
Tiny Tapeout IHP 25a Datasheet
Project Repository

https://github.com/TinyTapeout/tinytapeout-ihp-25a

April 4, 2025

Contents

1

https://github.com/TinyTapeout/tinytapeout-ihp-25a

Chip renders 11
Full chip render . 11
Top Metal 1/2 . 12
Logic density view . 13

Projects 14
Chip ROM [0] . 14
Tiny Tapeout Factory Test 1 . 16
Verilog ring oscillator V3 2 . 18
Matmul System [3] . 19
4-Bit Toy CPU [4] . 20
Hybrid_Adder_8bit [5] . 22
Dynamic Threshold Leaky Integrate-and-Fire [6] 24
8-bit Carry Look-Ahead Adder [7] . 25
ternary, E1M0, E2M0 decoders [8] . 28
RISC-V Mini [9] . 29
eksdee [10] . 32
8-bit carry-skip [11] . 33
Cgates [12] . 35
T3 (Tiny Ternary Tapeout) [13] . 37
Classic 8-bit era Programmable Sound Generator SN76489 [14] 41
3 Neuron ALIF [15] . 49
Giant Ring Oscillator (3853 inverters) [16] 51
STDP Circuit [17] . 53
TwoChannelSquareWaveGenerator [18] . 55
instrumented_ring_oscillator [19] . 57
Linear Timecode (LTC) generator [32] . 59
Tiny Shader [34] . 61
Sine Synth [36] . 66
DRUM [38] . 68
Tiny Hash Table [40] . 70
Asynchronous FIFO [42] . 72
Synchronous FIFO [44] . 74
Pulse Width Modulation [46] . 75
DaDDS [48] . 78
Simple shift Reg [50] . 80
2-bit 2x2 Matrix Multiplier [64] . 81
8b10b decoder and multiplier [65] . 83
VGA Tiny Logo (1 tile) [66] . 85
Test Design 1 [67] . 86
A simple leaky integrate and fire neuron [68] 88
Decimation Filter for Incremental and Regular Delta-Sigma Modulators [69] 89

2

Leaky Neuron Network [70] . 92
adder-accumulator [71] . 94
Neuromorphic Hardware for SNN LSTM [72] 99
ECE 298A 8-Bit CPU Control Block [73] 101
RISCV Processor Design [74] . 105
LFSR Encrypter [75] . 107
RISCV Processor Design [76] . 108
SkyKing Demo [77] . 110
tiny cipher 4 bit key [78] . 111
Two LIF Neurons with STDP Learning [79] 112
Tutorial: Simple LIF Neuron [80] . 115
7-Segment Byte Display [81] . 116
RGB Mixer demo [82] . 118
Forward Pass Network for Simple ANN [83] 119
Priority-encoder [96] . 121
UltraTiny-CPU [98] . 122
Priority-Encoded Arbiter [100] . 124
ALU in verilog [102] . 126
Overengineered Checkers [104] . 127
toni_clk_gen [106] . 129
spi_pwm [108] . 130
BINCounterAndGates [110] . 137
tt09-pettit-wokproc-trainer [112] . 140
Duffy [114] . 145
pulse_add [128] . 146
nyan [130] . 147
Brailliance [132] . 148
Adder with Flow Control [134] . 149
i2c peripherals: leading zero count and fnv-1a hash [136] 152
Rotary Encoder WS2812B Control [138] 154
Alarm Clock [140] . 156
TSAL_TT [142] . 158
Divided Ring Oscillator [144] . 160
HACK CPU [146] . 163
simon_cipher [161] . 167
Wirecube [163] . 169
TT08 Pachelbel’s Canon demo [165] . 170
Neural Net ASIC [166] . 171
Sequential Shadows [TT08 demo competition] [167] 172
CYCLIPSONIC [171] . 178
TDC with SPI [175] . 179
Atari 2600 [178] . 180

3

SPI FPU [179] . 181
MAC [192] . 184
DPMU [194] . 187
7 Segment Decode [196] . 190
PS2 Decoder [198] . 194
Super Mario Tune on A Piezo Speaker [200] 196
AES Inverse S-box [202] . 199
TT08 - experiments with latch-based shift registers [204] 200
Obstacle Detection [206] . 202
resfuzzy [208] . 204
CEJMU Beers and Adders [210] . 206
RGBW Color Processor [225] . 208
Stochastic Multiplier, Adder and Self-Multiplier [227] 214
DL float MAC [229] . 219
schoolRISCV CPU with Fibonacci program [231] 222
Rounding error [233] . 224
SIC-1 8-bit SUBLEQ Single Instruction Computer [234] 226
Sea Battle [235] . 229
Comm_IC [237] . 231
16 Mic Beamformer [239] . 233
PDM Pitch Filter [241] . 234
Zoom Zoom [242] . 236
PDM Correlator [243] . 241
SPI Logic Analyzer with Charlieplexed Display [258] 242
Find The Damn Issue [259] . 244
Sequential Shadows Deluxe [TT08 demo competition] [262] 246
DDC [266] . 249
mulmul [270] . 250
Warp [274] . 252
Supermic [275] . 254
DPM_Unit [289] . 255
Generate VGA output for Color Blindness Test [291] 258
4-bit CLA [293] . 259
SkyKing Demo [295] . 260
Flame demo [297] . 261
Metaballs [299] . 263
Simple Stopwatch [301] . 264
PWM generator [303] . 266
DMTD [305] . 268
I2S to PWM [307] . 269
Basys 3 Over UART Link [322] . 270
ITS-RISCV [326] . 272

4

Zilog Z80 [330] . 275
2048 sliding tile puzzle game (VGA) [334] 279
ChatGPT-generated Spiking Neural Network with Delays [335] 281
Space Invaders ASIC [338] . 283
Demo by a1k0n [339] . 284
Clock Divider [353] . 286
TinyFPGA resubmit for TT08 [355] . 287
Dummy Counter [357] . 288
RGB Mixer [359] . 289
32x8 LED Matrix Animation [361] . 290
TT09Ball VGA Screensaver [363] . 292
Color Bars [365] . 294
Hardware UTF Encoder/Decoder [367] 296
Styler [369] . 301
VGA Timing Experiments [371] . 306
JTAG TAP [385] . 309
7-segment with LFSR [387] . 311
TT10 HPDL 1414 Uart [389] . 314
KCH CD101 Saw Synth [391] . 317
tt10_zhouzhouthezhou_adder [393] . 319
Asynchronous Locking Unit [395] . 320
XOR Cipher [397] . 321
Verilog based clock to 7-segment counter [399] 323
TT10_Luke_Clock [401] . 324
SSMCl [403] . 328
Configurable Logic Block [416] . 330
Gamepad Pmod Demo [417] . 332
4-bit up/down binary counter [418] . 334
6Digit7SegClock [419] . 336
Team 17’s 8 bit DAC [420] . 338
MAC Operation [421] . 339
Tiny Registers [422] . 340
Xor-Logic [423] . 345
Leaky Integrate Fire Neuron [424] . 346
Simon Says memory game [425] . 348
Tiny Tapeout Group 7 Lab D [426] . 351
SPI 7-segment display [427] . 353
8-bit-CARRY_SKIP [428] . 355
AtomNPU [429] . 357
Semana UCU Verilog [430] . 361
Enigma - 52-bit Key Length [431] . 367
Frequency Encoder and Decoder [432] . 374

5

synth_simple [433] . 375
carry skip adder [434] . 376
VGA clock [435] . 378
Crossyroad [449] . 380
zc-sushi-demo [451] . 381
kch cd101 [453] . 382
SimpleSPIdev [455] . 384
RNG_test [457] . 385
15bit GCD [459] . 386
XY Spacewar [461] . 388
16-bit Logarithmic Approximate Floating Point Multiplier [463] 389
TT_spiralPattern [465] . 392
ledtest [467] . 393
I2C and SPI [480] . 394
VGA Screensaver with Tiny Tapeout Logo [481] 395
Perceptron Neuron [482] . 397
SPI test [483] . 398
Histogramming [484] . 399
Huffmann_Coder [485] . 402
RLE Video Player [486] . 403
Vedic multiplier [487] . 406
8-Bit CPU [488] . 407
Tiny piano [489] . 422
carry_select [490] . 424
Asynchronous I2C Registerfile Interface [491] 426
test_friday2 [492] . 427
Tappu [493] . 431
Perceptron [494] . 432
mp_LIF_neuron [495] . 433
Hopfield Network with Izhikevich-type RS and FS Neurons [496] 434
digital LIF Neuron [497] . 435
Tinysynth [498] . 436
Hero on Tape [499] . 437
16 Bit Izhikevich Neuron [512] . 438
dff_mem [514] . 441
Verilog ring oscillator V2 [516] . 444
Basic model for Systollic array implementation of LIF [518] 446
Leaky integrate and fire spiking neural network [520] 448
tinydsp-lol [522] . 449
Shifter [524] . 450
LRC - Longitudinal Redundancy Check generator [526] 451
Workshop demo [528] . 452

6

A Tale of Two NCOs [530] . 453
Wokwi Group #7 [544] . 455
Wokwi Group #6 [546] . 456
Wokwi Group #5 [548] . 457
Wokwi Group #4 [550] . 458
Wokwi Group #3 [552] . 459
Wokwi Group #2 [554] . 460
Wokwi Group #1 [556] . 461
Will It NAND? [558] . 462
sphereinabox hello [560] . 463
L display [562] . 464
7-Segment Digital Desk Clock [576] . 466
Basic Perceptron + ReLU [578] . 468
Basic Matrix-Vector Multiplication [580] 469
8 bit MAC Unit [582] . 470
Programmable PWM Generator [584] . 472
Verilog test project [586] . 474
Basic LIF Neuron [588] . 475
Integrate-and-Fire Neuron Circuit [590] 477
Michaels Tiny Tapeout ALU [592] . 479
8-bit CBILBO [594] . 480
Wokwi Group #8 [608] . 482
Wokwi Group #9 [610] . 483
Wokwi Group #10 [612] . 484
Wokwi Group #11 [614] . 485
Wokwi Group #12 [616] . 486
triggerer [618] . 487
Wokwi Group #13 [620] . 489
Multiplier Group #1 [622] . 490
Multiplier Group #2 [624] . 491
Multiplier Group #3 [626] . 492
Ternary 128-element Dot Product [640] 493
GUS16 CPU [642] . 494
Warp [644] . 496
VGA Drop (audio/visual demo) [646] . 498
Classic 8-bit era Programmable Sound Generator AY-3-8913 [648] 499
SoCET UART with FIFO buffers [650] . 507
Simon’s Caterpillar [652] . 509
Stochastic Integrator [654] . 511
E2M0 x INT8 Systolic Array [656] . 513
VGA Nyan Cat [658] . 515
Collatz conjecture brute-forcer [673] . 517

7

APA102 to WS2812 Translator [675] . 519
pio-ram-emulator example: Julia fractal [677] 521
Tiny Neural Network Accelerator [678] . 524
Fuzzy Search Engine [679] . 527
VGA Pride [681] . 534
donut [683] . 538
UART [685] . 539
Why not? [687] . 541
FSK Modem +HDLC +UART (PoC) [689] 542
Spectrogram extractor, 2 channels [690] 546
Bouncy Capsule [691] . 549
TinyTapeout Minimal Branch Predictor [704] 550
Moody-mimosa [706] . 553
Classic 8-bit era Programmable Sound Generator AY-3-8913 [708] 558
Orion Iron Ion [TT10 demo competition] [710] 566
My Project [712] . 575
simple-viii [714] . 576
ttUART [716] . 577
Bitty [718] . 578
IHP VGA demo [720] . 590
UW ASIC - Optimized Dino [722] . 592
PID Controller [737] . 593
Frequency Counter SSD1306 OLED [739] 595
Tiny 1-bit AM Radio [741] . 597
FIREngine [743] . 600
znah_vga_ca [745] . 602
TRNG [746] . 603
CORA-16 [747] . 605
T3 (Tiny Ternary Tapeout) CSA [749] . 609
Basic Oszilloscope and Signal Generator [751] 613
1bit_am_sdr [752] . 616
15 channels emission counter [753] . 619
VGA Pong with NES Controllers [754] . 622
Tiny RAM DFF 2r1w [755] . 624
Sprite Bouncer with Looping Background Options [768] 628
Glyph Mode [769] . 629
VGA Scroller [771] . 631
DDR throughput and flop aperature test [773] 632
Wildcat RISC-V [774] . 634
Calculator [775] . 635
Crispy VGA [777] . 636
asic design is my passion [779] . 638

8

TinyQV Risc-V SoC [780] . 639
Dice [781] . 643
4-bit minicomputer ALU [783] . 644
RGB Mixer demo5 [785] . 645
AlphaOneSoC [786] . 646
Asynchronous Multiplier [787] . 647
Hamming Code (7,4) [801] . 650
Space Detective Maze Explorer [803] . 655
Senol Gulgonul tt09 [805] . 657
4 bit ALU [807] . 658
Elevator Design [809] . 660
LED Bitserial Cipher [811] . 661
freqSweep [813] . 664
Simple PWM Module [815] . 669
INTERCAL ALU [817] . 670
Universal Binary to Segment Decoder [819] 674
RO [833] . 683
CMOS design of 4-bit Signed Adder Subtractor [835] 685
LaRVa CPU [836] . 687
Patater Demo Kit Waggling Rainbow on a Chip [837] 689
DemoSiine [839] . 694
”SQUARE-1”: VGA/audio demo [840] . 702
Munch [841] . 706
cfib Demoscene Entry [843] . 709
VGA donut [844] . 711
4-bit ALU [845] . 713
Morse Code Keyer [847] . 716
VGA Mandelbrot [848] . 719
nVious Graphics [849] . 722
TinyMandelbrot [850] . 724
8-Bit Calculator [851] . 726
tiny-tapeout-8bit-GPTPrefixCircuit [865] 727
LIF on a Ring Topology [867] . 730
Delta-Sigma ADC Decimation Filter [869] 732
an lfsr with synaptic neurons (excitatory or inhibitatory) [871] 733
Perceptron [873] . 735
Matmul System [875] . 736
Verilog ring oscillator [877] . 737
Delta RNN and Leaky Integrate-and-Fire Nueron Circuit [879] 738
Generador PWM multiproposito con frecuencia y ciclo de trabajo modulable

[881] . 739
Linear Feedback Shift Register [883] . 741

9

Pinout 742

The Tiny Tapeout Multiplexer 743
Overview . 743
Operation . 743
Pinout . 747

Funding 749

Team 749

10

Chip renders

Full chip render

11

Top Metal 1/2

12

Logic density view

13

Projects

Chip ROM [0]

• Author: Uri Shaked
• Description: ROM with information about the chip
• GitHub repository
• HDL project
• Mux address: 0
• Extra docs
• Clock: 0 Hz

How it works

ROM memory that contains information about the Tiny Tapeout chip. The ROM is
8-bit wide and 256 bytes long.

The ROM layout The ROM layout is as follows:

Address Length Encoding Description
0 8 7-segment Shuttle name (e.g. “tt07”), null-padded
8 8 7-segment Git commit hash
32 96 ASCII Chip descriptor (see below)
248 4 binary Magic value: &quot;TT\xFA\xBB&quot;
252 4 binary CRC32 of the ROM contents, little-endian

The chip descriptor The chip descriptor is a simple null-terminated string that
describes the chip. Each line is a key-value pair, separated by an equals sign. It
contains the following keys:

Key Description Example value
shuttle The identifier of the shuttle tt07
repo The name of the repository TinyTapeout/tinytapeout-07
commit The commit hash * a1b2c3d4

• The commit hash is only included for Tiny Tapeout 5 and later.

Here is a complete example of a chip descriptor:

14

https://github.com/TinyTapeout/tt-chip-rom

shuttle=tt07
repo=TinyTapeout/tinytapeout-07
commit=a1b2c3d4

How the ROM is generated The ROM is automatically generated by tt-support-
tools while building the final GDS file of the chip. Look at the rom.py file in the
repository for more details.

Reading the ROM There are two ways to address ROM, depending on the value
of the rst_n pin:

1. When rst_n is high: Set the ui_in pins to the desired address.
2. When rst_n is low: Toggle the clk pin to read the ROM contents sequentially,

starting from address 0.

