Tiny Tapeout IHP Op3 Datasheet

Project Repository
https://github.com/TinyTapeout/tinytapeout-ihp-0p3

May 19, 2025

Contents

https://github.com/TinyTapeout/tinytapeout-ihp-0p3

Chip renders 3

Full chiprender 3
Top Metal 1/2 4
Logic density view 5
Projects 6
ChipROM [0] 6
Tiny Tapeout Factory Test [1] 8
Ring Oscillator Worker [2], 10
R2RDAC[3] 12
7-Segment Digital Desk Clock [32], 14
Dickson Charge Pump [34], 16
ROOTS logovga [35] 18
simple-viii [64] 19
VGA clock [66] 20
Fun VGA Clock [97] o 22
HBT Comparator [98] 24
Simon Says memory game [99] 26
Linear Feedback Shift Register [128] 29
Prism [129] 30
Antonalog analog VGA [130], 31
E-ink display driver [131] 33
VGA Screensaver with Zero to ASIC Logo [161] 35
Yet Another Diffraction Grating Experiment [163] 37
SPltest [193] 38
Demo by alkOn [194] 41
SPl-connected PWM generator [195], 44
VGA Screensaver with the IHP Logo [226] 45
Colorful stripes [227] 47
Pinout 48
The Tiny Tapeout Multiplexer 49
Overview 49
Operation 49
Pinout 53
Funding 55
Team 55

Chip renders

Full chip render

DO00EI 03T BIOTOIOT:

H
g
g

Top Metal 1/2

2}

7

<

|
&

[T

e

Logic density view

mii!
i
mii!

il
8
il
il
L
il
8
e

L8

Projects

Chip ROM [0]

= Author: Uri Shaked

= Description: ROM with information about the chip
= GitHub repository

= HDL project

= Mux address: 0

= Extra docs
» Clock: 0 Hz

How it works

ROM memory that contains information about the Tiny Tapeout chip. The ROM is
8-bit wide and 256 bytes long.

The ROM layout The ROM layout is as follows:

Address Length Encoding Description

0 8 7-segment Shuttle name (e.g. “tt07"), null-padded

8 8 7-segment Git commit hash

32 96 ASCII Chip descriptor (see below)

248 4 binary Magic value: &quot; TT\xFA\xBB&quot;
252 4 binary CRC32 of the ROM contents, little-endian

The chip descriptor The chip descriptor is a simple null-terminated string that
describes the chip. Each line is a key-value pair, separated by an equals sign. It
contains the following keys:

Key Description Example value

shuttle The identifier of the shuttle tt07
repo The name of the repository TinyTapeout/tinytapeout-07
commit The commit hash * alb2c3d4

» The commit hash is only included for Tiny Tapeout 5 and later.

Here is a complete example of a chip descriptor:

https://github.com/TinyTapeout/tt-chip-rom

shuttle=tt07
repo=TinyTapeout/tinytapeout-07
commit=alb2c3d4

How the ROM is generated The ROM is automatically generated by tt-support-
tools while building the final GDS file of the chip. Look at the rom.py file in the
repository for more details.

Reading the ROM There are two ways to address ROM, depending on the value
of the rst_n pin:

1. When rst_n is high: Set the ui_in pins to the desired address.
2. When rst_n is low: Toggle the c1k pin to read the ROM contents sequentially,
starting from address 0.

In both cases, the ROM data for the selected address will be available on the uo_out
pins, one byte at a time.

How to test

The first 16 bytes of the ROM are 7-segment encoded and contain the shuttle name
and commit hash. You can dump them by holding rst_n low and toggling the clk
pin, and observing the on-board 7-segment display.

Alternatively, you can keep rst_n high and set the ui_in pins to the desired address
using the first four on-board DIP switches, while observing the on-board 7-segment
display.

Pinout

Input Output Bidirectional

addr[0] data[0]
addr[1] data[1]
addr[2] datal2]
addr[3] datal3]
addr[4] datal[4]
addr[5] datal[5]
addr[6] data|6]
addr[7] datal7]

~NOoO OB~ W N = O :ﬁ:

https://github.com/TinyTapeout/tt-support-tools
https://github.com/TinyTapeout/tt-support-tools

Tiny Tapeout Factory Test [1]

= Author: Tiny Tapeout

= Description: Factory test module
= GitHub repository

= HDL project

» Mux address: 1

» Extra docs

» Clock: 0 Hz

How it works

The factory test module is a simple module that can be used to test all the I/O pins
of the ASIC.

It has three modes of operation:

1. Mirroring the input pins to the output pins (when rst_n is low).

2. Mirroring the bidirectional pins to the output pins (when rst_n is high sel is
low).

3. Outputing a counter on the output pins and the bidirectional pins (when rst_n
is high and sel is high).

The following table summarizes the modes:

rst n sel Mode uo_out value uio pins
0 X Input mirror ui_in High-Z
1 0 Bidirectional mirror uio_in High-Z
1 1 Counter counter counter

The counter is an 8-bit counter that increments on every clock cycle, and resets when
rst_nis low.

How to test

1. Set rst_n low and observe that the input pins (ui_in) are output on the output
pins (uo_out).

2. Set rst_n high and sel low and observe that the bidirectional pins (uio_in)
are output on the output pins (uo_out).

3. Set sel high and observe that the counter is output on both the output pins
(uo_out) and the bidirectional pins (uio).

https://github.com/TinyTapeout/ttihp25b-factory-test

Pinout

Input

Output

Bidirectional

~NOo 01 B W N RO :H:

sel / in_a[0]
in_a[1]
in_a[2]
in_a[3]
in_a[4]
in_a[5]
in_a[6]
in_a[7]

output[0] / counter|[0]
output[1] / counter[1]
output[2] / counter|[2]
output[3] / counter|[3]
output[4] / counter[4]
output[5] / counter[5]
output[6] / counter[6]
output[7] / counter|[7]

in_b[0] / counter[0]
in_b[1] / counter[1]
in_b[2] / counter|[2]
in_b[3] / counter][3]
in_b[4] / counter[4]
in_b[5] / counter[5]
in_b[6] / counter[6]
in_b[7] / counter[7]

Ring Oscillator Worker [2]

= Author: algofoogle (Anton Maurovic)

= Description: Simple digital logic, doing work, driven by a ring oscillator
= GitHub repository

= HDL project

= Mux address: 2

» Extra docs

» Clock: 0 Hz

How it works

An internal simple digital counter block can be driven by an external clock or an internal
ring oscillator, and then be fed data through external pins. It will run as fast as it can
to try and produce a result, which can then be read back out.

