low. The uio_in[0:5] inputs set the
succesively increasing noise levels on the audio signal.

How to test

Plug an existing tiny tapeout VGA project into the input of this design. Plug the
output of this design into a standard VGA input monitor. Power up both tiny tapeout
boards and select the appropriate control bits for the level of noise that you want to
see on the output VGA signal.

External hardware

You will need a VGA input monitor and a computer that can output a VGA signal or a
second tiny tapeout ASIC with a working VGA design that follows the standard pinout.
You will also need two tiny tapeout VGA adapters and two VGA cables.

Pinout

263

https://github.com/JamesTimothyMeech/ames-Meech-IHP-Demoscene
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
0 R1 vga input R1 vga input Crispy input bit 0 that

toggles the noise on the
hsync signal on or off.
Also adds one bit of noise
to audio.

1 G1 vga input G1 vga input Crispy input bit 1 toggles
the noise on the B signal
on or off. Also adds one
bit of noise to audio.

2 B1 vga input B1 vga input Crispy input bit 2 toggles
the noise on the G signal
on or off. Also adds one
bit of noise to audio.

3 vsync vga
input

vsync vga
input

Crispy input bit 3 toggles
the noise on the R signal
on or off. Also adds one
bit of noise to audio.

4 R[0] vga input R[0] vga input Crispy input bit 4 that
toggles the noise on the
vsync signal on or off. Also
adds one bit of noise to
audio.

5 G[0] vga input G[0] vga input Crispy input bit 5 that sets
the noise level applied to
the R, G, and B wires to
high or low. Also adds one
bit of noise to audio.

6 B[0] vga input B[0] vga input Audio input bit
7 hsync vga

input
hsync vga
input

Audio output bit

264

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Snow [608]

• Author: sylefeb
• Description: Demo on TinyTapeout? Let’s do something!
• GitHub repository
• HDL project
• Mux address: 608
• Extra docs
• Clock: 25000000 Hz

This demo is written in Silice, my HDL. Here is the actual source. Silice now fully
support TinyTapeout as a build target.

How it works

But does it work?

How to test

Plug the VGA+audio PMODs to the board and run. Maybe it works?

External hardware

See https://tinytapeout.com/competitions/demoscene/

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VS
4 R0
5 G0
6 B0
7 HS Audio

265

https://github.com/sylefeb/ttihp0p2-snow
https://github.com/sylefeb/Silice/
../src/silice/vga_demo.si

TTL Pulse Generator [609]

• Author: Adonai Cruz
• Description: Simple TTL Pulse Generator
• GitHub repository
• HDL project
• Mux address: 609
• Extra docs
• Clock: 0 Hz

How it works

This ASIC is a simple TTL pulse generator with 16 pre-programmed pulse sequences.

How to test

To test the ASIC select the desired pulse sequence using 4-bits on pins ui[0:3]. The
TTL pulse output is on pin uo[0].

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 Sequence Select bit 0 TTL output
1 Sequence Select bit 1
2 Sequence Select bit 2
3 Sequence Select bit 3
4
5
6
7

266

https://github.com/adonairc/ttihp0p2-pulse-generator

8-bit ALU based on 2x 74181 [610]

• Author: Caio Alonso da Costa
• Description: 8-bit ALU implemented with 2x 4-bit slice arithmetic logic unit

74181 with SPI interface
• GitHub repository
• HDL project
• Mux address: 610
• Extra docs
• Clock: 50000000 Hz

How it works

Replica of the famous 4-bit slice arithmetic logic unit (ALU). https://en.wikipedia.org/wiki/74181
The project instantiate two times the replica of the 74818 to perform mathematical
and logical operations on 8 bit words.
A multiplex is used to taps different parts of the user logic and map them to the 7
segment display to support debug.
Due to I/O constraints, a SPI slave peripheral has been created to load/read data into
the design.
SPI Slave peripheral implementation supports all 4 SPI modes of operation. 8 Config-
urable (Read/Write) registers. 8 Status (Read only) registers.
RP2040 SPI1 is used to communicate with the device. Map SPI1 IOs to GPIOs 24 to
27.

Limitations on SPI:

• Single register access per SPI transaction.
• SPI transaction is limited to 16 bits transfer at a time (Addr + Data). Please

refer to Protocol for timing diagrams.
• Design tested for 8 configuration registers + 8 status registers.
• Even though the number of configuration registers and status registers is config-

urable, design only supports equal number of configuration and status registers
for now.

• Writes targeting Read Only address are dropped, i.e., no configuration registers
gets updated.