In both cases, the ROM data for the selected address will be available on the uo_out
pins, one byte at a time.

How to test

The first 16 bytes of the ROM are 7-segment encoded and contain the shuttle name
and commit hash. You can dump them by holding rst_n low and toggling the clk
pin, and observing the on-board 7-segment display.
Alternatively, you can keep rst_n high and set the ui_in pins to the desired address
using the first four on-board DIP switches, while observing the on-board 7-segment
display.

Pinout

Input Output Bidirectional
0 addr[0] data[0]
1 addr1 data1
2 addr2 data2
3 addr[3] data[3]
4 addr[4] data[4]
5 addr[5] data[5]
6 addr[6] data[6]
7 addr[7] data[7]

15

https://github.com/TinyTapeout/tt-support-tools
https://github.com/TinyTapeout/tt-support-tools
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Tiny Tapeout Factory Test 1

• Author: Tiny Tapeout
• Description: Factory test module
• GitHub repository
• HDL project
• Mux address: 1
• Extra docs
• Clock: 0 Hz

How it works

The factory test module is a simple module that can be used to test all the I/O pins
of the ASIC.
It has three modes of operation:

1. Mirroring the input pins to the output pins (when rst_n is low).
2. Mirroring the bidirectional pins to the output pins (when rst_n is high sel is

low).
3. Outputing a counter on the output pins and the bidirectional pins (when rst_n

is high and sel is high).

The following table summarizes the modes:

rst_n sel Mode uo_out value uio pins
0 X Input mirror ui_in High-Z
1 0 Bidirectional mirror uio_in High-Z
1 1 Counter counter counter

The counter is an 8-bit counter that increments on every clock cycle, and resets when
rst_n is low.

How to test

1. Set rst_n low and observe that the input pins (ui_in) are output on the output
pins (uo_out).

2. Set rst_n high and sel low and observe that the bidirectional pins (uio_in)
are output on the output pins (uo_out).

3. Set sel high and observe that the counter is output on both the output pins
(uo_out) and the bidirectional pins (uio).

16

https://en.wikipedia.org/wiki/Collatz_conjecture
https://github.com/TinyTapeout/tt10-factory-test

Pinout

Input Output Bidirectional
0 sel / in_a[0] output[0] / counter[0] in_b[0] / counter[0]
1 in_a1 output1 / counter1 in_b1 / counter1
2 in_a2 output2 / counter2 in_b2 / counter2
3 in_a[3] output[3] / counter[3] in_b[3] / counter[3]
4 in_a[4] output[4] / counter[4] in_b[4] / counter[4]
5 in_a[5] output[5] / counter[5] in_b[5] / counter[5]
6 in_a[6] output[6] / counter[6] in_b[6] / counter[6]
7 in_a[7] output[7] / counter[7] in_b[7] / counter[7]

17

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Verilog ring oscillator V3 2

• Author: algofoogle (Anton Maurovic)
• Description: sky130 inv_2 ring oscillator with externally-selectable length
• GitHub repository
• HDL project
• Mux address: 2
• Extra docs
• Clock: 0 Hz

What is this?

See tt09-ring-osc and tt09-ring-osc2 for my other ring oscillator experiments on
TT09.
This one has a configurable ring oscillator; the feedback can be tapped at different
parts of the chain.
This uses Verilog to instantiate a ring of (an odd number of) sky130_fd_sc_hd__inv_2
cells – UPDATE: Actually, since this is targeting IHP instead, there is a polyfill that
somebody else wrote to map sky130 cells to generic cells (that OpenLane will then
map to IHP cells).

Pinout

Input Output Bidirectional
0 tap[0] out[0]
1 tap1 out1
2 tap2 out2
3 out[3]
4 out[4]
5 out[5]
6 out[6]
7 out[7]

18

http://www.ericr.nl/wondrous/pathrecs.html
https://github.com/algofoogle/tt09-ring-osc3
https://github.com/algofoogle/tt09-ring-osc
https://github.com/algofoogle/tt09-ring-osc2
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Matmul System [3]

• Author: Abarajithan
• Description: Matmul System
• GitHub repository
• HDL project
• Mux address: 3
• Extra docs
• Clock: 0 Hz

How it works

This is a simple system that performs matrix-vector multiplication. The matrix K[R,C]
and vector X[R] is sent from outside through UART. They are decoded by a UART
RX module, and sent into the matrix-vector multiplication core as AXI-Stream. The
core performs the multiplication and outputs the result as AXI-Stream. The result is
then packed into UART format by the UART TX module and sent outside.

How to test

iverilog -g2012 -o compiled src/mvm_uart_system.v src/uart_rx.v src/uart_tx.v src/axis_matvec_mul.v src/matvec_mul.v src/skid_buffer.v test/mvm_uart_system_tb.sv test/simple_axis_tb.sv src/project.v && ./compiled

External hardware

None

Pinout

Input Output Bidirectional
0 RX TX
1
2
3
4
5
6
7

19

https://github.com/SkillSurf/tt09-matmul-system

4-Bit Toy CPU [4]

• Author: Stefan Wallentowitz
• Description: This is a simple 4-bit CPU from a popular German textbook
• GitHub repository
• HDL project
• Mux address: 4
• Extra docs
• Clock: 0 Hz

How it works

This is a 4 bit Toy CPU from a popular German textbook (Hoffmann, “Technische
Informatik”, https://www.dirkwhoffmann.de/TI/). It is extremely simple and not
extremely useful but a useful CPU to transistion from digital design to microprocessors
in a fundamental way.
The CPU is based on a 4 bit accumulator. It has 4 bit instructions with 4 bit operands.
The memory is organized in 16 words of each 8 bit. The upper four bit are the
instruction, the lower 4 bit the operand. A nop instruction (or any other instruction
without operand) can be used for variables.

How to test

The memory is outside the logic and the clock along with some scan logic that reads
the internal state for debug and visualization.
Each cycle is driven externally usually as:

• Reset the logic with cycling usr_rst 1 -> usr_clk 1 -> usr_clk 0 ->
usr_rst 0

• Each execution starts with the fetch phase where usr_clk is 0 and the data
from addr assigned to the bidirectional data

• With the rising edge of usr_clk the execution starts. The we signal indi-
cates a write cycle, but the controller driving the execution grants access with
mem_grant, and can then read the data from the pins

The internal 19 bit state can be scanned on either positive or negative clock period with
a seperate clock. Both clocks are assumed in the kHz range, so timing and domain
crossing are no problem. scan_clk cycles through the data, scan_en indicates the
start when high during a positive edge.

20

https://github.com/wallento/tt09-4bit-toycpu
https://www.dirkwhoffmann.de/TI/

External hardware

It requires a testbed to properly drive the pins. There is a micrcontroller program to
cycle through those states including the handling of the tristate.

Pinout

Input Output Bidirectional
0 usr_clk addr[0] data[0]
1 usr_rst addr1 data1
2 scan_clk addr2 data2
3 scan_en addr[3] data[3]
4 mem_grant we data[4]
5 scan_out data[5]
6 data[6]
7 data[7]

21

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Hybrid_Adder_8bit [5]

• Author: James Xie, Cameron Bedard
• Description: 8-bit hybrid adder (using CLA and KSA)
• GitHub repository
• HDL project
• Mux address: 5
• Extra docs
• Clock: 0 Hz

How it works

The 8-bit Hybrid Adder combines the gate efficency of a 4-bit Kogge Stone and the
low latency of a 4-bit Carry Look Ahead Adder. The resultant 8-bit Hybrid Adder is
faster than the an 8-bit Kogge Stone Adder and more gate efficent than a 8-bit Carry
Look Ahead Adder.

How to test

The first number you want to add, use the eight inputs for ui_in for the input number
A and the eight inputs for uio_in for the input number B. The output of the two
numbers added together will be outputs on the eight outputs on uo_out.

External hardware

The only external hardware needed is applying the 3.3v on the inputs and reading the
output.

Pinout

Input Output Bidirectional
0 a[0] sum[0] b[0]
1 a1 sum1 b1
2 a2 sum2 b2
3 a[3] sum[3] b[3]
4 a[4] sum[4] b[4]
5 a[5] sum[5] b[5]
6 a[6] sum[6] b[6]

22

https://github.com/cameronbed/tt09-hybrid-adder
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
7 a[7] sum[7] b[7]

23

Dynamic Threshold Leaky Integrate-and-Fire [6]

• Author: Kai Linsley
• Description: Leaky Integrate-and-Fire model simulating a spiking biological neu-

ron
• GitHub repository
• HDL project
• Mux address: 6
• Extra docs
• Clock: 1000000 Hz

How it works

This is how my model works. Why does test say I haven’t added a how it works
section?

How to test

This is how to test the model, you just gotta do that and this and that again. Why is
there no how it works section? I don;t particulalry understand.

External hardware

These are all the external hardware requirements, there are actually none because we
aren’t fancy like that. In fact, I am only wriitng this out to avoid tests failing.

Pinout

Input Output Bidirectional
0 Input 1 Output 1
1 Input 2 Output 2
2 Input 3 Output 3
3 Input 4 Output 4
4 Input 5 Output 5
5 Input 6 Output 6
6 Input 7 Output 7
7 Input 8 Output 8

24

https://github.com/kalinsley/tt09-verilog

8-bit Carry Look-Ahead Adder [7]

• Author: Seongwan Jeon and Michael Zeng
• Description: Fast 8-bit adder
• GitHub repository
• HDL project
• Mux address: 7
• Extra docs
• Clock: 0 Hz

How it works

A carry-lookahead adder (CLA) is a type of adder designed for fast speeds. First, it
calculates the propagate and generate signals. The propagate signal determines if a
carry bit can propagate through to the next bit, and the generate signal bit determines if
there is a carry bit. As the name implies, a carry-lookahead adder works by generating
a carry bit for every bit in the sum. This works by determining every possible way
a carry bit can be generated by combining the generate and propagate signal from
previous bits. The equations for the propagate, generate, sum, and carry bit are shown
below:

The calculations for the propagate, generate, and sum signals are trivial, but the cal-
culation for the carry bit is dependent on its value in the previous bit, which makes it
more complicated to solve. For example, all of the carry bits in a 4-bit CLA adder can
be seen in the equation and diagram below:

25

https://github.com/sej3939/Carry-Lookahead-Adder

By calculating the carry bits by using combinatorial logic, a CLA is able to calculate
all of the carry bits of the sum without relying on sequential operations, unlike a rip-
ple carry adder. The main time complexity of the ripple carry adder is based on the
implementation of the last (and largest) AND gate of the most significant carry bit
in the combinatorial equation. This AND gate has n+1 inputs, where n is the bits
of the input. The implementation of multiple input AND gates in hardware consists
of multiple smaller input AND gates organized in a tree structure, which inherently
has a logarithmic time complexity. This logic extends to the CLA which possesses
a logarithmic time complexity, and it makes CLAs viewed as one of the fastest im-
plementations of digital adders due to its combinatorial nature. CLAs that calculate
large bit-widths can also be designed by using multiple CLAs with smaller bit-widths in
parallel to calculate intermediate values. This implementation using a tree structure of
adders allows CLAs to also possess a modular design which can be scaled up to handle
large bit-widths. However, this tree-like design is an implementation that other parallel
prefix adders such as the Kogge-Stone adder utilize to a greater effect. Although CLAs
are praised for their speed, it comes at the cost of a large area, as the components
needed to calculate the carry bits for larger bit-widths become exponentially larger.
The CLA in this project is an 8-bit adder that does not utilize the implementation
using smaller CLAs; rather, it is a fully combinatorial circuit to calculate all 8 bits of
the carry signal.

26

How to test

ui_in[7:0] is addend 1, and uio_in[7:0] is addend 2. ui_out[7:0] is sum.
The adder was tested using all possible pairs of integers from 0 to 255 as inputs, which
resulted in 25536 test cases total. For example, the adder would use 0x25 and 0xD7
as inputs, add them up to 0xFC, and the result would be checked to make sure it was
the correct output. Carry out was not checked as there is no output pin for a carry
out on the board.

External hardware

No external hardware needed.

Pinout

Input Output Bidirectional
0 a[0] sum[0] b[0]
1 a1 sum1 b1
2 a2 sum2 b2
3 a[3] sum[3] b[3]
4 a[4] sum[4] b[4]
5 a[5] sum[5] b[5]
6 a[6] sum[6] b[6]
7 a[7] sum[7] b[7]

27

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

ternary, E1M0, E2M0 decoders [8]

• Author: ReJ aka Renaldas Zioma
• Description: Ternary, Quinary and Septenary 1.6 .. 2.6 bits/param packed

weights
• GitHub repository
• HDL project
• Mux address: 8
• Extra docs
• Clock: 0 Hz

How it works

Unpacks Ternary, Quinary and Septenary 1.6 .. 2.6 bits/param packed weights

How to test

Provide packed weights on INPUT pmods

External hardware

Use Pico

Pinout

Input Output Bidirectional
0 packed weights LSB unpacked (out) unpacked
1 packed weights unpacked (out) unpacked
2 packed weights unpacked (out) unpacked
3 packed weights unpacked (out) unpacked
4 packed weights unpacked (out) unpacked
5 packed weights unpacked (out) unpacked
6 packed weights unpacked (out) dummy
7 packed weights MSB unpacked (in) Ternary / Septenary

28

https://github.com/rejunity/tt09-ternary-septenary-decoders

RISC-V Mini [9]

• Author: RickGao
• Description: RISC-V Mini 8 Bit
• GitHub repository
• HDL project
• Mux address: 9
• Extra docs
• Clock: 100000 Hz

How it works

This project aims to design and implement a compact 8-bit RISC-V processor core op-
timized for Tiny Tapeout, a fabrication platform for small-scale educational IC projects.
The processor employs a customized, compressed RISC-V instruction set (RVC) to re-
duce instruction width to 16 bits, leading to a more compact design suited to Tiny
Tapeout’s area and resource constraints. Developed in Verilog, this processor will
handle computational, load/store and control-flow operations efficiently and undergo
verification through simulation and testing.
Processor Components The processor comprises the following core components, opti-
mized to meet Tiny Tapeout’s area requirements:

1. Control Unit Generates control signals for instruction execution based on opcode
and other instruction fields.

2. Register File Contains 8 general-purpose, 8-bit-wide registers. Register x0 will
always return zero when read, adhering to RISC-V convention.

3. Arithmetic Logic Unit (ALU) Performs basic arithmetic (addition, subtraction)
and logical (AND, OR, XOR, SLT) operations as specified by the decode stage.
Supports custom compressed RISC-V instructions.

4. Datapath Single-cycle execution, optimized for minimal hardware complexity,
reducing the processor’s area and power consumption.

How to test

Simply set the input to the instruction and clock once to receive the output.
R-Type, I-Type, and L-Type instructions will output 0.
The S-Type instruction will output the value of the register.
The B-Type instruction will output 1 if the branch is taken and 0 if it is not taken.

29

https://github.com/RickGao/RISC-V-Mini

Instructions List
R-Type
Name | funct3 [15:13] | funct2 [12:11] | rs2 [10:8] | rs1 [7:5] | rd [4:2] | Opcode(00)
AND | 000 | 00 | XXX | XXX | XXX | Opcode(00)
OR | 001 | 00 | XXX | XXX | XXX | Opcode(00)
ADD | 010 | 00 | XXX | XXX | XXX | Opcode(00)
SUB | 011 | 00 | XXX | XXX | XXX | Opcode(00)
XOR | 001 | 01 | XXX | XXX | XXX | Opcode(00)
SLT | 111 | 00 | XXX | XXX | XXX | Opcode(00)
I-Type
Name | funct3 [15:13] | Imm [12:8] (5-bit unsigned) | rs1 [7:5] | rd [4:2] | Opcode(01)
SLL | 100 | XXXXX | XXX | XXX | Opcode(01)
SRL | 101 | XXXXX | XXX | XXX | Opcode(01)
SRA | 110 | XXXXX | XXX | XXX | Opcode(01)
ADDI | 010 | XXXXX | XXX | XXX | Opcode(01)
SUBI | 011 | XXXXX | XXX | XXX | Opcode(01)
L-Type
Load | Imm [15:8] (8-bit signed) | 000 | rd [4:2] | Opcode(10)
S-Type
Store | 00000 | 000 | rs1 [7:5] | 000 | Opcode(11)
B-Type
Name | funct3 [15:13] | funct2 [12:11] | rs2 [10:8] | rs1 [7:5] | 000 | Opcode(11)
BEQ | 011 | 00 | XXX | XXX | 000 | Opcode(11)
BNE | 011 | 10 | XXX | XXX | 000 | Opcode(11)
BLT | 111 | 00 | XXX | XXX | 000 | Opcode(11)

External hardware

No External Hardware

30

Pinout

Input Output Bidirectional
0 instruction[0] result[0] instruction[8]
1 instruction1 result1 instruction[9]
2 instruction2 result2 instruction[10]
3 instruction[3] result[3] instruction[11]
4 instruction[4] result[4] instruction[12]
5 instruction[5] result[5] instruction[13]
6 instruction[6] result[6] instruction[14]
7 instruction[7] result[7] instruction[15]

31

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

eksdee [10]

• Author: lucy revi
• Description: That’s for none of us to know and all of us to find out.
• GitHub repository
• HDL project
• Mux address: 10
• Extra docs
• Clock: 0 Hz

How it works

I honestly don’t know yet.