How to test

1. Set clock_sel=1 (internal ring oscillator is used as the clock source). Ring-osc
clock, divided by 16, should be present on cdebug — expected to be on the order
of 12.5MHz to 25MHz.

2. Set mode=0 (we're going to load the number of cycles for which we want the
worker to run).

3. Assert reset. No need to supply a clock on clk. Expect done==0.

4. Load a sequence of 4 bytes: a rising edge on shift loads each byte, in turn,
via din[7:0]. First 2 bytes are a starting value (MSB first). The next 2 bytes
are a cycle count. In mode==0 this cycle count is used, while in mode==1 it is
repurposed as the addend for an adder experiment.

5. After the 4th byte has been loaded, the worker should start, and set done==
when it finishes.

6. When done, dout [7:0] should be presenting the first byte (MSB) of the output
data; shift out 4 bytes in total via dout [7:0] by raising shift each time again
(which in turn loads 4 more bytes, so it will start again). The first 2 bytes
out are the ‘starting value' incremented by the counter value (i.e. it should be
the starting value, plus the internal counter value), and the last 2 bytes are the
internal counter value (which started at 0).

10

https://github.com/algofoogle/ttihp0p3-ring-worker

External hardware

Nothing special. Probably just an oscilloscope to see how fast it actually yields a
result.

Pinout

Input Output Bidirectional

din[0] dout[0] shift
din[1] dout[1] clock_sel
din[2] dout[2] mode
din[3] dout[3] stop
din[4] dout[4]

din[5] dout[5] running
din[6] dout[6] done
din[7] dout[7] cdebug

~NOo o1k~ W N RO :ﬁ:

11

R-2R DAC [3]

= Author: htfab

» Description: Basic 8 bit R-2R DAC for IHP
= GitHub repository

= Analog project

» Mux address: 3

= Extra docs
= Clock: 0 Hz

How it works

Combines 25 identical resistors (plus 2 dummies) into an 8 bit R-2R resistor ladder
DAC.

How to test

Use ui_in[7:0] to set the input in binary. The output analog voltage is available on
ua[0].

External hardware

A multimeter or some other device to measure the output voltage (ADC, oscilloscope,
etc.)

Pinout

Input Output Bidirectional

IN[0]
IN[1]
IN[2]
IN[3]
IN[4]
IN[5]
IN[6]
IN[7]

~NOo o1k W N RO :H:

12

https://github.com/htfab/ttihp0p3-r2r-dac
https://en.wikipedia.org/wiki/Resistor_ladder
https://en.wikipedia.org/wiki/Resistor_ladder

Analog pins

ua# analog# Description

13

7-Segment Digital Desk Clock [32]

= Author: Samuel Ellicott

= Description: 7-Segment Desk Clock
= GitHub repository

= HDL project

» Mux address: 32

= Extra docs

= Clock: 50000000 Hz

How it works

Simple digital clock, displays hours, minutes, and seconds in either a 24h format. Since
there are not enough output pins to directly drive a 6x 7-segment displays, the data is
shifted out over SPIl to a MAX7219 in 7-segment mode. The time can be set using
the hours_set and minutes_set inputs. If set_fast is high, then the the hours or
minutes will be incremented at a rate of b5Hz, otherwise it will be set at a rate of 2Hz.
Note that when setting either the minutes, rolling-over will not affect the hours setting.
If both hours_set and minutes_set are presssed at the same time the seconds will
be cleared to zero.

A block diagram of the system is shown below.

How to test

Apply a 5MHz clock to the clock pin and 32.786Khz signal to the refclk pin. Use the
hours_set and minutes_set pins to set the time.

14

https://github.com/sellicott/digital_clock_ihp03

External hardware

Connect the BIDIR PMOD to a MAX7219 7-segment display, For reference Tiny Tape-
out SPI

12-Hour Mode

Pinout
Input Output Bidirectional
0 refclk Display CS
1 Display MOSI
2 Fast/Slow Set
3 Set Hours Display SCK
4 Set Minutes
5
6
7

15

https://tinytapeout.com/specs/pinouts/#spi
https://tinytapeout.com/specs/pinouts/#spi

Dickson Charge Pump [34]
= Author: Uri Shaked
= Description: A 3-stage Dickson charge pump
= GitHub repository
= Analog project
» Mux address: 34

= Extra docs
= Clock: 2000000 Hz

How it works

A 3-stage dickson charge pump.

How to test

Apply a clock signal of 2 MHz to the clk input. You should see the output voltage
on the ua[0] (vout) pin rise to ~3.2 V.

Layout

| <layout.png>

Post layout simulation results

Tested with 2 MHz input clock and 7 Mega Ohm load.

| <post__layout_sim.png>

Pinout

Input Output Bidirectional

#
0
1
2
3
4
5

16

https://github.com/urish/ttihp-charge-pump

Input Output Bidirectional

6
7

Analog pins

ua# analog# Description

17

ROOTS logo vga [35]
= Author: Alex Rudy
= Description: Bouncing ROOTS logo and Kaleidoscope background for vga
= GitHub repository
= HDL project
» Mux address: 35

= Extra docs
= Clock: 25175000 Hz

How it works

Displays a bouncing Roots logo on the screen, with animated color gradient.