267

https://github.com/calonso88/tt_ihp0p2_ALU_74181

Address Space:

Address Type of register
0 Configurable Read/Write register [0] -

Data A (8 bits)
1 Configurable Read/Write register 1 -

Data B (8 bits)
2 Configurable Read/Write register 2 -

{c_in, M, S3, S2, S1, S0} [5:0] (6 bits)
3 Configurable Read/Write register [3] -

Select for 7 segment display [2:0] (3 bits)
4 Configurable Read/Write register [4]
5 Configurable Read/Write register [5]
6 Configurable Read/Write register [6]
7 Configurable Read/Write register [7]
8 Status Read Only register [0] - Data F (8

bits)
9 Status Read Only register 1 - {c_out0,

equal0, p0, g0, c_out1, equal1, p1, g1}
[7:0] (8 bits)

10 Status Read Only register 2 - Output of
debug Multiplexer [3:0] (4 bits) and
Zeros [7:4] (4 bits)

11 Status Read Only register [3] - Output of
bin_to_7seg_decoder (8 bits)

12 Status Read Only register [4] - Fixed data
8’hC4 (8 bits)

13 Status Read Only register [5] - Fixed data
8’h10 (8 bits)

14 Status Read Only register [6] - Fixed data
8’h66 (8 bits)

15 Status Read Only register [7] - Output of
bin_to_7seg_decoder delayed by 1 clock
cycle (8 bits)

Connection

RP2040 SPI Master <–SPI–> SPI_WRAPPER <–regaccess–> User logic

• SPI: MOSI MISO SCLK CS

268

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

• regaccess: config_regs (used to drive/control user logic), status_regs (used to
read/monitor user logic)

Protocol

SPI settings
• Address Bits = 4 and Databits = 8, MSB First
• Tested SPI frequency: spi_clk <= clk / 20

SPI commands
• Write data cmd = 0x80+addr, addr = 0 ~ 7

Bit: | <15> <14> <13> <12> <11> <10> <9> <8> <7> <6> <5> <4> <3> <2> <1> <0> |
MOSI: | 1 | Don't Care | Don't Care | Don't Care | addr[3] | addr[2] | addr[1] | addr[0] | data[7] | data[6] | data[5] | data[4] | data[3] | data[2] | data[1] | data[0] |
MISO: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
CS: 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1

• Read data cmd = 0x00+addr, addr = 0 ~ 15

Bit: | <15> <14> <13> <12> <11> <10> <9> <8> <7> <6> <5> <4> <3> <2> <1> <0> |
MOSI: | 0 | Don't Care | Don't Care | Don't Care | addr[3] | addr[2] | addr[1] | addr[0] | Don't Care | Don't Care | Don't Care | Don't Care | Don't Care | Don't Care | Don't Care | Don't Care |
MISO: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | data[addr][7] | data[addr][6] | data[addr][5] | data[addr][4] | data[addr][3] | data[addr][2] | data[addr][1] | data[addr][0] |
CS: 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1

How to test

Use SPI1 Master peripheral in RP2040 to start communication on SPI interface towards
this design. Remember to configure the SPI mode using the switches in DIP switch (if
you’d like to have CPOL=1 and CPHA=1). Alternatively, don’t use the DIP switches
and use the RP2040 GPIOs to configure the SPI mode in the desired mode.

External hardware

Not required.

Pinout

269

Input Output Bidirectional
0 cpol decod_reg[0]
1 cpha decod_reg1
2 decod_reg2
3 decod_reg[3] spi_miso
4 decod_reg[4] spi_cs_n
5 decod_reg[5] spi_clk
6 decod_reg[6] spi_mosi
7 decod_reg[7]

270

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Iterative MAC [611]

• Author: Raju Machupalli
• Description: Iterative multiply and accumulation unit for ML accelerators
• GitHub repository
• HDL project
• Mux address: 611
• Extra docs
• Clock: 50000000 Hz

How it works

The design contains iterative multiplication and addition unit. The multiplier is a 7x8
bit unit. At reset time, input through ui_in pins stores in a reg and used as operand
1 for multiplier. After reset, operand 2 for multiplier is supplied through ui_in at
each clock cycle. The bidirectional pins provide operand 3 which will be added to the
multiplier output. the output is read through uo_out pins.

How to test

It’s a bit complex, as bias values are supplied in different sequences, and output needs
to change or align with the read output. Full instructions will be added here once the
design is submitted for fabrication.

External hardware

It does not require any additional hardware supply the input data using CPU.