How to test

I honestly don’t know yet.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any.
I honestly don’t know yet.

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

32

https://github.com/Fi50/tt09-eksdee

8-bit carry-skip [11]

• Author: Dennis_Du
• Description: two 8-bit input adder
• GitHub repository
• HDL project
• Mux address: 11
• Extra docs
• Clock: 0 Hz

How it works

This project implements an 8-bit carry-skip adder using a combination of ripple-carry
and skip logic for enhanced performance. The adder is divided into two 4-bit sections.
The lower 4 bits compute the initial partial sum and generate a carry-out, which is then
either passed directly to the upper 4-bit section or skipped, depending on the carry-
propagate signal. This design reduces the delay associated with carry propagation,
making it more efficient than a conventional ripple-carry adder. The final 8-bit sum is
registered and outputted in sync with the clock signal.

How to test

To test the carry-skip adder:

1. Load the design into your simulation environment.
2. Set the ui_in and uio_in inputs with the desired 8-bit values for addition.
3. The result of the addition will appear on uo_out after each rising edge.
4. Verify that the output matches expected values by comparing uo_out with the

sum of the inputs.

For more extensive testing, a testbench can be used to automate input combinations
and check results across various cases.

External hardware

No external hardware is required for this project.

Pinout

33

https://github.com/dennisduu/Carry_skip_adder

Input Output Bidirectional
0 a[0] sum[0] b[0]
1 a1 sum1 b1
2 a2 sum2 b2
3 a[3] sum[3] b[3]
4 a[4] sum[4] b[4]
5 a[5] sum[5] b[5]
6 a[6] sum[6] b[6]
7 a[7] sum[7] b[7]

34

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Cgates [12]

• Author: Tommy Thorn
• Description: Testing two different Cgate implementations and rings
• GitHub repository
• HDL project
• Mux address: 12
• Extra docs
• Clock: 0 Hz

How it works

(This is a variant of tt06-ncl-lfsr, but with different C-gate implementations)
Muller’s C-gate is a state-holding element with two inputs A and B, and an output Q.
Q holds the previous state unless A == B in which case it takes on this value. There
are many ways to implement the C-gate. In this design, we try two: building it from a
latch and building it out of combinatorial logic. The two inputs ui[0] and ui1 are fed to
two C-gates Cl and Cc, build with a latch and combinatorial logic respectively. Their
respective outputs are wired to uo[0] and uo1.
We also build four rings from this, with uo2 and uo[3] being the output of a four stage
build from Cl and Cc gates respectively. Similar for uo[4]/uo[5] except using 16 stage
rings and uo[6]/uo[7] for (TBD) stage rings.

How to test

Set ui[0] and ui1 different values and verify that uo[0]/uo1 only changes when both
agree. Observe uo[7:2] and look for transitions.

External hardware

For the basic test the rp2040 on the bringup board should be enough for the ring test,
an oscilloscope is [probably] required.

35

https://github.com/tommythorn/tt09-tommythorn-cgates
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 A Ql
1 B Qc
2 R4l
3 R4c
4 R16l
5 R16c
6 RTBDl
7 RTBDc

36

T3 (Tiny Ternary Tapeout) [13]

• Author: Arnav Sacheti & Jack Adiletta
• Description: Ternary Matmul Processor
• GitHub repository
• HDL project
• Mux address: 13
• Extra docs
• Clock: 50000000 Hz

Tiny Ternary Tapeout Project Documentation

Inspiration The inspiration for this Tiny Tapeout project comes from the “Scalable
MatMul-free Language Modeling” paper, which explores a novel approach to language
modeling that bypasses traditional matrix multiplication (MatMul) operations. Stan-
dard neural network models, especially those used for language processing, rely heavily
on matrix multiplications to handle complex data transformations. However, these
operations can be computationally expensive and power-intensive, especially at large
scales.
The key insight of this research is to leverage alternative mathematical structures and
sparse representations, reducing the need for resource-heavy MatMul operations while
still enabling efficient language processing. By reimagining the model architecture
to avoid these multiplications, it opens up possibilities for more energy-efficient, scal-
able models, particularly in hardware-constrained environments like microchips. This
Tiny Tapeout project aims to implement and experiment with these principles on a
small scale, designing circuitry that emulates the core ideas of this MatMul-free ap-
proach. This can pave the way for more efficient and compact language models in
embedded systems, potentially transforming real-time, on-device language processing
applications.

How it works The tt_um_tiny_ternary_tapeout.v module is designed to per-
form matrix multiplication using a pipelined architecture. Here’s a step-by-step expla-
nation of how it works:
Loading the Weights (tt_um_load.v):

The module starts by loading the weights for the matrix. These weights
are stored in an internal register array and are used for the matrix multi-
plication operations.

Matrix Multiplication (tt_um_mult.v):

37

https://github.com/arnavsacheti/tt09-tiny-ternary-tapeout

The module performs matrix multiplication by iterating over the columns
of the weight matrix and calculating the temporary output values based on
the weights and input vectors. For each column, the module multiplies the
input vector elements by the corresponding weights and sums the results
to produce the output values.

Pipelined Architecture:

The module is pipelined, meaning that it can continuously accept new
input vectors while performing computations on the previous inputs. As
new inputs are driven into the module, the current computations are com-
pleted, and the results are stored in a pipeline register. During the next
clock cycle, the outputs are produced as 8-bit integers, allowing for con-
tinuous data processing without interruption.

Outputting Results:

After driving all the inputs, the outputs are produced as 8-bit integers.
These outputs represent the result of the matrix multiplication operation.
By leveraging a pipelined architecture, the tt_um_mult.v module ensures
efficient and continuous data processing, allowing for high-throughput ma-
trix multiplication operations.

Example: Using a Ternary Array for Efficient Computation In this example,
we’ll create a 4x2 ternary array and demonstrate how it can be used to process a 1x4
input vector.
Step 1: Define a Ternary Array
A ternary array is one where each element can take on one of three possible values,
commonly -1, 0, or +1. These values simplify calculations because instead of perform-
ing complex multiplications, you can use additions, subtractions, or ignore the zero
entries altogether.
Let’s create a sample 4x2 ternary array:

Array = [+1 0 − 1 +1 0 −1 + 1 +1]

Step 2: Define the Input Vector
Let’s assume we have a 1x4 input vector:

Input = [2 −1 3 0]

38

Step 3: Compute the Output without Matrix Multiplication
Instead of performing a matrix multiplication, we’ll calculate the output using simpler
operations based on the ternary values.
For each column in the ternary array:

• Multiply +1 entries by the corresponding input values.
• Subtract the values for -1 entries.
• Ignore the 0 entries.

Step 4: Calculate Each Column’s Output
Let’s compute each column separately:

• Column 1 Calculation:

– Row 1: (+1 \times 2 = 2)
– Row 2: (-1 \times -1 = +1)
– Row 3: (0 \times 3 = 0)
– Row 4: (+1 \times 0 = 0)

Sum of Column 1: (2 + 1 + 0 + 0 = 3)
• Column 2 Calculation:

– Row 1: (0 \times 2 = 0)
– Row 2: (+1 \times -1 = -1)
– Row 3: (-1 \times 3 = -3)
– Row 4: (+1 \times 0 = 0)

Sum of Column 2: (0 - 1 - 3 + 0 = -4)

Final Output Vector
Combining the results from each column, we get the final output vector:

Output = [3 −4]

39

How to test To test the Matrix Multiplier with an external MCU like a Raspberry
Pi, follow these steps:

1. Setup:

• Connect the Raspberry Pi to the Matrix Multiplier hardware using appropriate
GPIO pins.

• Ensure that the Raspberry Pi has the necessary libraries installed for GPIO ma-
nipulation.

Pinout

Input Output Bidirectional
0 A1 Q1 B1
1 A2 Q2 B2
2 A3 Q3 B3
3 A4 Q4 B4
4 A5 Q5 B5
5 A6 Q6 B6
6 A7 Q7 B7
7 A8 Q8 B8

40

Classic 8-bit era Programmable Sound Generator SN76489
[14]

• Author: ReJ aka Renaldas Zioma
• Description: The SN76489 Digital Complex Sound Generator (DCSG) is a pro-

grammable sound generator chip from Texas Instruments.
• GitHub repository
• HDL project
• Mux address: 14
• Extra docs
• Clock: 4000000 Hz

How it works

This Verilog implementation is a replica of the classical SN76489 programmable sound
generator. With roughly a 1400 logic gates this design fits on a single tile of the
TinyTapeout.
The goals of this project

1. closely replicate the behavior and eventually the complete design of the orig-
inal SN76489

2. provide a readable and well documented code for educational and hardware
preservation purposes

3. leverage the modern fabrication process

A significant effort was put into a thorough test suite for regression testing and
validation against the original chip behavior.
The future work
The next step is to incorporate analog elements into the design to match the original
SN76489 - DAC for each channel and an analog OpAmp for channel summation.
Chip technical capabilities

• 3 square wave tone generators
• 1 noise generator
• 2 types of noise: white and periodic
• Capable to produce a range of waves typically from 122 Hz to 125 kHz, defined

by 10-bit registers.
• 16 different volume levels

41

https://github.com/rejunity/tt05-psg-sn76489
https://en.wikipedia.org/wiki/Texas_Instruments_SN76489

Registers The behavior of the SN76489 is defined by 8 “registers” - 4 x 4 bit volume
registers, 3 x 10 bit tone registers and 1 x 3 bit noise configuration register.

Channel Volume registers Tone & noise registers
0 Channel #0 attenuation Tone #0 frequency
1 Channel #1 attenuation Tone #1 frequency
2 Channel #2 attenuation Tone #2 frequency
3 Channel #3 attenuation Noise type and frequency

Square wave tone generators Square waves are produced by counting down the 10-
bit counters. Each time the counter reaches the 0 it is reloaded with the corresponding
value from the configuration register and the output bit of the channel is flipped
producing square waves.
Noise generator Noise is produced with 15-bit Linear-feedback Shift Register (LFSR)
that flips the output bit pseudo randomly. The shift rate of the LFSR register is
controller either by one of the 3 hardcoded power-of-two dividers or output from the
channel #2 tone generator is used.
Attenuation Each of the four SN76489 channels have dedicated attenuation modules.
The SN76489 has 16 steps of attenuation, each step is 2 dB and maximum possible
attenuation is 28 dB. Note that the attenuation definition is the opposite of volume /
loudness. Attenuation of 0 means maximum volume.
Finally, all the 4 attenuated signals are summed up and are sent to the output pin of
the chip.
Historical use of the SN76489
The SN76489 family of programmable sound generators was introduced by Texas In-
struments in 1980. Variants of the SN76489 were used in a number of home computers,
game consoles and arcade boards:

• home computers: TI-99/4, BBC Micro, IBM PCjr, Sega SC-3000, Tandy 1000
• game consoles: ColecoVision, Sega SG-1000, Sega Master System, Game Gear,

Neo Geo Pocket and Sega Genesis
• arcade machines by Sega & Konami and would usually include 2 or 4 SN76489

chips

The SN76489 chip family competed with the similar General Instrument AY-3-8910.
The original pinout of the SN76489AN

42

https://en.wikipedia.org/wiki/Linear-feedback_shift_register
https://en.wikipedia.org/wiki/TI-99/4A
https://en.wikipedia.org/wiki/BBC_Micro
https://en.wikipedia.org/wiki/IBM_PCjr
https://en.wikipedia.org/wiki/SG-1000#SC-3000
https://en.wikipedia.org/wiki/Tandy_1000
https://en.wikipedia.org/wiki/ColecoVision
https://en.wikipedia.org/wiki/SG-1000
https://en.wikipedia.org/wiki/Master_System
https://en.wikipedia.org/wiki/Game_Gear
https://en.wikipedia.org/wiki/Neo_Geo_Pocket
https://en.wikipedia.org/wiki/Sega_Genesis
https://en.wikipedia.org/wiki/General_Instrument_AY-3-8910

,--._.--.
D5 -->|1 16|<-- VCC
D6 -->|2 15|<-- D4
D7 -->|3 14|<-- CLOCK

ready* <--|4 13|<-- D3
/WE -->|5 12|<-- D2
/ce* -->|6 11|<-- D1

AUDIO OUT <--|7 10|<-- D0
GND ---|8 9| not connected*

`-------'
* -- omitted from this Verilog implementation

Difference from the original hardware
This Verilog implementation is a completely digital and synchronous design that differs
from the original SN76489 design which incorporated analog parts.
Audio signal output While the original chip had integrated OpAmp to sum generated
channels in analog fashion, this implementation does digital signal summation and
digital output. The module provides two alternative outputs for the generated audio
signal:

1. digital 8-bit audio output suitable for external Digital to Analog Converter (DAC)
2. pseudo analog output through Pulse Width Modulation (PWM)

Separate 4 channel output Outputs of all 4 channels are exposed along with the
master output. This allows to validate and mix signals externally. In contrast the
original chip was limited to a single audio output pin due to the PDIP-16 package.
No DC offset This implementation produces output 0/1 waveforms without DC
offset.
No /CE and READY pins Chip enable control pin /CE is omitted in this design for
simplicity. The behavior is the same as if /CE is tied low and the chip is considered
always enabled.
Unlike the original SN76489 which took 32 cycles to update registers, this implemen-
tation handles register writes in a single cycle and chip behaves as always READY.
Synchronous reset and single phase clock The original design employed 2 phases
of the clock for the operation of the registers. The original chip had no reset pin and
would wake up to a random state.
To make it easier to synthesize and test on FPGAs this implementation uses single
clock phase and synchronous reset for registers.
A configurable clock divider was introduced in this implementation.

43

1. the original SN76489 with the master clock internally divided by 16. This clas-
sical chip was intended for PAL and NTSC frequencies. However in BBC Micro
4 MHz clock was employed.

2. SN94624/SN76494 variants without internal clock divider. These chips were
intended for use with 250 to 500 KHz clocks.

3. high frequency clock configuration for TinyTapeout, suitable for a range between
25 MHz and 50 Mhz. In this configuration the master clock is internally divided
by 128.

The reverse engineered SN76489
This implementation is based on the results from these reverse engineering efforts:

1. Annotations and analysis of a decapped SN76489A chip.
2. Reverse engineered schematics based on a decapped VDP chip from Sega Mega

Drive which included a SN76496 variant.

How to test

Summary of commands to communicate with the chip
The SN76489 is programmed by updating its internal registers via the data bus. Be-
low is a short summary of the communication protocol of SN76489. Please consult
SN76489 Technical Manual for more information.