How to test

Connect to a VGA monitor. Set the following inputs to configure the design:

External hardware

= Tiny VGA Pmod

Pinout

Input Output Bidirectional

R1
Gl
Bl
VSync
RO
GO
BO
HSync

~NOoO o1k~ Wi+ O :H:

18

https://github.com/arud4172/ttihp-verilog-2025
https://github.com/mole99/tiny-vga

simple-viii [64]

= Author: strau

= Description: A simple 8-bit CPU Architecture
= GitHub repository

= HDL project

» Mux address: 64

= Extra docs

= Clock: 50000000 Hz

How it works
How to test
External hardware

Pinout

Input Output Bidirectional

cs flash
SDO
SD1
SCK
SD2
SD3

CS ram

~NOo ok~ W N RO :ﬁ:

19

https://github.com/strau0106/tt-simple-viii

VGA clock [66]

= Author: Matt Venn

= Description: Shows the time on a VGA screen
= GitHub repository

= HDL project

» Mux address: 66

» Extra docs

» Clock: 31500000 Hz

How it works

Races the beam! Font is pre generated and loaded into registers. 6 bit colour keeps
register count low.

Every minute the colours cycle.

How to test

Hook up a VGA monitor to the outputs and provide a clock at 31.5 MHz.

Adjust time with the inputs[2:0], and choose the type of VGA PMOD with the in-
put[3].

External hardware

VGA PMOD - you can use one of these VGA PMODs:

= https://github.com/mole99/tiny-vga
= https://github.com/TinyTapeout/tt-vga-clock-pmod

Set input[3] low to use tiny-vga and high to use vga-clock

20

https://github.com/mattvenn/ttihp0p3-vga-clock
https://github.com/mole99/tiny-vga
https://github.com/TinyTapeout/tt-vga-clock-pmod

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 adjust hours hsync / R1

1 adjust minutes vsync / G1

2 adjust seconds BO / Bl

3 PMOD type select Bl / VS

4 GO / RO

5 Gl / GO

6 RO / BO

7 R1 / HS

21

Fun VGA Clock [97]

= Author: algofoogle (Anton Maurovic)

= Description: Simple VGA demo for IHP tapeout (inc. Matt Venn's VGA clock)
= GitHub repository

= HDL project

= Mux address: 97

= Extra docs

» Clock: 25000000 Hz

How it works

Typical Verilog design that generates VGA timing and RGB222 colour outputs compat-
ible with the Tiny VGA PMOD.

It produces a bouncing ball animation over the top of an adaptation of Matt Venn's
VGA clock, from here: https://github.com/mattvenn /tt08-vga-clock

How to test

= Plug in a VGA monitor via Tiny VGA PMOD.
= Set mode input to 0, i.e. specifying 640x480 60Hz from a 25MHz clock.

22

https://github.com/algofoogle/ttihp0p3-fun-vga-clock
https://github.com/mattvenn/tt08-vga-clock

= Set show_clock input to 1.

= Set pmod_select input to 0 for Tiny VGA PMOD. Otherwise, 1=Matt's VGA
Clock PMOD.

= Supply a 25MHz clock (clock's actual seconds timer assumes exactly
25.000MHz).

= Assert reset.

= Pulse or hold the adj_* inputs to adjust hours, minutes, or seconds.

External hardware

Tiny VGA PMOD and VGA monitor is all you should need externally.

Pinout
Input Output Bidirectional
0 adj_hrs rl hmax
1 adj_min gl vmax
2 adj_sec bl hblank
3 pmod_select vsync vblank
4 show_clock r0 visible
5 g0
6 b0
7 mode hsync

23

HBT Comparator [98]

= Author: Nicklaus Thompson

= Description: A high-speed 555 timer using SIGE NPN devices
= GitHub repository

= Analog project

» Mux address: 98

» Extra docs

» Clock: 0 Hz

How it works
Currently, the project only contains a single NPN comparator. The comparison of

ual0] and ua[l] is sent to ua[2]. The power gate is driven by ui_in[0], drive this high
to enable the comparator.

How to test
Set ui_in[0] low to disable the comparator, as there is no power gating. After selecting

the project, set ui_in[0] high and apply analog signals between 0.0 V and 1.2V to ua|0]
and ua[l]. A mostly-digital signal will be sent to ua[2].

External hardware

None.
Pinout
Input Output Bidirectional
0 VI_Comparator_En
1
2
3
4
5
6
7

24

https://github.com/FangameEmpire/TTIHP0p3_HBT_555_Timer

Analog pins

ua# analog# Description

25

Simon Says memory game [99]

= Author: Uri Shaked

= Description: Repeat the sequence of colors and sounds to win the game
= GitHub repository

= HDL project

= Mux address: 99

= Extra docs

= Clock: 50000 Hz

How it works

Simon says is a simple electronic memory game: the user has to repeat a growing
sequence of colors. The sequence is displayed by lighting up the LEDs. Each color also
has a corresponding tone.

In each turn, the game will play the sequence, and then wait for the user to repeat the
sequence by pressing the buttons according to the color sequence. If the user repeated

26

https://github.com/urish/ttihp25a-simon-game

the sequence correctly, the game will play a “leveling-up” sound, add a new color at
the end of the sequence, and move to the next turn.

The game continues until the user has made a mistake. Then a game over sound is
played, and the game restarts.

Check out the online simulation at https://wokwi.com /projects/408757730664700929
(including wiring diagram).

Clock settings

The clk_sel input selects the clock source:

= 0: external 50 KHz clock, provided through the clk input.

= 1: internal clock, generated by the ring osc module, with a frequency of ~55
KHz.

The internal clock is generated by a 13-stage ring oscillator, divided by 16384 to get
the desired frequency. The divider value was determined by running the ring oscillator
simulation in <xschem /simulation /ring_osc.spice>.

When using the internal clock, its signal is also output on the uo_out[7] pin for
debugging purposes.