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0] uio_in[0]
1 ui_in1 uo_out1 uio_in1
2 ui_in2 uo_out2 uio_in2
3 ui_in[3] uo_out[3] uio_in[3]
4 ui_in[4] uo_out[4] uio_in[4]
5 ui_in[5] uo_out[5] uio_in[5]
6 ui_in[6] uo_out[6] uio_in[6]

271

https://github.com/RajuMachupalli/ttihp-iterative-MAC-unit
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
7 ui_in[7] uo_out[7] uio_in[7]

272

VGA Tiny Logo (1 tile) [612]

• Author: Renaldas Zioma
• Description: Large 480x480 pixels Tiny Tapeout logo with bling and dithered

colors crammed into 1 tile!
• GitHub repository
• HDL project
• Mux address: 612
• Extra docs
• Clock: 25175000 Hz

How it works

Compressed VGA Logo

How to test

Connect to VGA monitor

External hardware

TinyVGA PMOD, VGA monitor

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VSync
4 R0
5 G0
6 B0
7 HSync

273

https://github.com/rejunity/tt08-huge-480x480-tiny-tapeout-logo-in-1-tile

TTIHP TinyVGA FUN! [613]

• Author: algofoogle (Anton Maurovic) + htfab
• Description: The digital part of TT08 VGA FUN! with a simple sequencer loop
• GitHub repository
• HDL project
• Mux address: 613
• Extra docs
• Clock: 0 Hz

How it works

It’s the digital block from algofoogle’s TT08 VGA FUN! project, with a simple se-
quencer loop to make it work standalone and some dithering to simulate 8 bit output
on the 2 bit TinyVGA Pmod.

How to test

Plug it into a VGA monitor, reset the project, then sit back and enjoy.
You can also manually select the mode and bit depth if you override the sequencer by
pulling bit 7 of the input high.

External hardware

TinyVGA Pmod

Pinout

Input Output Bidirectional
0 (mode bit 0) r1
1 (mode bit 1) g1
2 (mode bit 2) b1
3 (depth bit 0) vsync
4 (depth bit 1) r0
5 (depth bit 2) g0
6 (depth bit 3) b0
7 override sequencer hsync

274

https://github.com/htfab/ttihp0p2-demo-tinyvgafun
https://github.com/algofoogle/tt08-vga-fun/

SkyKing Demo [614]

• Author: Nicklaus Thompson
• Description: Types some text over an image of a plane flying into the sunset
• GitHub repository
• HDL project
• Mux address: 614
• Extra docs
• Clock: 25200000 Hz

How it works

The demo conststs of a static image of a passenger jet flying off into the sunset with a
text overlay at the bottom that fills in character-by-character. The text begins typing
immediately after reset, so it is likely that the entire text animation will complete
before the VGA monitor recognizes the signal. It is best to view this demo in the VGA
playground due to the timing issue. The project also includes demos to test some
oscilloscope XY display PMODs I’m working on. The demos for these PMODs are
both circles and they can be accessed by setting ui_in[0] high and using ui_in1 to
select the demo.

How to test

The demo runs automatically if all inputs are low. If ui_in[1:0] = 2’b01, an unrelated
demo for a 1-PMOD XY display driver will play. If ui_in[1:0] = 2’b11, a demo for a
2-PMOD XY display driver will play.

External hardware

The demo requires the Tiny VGA PMOD on UO. The XY demos require either a 1-
PMOD driver on UO, or a 2-PMOD driver on UO and UIO. The demo does not include
audio.

Pinout

275

https://github.com/FangameEmpire/tt08_skyking
https://en.wikipedia.org/wiki/Collatz_conjecture

Input Output Bidirectional
0 0: VGA, 1:

XY
ui[1:0] = 0 ->
HS, 1 -> Trig,
3 -> Y0

ui1 = 0 -> 1’b0, 1 -> X0

1 0: XY 1, 1:
XY 2

ui[1:0] = 0 ->
R0, 1 -> Y5,
3 -> Y2

ui1 = 0 -> 1’b0, 1 -> X2

2 ui[1:0] = 0 ->
G0, 1 -> X7,
3 -> Y4

ui1 = 0 -> 1’b0, 1 -> X4

3 ui[1:0] = 0 ->
B0, 1 -> X5,
3 -> Y6

ui1 = 0 -> 1’b0, 1 -> X6

4 ui[1:0] = 0 ->
VS, 1 -> Y6,
3 -> Y1

ui1 = 0 -> 1’b0, 1 -> X1

5 ui[1:0] = 0 ->
R1, 1 -> Y4,
3 -> Y3

ui1 = 0 -> 1’b0, 1 -> X3

6 ui[1:0] = 0 ->
G1, 1 -> X6,
3 -> Y5

ui1 = 0 -> 1’b0, 1 -> X5

7 ui[1:0] = 0 ->
B1, 1 -> X4,
3 -> Trig

ui1 = 0 -> 1’b0, 1 -> X7

276

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

One Bit PUF [615]