Command Description Parameters
1cc0ffff Set tone fine frequency f - 4 low bits, c - channel #
00ffffff Follow up with coarse frequency f - 6 high bits
11100bff Set noise type and frequency b - white/periodic, f - frequency control
1cc1aaaa Set channel attenuation a - 4 bit attenuation, c - channel #

NF1 NF0 Noise frequency control
0 0 Clock divided by 512
0 1 Clock divided by 1024
1 0 Clock divided by 2048
1 1 Use channel #2 tone frequency

Write to SN76489 Hold /WE low once data bus pins are set to the desired values.
Pull /WE high before setting different value on the data bus.
Note frequency

44

https://en.wikipedia.org/wiki/BBC_Micro
https://github.com/gchiasso/76489A-analysis
https://github.com/emu-russia/SEGAChips/tree/main/VDP/PSG
https://github.com/rejunity/tt05-psg-sn76489/blob/main/docs/SN76489AN_Manual.pdf

Use the following formula to calculate the 10-bit period value for a particular note :

𝑡𝑜𝑛𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑐𝑦𝑐𝑙𝑒𝑠 = 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(32𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

For example 10-bit value that plays 440 Hz note on a chip clocked at 4 MHz would
be:

𝑡𝑜𝑛𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑐𝑦𝑐𝑙𝑒𝑠 = 4000000𝐻𝑧/(32𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 440𝐻𝑧) = 284 = 11𝐶ℎ𝑒𝑥

An example to play a note accompanied with a lower volume noise

/WE D7 D6/5 D4..D0 Explanation
0 1 00 01100 Set channel #0 tone low 4-bits to 𝐶ℎ𝑒𝑥 = 1100𝑏𝑖𝑛
0 0 00 10001 Set channel #0 tone high 6-bits to 11ℎ𝑒𝑥 = 010001𝑏𝑖𝑛
0 1 00 10000 Set channel #0 volume to 100%, attenuation 4-bits are 0𝑑𝑒𝑐 = 0000𝑏𝑖𝑛
0 1 11 00100 Set channel #3 noise type to white and divider to 512
0 1 11 11000 Set channel #3 noise volume to 50%, attenuation 4-bits are 8𝑑𝑒𝑐 = 1000𝑏𝑖𝑛

Timing diagram

CLK ____ ____ ____ ____ ____ ____
__/ `____/ `____/ `____/ `____/ `____/ `___ ...
| | | | | |
| | | | | |

/WE _ __ __ __ __ _______
`_____/ `______/ `______/ `______/ `______/ *

^
D7..D0_______ ________ ________ ________ ________ |

/10001100 00010001 10010000 11100100 11111000`|______
chan#0 chan#0 chan#0 chan#3 chan#3 |

tone=h??C =h11C atten=0 div=16 atten=8 |
h011C = 440 Hz /16 = ~1 Khz |

white noise |
|

noise restarts
after /WE goes high and

there was a write to noise register

45

Configurable clock divider
Clock divider can be controlled through SEL0 and SEL1 control pins and allows to
select between 3 chip variants.

SEL1 SEL0 Description Clock frequency
0 0 SN76489 mode, clock divided by 16 3.5 .. 4.2 MHz
1 1 —–//—– 3.5 .. 4.2 MHz
0 1 SN76494 mode, no clock divider 250 .. 500 kHZ
1 0 New mode for TT05, clock div. 128 25 .. 50 MHz

SEL1 SEL0 Formula to calculate the 10-bit tone period value for a note
0 0 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(32𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
1 1 —–//—–
0 1 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(2𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
1 0 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(256𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

Some examples of music recorded from the chip simulation

• [https://www.youtube.com/watch?v=ghBGasckpSY](Crazee Rider BBC Micro
game)

• [https://www.youtube.com/watch?v=HXLAdA02I-w](MISSION76496 tune for
Sega Master System)

External hardware

DAC (for ex. Digilent R2R PMOD), RC filter, amplifier, speaker.
The data bus of the SN76489 chip has to be connected to microcontroller and receive
a regular stream of commands. The SN76489 produces audio output and has to be
connected to a speaker. There are several ways how the overall schematics can be
established.
8-bit parallel output via DAC One option is to connect off the shelf data parallel
Digital to Analog Converter (DAC) for example Digilent R2R Pmod to the output pins
and route the resulting analog audio to piezo speaker or amplifier.

uController SN76489
,---------. ,---._.---.
| | 4 Mhz ->|CLK SEL0|<-- 0

46

https://www.youtube.com/watch?v=ghBGasckpSY
https://www.youtube.com/watch?v=HXLAdA02I-w
https://digilent.com/reference/pmod/pmodr2r/start

| GPIOx|----------->|D0 SEL1|<-- 0
| GPIOx|----------->|D1 | ,----------.
| GPIOx|----------->|D2 OUT0|-------->|LSB |
| GPIOx|----------->|D3 OUT1|-------->| |
| GPIOx|----------->|D4 OUT2|-------->| pDAC | Headphones
| GPIOx|----------->|D5 OUT3|-------->| or | or
| GPIOx|----------->|D6 OUT4|-------->| RESISTOR | Buzzer
| GPIOx|----------->|D7 OUT5|-------->| ladder | /|
| GPIOx|----------->|/WE OUT6|-------->| | .--/ |
`---------' | OUT7|-------->|MSB |-----| |

`---------' `----------' `--` |
| `|
|

GND ---

AUDIO OUT through RC filter Another option is to use the Pulse Width Modu-
lated (PWM) AUDIO OUT pin that combines 4 channels with the Resistor-Capacitor
based low-pass filter or better the Operation Amplifier (Op-amp) & Capacitor based
integrator:

uController SN76489
,---------. ,---._.---.
| | 4 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|D0 SEL1|<-- 0
| GPIOx|----------->|D1 |
| GPIOx|----------->|D2 |
| GPIOx|----------->|D3 | C1
| GPIOx|----------->|D4 | ,----||----.
| GPIOx|----------->|D5 | | |
| GPIOx|----------->|D6 | | Op-amp | Speaker
| GPIOx|----------->|D7 AUDIO| | |X | /|
| GPIOx|----------->|/WE OUT |-----+---|-X | C2 .--/ |
`---------' `---------' | }---+---||---| |

,--|+/ `--` |
| |/ | `|
| |

GND --- GND ---

Separate channels through the Op-amp The third option is to externally combine
4 channels with the Operational Amplifier and low-pass filter:

47

uController SN76489
,---------. ,---._.---.
| | 4 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|D0 SEL1|<-- 0
| GPIOx|----------->|D1 |
| GPIOx|----------->|D2 |
| GPIOx|----------->|D3 | C1
| GPIOx|----------->|D4 | ,----||----.
| GPIOx|----------->|D5 chan0|---. | |
| GPIOx|----------->|D6 chan1|---+ | Op-amp | Speaker
| GPIOx|----------->|D7 chan2|---+ | |X | /|
| GPIOx|----------->|/WE chan3|---+--+---|-X | C2 .--/ |
`---------' `---------' | }---+---||---| |

,--|+/ `--` |
| |/ | `|
| |

GND --- GND ---

Pinout

Input Output Bidirectional
0 D0 data bus digital audio LSB (in) /WE write enable
1 D1 data bus digital audio (in) SEL0 clock divider
2 D2 data bus digital audio (in) SEL1 clock divider
3 D3 data bus digital audio (out) channel 0 (PWM)
4 D4 data bus digital audio (out) channel 1 (PWM)
5 D5 data bus digital audio (out) channel 2 (PWM)
6 D6 data bus digital audio (out) channel 3 (PWM)
7 D7 data bus digital audio MSB (out) AUDIO OUT master (PWM)

48

3 Neuron ALIF [15]

• Author: Andrew Smith
• Description: TODO
• GitHub repository
• HDL project
• Mux address: 15
• Extra docs
• Clock: 0 Hz

How it works

3 Adaptive Leaky Integrate and Fire Neurons

1. Receives an 8-bit input signal (ui_in) with small offset variations
2. Processes the signal through the LIF model which simulates biological neuron

behavior by:

• Integrating (accumulating) input current over time
• Applying a leak factor to gradually decrease membrane potential
• Generating a spike when membrane potential exceeds threshold
• Adjusting a moving threshold based on periods of past inputs

3. Outputs:

• Spike signals on uio_out[7:5]:

– uio_out[7]: Neuron 1 spike output
– uio_out[6]: Neuron 2 spike output
– uio_out[5]: Neuron 3 spike output

• Internal state of Neuron 1 on uo_out[7:0] for debugging/testing

How to test

1. Basic Functionality Test:

• Apply a constant input value through ui_in
• Monitor uio_out[7:5] to observe spike patterns
• Check uo_out to monitor Neuron 1’s internal state

2. Threshold Response Test:

49

https://github.com/and-rewsmith/tt09-verilog-template-andrewsmith

• Gradually increase ui_in value
• Observe spike behavior on uio_out[7:5]
• Verify neurons spike when input exceeds threshold

3. Reset Test:

• Assert rst_n (active low)
• Verify all spike outputs (uio_out[7:5]) go low
• Verify internal state (uo_out) resets to initial value

External hardware

No external hardware required. The design uses only the built-in TinyTapeout inputs
and outputs:

• 8 input pins (ui_in[7:0])
• 8 output pins (uo_out[7:0])
• 8 bidirectional pins (uio_out[7:0])
• Clock (clk)
• Reset (rst_n)

Pinout

Input Output Bidirectional
0 Input current bit [0] State variable bit [0]
1 Input current bit 1 State variable bit 1
2 Input current bit 2 State variable bit 2
3 Input current bit [3] State variable bit [3]
4 Input current bit [4] State variable bit [4]
5 Input current bit [5] State variable bit [5]
6 Input current bit [6] State variable bit [6]
7 Input current bit [7] State variable bit [7] Spike bit

50

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Giant Ring Oscillator (3853 inverters) [16]

• Author: Uri Shaked
• Description: Configurable ring oscillator with up to 3853 inverters
• GitHub repository
• HDL project
• Mux address: 16
• Extra docs
• Clock: 0 Hz

How it works

A giant, configurable ring oscillator with up to 3853 stages. To enable the ring oscillator,
connect one of the output pins to the first input pin (ring_in / ui_in[0]). Each
output pin is connected at a different point in the ring oscillator chain, making it
possible to create rings of different lengths:

Pin Chain length
uo[0] 1
uo1 3
uo2 5
uo[3] 7
uo[4] 11
uo[5] 21
uo[6] 51
uo[7] 101
uio[0] 201
uio1 501
uio2 1001
uio[3] 2001
uio[4] 3001
uio[5] 3853

There is also an option to connect the ring oscillator internally, by driving
internal_loopback high. This will create a ring oscillator with 3853 stages.

How to test

Connect one of the output pins (e.g. uio_out[5]) to ring_in or set
internal_loopback to 1, and measure the output frequency.

51

https://github.com/urish/tt09-giant-ring-oscillator
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

External hardware

A scope / logic analyzer to measure the output frequency and the delay between
different points in the inverter chain.

Pinout

Input Output Bidirectional
0 ring_in len1 len201
1 internal_loopback len3 len501
2 len5 len1001
3 len7 len2001
4 len11 len3001
5 len21 len3853
6 len51
7 len101

52

STDP Circuit [17]

• Author: Mariah Regalado
• Description: STDP Circuit using a trace to model exponential behavior
• GitHub repository
• HDL project
• Mux address: 17
• Extra docs
• Clock: 0 Hz

How it works

The point of this circuit is to detect spikes and measure the time interval between
them. My code uses delta_t to measure the time. If a pres-synaptic spike happens,
if no spike was detected before, my pre_spike_detected signal is set to 1 and delta_t
is set to. If there has been a post synaptic spike, and post_spike_detected has been
triggered, delta_t decrements to measure the time difference. Delta_t accumulates
otherwise.
If pre_spike_detected and post_spike_detected are both high, both spikes have been
detected and the sign of delta_t is used to determine if depression or potentiation
should occur. I used a trace to model the exponential behavior of STDP. I modified the
trace depending on whether it was necessary to depress or potentiate the weight. I also
included edge cases to ensure the newly calculated weight doesn’t cause overflow.

How to test

I am stil working on it.

External hardware

N/A

Pinout

Input Output Bidirectional
0 Input Current Bit [0] State Variable bit[0]
1 Input Current Bit 1 State Variable bit1
2 Input Current Bit 2 State Variable bit2

53

https://github.com/mariahregalado1/tt09-regalado-ece110
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
3 Input Current Bit [3] State Variable bit[3]
4 Input Current Bit [4] State Variable bit[4]
5 Input Current Bit [5] State Variable bit[5]
6 Input Current Bit [6] State Variable bit[6]
7 Input Current Bit [7] State Variable bit[7] Spike bit

54

TwoChannelSquareWaveGenerator [18]

• Author: Sam Kho
• Description: Like having two apple2-style speakers
• GitHub repository
• HDL project
• Mux address: 18
• Extra docs
• Clock: 256000 Hz

How it works

Two 8-bit inputs, TA and TB, are used to reload internal countdown timers when they
reach zero, at which time, respective outputs OUTA and OUTB are toggled. A 2-bit
SUM output is also provided as a convenience (SUM = OUTA + OUTB).

How to test

Apply arbitrary 8-bit reload values to TA (ui_in) and TB (uio_in). Probe OUTA and
OUTB with oscilloscope or logic analyzer. Time period for outputs is proportional to
(input+1); i.e. to get two waves with period T and period 2T, provide values like 3
and 7 (instead of 4 and 8). Also check 2-bit output SUM (should be OUTA + OUTB,
possibly delayed by one cycle).

External hardware

External hardware not needed, but intent is to drive speakers (probably bring down
voltage level via resistor dividers, then feed into speaker amplifier).

Pinout

Input Output Bidirectional
0 TA0 OUTA TB0
1 TA1 OUTB TB1
2 TA2 SUM0 TB2
3 TA3 SUM1 TB3
4 TA4 TB4
5 TA5 TB5

55

https://github.com/samkho/TwoChannelSquareWaveGenerator

Input Output Bidirectional
6 TA6 TB6
7 TA7 TB7

56

instrumented_ring_oscillator [19]

• Author: Jeremy Mickelsen
• Description: A ring oscillator with a selectable number of stages and initial state.
• GitHub repository
• HDL project
• Mux address: 19
• Extra docs
• Clock: 0 Hz

How it works

Preface: This is probably not a component you want if you want a reliable end device.
This is intended to allow studying the decay (or persistence) of high-frequency “modes”
which are generally very undesirable.
This project uses ring oscillators with muxes on the inputs to allow setting an initial
state or “seed”. This can be configured using a clock (in3) and data (in2) similar
to SPI (positive edge clocks the data in. The in0 line is the enable to start the
oscillator running, and in1 is a HOLD line that blocks one stage so that the normal
long period can be obtained. in7:in4 select the number of stages (2*n + 5). In order
to have selectable stages without a really big mux (which would have a very different
propagation speed than the other stages), two muxes per stage are used, some of them
bypassing some of the chain to get the desired number of muxes. This diagram shows
the short mux paths as pipes (“|”).
Note that when less than 25 stages are used, all inverters are still driven, but some
outputs are not used. Note that the seed state is a FIFO fed in at the little end - it’s
always updatable (though it’s state should not impact operation).

How to test

0. Hook up an analyzer / scope to the output & bidirectional channels.16 phases
are driven out.

1. Select the number of stages (in7:in4).
2. If desired, seed the initial state using in3, in2. It’s a
3. Drive enable (in0) high and watch the chaos to see if it stabilizes to the longest

frequency, or if high frequency modes persist.
4. The hold (in1) can be briefly drivent to get to the longest frequency.

57

https://github.com/AnotherPseudonym/intstrumented_ring_oscillator

External hardware

A logic analyzer will probably be the most useful tool for this - For FPGA testing, I used
a Digilent Digital Discovery (DD) with this projects outputs going to DD channels 0-15,
and using DD channels 24-31 to drive the project inputs. A multi-channel oscilloscope
might also be interesting to use with this.

Pinout

Input Output Bidirectional
0 enable phase[0] phase[8]
1 hold phase1 phase[9]
2 bdat phase2 phase[10]
3 bclk phase[3] phase[11]
4 n_stages[0] phase[4] phase[12]
5 n_stages1 phase[5] phase[13]
6 n_stages2 phase[6] phase[14]
7 n_stages[3] phase[7] phase[15]

58

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Linear Timecode (LTC) generator [32]

• Author: Thomas Flummer
• Description: Timecode generator for audio video syncronization
• GitHub repository
• HDL project
• Mux address: 32
• Extra docs
• Clock: 12000000 Hz

How it works

Multiple counters to maintain time and framecount, with serial output of the LTC (80
bit frames, biphase mark code)

How to test

The project should have 12 MHz clock signal applied and after reset, will start out
with a 00:00:00:00 timecode and starts to count.
Framerate is controlled by the ui2 and ui[3]

ui[3] ui2 Framerate Comment
0 0 24
0 1 25
1 0 29.97 Not implemented
1 1 30

External hardware

This should work with the audio PMOD connected to the bidirectional port, to give
levels useable for audio gear.
If testing with logic analyzer or similar, uio[7] can be directly connected. The signal is
a digital signal.