How to test

Use a Simon Says Pmod to test the game.
Provide a 50 KHz clock input, reset the game, and enjoy!

If you don't have the Pmod, you can still connect the hardware manually as follows:

1. Connect the four push buttons to pins btnl, btn2, btn3, and btn4. Also
connect each button to a pull down resistor.

2. Connect the LEDs to pins led1, 1ed2, 1ed3, and led4, matching the colors
of the buttons (so 1ledl and btnl have the same color, etc.). Don't forget
current-limiting resistors!

3. Connect the speaker to the speaker pin (optional).

4. Connect the seven segment display as follows: seg_a through sev_g to individ-
ual segments, digl to the common pin of the tens digit, dig2 to the common
pin of the ones digit. Set seginv according to the type of 7 segment display
you have: high for common anode, low for common cathode.

5. Reset the game, and then press any button to start it. Enjoy!

27

https://wokwi.com/projects/408757730664700929
https://github.com/urish/tt-simon-pmod

External Hardware

Simon Says Pmod or four push buttons (with pull-down resistors), four LEDs, and
optionally a speaker/buzzer and two digit 7-segment display.

Pinout

Input Output Bidirectional
0 btnl led1 seg_a

1 btn2 led2 seg_b

2 btn3 led3 seg_c

3 btnd led4 seg_d

4 seginv speaker seg_e

5 digl seg_f

6 dig2 seg_g

7 clk_sel clk_internal

28

https://github.com/urish/tt-simon-pmod

Linear Feedback Shift Register [128]

= Author: Steve Jenson <stevej@gmail.com>

= Description: An implementation of a Linear Feedback Shift Register for ttihpOp3
= GitHub repository

= HDL project

» Mux address: 128

» Extra docs

» Clock: 0 Hz

How it works

Read the ui_out pins, each read should be different than the last. To reset the shift
register, reset the chip, or set the ‘write_enable’ pin high after offering a value on
ui_in as a seed.

How to test

Read several bytes from ui_in, they should each be different.

External hardware

No external hardware needed other than to read the pins.

Pinout

Input Output Bidirectional

Seed Bit 1 LFSR Bit 1 Write Enable
Seed Bit 2 LFSR Bit 2
Seed Bit 3 LFSR Bit 3
Seed Bit 4 LFSR Bit 4
Seed Bit 5 LFSR Bit 5
Seed Bit 6 LFSR Bit 6
Seed Bit 7 LFSR Bit 7
Seed Bit 8 LFSR Bit 8

~NOoO o B~ W N RO :H:

29

mailto:stevej@gmail.com
https://github.com/stevej/ttihp0p3-lfsr-stevej

Prism [129]
= Author: bleeptrack
= Description: a hypnotic prism floating in a starry night
= GitHub repository
= HDL project
» Mux address: 129

= Extra docs
= Clock: 25175000 Hz

How it works

It's a visual. not much to do currently :)

How to test

Hook it up into the VGA dongle and turn it on!

External hardware

Mole99

Pinout

Input Output Bidirectional

R1
Gl
Bl
VSync
RO
GO
BO
HSync

~NOoO o1k~ Wi+ O :H:

30

https://github.com/bleeptrack/tt-prism
https://github.com/mole99/tiny-vga

Antonalog analog VGA [130]

= Author: algofoogle (Anton Maurovic)

= Description: Rough 24-bit VGA DAC tests with digital control block
= GitHub repository

= Analog project

» Mux address: 130

» Extra docs

» Clock: 25000000 Hz

Overview

My first attempt at an IHP analog (actually, mixed-signal) design. It implements an
analog VGA test pattern generator (but it's also pin-compatible with a Tiny VGA
PMOD).

| leaned heavily on https://github.com /htfab/ttihpOp3-r2r-dac for the analog layout
parts of this.

How it works

A digital block based on my tt08-vga-fun project drives 3x 8-bit DACs to produce
analog VGA outputs.

In this case, the DACs are simple R2R DACs (where R=8660).

Note that, in order to get balanced digital outputs driving the DACs, there is a
long thin digital block dedicated to buffering the main logic's output signals, using
sgl13g2 buf_ 8 buffer cells.

How to test
Plug in a Tiny VGA PMOD and supply a 25MHz clock. Select a test pattern configura-

tionon ui_in, and then reset the design. See here for more information on the test pat-
tern modes: https://tinytapeout.com /runs/tt08/tt_um_algofoogle_tt08_vga_fun

31

https://github.com/algofoogle/ttihp0p3-antonalog
https://github.com/htfab/ttihp0p3-r2r-dac
https://tinytapeout.com/runs/tt08/tt_um_algofoogle_tt08_vga_fun

External hardware

Tiny VGA PMOD for basic digital VGA output testing.

Op-amps on the analog output pins; see here for a guide: https://tinytapeout.com/
runs/tt06/tt_um_algofoogle_tt06_grab_bag — but note that this IHP version is
expected to be 0-1.2V out, not 0-1.8V

Pinout

Input Output Bidirectional

mode[0] / dac_in[0] r7 vblank_out
mode[l] / dac_in[1] g7 hblank_out
mode[2] / dac_in[2] b7

mode[3] / dac_in[3] vsync

mode[4] / dac_in[4] r6

mode[5] / dac_in[5] g6

mode[6] / dac_in[6] b6

mode[7] / dac_in[7] hsync

~NOo o B W NP O :H:

Analog pins

ua# analog# Description

32

https://tinytapeout.com/runs/tt06/tt_um_algofoogle_tt06_grab_bag
https://tinytapeout.com/runs/tt06/tt_um_algofoogle_tt06_grab_bag

E-ink display driver [131]

= Author: Tim Edwards

= Description: Test driver for Adafruit 2.13 inch e-ink display
= GitHub repository

= HDL project

» Mux address: 131

» Extra docs

= Clock: 50 Hz

How it works

This is an example hardware driver for an e-ink display. Adafruit makes a nice series
of small e-ink displays, but they are designed for an Arduino and driven by software.
This project shows how to build a display driver in verilog. To keep memory overhead
to a minimum, it operates like a VGA screen saver, displaying simple patterns that can
be computed in real time as the pixel positions are counted and transmitted to the
driver.