• Author: Yimin Gao and Ceylan Morgul
• Description: It is a PUF based on a difference of two registers
• GitHub repository
• HDL project
• Mux address: 615
• Extra docs
• Clock: 0 Hz

How it works

Figure 42: image

How to test

The output is 0 in the reset condition.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

277

https://github.com/mcmorgul/ttihp02-one-bit-puf

Pinout

Input Output Bidirectional
0 one_bit_puf output
1
2
3
4
5
6
7 start_signal

278

Cell mux [616]

• Author: htfab
• Description: All the IHP standard cells
• GitHub repository
• HDL project
• Mux address: 616
• Extra docs
• Clock: 0 Hz

How it works

To be filled later

How to test

To be filled later

External hardware

None

Pinout

Input Output Bidirectional
0 page bit 0 output bit 8*page input bit 4
1 page bit 1 output bit 8*page+1 input bit 5
2 page bit 2 output bit 8*page+2
3 page bit 3 output bit 8*page+3
4 input bit 0 output bit 8*page+4
5 input bit 1 output bit 8*page+5
6 input bit 2 output bit 8*page+6
7 input bit 3 output bit 8*page+7

279

https://github.com/htfab/ttihp0p2-cells

One Bit PUF [617]

• Author: Yimin Gao and Ceylan Morgul
• Description: It is a PUF based on a difference of two registers
• GitHub repository
• HDL project
• Mux address: 617
• Extra docs
• Clock: 0 Hz

How it works

This is a PUF design that includese 2**ADDR_BITS x OUT_BITS one_bit_pufs The
addr is the address to read OUT_bits of the PUF bits For instance if ADDR_BITS =
2, OUT_BITS = 2 The design will include 8 one_bit_pufs, addr = 2’b10 will read 2
puf bits (OUT[5:4])

Figure 43: image

How to test

The output is 0 in the reset condition.

280

https://github.com/mcmorgul/ttihp02-multi-bit-puf

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 addr[0] puf_out[0]
1 addr1 puf_out1
2 addr2 puf_out2
3 addr[3] puf_out[3]
4 puf_out[4]
5 puf_out[5]
6 puf_out[6]
7 start_signal puf_out[7]

281

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Power gating test (1x1) [618]

• Author: htfab
• Description: Placeholder for a power gated test design (preliminary work on

supporting power gated designs on later IHP shuttles)
• GitHub repository
• HDL project
• Mux address: 618
• Extra docs
• Clock: 0 Hz

How it works

To be filled later

How to test

To be filled later

External hardware

None

Pinout

Input Output Bidirectional
0 TODO TODO
1
2
3
4
5
6
7

282

https://github.com/htfab/ttihp0p2-pg-1x1

INTERCAL ALU [619]

• Author: Rebecca G. Bettencourt
• Description: An ALU for the five operators of the INTERCAL programming

language.
• GitHub repository
• HDL project
• Mux address: 619
• Extra docs
• Clock: 0 Hz

How it works

As an educational project, it is inevitable that Tiny Tapeout would attract various ped-
agogical examples of common logic circuits, such as ALUs. While ALUs for common
operations such as addition, subtraction, and binary bitwise logic are surprisingly com-
mon, it is much rarer to encounter one that can calculate the five operations of the
INTERCAL programming language. Due to either the cost-prohibitive nature of War-
menhovian logic gates or general lack of interest, such a feat has never been performed
until now. With chip production finally within reach of the average person, all it takes
is one person who has more dollars than sense to design the fabled INTERCAL ALU
(Arrhythmic Logic Unit).
The pin assignments for this design are roughly as follows. The /OE (output enable)
and /WE (write enable) signals are active low, so should be set HIGH by default.

Dedicated Input Dedicated Output Bidirectional I/O
0 A0 (address) D0 (output only) D0 (input and output only)
1 A1 (address) D1 (output only) D1 (input and output only)
2 S0 (selector) D2 (output only) D2 (input and output only)
3 S1 (selector) D3 (output only) D3 (input and output only)
4 S2 (selector) D4 (output only) D4 (input and output only)
5 S3 (selector) D5 (output only) D5 (input and output only)
6 /OE (output enable) D6 (output only) D6 (input and output only)
7 /WE (write enable) D7 (output only) D7 (input and output only)

This ALU has two 32-bit registers, B and A (in no particular order). (These may also
be thought of as four 16-bit registers, AL, AH, BL, and BH.) To write a byte to a
register, set A0 and A1 to the byte address, set S0 LOW for the A register or HIGH
for the B register, set S1 through S3 LOW, set the bidirectional I/O pins to the byte