Pinout

59

https://github.com/flummer/tt-um-flummer-ltc
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
0
1
2 FRAMERATE_0
3 FRAMERATE_1
4
5
6
7 LTC_OUT

60

Tiny Shader [34]

• Author: Leo Moser
• Description: With Tiny Shader you can write a small program to create different

images and even animations.
• GitHub repository
• HDL project
• Mux address: 34
• Extra docs
• Clock: 25175000 Hz

How it works

Modern GPUs use fragment shaders to determine the final color for each pixel. Thou-
sands of shading units run in parallel to speed up this process and ensure that a high
FPS ratio can be achieved.
Tiny Shader mimics such a shading unit and executes a shader with 10 instructions
for each pixel. No framebuffer is used, the color values are generated on the fly. Tiny
Shader also offers an SPI interface via which a new shader can be loaded. The final
result can be viewed via the VGA output at 640x480 @ 60 Hz, although at an internal
resolution of 64x48 pixel.

Examples These images and many more can be generated with Tiny Shader. Note,
that shaders can even be animated by acessing the user or time register.

The shader for the last image is shown here:

Shader to display a rainbow colored sine wave

Clear R3
CLEAR R3

Get the sine value for x and add the user value

61

https://github.com/mole99/tt10-tiny-shader

GETX R0
GETUSER R1
ADD R0 R1

Set default color to R0
SETRGB R0

Get the sine value for R0
SINE R0
HALF R0

Get y coord
GETY R1

If the sine value is greater
or equal y, set color to black
IFGE R1
SETRGB R3

Architecture Tiny Shader has four (mostly) general purpose registers, REG0 to
REG3. REG0 is special in a way as it is the target or destination register for some
instructions. All registers are 6 bit wide.

Input The shader has four sources to get input from:

• X - X position of the current pixel
• Y - Y position of the current pixel
• TIME - Increments at 7.5 Hz, before it overflow it counts down again.
• USER - Register that can be set via the SPI interface.

Output The goal of the shader is to determine the final output color:

• RGB - The output color for the current pixel. Channel R, G and B can be set
individually. If not set, the color of the previous pixel is used.

Sine Look Up Table Tiny Shader contains a LUT with 16 6-bit sine values for a
quarter of a sine wave. When accesing the LUT, the entries are automatically mirrored
to form one half of a sine wave with a total of 32 6-bit values.

62

Instructions The following instructions are supported by Tiny Shader. A program
consists of 10 instructions and is executed for each pixel individually. The actual
resolution is therefore one tenth of the VGA resolution (64x48 pixel).

Output

Instruction Operation Description
SETRGB RA RGB <= RA Set the output color to the value of the specified register.
SETR RA R <= RA[1:0] Set the red channel of the output color to the lower two bits of the specified register.
SETG RA G <= RA[1:0] Set the green channel of the output color to the lower two bits of the specified register.
SETB RA B <= RA[1:0] Set the blue channel of the output color to the lower two bits of the specified register.

Input

Instruction Operation Description
GETX RA RA <= X Set the specified register to the x position of the current pixel.
GETY RA RA <= Y Set the specified register to the y position of the current pixel.
GETTIME RA RA <= TIME Set the specified register to the current time value, increases with each frame.
GETUSER RA RA <= USER Set the specified register to the user value, can be set via the SPI interface.

Branches

Instruction Operation Description
IFEQ RA TAKE <= RA == R0 Execute the next instruction if RA equals R0.
IFNE RA TAKE <= RA != R0 Execute the next instruction if RA does not equal R0.
IFGE RA TAKE <= RA >= R0 Execute the next instruction if RA is greater then or equal R0.
IFLT RA TAKE <= RA < R0 Execute the next instruction if RA is less than R0.

Arithmetic

Instruction Operation Description
DOUBLE RA RA <= RA * 2 Double the value of RA.
HALF RA RA <= RA / 2 Half the value of RA.
ADD RA RB RA <= RA + RB Add RA and RB, result written into RA.

63

Load

Instruction Operation Description
CLEAR RA RA <= 0 Clear RA by writing 0.
LDI IMMEDIATE RA <= IMMEDIATE Load an immediate value into RA.

Special

Instruction Operation Description
SINE RA RA <= SINE[R0[4:0]] Get the sine value for R0 and write into RA. The sine value LUT has 32 entries.

Boolean

Instruction Operation Description
AND RA RB RA <= RA & RB Boolean AND of RA and RB, result written into RA.
OR RA RB RA <= RA RB
NOT RA RB RA <= ~RB Invert all bits of RB, result written into RA.
XOR RA RB RA <= RA ^ RB XOR of RA and RB, result written into RA.

Move

Instruction Operation Description
MOV RA RB RA <= RB Move value of RB into RA.

Shift

Instruction Operation Description
SHIFTL RA RB RA <= RA « RB Shift RA with RB to the left, result written into RA.
SHIFTR RA RB RA <= RA » RB Shift RA with RB to the right, result written into RA.

Pseudo

Instruction Operation Description
NOP R0 <= R0 & R0 No operation.

64

How to test

First set the clock to 25.175 MHz and reset the design. For a simple test, simply
connect a Tiny VGA to the output Pmod. A shader is loaded by default and an image
should be displayed via VGA.
For advanced features, connect an SPI controller to the bidir pmod. If ui[0], the mode
signal, is set to 0, you can write to the user register via SPI. Note that only the last 6
bit are used.
If the mode signal is 1, all bytes transmitted via SPI are shifted into the shader memory.
This way you can load a new shader program. Have fun!

External hardware

• Tiny VGA or similar VGA Pmod
• Optional: SPI controller to write the user register and new shaders

Pinout

Input Output Bidirectional
0 mode R1 CS
1 debug_i[0] G1 MOSI
2 debug_i1 B1 MISO
3 vsync SCK
4 R[0] next_vertical
5 G[0] next_frame
6 B[0] debug_o[0]
7 hsync debug_o1

65

https://github.com/mole99/tiny-vga
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Sine Synth [36]

• Author: R. Timothy Edwards
• Description: Keyboard synthesizer with one octave of notes and a sine wave

generator
• GitHub repository
• HDL project
• Mux address: 36
• Extra docs
• Clock: 50000000 Hz

How it works

This project implements a (trivially simple) music synthesizer, where “keys” are mapped
to the input PMOD bits, and the synthesizer engine generates sine waves for each note.
The sine wave generator is similar to the one that Mike Bell created to demonstrate
the audio PMOD, but implements a more efficient method using delta steps. The 8-bit
output is passed directly to the output PMOD, and simultaneously passed through a
PWM generator (the one from Mike Bell’s project) to drive the audio PMOD. I am
considering recasting this as an analog project and adding an 8-bit RDAC, but this
version is digital only. Output of the synthesizer is monophonic.

How to test

Preferably attach the 8 bits of the input PMOD port to a row of 8 buttons that can
be played like a keyboard. Only whole steps are represented, for one octave C to C.

External hardware

Preferably use Mike Bell’s audio PMOD on the bidirectional PMOD port. The project
uses bit 7 as a single-bit PWM output that is used according to the instructions for
the audio PMOD.

Pinout

Input Output Bidirectional
0 Key C 8-bit Output, bit 0
1 Key D 8-bit Output, bit 1

66

https://github.com/RTimothyEdwards/tt10-sine-synth

Input Output Bidirectional
2 Key E 8-bit Output, bit 2
3 Key F 8-bit Output, bit 3
4 Key G 8-bit Output, bit 4
5 Key A 8-bit Output, bit 5
6 Key B 8-bit Output, bit 6
7 Key C 8-bit Output, bit 7 PWM Output

67

DRUM [38]

• Author: Gökçe Aydos
• Description: an approximate multiplier
• GitHub repository
• HDL project
• Mux address: 38
• Extra docs
• Clock: 0 Hz

How it works

The design consists of a RAM and an approximate multiplier a * b = r based
on DRUM: A Dynamic Range Unbiased Multiplier for Approximate Applications by
Hashemi et. al.

How to test

r = a * b. Write data to a and b. Then read the result/s from the RAM. The
product results should differ if the frequency is increased.
Address map:

• 0 to 7 => product result
• 8 => multiplicand 1
• 9 => multiplicand 2

External hardware

Nothing.

Pinout

Input Output Bidirectional
0 addr[0] ram_out(0) ram_in(0) or result(0)
1 addr1 ram_out(1) ram_in(1) or result(1)
2 addr2 ram_out(2) ram_in(2) or result(2)
3 addr[3] ram_out(3) ram_in(3) or result(3)
4 ram_out(4) ram_in(4) or result(4)

68

https://github.com/goekce/tinytapeout10-design
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
5 result write enable ram_out(5) ram_in(5) or result(5)
6 tristate output enable ram_out(6) ram_in(6) or result(6)
7 RAM write enable ram_out(7) ram_in(7) or result(7)

69

Tiny Hash Table [40]

• Author: Sasha Krassovsky
• Description: Hash table with 8 slots, 4-bit keys, 4-bit values
• GitHub repository
• HDL project
• Mux address: 40
• Extra docs
• Clock: 0 Hz

How it works

This is a hash table with 8 slots, 4-bit keys, and 4-bit values. Keys are entered on pins
KEY3-KEY0, values are entered on pins VAL3-VAL0. When given a command, and told
to execute via the GO line, the hash table hashes the key, and begins linearly probing
into the hash table. Once a suitable slot is found, the given command is executed on
that slot, or STATUS1-STATUS0 returns a suitable error message. The table takes care
to buffer the inputs so that they’re not changed during probing.
The commands are: | Command | CMD1 | CMD0 | | | |————|——|——|—|—| |
CMD_LOOKUP | 0 | 0 | | | | CMD_INSERT | 0 | 1 | | | | CMD_DELETE | 1 | 0 | |
|
The status codes are: | Status | STATUS1 | STATUS0 | Description | |————
—–|———|———|————————————| | STATUS_OK | 0 | 0 | Operation
Succeeded | | STATUS_FULL | 0 | 1 | Insertion failed - hash table full | | STA-
TUS_NOTFOUND | 1 | 0 | Lookup failed - key not found | | STATUS_BUSY | 1 | 1
| Hash table is still probing |

How to test

Choose a key and value to insert, such as 0x4 and 0x2, and set the KEY and VAL lines
accordingly (so in this case, 0100 and 0010). Next, set the CMD lines to CMD_INSERT,
or 01. Lastly, set the GO line to 1. The STATUS lines should then turn to STATUS_BUSY
for a few cycles, empirically 15 cycles is enough for all commands, though the timing
varies on the load factor. After it finishes, the STATUS line should return to STATUS_OK,
and the OVAL lines should contain the key you inserted (0010)! To run another
command on the table, you must set GO to 0 for at least one cycle before triggering
another command.

70

https://github.com/save-buffer/tt10-hash-table

Pinout

Input Output Bidirectional
0 VAL0 OVAL0 CMD0
1 VAL1 OVAL1 CMD1
2 VAL2 OVAL2 GO
3 VAL3 OVAL3
4 KEY0
5 KEY1
6 KEY2 STATUS0
7 KEY3 STATUS1

71

Asynchronous FIFO [42]

• Author: RMKGSN
• Description: An Asynchronous FIFO is a type of First-In-First-Out memory buffer

that allows data transfer between two clock domains operating at differnt fre-
quencies

• GitHub repository
• HDL project
• Mux address: 42
• Extra docs
• Clock: 60000000 Hz

How it works

An Asynchronous FIFO is a memory buffer enabling data transfer between two clock
domains with different frequencies. It uses separate write and read clocks, along with
pointers to track data flow. Full and empty flags prevent overflow and underflow, while
synchronization logic ensures safe transfer, avoiding metastability. Gray-coded pointers
enhance reliable communication, maintaining data integrity.

How to test

Set the following inputs to control FIFO operation:
• write_enable (ui_in[0]) – Enables writing data into the FIFO.
• read_enable (ui_in1) – Enables reading data from the FIFO.
• reset (ui_in2) – Clears all stored data and resets the FIFO.

Writing to the FIFO:
• Check if the full flag (ui_out[0]) is LOW (FIFO is not full).
• Set write_enable (ui_in[0]) HIGH and provide data to the FIFO.
• On the rising edge of the write clock (w_clk), data is written, and the write

pointer advances.
• Release write_enable after writing is complete.

72

https://github.com/reemashivva/CF-2024-TT10-06
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Reading from the FIFO:
• Check if the empty flag (ui_out1) is LOW (FIFO contains data).
• Set read_enable (ui_in1) HIGH to request data.
• On the rising edge of the read clock (r_clk), data is output, and the read pointer

advances.
• Release read_enable after reading is complete.

Additional Controls (if using a Debug Interface or Controller):
• Adjust Clock Domains: Modify write and read clock frequencies to test synchro-

nization.
• Monitor Full/Empty Flags: Ensure proper flow control to prevent overflow or

underflow.
• Pause/Resume Reads/Writes: Dynamically enable or disable operations based

on system requirements.

Pinout

Input Output Bidirectional
0 full
1 empty
2 wr_rq rdata[0]
3 rd_rq rdata1
4 wdata[0] rdata2
5 wdata1 rdata[3]
6 wdata2
7 wdata[3]

73

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Synchronous FIFO [44]

• Author: Monish V.R
• Description: It’s a synchronous fifo which has 4 bit of width
• GitHub repository
• HDL project
• Mux address: 44
• Extra docs
• Clock: 0 Hz

How it works

The synchronous FIFO is a first in first out memory. When the data is entered and
written it gets stored in the memory. And when read out, it will be removed from the
memory.
It’s based on debouncing mechanism.

How to test

TBA

External hardware

NIL

Pinout

Input Output Bidirectional
0 full
1 empty
2 wr dout[0]
3 rd dout1
4 din[0] dout2
5 din1 dout[3]
6 din2
7 din[3]

74

https://github.com/Monish-VR/CF-2024-TT10-02
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Pulse Width Modulation [46]

• Author: Nithish Reddy KVS
• Description: This Verilog module generates a Pulse Width Modulation (PWM)

signal with adjustable duty cycle. It utilizes a 50MHz clock input and debounced
buttons to increase or decrease the duty cycle, producing a 5MHz PWM output
for various applications like motor speed control or LED brightness adjustment.

• GitHub repository
• HDL project
• Mux address: 46
• Extra docs
• Clock: 50000000 Hz

How it works

This Verilog code implements a Pulse Width Modulation (PWM) generator designed
for a 50 MHz input clock. The main functionality revolves around creating a variable
duty cycle PWM signal and allowing user control to adjust the duty cycle through two
input buttons. The module tt_um_nithishreddykvs uses a clock signal to generate a
10 MHz PWM output (PWM_OUT), with the duty cycle ranging from 0% to 90% in
10% increments.
To ensure reliable operation, debouncing logic is implemented for the buttons that
increase (ui_in[0]) and decrease (ui_in1) the duty cycle. The debouncing mechanism
uses D Flip-Flops (DFF_PWM) and a slow clock enable signal generated via a counter.
The slow_clk_enable ensures that rapid fluctuations caused by button bouncing do
not affect the duty cycle adjustment. The duty cycle can be dynamically updated by
incrementing or decrementing its value through button presses, and this adjustment
directly impacts the PWM signal’s ON and OFF durations.
The module ensures that outputs and unused inputs are properly assigned to avoid any
synthesis or simulation warnings, and a reset signal (rst_n) is included for reinitializing
the design.

How to test

1.Simulation Environment:
• Use a Verilog simulator (such as ModelSim, Vivado, or Verilator) to verify the

design.
• Apply a 50 MHz clock signal to the clk input.

75

https://github.com/nithishreddykvs/CF-2024-TT10-05
https://en.wikipedia.org/wiki/Collatz_conjecture

• Provide test signals to ui_in[0] and ui_in1 for increasing and decreasing the duty
cycle.