The driver instantiates an SP| master which communicates with the SSD1680 chipset
on the e-ink display. Whenever a bit from the input PMOD is set to “1"”, and ini-
tialization sequence is send to the display, followed by a transmission of the display
image, followed by a deep sleep power-down. Once in deep sleep mode, the displayed

image will remain indefinitely, even if the display is disconnected from the development
board.

How to test
The input/output PMOD is used to connect to the e-ink display pins. Since the e-ink

display is not PMOD-compatible, it is necessary to install a header onto the e-ink
display and create a bundle of jumper wires to connect to the PMOD as follows:

pin signal direction PMOD pin
ECS: uio[0] output 1
MOSI: uio[1] output 2 MISO: uio[2] input 3 SCK: uio[3] output 4 SRCS: uio[4] output

7 RST: uio[5] output 8 BUSY: uio[6] input 9 D/C: uio[7] output 10 GND: 11 or 5 VIN:
12 or 6

33

https://github.com/RTimothyEdwards/ttihp-eink-driver

To test the eight example patterns, raise one of the input pins to value “1". This can
be done with a set of external buttons on the input PMOD, or the input PMOD value
can be set from software.

ui[5] is a special case in which the contents of the display board’s SRAM are copied
directly to the e-ink display. This uses an unusual method in which the SRAM is set
to a sequential read mode and then is left enabled while the e-ink display is initialized.
Commands being sent to the display are ignored by the SRAM, which outputs one bit on
every clock cycle. The SRAM contents are then copied into the display starting at offset
address 30 (which is the number of SPI bytes clocked while initializing the display). The
SRAM is volatile and so unprogrammed at power-up. It can be programmed using the
“pass-through” mode, in which the SRAM's SPI can be bit-banged from the ui[] port
using software. Enable “pass-through” mode by setting ui[7:4] to Oxf, then bit-bang
using ui[0] for clock and ui[l] for data (if the SRAM is given a READ command, then
output from the SRAM can be read from uo[0]). First put the SRAM into sequential
mode with command 0x01 0x40. End pass-through mode with ui = 0x00, then re-enter
pass-through mode with ui = 0xf0. Continue with the command 0x02 0x00 Oxle and
then write 3904 bytes of image data (32 bytes x 122 lines). End pass-through mode
again with ui = 0x00, then display the image data with ui = 0x20.

External hardware

Every e-ink display has a very specific driver, and making a general-purpose driver is
prohibitive for Tiny Tapeout. The project is designed to drive the Adafruit 2.13" e-ink
display, Product ID: 4197, URL https://www.adafruit.com/product/4197 (as of this
writing, cost is $22.50).

Pinout
Input Output Bidirectional
0 All white Bitbang SCK SRAM MISO (out)
1 All black Bitbang MOSI
2 Vertical stripes MISO (in, unused)
3 Horizontal stripes SCK (out)
4 Small checkerboard SRCS (out, =1)
5 User SRAM contents RSTB (out)
6 Large checkerboard BUSY (in)
7 Low-res smiley face D/C (out)

34

https://www.adafruit.com/product/4197

VGA Screensaver with Zero to ASIC Logo [161]

= Author: Matt Venn

= Description: Zero to ASIC Logo bouncing around the screen (640x480, TinyVGA
Pmod)

= GitHub repository

= HDL project

» Mux address: 161

» Extra docs

= Clock: 25175000 Hz

How it works

Displays a bouncing Zero to ASIC logo on the screen, with animated color gradient.

How to test

Connect to a VGA monitor. Set the following inputs to configure the design:

= tile (ui_in[0]) to repeat the logo and tile it across the screen,
= solid_color (ui_in[1]) to use a solid color instead of an animated gradient.

If you have a Gamepad Pmod connected, you can also use the following controls:

= Start button: start/pause bouncing

35

https://github.com/mattvenn/tt10-z2a-logo-screensaver

= Left/right/up/down: change the bouncing direction (if bouncing) or move the
logo around the screen (if paused)

External hardware

= Tiny VGA Pmod
= Optional: Gamepad Pmod

Pinout
Input Output Bidirectional
tile R1
solid__color Gl
Bl
VSync

gamepad_latch RO

gamepad_clk GO

gamepad_data B0
HSync

~NOoO OB~ w N+ O :ﬁ:

36

https://github.com/mole99/tiny-vga
https://github.com/psychogenic/gamepad-pmod

Yet Another Diffraction Grating Experiment [163]
= Author: htfab
= Description: A remix of Uri's Colorful Stripes
= GitHub repository
= HDL project
» Mux address: 163

= Extra docs
= Clock: 0 Hz

How it works

Should hopefully generate a colorful pattern when viewed under the microscope.

How to test

View under the microscope or smartphone camera.

External hardware

Microscope.

Pinout

Input Output Bidirectional

0 None
1

~NOoO o1k~ Wi

37

https://github.com/htfab/ttihp0p3-yadge

SPI test [193]

» Author: Caio Alonso da Costa
= Description: SPI test

= GitHub repository

= HDL project

» Mux address: 193

» Extra docs

» Clock: 50000000 Hz

How it works

SPI test design based from https://github.com/calonso88/tt07_alu_74181
See that design’s docs for information about the SPI peripheral.

Small improvement done on the spi_reg module. There used to be two buffer counters
(one for RX and one for TX). Since the counters are not used together, it was possible
to remove one of them and use a single buffer counter. This has reduced 4 flip flops
in total and some combinatorial logic as well.

Added logic to control driver for MISO. On previous submissions of this design, the
MISO was always driven. Logic has been added to put MISO into high impedance
when CS_N is driven high. Due to a 2-stage synchronizer, the MISO goes to high
impedance after 2 clock cycles.