283

https://github.com/RebeccaRGB/ttihp-intercal-alu

value, set /WE LOW, then set /WE HIGH again. (Do not set S1 through S3 HIGH
when writing, or else something unpredictable will happen, most likely nothing.)
To read a register or result, set A0 and A1 to the byte address, set S0 through S3 to
the desired operation, set /OE LOW, read the byte value from the bidirectional I/O
pins, then set /OE HIGH. Results can also be read from the dedicated outputs; the
dedicated outputs are not affected by the /OE signal, as they do not need to care
about your feelings.
The operations supported are listed below. An attempt was made to make it under-
standable.

Address

A 3 2 1 0

A1 1 1 0 0Selector

S S3 S2 S1 S0 Operation A0 1 0 1 0

0 0 0 0 0 A AH AL

1 0 0 0 1 B BH BL

2 0 0 1 0 AND16 & AH & AL

3 0 0 1 1 AND32 & A

4 0 1 0 0 OR16 V AH V AL

5 0 1 0 1 OR32 V A

6 0 1 1 0 XOR16 ? AH ? AL

7 0 1 1 1 XOR32 ? A

8 1 0 0 0 MINGLE16L AL $ BL

9 1 0 0 1 MINGLE16H AH $ BH

10 1 0 1 0 SELECT16 AH~BH AL~BL

11 1 0 1 1 SELECT32 A ~ B

Operations 0 and 1 simply return the current value of the A or B register, respectively.
This corresponds with the values of S0 through S3 used in write mode. This is not
unintentional. This might also explain why S1 through S3 must be LOW in write
mode.

284

Operations 2 through 7 correspond to INTERCAL’s unary AND, unary OR, and unary
XOR operators, represented by ampersand (&), book (V), and what (?), respectively.
From the INTERCAL manual:
These operators perform their respective logical operations on all pairs of adjacent bits,
the result from the first and last bits going into the first bit of the result. The effect
is that of rotating the operand one place to the right and ANDing, ORing, or XORing
with its initial value. Thus, #&77 (binary = 1001101) is binary 0000000000000100 =
4, #V77 is binary 1000000001101111 = 32879, and #?77 is binary 1000000001101011
= 32875.
Operations 2, 4, and 6 work on the 16-bit halves of the A register independently, while
operations 3, 5, and 7 work on the 32-bit whole of the A register.
Operations 8 and 9 correspond to INTERCAL’s interleave (also called mingle) operator,
represented by big money ($). From the INTERCAL manual:
The interleave operator takes two 16-bit values and produces a 32-bit result by alternat-
ing the bits of the operands. Thus, #65535$#0 has the 32-bit binary form 101010….10
or 2863311530 decimal, while #0$#65535 = 0101….01 binary = 1431655765 decimal,
and #255$#255 is equivalent to #65535.
Operation 8 returns the interleave of the lower halves of A and B, while operation 9
returns the interleave of the upper halves of A and B. (Should the chip fabrication
process allow for it, operation 8½ will, of course, return the interleave of the middle
halves of A and B.)
Operations 10 and 11 correspond to INTERCAL’s select operator, represented by sqig-
gle (~). From the INTERCAL manual:
The select operator takes from the first operand whichever bits correspond to 1’s in
the second operand, and packs these bits to the right in the result. Both operands
are automatically padded on the left with zeros. […] For example, #179~#201 (binary
value 10110011~11001001) selects from the first argument the 8th, 7th, 4th, and 1st
from last bits, namely, 1001, which = 9. But #201~#179 selects from binary 11001001
the 8th, 6th, 5th, 2nd, and 1st from last bits, giving 10001 = 17. #179~#179 has
the value 31, while #201~#201 has the value 15.
To help understand the select operator, the INTERCAL manual also provides a helpful
circuitous diagram.
Use of operations 12 and above is not recommended, unless undefined behavior is
required.

285

https://www.muppetlabs.com/~breadbox/intercal-man/figure1.html

How to test

The following example calculations found in the INTERCAL manual should be partic-
ularly illuminating.

S A B F
MINGLE16L (8) 0 256 65536
MINGLE16L (8) 65535 0 2863311530
MINGLE16L (8) 0 65535 1431655765
MINGLE16L (8) 255 255 65535
SELECT16 (10) 51 21 5 *
SELECT16 (10) 179 201 9
SELECT16 (10) 201 179 17
SELECT16 (10) 179 179 31
SELECT16 (10) 201 201 15
AND16 (2) 77 4
OR16 (4) 77 32879
XOR16 (6) 77 32875

These test cases are included in the (unfortunately Python and not INTERCAL)
test.py file. As these are likely more INTERCAL operations than any sensible
person will ever perform, they should be sufficient for testing purposes. However, for
curiosity’s sake, an extensive set of additional test cases have also been included.