• Observe the PWM_OUT signal to confirm that the duty cycle adjusts correctly
in response to button presses.

2.FPGA Testing:
• Synthesize the code for an FPGA board (e.g., Xilinx or Intel FPGA).
• Assign the ui_in signals to physical buttons or switches on the board for user

interaction.
• Connect the PWM_OUT signal to an output pin that drives an LED or an

oscilloscope for visual verification of the PWM waveform.
• Verify that the duty cycle changes in 10% increments as buttons are pressed and

released.

External hardware

Input Buttons: Two push buttons are required for increasing and decreasing the
duty cycle. These buttons are connected to ui_in[0] and ui_in1. Ensure pull-up or pull-
down resistors are used to stabilize the input signals when buttons are not pressed.

PWM Output Device: The PWM_OUT signal can be connected to an LED,
motor, or any other device that can visually or functionally represent the PWM signal.
For testing, an oscilloscope is recommended to observe the PWM waveform and verify
the duty cycle.

Clock Source: A 50 MHz clock signal is essential for driving the design. This can
be provided by the FPGA’s onboard oscillator or an external clock module.

Reset and Power Supply: A reset button should be included to initialize the
system via the rst_n signal. The design should also include appropriate voltage levels
(e.g., 3.3V or 5V) as per the FPGA board’s requirements.

FPGA Board: Use an FPGA development board that supports 50 MHz clock input
and has sufficient GPIO pins to connect the input buttons and PWM output. Popular
choices include Xilinx Artix-7 or Basys-3.

76

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Pinout

Input Output Bidirectional
0 clk PWM_OUT
1 ui_in[0]
2 ui_in1
3
4
5
6
7

77

https://en.wikipedia.org/wiki/Collatz_conjecture

DaDDS [48]

• Author: Jeremiasz Dados
• Description: 8-bit High-Frequency Direct Digital Synthesizer with OOK and FSK

modulation
• GitHub repository
• HDL project
• Mux address: 48
• Extra docs
• Clock: 60000000 Hz

How it works

DaDDS is a high-frequency DDS meant to be used as an RF transmitter using OOK or

FSK modulation.

How to test

78

https://github.com/jdados/DaDDS

External hardware

Typical application:

Pinout

Input Output Bidirectional
0 DAC[0]
1 DAC1
2 DAC2
3 UART RX DAC[3]
4 FREQ SEL DAC[4]
5 RF DATA DAC[5]
6 DAC[6]
7 DAC[7]

79

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Simple shift Reg [50]

• Author: test
• Description: Simple shift Reg
• GitHub repository
• HDL project
• Mux address: 50
• Extra docs
• Clock: 1 Hz

How it works

Shift left on CLK and output it on the output and read in new Date when uio[0] is 1

How to test

setup a 8 bit indbut. and set uio[0] high then whathc the output as se it shift.

External hardware

None wher used

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0] uio_in[0]
1 ui_in1 uo_out1 uio_in1
2 ui_in2 uo_out2 uio_in2
3 ui_in[3] uo_out[3] uio_in[3]
4 ui_in[4] uo_out[4] uio_in[4]
5 ui_in[5] uo_out[5] uio_in[5]
6 ui_in[6] uo_out[6] uio_in[6]
7 ui_in[7] uo_out[7] uio_in[7]

80

https://github.com/fromafl/TT10_Verilog
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

2-bit 2x2 Matrix Multiplier [64]

• Author: Kevin Ma
• Description: multiples two 2-bit 2x2 matrices
• GitHub repository
• HDL project
• Mux address: 64
• Extra docs
• Clock: 1000000 Hz

How it works

Computes matrix multiplication AB = C.
Standard input pins are used to input a 2-bit 2x2 matrix A as 8-bit 1x8 matrix. Bidi-
rection IOs, initialized as inputs, are used to input a 2-bit 2x2 matrix B as 8 bit 1x8
matrix. Standard output pins will show the result of the computation in as a 2-bit 2x2
matrix as 8-bit 1x8 matrix.
Here is the matrix position mapping to input pins. Note each value is 2-bits.
“A” top left: (0,0) -> IN7 | IN6
“A” top right: (0,1) -> IN5 | IN4
“A” bot left: (1,0) -> IN3 | IN2
“A” bot right: (1,1) -> IN1 | IN0
“B” top left: (0,0) -> IO7 | IO6
“B” top right: (0,1) -> IO5 | IO4
“B” bot left: (1,0) -> IO3 | IO2
“B” bot right: (1,1) -> IO1 | IO0
“C” top left: (0,0) -> OUT7 | OUT6
“C” top right: (0,1) -> OUT5 | OUT4
“C” bot left: (1,0) -> OUT3 | OUT2
“C” bot right: (1,1) -> OUT1 | OUT0
The logic will compute the matrix multiplication of AB, and output the result in the 8
output pins (8 bits).
Each pin corresponds to one bit.

81

https://github.com/KEV-MA/tt09

How to test

To set a pin to 1, pull up to max voltage of the respective pin. To set a pin to 0, pull
down to ground.
Pull the pins respectively to input your A and B matrices based on the mapping in the
above section.
The matrix mulitplication of AB will be output.

External hardware

No external hardware needed.

Pinout

Input Output Bidirectional
0 IN0 IO0 OUT8
1 IN1 IO1 OUT9
2 IN2 IO2 OUT10
3 IN3 IO3 OUT11
4 IN4 IO4 OUT12
5 IN5 IO5 OUT13
6 IN6 IO6 OUT14
7 IN7 IO7 OUT15

82

8b10b decoder and multiplier [65]

• Author: Mike Bell
• Description: 8b10b decoder and multiplier (HD version)
• GitHub repository
• HDL project
• Mux address: 65
• Extra docs
• Clock: 0 Hz

What is it?

This project decodes incoming 8b10b encoded data and optionally multiplies the two
decoded bytes.

How it works

After reset, the 8b10b decoders look for the K.28.5 symbol 001111 1010 or 110000
0101. Once this sequence is detected the decoder indicates the stream is valid and
then sets its input byte after each data symbol is received.
If a K.28.5 symbol is received when the stream is valid, then the decoder remains in
the valid state but does not update its output.
If any symbol other than a data symbol or K.28.5 is received the decoder returns to
the reset state until a new K.28.5 symbol is sent.
The remaining inputs allow the decoded data, or the result of multiplying the decoded
data to be presented on the outputs.

How to test

Send 8b10b encoded data streams, check the outputs.
While in reset, the inputs are presented on the outputs and bidirs as differential pairs,
with out[0] = in[0], out[1] = ~in[0], out[2] = in[1], etc.
If not in reset, the output enables on the bidirectional pins are controlled by in[7].

External hardware

None required

83

https://github.com/MichaelBell/tt09-8b10b-decoder-hd

Pinout

Input Output Bidirectional
0 A 8b10b in Out 0 Out 8
1 B 8b10b in Out 1 Out 9
2 Decoder status Out 2 Out 10
3 Multiply result Out 3 Out 11
4 Multiply result (update gated) Out 4 Out 12
5 Decoded values (registered) Out 5 Out 13
6 Decoded values (unregistered) Out 6 Out 14
7 Bidir output enable Out 7 Out 15

84

VGA Tiny Logo (1 tile) [66]

• Author: Renaldas Zioma
• Description: Large 480x480 pixels Tiny Tapeout logo with bling and dithered

colors crammed into 1 tile!
• GitHub repository
• HDL project
• Mux address: 66
• Extra docs
• Clock: 25175000 Hz

How it works

Compressed VGA Logo

How to test

Connect to VGA monitor

External hardware

TinyVGA PMOD, VGA monitor

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VSync
4 R0
5 G0
6 B0
7 HSync

85

https://github.com/rejunity/tt08-huge-480x480-tiny-tapeout-logo-in-1-tile

Test Design 1 [67]

• Author: Evan Armoogan
• Description: Test design, not sure what it does yet
• GitHub repository
• HDL project
• Mux address: 67
• Extra docs
• Clock: 0 Hz

How it works

This project implements a synchronous 4 bit counter. There are 3 control signals
described below.

• Cp: Indicates that the counter value should be incremented on the current clock
cycle

• Ep: Outputs the enable signal on the uo_out wire
• Lp: Indicates that the value on the bus should be loaded into the counter.

The counter will enumerate all values between 0 and F (15) before looping back to 0
and starting again. The counter will clear back to 0 whenever the chip is reset.

Signal TinyTapeout I/O
Cp ui_in1
Ep ui_in2
Lp ui_in[0]
Load Input ui_in[7:4]
Counter Output uo_out[3:0]

Note: All control signals (Cp, Ep, and Lp) are active high.

How to test

Connect any probe that allows you to read 4 bits from the hardware to uo_out. Now
generate a sequence of operations that tests all of the following operations:

• Enable the output by asserting Ep
• Start counting by asserting Cp
• Pause counting by deasserting Cp

86

https://github.com/Evan-Armoogan/8BitCpuPC
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

• Disable the output by deasserting Ep. Should see high impedence on the output
wire

• Load a new value into the counter while paused
• Load a new value while the counter is incrementing
• Reset the chip and verify the counter is reset to 0

Some example test waveforms are attached:

• test_count: Counts from 0 up to F
• test_load: Counts and loads the value of 5 after 9 clock periods
• test_pause: Counts and pauses for 2 clock periods after 7 clock periods
• test_pause_load: Counts and pauses after 7 clock periods then loads
• test_disable: Disables counter output for 2 cycles after 9 clock periods
• test_loop: Counts from 0 up to F then loops back to 0

External hardware

No external hardware is required to run the counter. It may be helpful to have tools
that allow you to easily view the output of the counter.

Pinout

Input Output Bidirectional
0 in_0 out_0 bidir_0
1 in_1 out_1 bidir_1
2 in_2 out_2 bidir_2
3 in_3 out_3 bidir_3
4 in_4 out_4 bidir_4
5 in_5 out_5 bidir_5
6 in_6 out_6 bidir_6
7 in_7 out_7 bidir_7

87

A simple leaky integrate and fire neuron [68]

• Author: Heather Knight
• Description: Simulation of lif neuron
• GitHub repository
• HDL project
• Mux address: 68
• Extra docs
• Clock: 0 Hz

How it works

It takes input voltages and treats that as the input current injection to the LIF neuron

How to test

Do something

External hardware

NA

Pinout

Input Output Bidirectional
0 Input current bit [0] State variable bit [0]
1 Input current bit 1 State variable bit 1
2 Input current bit 2 State variable bit 2
3 Input current bit [3] State variable bit [3]
4 Input current bit [4] State variable bit [4]
5 Input current bit [5] State variable bit [5]
6 Input current bit [6] State variable bit [6]
7 Input current bit [7] State variable bit [7] Spike bit

88

https://github.com/hjade100/tt09-hjk
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Decimation Filter for Incremental and Regular Delta-Sigma
Modulators [69]

• Author: Andrea Murillo Martinez & Jaeden Chang
• Description: Decimation filter that efficiently reduces oversampled data from in-

cremental and regular delta-sigma modulators, while preserving signal accuaracy.
• GitHub repository
• HDL project
• Mux address: 69
• Extra docs
• Clock: 50000000 Hz

Overview

The decimation filter efficiently reduces the sample frequency of Incremental and
Regular Delta-Sigma Modulators (DSMs) by a factor of 16. This process min-
imizes high-frequency noise and downsamples data, supporting effective and accurate
signal processing of oversampled ADC outputs.

Specifications

• Inputs: 3 total

– Input 1 (1 bit): ADC data input
– Input 2 (1 bit): Decimation mode selection (0 = Incremental DSM, 1

= Regular DSM)
– Input 3 (1 bit): Global reset

• Output: 16 bits total

– Most Significant 8 bits (MSBs): Routed to dedicated output pins
– Least Significant 8 bits (LSBs): Routed to general-purpose IO pins

• Clock Frequency: 50 MHz (standard operation)

Mode Selection

The decimation mode can be configured based on the DSM type:

• Incremental DSM: Set Input 2 to low.
• Regular DSM: Set Input 2 to high.

89

https://github.com/bmurmann/tt09-decimation_filter

How It Works

1. Noise Reduction and Downsampling: The decimation filter reduces high-
frequency quantization noise from DSM oversampling, delivering a downsampled
output with preserved signal quality.

2. Adaptive Output Rate:

• Incremental DSM (Input 2 Low): The output updates after accumu-
lating 16 input samples.

• Regular DSM (Input 2 High): The output updates based on an inter-
nal timing controlled by the reset signal.

3. Output Simplification: The filter converts a high data rate from the over-
sampled ADC into a manageable downsampled rate, optimizing data processing.

Operation

The decimation filter requires an initialization pulse on the global reset input upon
start-up.

1. Incremental DSM Mode (Input 2 Low):

• Use the ADC’s oversampling frequency as the input clock for the filter.
• Set the main reset signal to match the desired decimation rate.
• For example, with a 50 MHz ADC frequency, setting the reset signal to 25

MHz achieves a decimation factor of 2.

2. Regular DSM Mode (Input 2 High):

• The default decimation factor is set to 16.
• For customized decimation factors, follow the configuration steps in Incre-

mental DSM mode.

Testing Procedure

1. Hardware Setup:

• Connect a 1-bit ADC output to Input 1.
• Set Input 2 to low for Incremental DSM or high for Regular DSM.

2. Verification:

• Incremental DSM: Set Input 2 low, connect a clock to the reset input,
and observe decimated output changes.

90

• Regular DSM: Set Input 2 high, then observe the decimated output,
which updates at a rate of 16 samples.

Output Configuration

The decimation filter’s 16-bit output is divided as follows:

• Most Significant 8 Bits (MSBs): Directed to dedicated output pins.
• Least Significant 8 Bits (LSBs): Directed to general-purpose IO pins.

Compatibility

This filter is compatible with 1-bit output ADCs, either Incremental or Regular
Delta-Sigma Modulator (DSM) types.

Pinout

Input Output Bidirectional
0 X decimation_output[8] decimation_output[0]
1 type_dec decimation_output[9] decimation_output1
2 global_reset decimation_output[10] decimation_output2
3 decimation_output[11] decimation_output[3]
4 decimation_output[12] decimation_output[4]
5 decimation_output[13] decimation_output[5]
6 decimation_output[14] decimation_output[6]
7 decimation_output[15] decimation_output[7]

91

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Leaky Neuron Network [70]

• Author: Matthew Randall
• Description: makes a leaky neuron network
• GitHub repository
• HDL project
• Mux address: 70
• Extra docs
• Clock: 0 Hz

How it works

This project is a spiking neural network based on the leaky integrate-and-fire (LIF) neu-
ron model, implemented in Verilog. The design includes three input neurons that each
receive a 5-bit input signal representing incoming current. Each neuron accumulates
this input over time, and when it reaches a specific threshold, the neuron “spikes,”
producing an output signal.
The spike signals from these three input neurons are then combined, with each neuron’s
spike weighted according to its contribution, and sent to an output neuron. The
output neuron integrates these weighted inputs and produces a spike output when the
accumulated value exceeds its threshold. This final spike output represents a decision
or response of the network to the inputs, making it suitable for basic pattern recognition
or response simulations.

How to test

1. Simulation: Use a Verilog simulator (e.g., ModelSim or Verilator) to test the
neuron network. Apply various 5-bit input values to each of the three input
neurons and observe when each neuron spikes in response. Check that the
output neuron responds as expected to the combined weighted inputs by spiking
when the sum of weighted spikes exceeds its threshold.

2. Hardware Testing (if implemented on FPGA): Synthesize the design and program
it onto an FPGA. Connect switches or buttons to provide input signals for each
neuron. Observe the final spike output on an LED to visualize when the output
neuron spikes, or use an oscilloscope to verify spike timings and patterns for
more detailed analysis.

92

https://github.com/MatthewRandall10/tt09-MattRandall_ChipDesign

External hardware

LEDs are used to display the spike outputs of each neuron, allowing visual feedback of
the spiking activity. Switches or buttons provide manual 5-bit inputs to each neuron
for testing and simulation on hardware. PMOD or GPIO headers (optional) can be
used if testing on an FPGA, allowing GPIO pins for input signals or connections to
external displays for monitoring neuron activity.