Design been configured with 8 read /write 8 bit registers and 8 read only 8 bit status
registers.

The first read /write register also drives the 7 segment display.

How to test

Use SPI1 Master peripheral in RP2040 to start communication on SPI interface towards
this design. Remember to configure the SPI mode using the switches in DIP switch (if
you'd like to have CPOL=1 and CPHA=1). Alternatively, don't use the DIP switches
and use the RP2040 GPIOs to configure the SPI mode in the desired mode.

Example code to initialize SPI in REPL:

38

https://github.com/calonso88/ttihp0p3_spi_test
https://github.com/calonso88/tt07_alu_74181

spi_miso = tt.pins.pin_uio3

spi_cs = tt.pins.pin_uio4

spi_clk = tt.pins.pin_uiob

spi_mosi = tt.pins.pin_uio6

spi_miso.init(spi_miso.IN, spi_miso.PULL_DOWN)

spi_cs.init(spi_cs.0UT)

spi_clk.init(spi_clk.0UT)

spi_mosi.init(spi_mosi.QUT)

spi = machine.SoftSPI(baudrate=10000, polarity=0, phase=0, bits=8, firstb
spi_cs(1)

Example code to write 0xF8 to address[0]:
spi_cs(0); spi.write(b'\x80\xF8'); spi_cs(1)

This should set the 7 segment LED to 0xF8 which will display “t.

Seg A - OFF, Seg B - OFF, Seg C - OFF, Seg D - ON, Seg E - ON, Seg F - ON, Seg
G - ON, Seg DP - ON

Example code to read from address[0]:
spi_cs(0); spi.write(b'\x00'); spi.read(1); spi_cs(1)

The result should be 0xF8 or whatever you wrote to address[0].

External hardware

Not required. Write to the first register to set the LEDs on the demoboard.

External hardware

None.

Pinout

Input Output Bidirectional

cpol spare[0]
cpha spare[1]
spare[2]
spare[3] spi_miso

W N = O :Hi

39

Input Output

Bidirectional

#
4
5
6
7

spare[4]
spare[5]
spare|[6]
spare[7]

spi_cs_n
spi_clk
Spi__mosi

40

Demo by alkOn [194]

= Author: Andy Sloane

Description: Tiny Tapeout demo competition entry
GitHub repository

HDL project

Mux address: 194

Extra docs

Clock: 48000000 Hz

alkOn’s tinytapeout08 demo compo entry

i @Nt‘:_‘.u WNMW:E i

B R e
B

How it works It's a standalone VGA+sound demo that fits in two tiles; you'll just
have to see. The demo is short, looping after about 25 seconds.

This was developed with a 48MHz clock, so it's in a funky VGA video mode — it's
standard 640x480060Hz VGA timing and 4:3 aspect ratio, but with 1220 horizontal

41

https://github.com/a1k0n/tt08-vgademo

pixels instead of 640. All graphics are dithered down to RGB222 with a Bayer matrix
which alternates each frame. Because of the dithering and the weird resolution, it looks
best on a real CRT, but any VGA monitor ought to work.

Sound is generated using a 16-bit sigma-delta DAC on io7 from an internal 3-channel
synth (triangle, noise, and square waves).

Sines and cosines are generated by an old HAKMEM trick which generates a slightly
off-center circle but that doesn’t matter in this application:

cos_new = cos - (sin>>k)
sin new = sin + (cos_new(!)>>k)

The plane is rendered by doing a bit-by-bit non-restoring division of the y coordinate
during the horizontal blanking interval to find a fixed point reciprocal, which is then
used as an x increment for the plane u coordinate. As a drastic simplification, the
plane v coordinate is also the x increment value (when you do the math, it turns out
they are proportional).

Starfield is generated by an LFSR that increments every line which provides an x-offset
and speed for each star by picking out individual bits of the LFSR state.

The “TTO08" logo uses the outline of an old demo font, but the actual coloring is
procedural as it would take too much combinational logic to reproduce exactly.

Soundtrack is a riff on “Crooner” by Drax/Vibrants, composed as a bunch of text in
a Python script with limitations on song structure and octave range. Kick drum and
bass share the triangle channel, lead arpeggios on square, and hihat noise.

I'm not super happy about the “programmer colors” everywhere, but | ran out of room
trying to add palettes.

How to test Run clock at 48MHz, connect VGA and sound Pmods, and give it a
reset pulse (falling edge).

External hardware Follows the democompo hardware rules:
TinyVGA Pmod for video on o[7:0].

1-bit sound on io[7], compatible with Tiny Tapeout Audio Pmod, or any basic ~20kHz
RC filter on io7 to an amplifier will work.

42

https://tinytapeout.com/competitions/demoscene/#what-are-the-rules
https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod

Pinout

Input Output Bidirectional

R1

Gl

B1

VSync

RO

GO

BO

HSync AudioPWM

~NOo Ok Wk O :ﬁ:

43

SPI-connected PWM generator [195]

= Author: Damir G

= Description: SPl-connected PWM generator featuring 8 outputs with 2 indepen-
dent generators and 4 total PWM channels

= GitHub repository

= HDL project

» Mux address: 195

= Extra docs
= Clock: 10000000 Hz

How it works

Will add later

How to test

Will add later

External hardware

Will add later

Pinout

Input Output Bidirectional

SCLK OUT_0

COPI OUT_1

nCS OUT_2
OUT_3
OuUT_4
OUT_5
OUT_6
OuUT_7 CIPO

~NOoO ok~ Wi+ O :H:

44

https://github.com/sathworld/spi-pwm-peripheral

VGA Screensaver with the IHP Logo [226]

= Author: Uri Shaked

= Description: IHP Logo bouncing around the screen (640x480, TinyVGA Pmod)
= GitHub repository

= HDL project

= Mux address: 226

= Extra docs

» Clock: 25175000 Hz

How it works

Displays a bouncing IHP logo on the screen, with animated color gradient.