• Not found in the INTERCAL manual.

External hardware

The ALU may be used without external hardware, although seeing the output values
may present a challenge. Instead, it is recommended to use a microcontroller of some
sort to drive the inputs and read the outputs, as microcontrollers are designed to do.
The implementation of the rest of the INTERCAL language is left as an exercise for
the reader.

Further reading

The INTERCAL Programming Language Revised Reference Manual by Donald R.
Woods and James M. Lyon with revisions by Louis Howell and Eric S. Raymond (can
recommend highly enough)

286

https://www.muppetlabs.com/~breadbox/intercal-man/home.html

Pinout

Input Output Bidirectional
0 A0 (address) D0 D0
1 A1 (address) D1 D1
2 S0 (selector) D2 D2
3 S1 (selector) D3 D3
4 S2 (selector) D4 D4
5 S3 (selector) D5 D5
6 /OE (output enable) D6 D6
7 /WE (write enable) D7 D7

287

Pinout

The chip is packaged in a 64-pin QFN package. The pinout is shown below.

Pin 1

1 16

uio[1]
uio[2]

uio[3]
uio[4]
uio[5]
uio[6]
uio[7]

8 17

3233

ctrl_ena

11

ctrl_sel_inc
ctrl_sel_rst_n

48

clk

37

rst_n

41

ui_in[0]
ui_in[1]

u
i_

in
[2

]
u
i_

in
[3

]
u
i_

in
[4

]
u
i_

in
[5

]
u
i_

in
[6

]

49

a
n
a
lo

g
[0

]

53

uo_out[0]

u
o
_o

u
t[

1
]

64

u
o
_o

u
t[

2
]

57

u
o
_o

u
t[

3
]

u
o
_o

u
t[

4
]

u
o
_o

u
t[

5
]

u
o
_o

u
t[

6
]

u
o
_o

u
t[

7
]

uio[0]

62

Bottom View

u
i_

in
[7

]

a
n
a
lo

g
[1

]
a
n
a
lo

g
[2

]
a
n
a
lo

g
[3

]
a
n
a
lo

g
[4

]
a
n
a
lo

g
[5

]

a
n
a
lo

g
[6

]

a
n
a
lo

g
[8

]
a
n
a
lo

g
[7

]

a
n
a
lo

g
[9

]
a
n
a
lo

g
[1

0
]

a
n
a
lo

g
[1

1
]

22

Figure 44: Pinout

Note: you will receive the chip mounted on a breakout board. The pinout is provided
for advanced users, as most users will not need to solder the chip directly.

288

https://github.com/TinyTapeout/caravel-breakout-pcb/tree/main/breakout-qfn

The Tiny Tapeout Multiplexer

Overview

The Tiny Tapeout Multiplexer distributes a single set of user IOs to multiple user
designs. It is the backbone of the Tiny Tapeout chip.
It has the following features:

• 10 dedicated inputs
• 8 dedicated outputs
• 8 bidirectional IOs
• Supports up to 512 user designs (32 mux units, each with up to 16 designs)
• Designs can have different sizes. The basic unit is a called a tile, and each design

can occupy up to 16 tiles.

Operation

The multiplexer consists of three main units:

1. The controller - used to set the address of the active design
2. The spine - a bus that connects the controller with all the mux units
3. Mux units - connect the spine to individual user designs

The Controller

The mux controller has 3 inputs lines:

Input Description
ena Sent as-is (buffered) to the downstream mux units
sel_rst_n Resets the internal address counter to 0 (active low)
sel_inc Increments the internal address counter by 1

It outputs the address of the currently selected design on the si_sel port of the spine
(see below).
For instance, to select the design at address 12, you need to pulse sel_rst_n low,
and then pulse sel_inc 12 times:

289

Figure 45: Mux Diagram

290

Figure 46: Mux Controller Diagram

Figure 47: Mux signals for activating the design at address 12

Internally, the controller is just a chain of 10 D flip-flops. The sel_inc signal is
connected to the clock of the first flip-flop, and the output of each flip-flop is connected
to the clock of the next flip-flop. The sel_rst_n signal is connected to the reset of
all flip-flops.
The following Wokwi projects demonstrates this setup: https://wokwi.com/projects/364347807664031745.
It contains an Arduino Nano that decodes the currently selected mux address and
displays it on a 7-segment display. Click on the button labeled RST_N to reset the
counter, and click on the button labeled INC to increment the counter.