Pinout

Input Output Bidirectional
0 input 1 output 1 input/output 1
1 input 2 output2 input/output 2
2 input 3 output3 input/output 3
3 input 4 output4 input/output 4
4 input 5 output5 input/output 5
5 input 6 output6 input/output 6
6 input 7 output7 input/output 7
7 input 8 output8 input/output 8

93

adder-accumulator [71]

• Author: Damir Gazizullin, Owen Golden
• Description: 8-bit ripple adder and the complementary accumulator register
• GitHub repository
• HDL project
• Mux address: 71
• Extra docs
• Clock: 50000000 Hz

How it works

This repository contains the circuit for a basic 8-bit ripple adder and its complementary
accumulator register. The adder assumes 2s complement inputs and thus supports
addition and subtraction. It pushes the result to the bus via tri-state buffer. It also
includes a zero flag to support conditional operation as well as a carry flag. These
flags are synchronized to the rising edge of the clock and are updated when the adder
outputs to the bus.
The accumulator register functions to store the output of the adder. It is synchronized
to the positive edge of the clock. The accumulator loads and outputs its value from
the bus and is connected via tri-state buffer. The accumulator’s current value is always
available as an ouput (and usually connected to the Register A input of the ALU)
These two modules work in tandem and are a part of a larger project which includes
peripheral and control blocks to ultimately create a functioning, basic, 8-bit CPU.

IO Table: Accumulator (A) Register

Name Verilog Description I/O Width (bits) Active
clk clk Clock Signal Input 1 Rising edge
bus bus Connection to bus IO 8 NA
load nLa Load from Bus Input 1 0
enable_out Ea Output to Bus Input 1 1
Register A regA Accumulator Register Output 8 NA
reset rst_n Reset Signal Input 1 0

IO Table: ALU (Adder/Subtractor)

94

https://github.com/sathworld/tt09-adder-damir

Name Verilog Description I/O Width (bits) Active
clk clk Clock Signal Input 1 Rising edge
enable_out Eu Output to Bus Input 1 1
Register A reg_a Accumulator Register Input 8 NA
Register B reg_b Register B Input 8 NA
subtract sub Perform Subtraction Input 1 1
bus bus Connection to bus Output 8 NA
Carry Out CF Carry-out flag Output 1 1
Result Zero ZF Zero flag Output 1 1

Tests and Expected Functionality

The waveform in Figure 1 shows the loading and output functionality of the accumulator
(RegA). The yellow marker displays the load functionality of the accumulator: On the
rising edge of the clock, when nLa is low, the value from the bus is loaded onto the
RegA.
The red marker displays the output functionality of the accumulator: On the rising
edge of the clock, when Ea becomes high, the value from the accumulator is pushed
onto the bus.

Figure 1: Accumulator Load onto bus and push onto bus
The waveform in Figure 2 demonstrates basic addition done by the adder. Note that
at the red marker, Sub is low, thus addition is being performed. The addition is done
asynchronously, and the value of Sum goes from 60 (60 + 0) to -10 (60 + -70). At
the yellow marker, Ea is high, and thus the result of the addition is pushed onto the
bus. Note that the Sum signal is internal.

95

Similarly, the waveform in Figure 3 demonstrates basic subtraction by the adder. Note
that at the red marker, Sub is high, thus subtraction is being performed. In this case,
the rest 9-11 is calculated asynchronously resulting in -2. At the yellow marker, when
Eu is set high, the result is pushed onto the bus.

Figure 2: Addition and Output onto Bus

Figure 3: Subtraction and Output onto Bus
The waveform in Figure 4 demonstrates the functionality of ZF (zero flag). As described
above, at the red marker, the subtraction 42-42 is performed, resulting in 0. The result
is the pushed to the bus when Ea is set high. At the rising edge of the clock, when Ea
remains high, ZF is also made high, indicating that the result of the operation (in this
case, subtraction), was zero.

96

Figure 4: Zero Flag Functionality of Adder

Description of Testbenches

These modules have been tested under six Testbenches. For the purposes of the tests,
all random numbers are between 0 and 255. The tests are briefly detailed below:

Adder Tests:

adder_test_addition_range: This test computes the addition of 50 random pairs
of numbers and checks to see if the addition was correct.

adder_test_subtraction_range: This test computes the subtraction of 50 ran-
dom pairs of numbers and checks to see if the subtraction was correct.

adder_test_addsub_range: This test computes either addition or subtraction
(randomly determined before each operation) of 50 random pairs of numbers and
checks to see if the result is correct.

Accumulator Tests:

97

accumulator_test_randint: This test loads a random number from the bus onto
the accumulator, and checks whether the values on the bus and in the accumulator
match.

accumulator_test_randint_out: This test loads a random number from the bus
onto the accumulator and checks whether the values on the bus and in the accumulator
match. It then outputs the value of the accumulator onto the bus and checks whether
the values on the bus and in the accumulator match as expected.

accumulator_test_shuffled_range: This test performs the accumula-
tor_test_randint_out test consequently with 25 randomly chosen non-repeating
values

Pinout

Input Output Bidirectional
0 bus[0] if ~(Ea Eu) bus[0]/regA[0], bus_regA_sel = 1/0
1 bus1 if ~(Ea Eu) bus1/regA1, bus_regA_sel = 1/0
2 bus2 if ~(Ea Eu) bus2/regA2, bus_regA_sel = 1/0
3 bus[3] if ~(Ea Eu) bus[3]/regA[3], bus_regA_sel = 1/0
4 bus[4] if ~(Ea Eu) bus[4]/regA[4], bus_regA_sel = 1/0
5 bus[5] if ~(Ea Eu) bus[5]/regA[5], bus_regA_sel = 1/0
6 bus[6] if ~(Ea Eu) bus[6]/regA[6], bus_regA_sel = 1/0
7 bus[7] if ~(Ea Eu) bus[7]/regA[7], bus_regA_sel = 1/0

98

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Neuromorphic Hardware for SNN LSTM [72]

• Author: Hunter Schweiger
• Description: efficient neuromorphic hardware for running a SNN LSTM unit
• GitHub repository
• HDL project
• Mux address: 72
• Extra docs
• Clock: 50000000 Hz

Neuromorphic Hardware for SNN LSTM

How it works This LSNN (Leaky Spike Neural Network) implementation features:

• 12-bit membrane potential with configurable decay (DECAY_FACTOR = 1/4)
• Adaptive threshold mechanism with learning rate control
• 3-cycle refractory period after spike generation
• 7-bit spike counter for monitoring activity
• Base threshold of 100 units with dynamic adaptation

The design operates through several key mechanisms:

1. Membrane Dynamics:

• Integrates 8-bit input current
• Applies leaky decay of 1/4 per cycle
• Resets to 0 after spike

2. Adaptation Mechanism:

• Learning-enabled threshold adjustment (controlled by uio_in[0])
• Adaptation increases with each spike
• Gradual decay when not spiking

3. Output Monitoring:

• uo_out[7]: Refractory state indicator
• uo_out[6:0]: Current membrane potential
• uio_out[7]: Spike output
• uio_out[6:0]: Spike counter

99

https://github.com/hschweiger15/tt09-ECE-210

How to test Testing procedure:

1. Reset (rst_n = 0):

• Verify all state variables reset to 0
• Threshold should reset to base value (100)

2. Basic Operation:

• Apply input current through ui_in[7:0]
• Monitor membrane potential on uo_out[6:0]
• Observe spike generation on uio_out[7]
• Check refractory period indicator on uo_out[7]

3. Learning Mode:

• Set uio_in[0] to enable learning
• Verify threshold adaptation after spikes
• Monitor spike frequency changes

4. Performance Verification:

• Track spike count through uio_out[6:0]
• Verify proper threshold adjustment
• Test different input current levels

External Hardware None required - all testing can be done through digital I/O

Pinout

Input Output Bidirectional
0 Input current bit [0] State variable bit [0]
1 Input current bit 1 State variable bit 1
2 Input current bit 2 State variable bit 2
3 Input current bit [3] State variable bit [3]
4 Input current bit [4] State variable bit [4]
5 Input current bit [5] State variable bit [5]
6 Input current bit [6] State variable bit [6]
7 Input current bit [7] State variable bit [7] Spike bit [7]

100

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

ECE 298A 8-Bit CPU Control Block [73]

• Author: Siddharth Nema & Gerry Chen
• Description: Generates the control signals required for other CPU sub blocks
• GitHub repository
• HDL project
• Mux address: 73
• Extra docs
• Clock: 50000000 Hz

How it works

This project implements the control block of an 8-bit CPU design building off the
SAP-1.
The control block is implemented using a 6 stage sequential counter for sequencing
micro-instructions, and a LUT for corresponding op-code to operation(s).

Supported Instructions

Mnemonic Opcode Function
HLT 0x0 Stop processing
NOP 0x1 No operation
ADD {address} 0x2 Add B register to A register, leaving result in A
SUB {address} 0x3 Subtract B register from A register, leaving result in A
LDA {address} 0x4 Put RAM data at {address} into A register
OUT 0x5 Put A register data into Output register and display
STA {address} 0x6 Store A register data in RAM at {address}
JMP {address} 0x7 Change PC to {address}

Instruction Notes
• All instructions consist of an opcode (most significant 4 bits), and an address

(least significant 4 bits, where applicable)

Control Signal Descriptions

101

https://github.com/SiddharthN16/TT09-Control-Block

Control Signal Array Component Function
CP 14 PC Increments the PC by 1
EP 13 PC Enable signal for PC to drive the bus
LP 12 PC Tells PC to load value from the bus
nLma 11 MAR Tells MAR when to load address from the bus
nLmd 10 MAR Tells MAR when to load memory from the bus
nCE 9 RAM Enable signal for RAM to drive the bus
nLr 8 RAM Tells RAM when to load memory from the MAR
nLi 7 IR Tells IR when to load instruction from the bus
nEi 6 IR Enable signal for IR to drive the bus
nLa 5 A Reg Tells A register to load data from the bus
Ea 4 A Reg Enable signal for A register to drive the bus
Su 3 ALU Activate subtractor instead of adder
Eu 2 ALU Enable signal for Adder/Subtractor to drive the bus
nLb 1 B Reg Tells B register to load data from the bus
nLo 0 Output Reg Tells Output register to load data from the bus

Sequencing Details

• The control sequencer is negative edge triggered, so that control signals can be
steady for the next positive clock edge, where the actions are executed.

• In each clock cycle, there can only be one source of data for the bus, however
any number components can read from the bus.

• Before each run, a CLR signal is sent to the PC and the IR.

Instruction Micro-Operations

Stage HLT NOP STA JMP
T0 Ep, nLma Ep, nLma Ep, nLma Ep, nLma
T1 Cp Cp Cp Cp
T2 nCE, nLi nCE, nLi nCE, nLi nCE, nLi
T3 ** - nEi, nLma nEi, Lp
T4 - Ea, nLmd -
T5 - nLr -

Stage LDA ADD SUB OUT
T0 Ep, nLma Ep, nLma Ep, nLma Ep, nLma

102

Stage LDA ADD SUB OUT
T1 Cp Cp Cp Cp
T2 nCE, nLi nCE, nLi nCE, nLi nCE, nLi
T3 nEi, nLma nEi, nLma nEi, nLma Ea, nLo
T4 nCE, nLa nCE, nLb nCE, nLb -
T5 - Eu, nLa Su, Eu, nLa -

Instruction Micro-Operations Notes
• First three micro-operations are common to all instructions.
• NOP instruction executes only the first three micro-operations.
• HLT instruction transitions to a holding stage after T3, preventing the system

for continuing

IO Table

Name Description I/O Width Trigger
clk Clock signal I 1 Edge Transition
rst_n Set stage to 0 I 1 Active Low
ui_in[3:0] Opcode I 4 NA
uo_out[7] If 1, the system is halted O 1 Active High
uo_out[6:0] control_signals[14:8] O 7 NA
uio_out[7:0] control_signals[7:0] O 8 NA
ui_oe[7:0] All Bidirectional pins are outputs O 8 NA
uio_in[7:0] Unused I 8 NA
ena Unused I 1 Active High

IO Table Notes
• See Control Signal Descriptions for the list of output control signals, and their

correspondance in the control_signal vector

How to test

The control block can be tested by:

• Providing an opcode through the ui_in[3:0] input pins.

103

• Monitoring the uo_out[7:0] and uio_out[7:0] output pins for the control
signals and halt status

• For a given opcode, follow its Instruction Micro-Operation table to validate the
control signal sequences

• Consider using a logic analyzer to generate a waveform and analyze the stages,
or slow down the clock to manually observe the control signals at various times

Pinout

Input Output Bidirectional
0 opcode[0] SIG_RAM_LOAD_N SIG_OUT_LOAD_N
1 opcode1 SIG_RAM_EN_N SIG_REGB_LOAD_N
2 opcode2 SIG_MAR_MEM_LOAD_N SIG_REGB_EN
3 opcode[3] SIG_MAR_ADDR_LOAD_N SIG_ADDER_SUB
4 SIG_PC_LOAD SIG_REGA_EN
5 SIG_PC_EN SIG_REGA_LOAD_N
6 SIG_PC_INC SIG_IR_EN_N
7 halted SIG_IR_LOAD_N

104

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

RISCV Processor Design [74]

• Author: Nishanth Kotla
• Description: RISCV Processor Design
• GitHub repository
• HDL project
• Mux address: 74
• Extra docs
• Clock: 64000000 Hz

Project Datasheet: RISCV Processor

Overview The tt_um_Nishanth_RISCV module is a simple, basic processor (or
computational unit) designed in Verilog. It operates on a small subset of instructions
similar to a RISC-V architecture, with the ability to decode instructions, perform arith-
metic or logical operations, and interact with registers and external I/O. This module
serves as a building block for a more complex processor design.

How it Works This simple processor module works by fetching instructions, decod-
ing them into different fields, performing operations using the ALU and register file,
and finally generating the result. The design is flexible enough to allow for expansion,
such as adding memory operations, additional instructions, or more complex control
logic, which would be necessary for a complete processor design.
###Summary of How the Processor Works Fetch the instruction: The instruction is
provided as two 8-bit inputs (ui_in and uio_in), forming a 16-bit instruction. Decode
the instruction: The instruction is split into opcode, register addresses (rs1, rs2, rd),
function codes (funct3, funct2), and an immediate value (imm). Register Read: The
specified registers (rs1, rs2) are read from the register file. ALU Operation: The ALU
performs the operation based on the decoded instruction (using operands from registers
or the immediate value). Write-back to Register File: The result of the ALU operation
(or immediate value) is written back to the register file if the instruction allows it.
Generate the Output: The result is placed on uo_out, and depending on the opcode,
might come from the register file or ALU.

How to Test By writing a testbench with cocotb and applying various test cases, we
can verify the functionality of your “tt_um_KoushikCSN_RISCV” processor ensuring
that all parts of the processor (instruction decoding, ALU, register file, etc.) are tested
under different scenarios by varying the Input and IO ports.

105

https://github.com/Nishanth2969/TT_RISCV

Pinout

Input Output Bidirectional
0 instruction[0] result[0] instruction[8]
1 instruction1 result1 instruction[9]
2 instruction2 result2 instruction[10]
3 instruction[3] result[3] instruction[11]
4 instruction[4] result[4] instruction[12]
5 instruction[5] result[5] instruction[13]
6 instruction[6] result[6] instruction[14]
7 instruction[7] result[7] instruction[15]

106

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

LFSR Encrypter [75]

• Author: Mitchell Tansey
• Description: Simple LFSR data encrypter. Takes data in and xor’s it with an

lfsr output to encrypt data.
• GitHub repository
• HDL project
• Mux address: 75
• Extra docs
• Clock: 0 Hz

How it works

Takes in data in, and xor’s it with a random number generated from a LFSR.

How to test

In order to test functionality of this physically, you can take the LFSR value from the
bidirectional I/O and XOR it with the encryption. This will decrypt the output which
you can check to see if it was the same as the input. As for my testbench, I manually
calculated the LFSR value for certain clock cycles and checked the expected encrypted
value.