] F’i” ;HH {Ti fhr;;fﬂ j;fif T

In'”u"‘h"l‘f"[fj"'wi'h Il J R!

| |j fm"u'n‘
i

7 il L:f‘a""‘ﬂ';,r.luﬂ"
.

I|| ﬂ J [‘flll\"'h |‘[II J|‘|III
\|| |I

N W I\JII

il ll'\f"‘llljmllw[lﬂllfl
i) |I|‘|\|CII‘1J|" h‘|||'~|‘||
/” Ml f i i

II|‘ [’ f\ HII

'/r'ﬁ'f”

{;'

T i i
L

How to test

Connect to a VGA monitor. Set the following inputs to configure the design:

= tile (ui_in[0]) to repeat the logo and tile it across the screen,

= so0lid_color (ui_in[1]) to use a solid color instead of an animated gradient.

= white_background (ui_in[2]) to use a white background instead of a black
one.

If you have a Gamepad Pmod connected, you can also use the following controls:

= Start button: start/pause bouncing
= Left/right/up/down: change the bouncing direction (if bouncing) or move the
logo around the screen (if paused)

45

https://github.com/urish/ttihp0p3-ihp-logo-screensaver

External hardware

= Tiny VGA Pmod
» Optional: Gamepad Pmod

Pinout
Input Output Bidirectional
tile R1
solid__color Gl
white_bg Bl
VSync

gamepad_latch RO

gamepad_clk GO

gamepad_data B0
HSync

~NOoO OB~ w N+ O :ﬁ:

46

https://github.com/mole99/tiny-vga
https://github.com/psychogenic/gamepad-pmod

Colorful stripes [227]
= Author: Uri Shaked
= Description: Should hopefully generate colorful stripes when viewed under the
microscope.
= GitHub repository
= HDL project
» Mux address: 227

= Extra docs
= Clock: 0 Hz

How it works

Should hopefully generate colorful stripes when viewed under the microscope.

How to test

View under the microscope or smartphone camera.

External hardware

Microscope.

Pinout

Input Output Bidirectional

0 None
1

~NOo Ok W

47

https://github.com/urish/ttihp-colorful-stripes

Pinout

The chip is packaged in a 64-pin QFN package. The pinout is shown below.

SNmSOEE TRmaoo
3333333 000000
9,999,999 TCmT®m®®
OO0O0O0O0O0O0 cccccc
535335333335 M @® @© @© O© ©
%1 1 8 11 16 1|:7
— /'/i Pin 1 -
uo_out[0] =162 (-
uio[7] |3 =
uiol6] =3 -
uio[5] @ P20 ctrl_ena
uio[4] &1 —
uio[3] 357 =] ctrl_sel_inc
.| =] ctrl_sel_rst_n
uio[2] |3 -
uio[1] |3]
uio[0] 153 -
[]
rst_n [—
clk =] ui_in[0]
-] ui_in[1]
49 48 41 32
| NNENEREOONONAn
~ NYMNAS oinTma
c oooooD ccccg
1 200000 o
S 55555

Bottom View

Note: you will receive the chip mounted on a breakout board. The pinout is provided
for advanced users, as most users will not need to solder the chip directly.

48

https://github.com/TinyTapeout/caravel-breakout-pcb/tree/main/breakout-qfn

The Tiny Tapeout Multiplexer

Overview

The Tiny Tapeout Multiplexer distributes a single set of user 10s to multiple user
designs. It is the backbone of the Tiny Tapeout chip.

It has the following features:

= 10 dedicated inputs

8 dedicated outputs

8 bidirectional 10s

Supports up to 512 user designs (32 mux units, each with up to 16 designs)
Designs can have different sizes. The basic unit is a called a tile, and each design
can occupy up to 16 tiles.

Operation

The multiplexer consists of three main units:

1. The controller - used to set the address of the active design
2. The spine - a bus that connects the controller with all the mux units
3. Mux units - connect the spine to individual user designs

49

I Legend]
Spine
] Controller]
B Mux unit
o User design tile -

50

The Controller

/ena addr data

ena
Clontrol sel rst n - t
nputs ounter Mux
sel inc Logic Controller I/O Pads

The mux controller has 3 inputs lines:

Input Description

ena Sent as-is (buffered) to the downstream mux units
sel_rst_n Resets the internal address counter to 0 (active low)
sel inc Increments the internal address counter by 1

It outputs the address of the currently selected design on the si_sel port of the spine
(see below).

For instance, to select the design at address 12, you need to pulse sel rst n low,
and then pulse sel _inc 12 times:

sel rst n

sel inc
ena

Internally, the controller is just a chain of 10 D flip-flops. The sel _inc signal is
connected to the clock of the first flip-flop, and the output of each flip-flop is connected
to the clock of the next flip-flop. The sel rst_n signal is connected to the reset of
all flip-flops.

The following Wokwi projects demonstrates this setup: https://wokwi.com /projects/3
64347807664031745. It contains an Arduino Nano that decodes the currently selected
mux address and displays it on a 7-segment display. Click on the button labeled RST N
to reset the counter, and click on the button labeled INC to increment the counter.

51

https://wokwi.com/projects/364347807664031745
https://wokwi.com/projects/364347807664031745

The Spine

The controller and all the muxes are connected together through the spine. The spine
has the following signals going on it:

From controller to mux:

= si_ena - the ena input

= si_sel - selected design address (10 bits)

= ui_in - user clock, user rst_n, user inputs (10 bits)
= uio_in - bidirectional I/O inputs (8 bits)

From mux to controller:

= uo_out - User outputs (8 bits)
= uio_oe - Bidirectional I/O output enable (8 bits)
= uio_out - Bidirectional 1/O outputs (8 bits)

The only signal which is actually generated by the controller is si_sel (using
sel_rst_n and sel_inc, as explained above). The other signals are just going
through from/to the chip 10 pads.