The Spine

The controller and all the muxes are connected together through the spine. The spine
has the following signals going on it:
From controller to mux:

• si_ena - the ena input
• si_sel - selected design address (10 bits)
• ui_in - user clock, user rst_n, user inputs (10 bits)
• uio_in - bidirectional I/O inputs (8 bits)

291

From mux to controller:

• uo_out - User outputs (8 bits)
• uio_oe - Bidirectional I/O output enable (8 bits)
• uio_out - Bidirectional I/O outputs (8 bits)

The only signal which is actually generated by the controller is si_sel (using
sel_rst_n and sel_inc, as explained above). The other signals are just going
through from/to the chip IO pads.

The Multiplexer (The Mux)

Each mux branch is connected to up to 16 designs. It also has 5 bits of hard-coded
address (each unit gets assigned a different address, based on its position on the die).
The mux implements the following logic:
If si_ena is 1, and si_sel matches the mux address, we know the mux is active.
Then, it activates the specific user design port that matches the remaining bits of
si_sel.
For the active design:

• clk, rst_n, ui_in, uio_in are connected to the respective pins coming from
the spine (through a buffer)

• uo_out, uio_oe, uio_out are connected to the respective pins going out to
the spine (through a tristate buffer)

For all others, inactive designs (including all designs in inactive muxes):

• clk, rst_n, ui_in, uio_in are all tied to zero
• uo_out, uio_oe, uio_out are disconnected from the spine (the tristate buffer

output enable is disabled)

Pinout

QFN64 pin Function Signal
1 Mux Control ctrl_ena
2 Mux Control ctrl_sel_inc
3 Mux Control ctrl_sel_rst_n
4 Reserved (none)
5 Reserved (none)

292

QFN64 pin Function Signal
6 Reserved (none)
7 Reserved (none)
8 Reserved (none)
9 Output uo_out[0]
10 Output uo_out1
11 Output uo_out2
12 Output uo_out[3]
13 Output uo_out[4]
14 Output uo_out[5]
15 Output uo_out[6]
16 Output uo_out[7]
17 Power VDD IO
18 Ground GND IO
19 Analog analog[0]
20 Analog analog1
21 Analog analog2
22 Analog analog[3]
23 Power VAA Analog
24 Ground GND Analog
25 Analog analog[4]
26 Analog analog[5]
27 Analog analog[6]
28 Analog analog[7]
29 Ground GND Core
30 Power VDD Core
31 Ground GND IO
32 Power VDD IO
33 Bidirectional uio[0]
34 Bidirectional uio1
35 Bidirectional uio2
36 Bidirectional uio[3]
37 Bidirectional uio[4]
38 Bidirectional uio[5]
39 Bidirectional uio[6]
40 Bidirectional uio[7]
41 Input ui_in[0]
42 Input ui_in1
43 Input ui_in2
44 Input ui_in[3]
45 Input ui_in[4]

293

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

QFN64 pin Function Signal
46 Input ui_in[5]
47 Input ui_in[6]
48 Input ui_in[7]
49 Input rst_n †
50 Input clk †
51 Ground GND IO
52 Power VDD IO
53 Analog analog[8]
54 Analog analog[9]
55 Analog analog[10]
56 Analog analog[11]
57 Ground GND Analog
58 Power VDD Analog
59 Analog analog[12]
60 Analog analog[13]
61 Analog analog[14]
62 Analog analog[15]
63 Ground GND Core
64 Power VDD Core

† Internally, there’s no difference between clk, rst_n, and ui_in pins. They are all
just bits in the pad_ui_in bus. However, we use different names to make it easier to
understand the purpose of each signal.

294

Sponsored by

Team

Tiny Tapeout would not be possible without a lot of people helping. We would espe-
cially like to thank:

• Uri Shaked for wokwi development and lots more
• Patrick Deegan for PCBs, software, documentation and lots more
• Sylvain Munaut for help with scan chain improvements
• Mike Thompson and Mitch Bailey for verification expertise
• Tim Edwards and Harald Pretl for ASIC expertise
• Jix for formal verification support
• Proppy for help with GitHub actions
• Maximo Balestrini for all the amazing renders and the interactive GDS viewer
• James Rosenthal for coming up with digital design examples
• All the people who took part in TinyTapeout 01 and volunteered time to improve

docs and test the flow
• The team at YosysHQ and all the other open source EDA tool makers
• Jeff and the Efabless Team for running the shuttles and providing OpenLane and

sponsorship
• Tim Ansell and Google for supporting the open source silicon movement
• Zero to ASIC course community for all your support
• Jeremy Birch for help with STA