The Multiplexer (The Mux)

Each mux branch is connected to up to 16 designs. It also has 5 bits of hard-coded
address (each unit gets assigned a different address, based on its position on the die).

The mux implements the following logic:

If si ena is 1, and si_sel matches the mux address, we know the mux is active.
Then, it activates the specific user design port that matches the remaining bits of
si_sel.

For the active design:

» clk, rst n, ui_in, uio_in are connected to the respective pins coming from
the spine (through a buffer)

= uo_out, uio_oe, uio_out are connected to the respective pins going out to
the spine (through a tristate buffer)

For all others, inactive designs (including all designs in inactive muxes):

= clk, rst _n, ui_in, uio_in are all tied to zero
= uo_out, uio_oe, uio_out are disconnected from the spine (the tristate buffer
output enable is disabled)

52

Pinout

QFN64 pin Function Signal

1 Mux Control ctrl_ena

2 Mux Control ctrl_sel_inc
3 Mux Control ctrl_sel rst_n
4 Reserved (none)

5 Reserved (none)

6 Reserved (none)

7 Reserved (none)

8 Reserved (none)

9 Output uo_out|[0]
10 Output uo_out[1]
11 Output uo_out|2]
12 Output uo_out|[3]
13 Output uo_out[4]
14 Output uo_out[5]
15 Output uo_out[6]
16 Output uo_out[7]
17 Power VDD 10

18 Ground GND IO

19 Analog analog[0]
20 Analog analog[1]
21 Analog analog[2]
22 Analog analog|3]
23 Power VAA Analog
24 Ground GND Analog
25 Analog analog|[4]
26 Analog analog|5]
27 Analog analog[6]
28 Analog analog[7]
29 Ground GND Core
30 Power VDD Core
31 Ground GND IO

32 Power VDD 10

33 Bidirectional uio[0]

34 Bidirectional uio[1]

35 Bidirectional uio[2]

36 Bidirectional uiol[3]

37 Bidirectional uio[4]

38 Bidirectional uio[5]

53

QFN64 pin Function Signal

39 Bidirectional uio[6]

40 Bidirectional uio[7]

41 Input ui_in[0]
42 Input ui_in[1]
43 Input ui_in[2]
44 Input ui_in[3]
45 Input ui_in[4]
46 Input ui_in[5]
47 Input ui_in[6]
48 Input ui_in[7]
49 Input rst_n T
50 Input clk

51 Ground GND 10
52 Power VDD 10
53 Analog analog[8]
54 Analog analog|9]
55 Analog analog[10]
56 Analog analog[11]
57 Ground GND Analog
58 Power VDD Analog
59 Analog analog[12]
60 Analog analog[13]
61 Analog analog[14]
62 Analog analog[15]
63 Ground GND Core
64 Power VDD Core

T Internally, there's no difference between clk, rst_n, and ui_in pins. They are all
just bits in the pad_ui_in bus. However, we use different names to make it easier to
understand the purpose of each signal.

54

Funding

IHP PDK support for Tiny Tapeout was funded by The SwissChips Initiative.

The manufacturing of Tiny Tapeout IHP 0p2 silicon was funded by the German BMBF
project FMD-QNC (16ME0831).

Team

Tiny Tapeout would not be possible without a lot of people helping. We would espe-
cially like to thank:

= Uri Shaked for wokwi development and lots more

= Patrick Deegan for PCBs, software, documentation and lots more

= Sylvain Munaut for help with scan chain improvements

= Mike Thompson and Mitch Bailey for verification expertise

= Tim Edwards and Harald Pretl for ASIC expertise

= Jix for formal verification support

= Proppy for help with GitHub actions

= Maximo Balestrini for all the amazing renders and the interactive GDS viewer

= James Rosenthal for coming up with digital design examples

= All the people who took part in Tiny Tapeout 01 and volunteered time to improve
docs and test the flow

= The team at YosysHQ and all the other open source EDA tool makers

= Jeff and the Efabless Team for running the shuttles and providing OpenlLane and
sponsorship

= Tim Ansell and Google for supporting the open source silicon movement

= Zero to ASIC course community for all your support
= Jeremy Birch for help with STA

55

https://wokwi.com/
https://psychogenic.com/
https://twitter.com/tnt
https://www.linkedin.com/in/michael-thompson-0a581a/
https://www.linkedin.com/in/mitch-bailey-8ba0b45/
https://www.linkedin.com/in/tim-edwards-4376a18/
https://www.linkedin.com/in/harald-pretl-4911ba10/
https://twitter.com/jix_
https://twitter.com/proppy
https://twitter.com/maxiborga
https://www.yosyshq.com/
https://efabless.com/
https://www.youtube.com/watch?v=EczW2IWdnOM
https://zerotoasiccourse.com/

	Chip renders
	Full chip render
	Top Metal 1/2
	Logic density view

	Projects
	Chip ROM [0]
	Tiny Tapeout Factory Test [1]
	Ring Oscillator Worker [2]
	R-2R DAC [3]
	7-Segment Digital Desk Clock [32]
	Dickson Charge Pump [34]
	ROOTS logo vga [35]
	simple-viii [64]
	VGA clock [66]
	Fun VGA Clock [97]
	HBT Comparator [98]
	Simon Says memory game [99]
	Linear Feedback Shift Register [128]
	Prism [129]
	Antonalog analog VGA [130]
	E-ink display driver [131]
	VGA Screensaver with Zero to ASIC Logo [161]
	Yet Another Diffraction Grating Experiment [163]
	SPI test [193]
	Demo by a1k0n [194]
	SPI-connected PWM generator [195]
	VGA Screensaver with the IHP Logo [226]
	Colorful stripes [227]

	Pinout
	The Tiny Tapeout Multiplexer
	Overview
	Operation
	Pinout

	Funding
	Team