295

https://efabless.com/
https://wokwi.com/
https://psychogenic.com/
https://twitter.com/tnt
https://www.linkedin.com/in/michael-thompson-0a581a/
https://www.linkedin.com/in/mitch-bailey-8ba0b45/
https://www.linkedin.com/in/tim-edwards-4376a18/
https://www.linkedin.com/in/harald-pretl-4911ba10/
https://twitter.com/jix_
https://twitter.com/proppy
https://twitter.com/maxiborga
https://www.yosyshq.com/
https://efabless.com/
https://www.youtube.com/watch?v=EczW2IWdnOM
https://zerotoasiccourse.com/

	Chip map
	Projects
	Chip ROM [0]
	TinyTapeout Factory Test 1
	VGA Mandelbrot [4]
	FazyRV-ExoTiny [10]
	8 bit RSA encryption [32]
	Retro Console [37]
	Chess [43]
	2048 sliding tile puzzle game (VGA) [68]
	1bit_am_sdr [74]
	Conway’s Game of Life on UART and VGA [101]
	mulmul [105]
	ROTFPGA v2a [107]
	simon_cipher [128]
	VGA Screensaver with Tiny Tapeout Logo [130]
	KianV RISC-V RV32E Baremetal SoC [138]
	ROTFPGA v2b [161]
	Asynchronous Multiplier [163]
	SRAM (1024x8) test [167]
	Zilog Z80 [171]
	Minilogix [198]
	Experiment Number Six: Laplace LUT [202]
	VGA Pong with NES Controllers [225]
	DemoSiine [227]
	Rounding error [229]
	VGA Pride [231]
	VGA Nyan Cat [233]
	Flame demo [235]
	Sequential Shadows Deluxe [TT08 demo competition] [258]
	No Time For Squares, IHP edition [266]
	Simon’s Caterpillar [289]
	TT08 Pachelbel’s Canon demo [291]
	Demo by a1k0n [293]
	VGA Drop (audio/visual demo) [295]
	Warp [297]
	Bouncy Capsule [299]
	raybox-zero TTIHP0p2 edition [326]
	VGA donut [330]
	maddihp [353]
	Multimode Modem [355]
	Frequency Counter SSD1306 OLED [357]
	I2C BERT [359]
	Collatz conjecture brute-forcer [361]
	Power gating test (1x2) [363]
	Goldcrest RISC-V [394]
	Transmit UART [417]
	DJ8 8-bit CPU [419]
	PILIPINASLASALLE [421]
	RLE Video Player [423]
	VGA Experiments in Tennis [425]
	Gray scale and Sobel filter [427]
	Game of Life 8x32 (siLife) [454]
	TinyQV Risc-V SoC [458]
	Stochastic Multiplier, Adder and Self-Multiplier [481]
	8 Bit Digital QIF [483]
	CEJMU Beers and Adders [485]
	Classic 8-bit era Programmable Sound Generator SN76489 [487]
	MULDIV unit (8-bit signed/unsigned) [489]
	IHP loopback tile with input skew measurement [491]
	VGA clock [513]
	RGB Mixer demo [515]
	Universal Binary to Segment Decoder [517]
	Hardware UTF Encoder/Decoder [519]
	Simon Says memory game [521]
	VC 16-bit CPU [522]
	Latch test [523]
	Classic 8-bit era Programmable Sound Generator AY-3-8913 [544]
	VGA Scroller [545]
	Digital Desk Clock v2.0 [546]
	Glyph Mode [547]
	Giant Ring Oscillator (3853 inverters) [548]
	cfib Demoscene Entry [549]
	DDR throughput and flop aperature test [550]
	TTIHP VGA FUN! [551]
	Example of Bad Synchronizer [552]
	Pulse Width Counter [553]
	Ring Oscillator (5 inverter) [555]
	Frequency counter [577]
	SPI Test [579]
	One Sprite Pony [581]
	I2C EEPROM Project Selection [583]
	Color Bars [585]
	SPELL [586]
	Crispy VGA [587]
	Snow [608]
	TTL Pulse Generator [609]
	8-bit ALU based on 2x 74181 [610]
	Iterative MAC [611]
	VGA Tiny Logo (1 tile) [612]
	TTIHP TinyVGA FUN! [613]
	SkyKing Demo [614]
	One Bit PUF [615]
	Cell mux [616]
	One Bit PUF [617]
	Power gating test (1x1) [618]
	INTERCAL ALU [619]

	Pinout
	The Tiny Tapeout Multiplexer
	Overview
	Operation
	Pinout

	Sponsored by
	Team