External hardware

N/A

Pinout

Input Output Bidirectional
0 ui_in[0] ui_out[0] uio_out[0]
1 ui_in1 ui_out1 uio_out1
2 ui_in2 ui_out2 uio_out2
3 ui_in[3] ui_out[3] uio_out[3]
4 ui_in[4] ui_out[4] uio_out[4]
5 ui_in[5] ui_out[5] uio_out[5]
6 ui_in[6] ui_out[6] uio_out[6]
7 ui_in[7] ui_out[7] uio_out[7]

107

https://github.com/MitchTansey/tt09-LFSR-Encrypter
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

RISCV Processor Design [76]

• Author: KOUSHIK CSN
• Description: RISCV Processor Design
• GitHub repository
• HDL project
• Mux address: 76
• Extra docs
• Clock: 64000000 Hz

Project Datasheet: RISCV Processor Design

Overview The tt_um_KoushikCSN_RISCV module is a simple, basic processor (or
computational unit) designed in Verilog. It operates on a small subset of instructions
similar to a RISC-V architecture, with the ability to decode instructions, perform arith-
metic or logical operations, and interact with registers and external I/O. This module
serves as a building block for a more complex processor design.

How it Works This simple processor module works by fetching instructions, decod-
ing them into different fields, performing operations using the ALU and register file,
and finally generating the result. The design is flexible enough to allow for expansion,
such as adding memory operations, additional instructions, or more complex control
logic, which would be necessary for a complete processor design.
###Summary of How the Processor Works Fetch the instruction: The instruction is
provided as two 8-bit inputs (ui_in and uio_in), forming a 16-bit instruction. Decode
the instruction: The instruction is split into opcode, register addresses (rs1, rs2, rd),
function codes (funct3, funct2), and an immediate value (imm). Register Read: The
specified registers (rs1, rs2) are read from the register file. ALU Operation: The ALU
performs the operation based on the decoded instruction (using operands from registers
or the immediate value). Write-back to Register File: The result of the ALU operation
(or immediate value) is written back to the register file if the instruction allows it.
Generate the Output: The result is placed on uo_out, and depending on the opcode,
might come from the register file or ALU.

How to Test By writing a testbench with cocotb and applying various test cases, we
can verify the functionality of your “tt_um_KoushikCSN_RISCV” processor ensuring
that all parts of the processor (instruction decoding, ALU, register file, etc.) are tested
under different scenarios by varying the Input and IO ports.

108

https://github.com/KoushikCSN/TT_RISCV

Pinout

Input Output Bidirectional
0 instruction[0] result[0] instruction[8]
1 instruction1 result1 instruction[9]
2 instruction2 result2 instruction[10]
3 instruction[3] result[3] instruction[11]
4 instruction[4] result[4] instruction[12]
5 instruction[5] result[5] instruction[13]
6 instruction[6] result[6] instruction[14]
7 instruction[7] result[7] instruction[15]

109

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

SkyKing Demo [77]

• Author: Nicklaus Thompson
• Description: Types some text over an image of a plane flying into the sunset
• GitHub repository
• HDL project
• Mux address: 77
• Extra docs
• Clock: 25200000 Hz

How it works

If you’re seeing this, I couldn’t the Clock Domain Crossing project running. This is just
a TT08 demo again.

How to test

Runs automaticaly.

External hardware

VGA PMOD on UO.

Pinout

Input Output Bidirectional
0 HS
1 R0
2 G0
3 B0
4 VS
5 R1
6 G1
7 B1

110

https://github.com/FangameEmpire/tt09-CDC-test

tiny cipher 4 bit key [78]

• Author: sriram nimmala
• Description: a tiny encryption core that encryptes based on input key
• GitHub repository
• HDL project
• Mux address: 78
• Extra docs
• Clock: 5000000 Hz

How it works

A simple encryption core with a 4 bit input 4 bit key and a 4 bit output

How to test

you can send randomized inputs of 4 bit length for the input and key and get a 4 bit
output

External hardware

no external harware but memory to send test data

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0]
1 ui_in1 uo_out1
2 ui_in2 uo_out2
3 ui_in[3] uo_out[3]
4 ui_in[4]
5 ui_in[5]
6 ui_in[6]
7 ui_in[7]

111

https://github.com/goatgate/tt09-teeny-tiny-aes-template
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Two LIF Neurons with STDP Learning [79]

• Author: Sebastian Hernandez
• Description: A compact spiking neural network implementation featuring: - Two

Leaky Integrate-and-Fire (LIF) neurons connected via plastic synapse - Spike-
timing-dependent plasticity (STDP) for dynamic weight adjustment - 8-bit fixed-
point arithmetic for state and weight representation - Real-time monitoring of
spikes and synaptic weight

• GitHub repository
• HDL project
• Mux address: 79
• Extra docs
• Clock: 50000000 Hz

How it works

This design implements a simple spiking neural network using two Leaky Integrate-and-
Fire (LIF) neurons connected by a spike-timing-dependent plasticity (STDP) synapse.
The system consists of:
Two LIF Neurons:
Basic integrate-and-fire dynamics with leaky integration 8-bit resolution for state and
current Configurable threshold (default: 150) Slower decay rate (state » 2) for better
temporal integration First neuron receives direct current input Second neuron receives
weighted input from first neuron
STDP Synapse:
Connects the two neurons with plastic weight Initial weight: 100 Potentiation: +20
when pre-spike precedes post-spike Depression: -10 when post-spike precedes pre-spike
Timing window: 10 clock cycles Weight bounded between 0 and 255
Implementation Features:
Simple fixed-point arithmetic Synchronous design with clock and reset Bounded calcu-
lations to prevent overflow Modular design with separate neuron and STDP modules

How to test

he design can be tested in several ways:
Basic Functionality:

112

https://github.com/jhern424/tt09-sebastianhernandez

Apply current through ui_in[7:0] Monitor second neuron’s state on uo_out[7:0] Observe
spikes on uio_out[7:6] View synapse weight on uio_out[5:0]
Spike Generation Test:
verilogCopy// Example test sequence ui_in = 8’h60; // Apply strong current #100;
// Wait for first neuron to spike ui_in = 8’h00; // Remove current #100; // Observe
reset and decay
STDP Learning:
Generate regular spikes in first neuron with steady current Observe weight changes on
uio_out[5:0] Monitor second neuron’s response on uo_out[7:0]

External hardware

No external hardware is required for basic operation. For analysis, consider:
Logic Analyzer:
Monitor spike timing Track synaptic weight changes Verify state transitions
Signal Generator (optional):
Generate precise current injection patterns Test different input frequencies Analyze
neuron response characteristics

Target Performance

The design aims to achieve:
State Resolution: 8-bit (0-255) Threshold: 150 (configurable) Weight Range: 0-255
STDP Window: 10 clock cycles Decay Rate: state » 2 (75% retention per cycle)

Resource Usage

The implementation utilizes:
Minimal combinational logic for state updates Three 8-bit registers per neuron (state,
threshold) 8-bit register for synaptic weight Two 4-bit counters for STDP timing Basic
arithmetic operations (addition, multiplication, shift)

113

Future Improvements

Possible enhancements: 1.Multiple neurons with configurable connectivity 2.Variable
thresholds and decay rates 3.More sophisticated STDP rules 4.Inhibitory connections
5.Configurable timing windows 6.Additional input/output neurons 7.Parameter runtime
configurability 8.More complex neural dynamics (e.g., adaptive thresholds)

Pinout

Input Output Bidirectional
0 Input current bit 0 (LSB) Neuron 2 state bit 0 (LSB) Synapse weight bit 0 (LSB)
1 Input current bit 1 Neuron 2 state bit 1 Synapse weight bit 1
2 Input current bit 2 Neuron 2 state bit 2 Synapse weight bit 2
3 Input current bit 3 Neuron 2 state bit 3 Synapse weight bit 3
4 Input current bit 4 Neuron 2 state bit 4 Synapse weight bit 4
5 Input current bit 5 Neuron 2 state bit 5 Synapse weight bit 5
6 Input current bit 6 Neuron 2 state bit 6 Neuron 2 spike output
7 Input current bit 7 (MSB) Neuron 2 state bit 7 (MSB) Neuron 1 spike output

114

Tutorial: Simple LIF Neuron [80]

• Author: Zack Bethel
• Description: It simulates a LIF neuron
• GitHub repository
• HDL project
• Mux address: 80
• Extra docs
• Clock: 0 Hz

How it works

it takes input voltages and treats that as the input current injection to LIF neuron

How to test

do something

External hardware

NA

Pinout

Input Output Bidirectional
0 Input current bit[0] State variable bit[0]
1 Input current bit1 State variable bit1
2 Input current bit2 State variable bit2
3 Input current bit[3] State variable bit[3]
4 Input current bit[4] State variable bit[4]
5 Input current bit[5] State variable bit[5]
6 Input current bit[6] State variable bit[6]
7 Input current bit[7] State variable bit[7] Spike Bit

115

https://github.com/zack-bethel/tt09-verilog-zack-bethel
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

7-Segment Byte Display [81]

• Author: Mike Goelzer
• Description: Drives a single hex digit 7-segment display based on the value of a

1-byte input
• GitHub repository
• HDL project
• Mux address: 81
• Extra docs
• Clock: 0 Hz

How it works

A two digit 7-segment display shows a hex representation of the 8-bit value provided
on ui[7:0]. Byte ui[7:0] is latched when the write enable signal on uio[0] is
high at a rising clock edge. The display is driven continuously by uo[6:0] with uo[7]
controlling which digit is being driven (0=left digit, 1=right digit).

How to test

Connect the 7-segment display to the uo[6:0] outputs (segment ‘a’ is uo[0], …,
segment ‘g’ is uo[6]). Connect the uo[7] signal to a switch to control which digit is
being driven.
Connect wires to the ui[7:0] and uio[0] inputs. Ground all of ui[7:0] and set
uio[0] low and verify that the display is 00. Pull ui[0] high and briefly pull uio[0]
high and the display value should change to 01.
Pull ui[0] low again and displayed value should not change; now also pull uio[0]
high and the display should return to 00.

External hardware

Use this two digit 7-segment display (or this one) to test the project.

116

https://github.com/mikegoelzer/tinytapeoutverilog2024
https://github.com/mikegoelzer/7seg-2digit/
https://digilent.com/shop/pmod-ssd-seven-segment-display/

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 Byte to display on 7-segment display (rightmost / low order bit) 7-segment display (segment a) write enable (1=latch byte value on ui[7:0] and display it, 0=ignore ui[7:0] and keep displaying the current value)
1 Byte to display on 7-segment display (next bit) 7-segment display (segment b)
2 Byte to display on 7-segment display (next bit) 7-segment display (segment c)
3 Byte to display on 7-segment display (next bit) 7-segment display (segment d)
4 Byte to display on 7-segment display (next bit) 7-segment display (segment e)
5 Byte to display on 7-segment display (next bit) 7-segment display (segment f)
6 Byte to display on 7-segment display (next bit) 7-segment display (segment g)
7 Byte to display on 7-segment display (leftmost / high order bit)

117

RGB Mixer demo [82]

• Author: Matt Venn
• Description: Zero to ASIC demo project
• GitHub repository
• HDL project
• Mux address: 82
• Extra docs
• Clock: 10000000 Hz

How it works

Debounce the inputs, drive an encoder module, and output a PWM signal for each
encoder.

How to test

Twist each encoder and the LEDs attached to the outputs should change in bright-
ness.
By setting the debug port to 0, 1 or 2, the internal value of each encoder is output on
the bidirectional outputs.

External hardware

Use 3 digital encoders attached to the first 6 inputs.

Pinout

Input Output Bidirectional
0 enc0 a pwm0 encoder bit 0
1 enc0 b pwm1 encoder bit 1
2 enc1 a pwm2 encoder bit 2
3 enc1 b encoder bit 3
4 enc2 a encoder bit 4
5 enc2 b encoder bit 5
6 debug bit 0 encoder bit 6
7 debug bit 1 encoder bit 7

118

https://github.com/mattvenn/tt08-rgb-mixer

Forward Pass Network for Simple ANN [83]

• Author: Arian Heidari
• Description: ANN that takes in a 4-bit value, and completes a forward pass.
• GitHub repository
• HDL project
• Mux address: 83
• Extra docs
• Clock: 50000000 Hz

How it works

The circuit takes in a 4-bit number, with each bit of the input representing an input
neuron. It then completes the forward pass for the network, while also calculating the
loss function (MSE). Network consists of 4 input neurons, 8 hidden neurons, and 1
output neuron.

How to test

To physically test the circuit, input a 4 bit-number into ui_in[3:0]. Use ui_in[7] to
start the forward pass. The final output calculation can be seen through the output
pins {uio_out[1:0], uo_out[7:0]}. The current state can be seen through the output
pins uio_out[7:5].
To simulate the circuit, change the input value of ui_un on line 30 of “test.py”. Using
the .vcd file, analyze the output of the circuit using any waveform viewer.

External hardware

Use switches to connect to ui_in[3:0] (allowing for you to input a value). Connect a
switch/button to ui_in[7] (allowing you to begin the forward pass).

Pinout

Input Output Bidirectional
0 Input bit [0] Output Calculation [0]
1 Input bit 1 Output Calculation 1
2 Input bit 2 Output Calculation 2
3 Input bit [3] Output Calculation [3]

119

https://github.com/arheidar/tt09-chip-tapeout-110
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
4 Output Calculation [4]
5 Output Calculation [5]
6 Output Calculation [6]
7 Output Calculation [7]

120

Priority-encoder [96]

• Author: Ole Henrik Moller
• Description: 8-bit priority encoder to decimal 7-segment code
• GitHub repository
• HDL project
• Mux address: 96
• Extra docs
• Clock: 0 Hz

How it works

Inputs and prioritizes 8-bit binary number and converts and outputs the decimal result
in 7-segment format. If no bits are set (number equals zero) then a decimal point
rather than a digit is displayed.

How to test

Have fun playing with switches and observe 7-segment display.

External hardware

None

Pinout

Input Output Bidirectional
0 data[0] segments[0]
1 data1 segments1
2 data2 segments2
3 data[3] segments[3]
4 data[4] segments[4]
5 data[5] segments[5]
6 data[6] segments[6]
7 data[7] no_data

121

https://github.com/ole-moller/Priority_encoder
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

UltraTiny-CPU [98]

• Author: Roméo Estezet
• Description: Simple 8-Bit CPU
• GitHub repository
• HDL project
• Mux address: 98
• Extra docs
• Clock: 0 Hz

How it works

The UltraTiny-CPU is a minimal 8-bit CPU with a small instruction set (ALU, data
flow, and control flow). It has:

• Accumulator (ACC) as the primary register
• Register B as a secondary register
• Program Counter (PC) to fetch instructions from an internal 16-byte memory
• Instruction Register (IR) to decode the current operation

The CPU features a “load mode” that writes data or instructions into the memory and
a “run mode” that fetches and executes those instructions:

1. Load Mode:

• Activated when ui[7] == 1.
• The address to write is placed on ui[3:0].
• The data/instruction byte is supplied on uio[7:0] and written into mem-

ory.

2. Run Mode:

• Activated when ui[7] == 0 and ena == 1.
• The CPU fetches the instruction from memory at PC, decodes it, performs

the operation (arithmetic, logic, load/store, or branch), and increments or
modifies PC accordingly.

• The result of arithmetic/logical operations is stored in the accumulator
(ACC), and its value is driven onto uo[7:0].

122

https://github.com/Romultra/UltraTiny-CPU

How to test

1. Enter Load Mode (ui[7] = 1):

• Provide a memory address (0 to 15) on ui[3:0].
• Provide an 8-bit instruction/data on uio[7:0].
• Toggle clk to store that byte into internal memory.
• Repeat for as many instructions/data bytes as needed.

2. Run the Program:

• Switch to Run Mode (ui[7] = 0).
• Ensure ena = 1 (the CPU is enabled).
• The CPU will begin fetching instructions starting at address 0.
• Observe the accumulator outputs on uo[7:0] to see results of execution.

If your design environment simulates clocking and signals, you can watch the memory
load process and the CPU fetch/execute cycle in a waveform viewer or on actual
hardware.

External hardware

No external hardware is strictly required. The UltraTiny-CPU operates solely with its
on-chip 16-byte memory and the provided I/O pins. You can optionally attach an
external logic analyzer or an LED display to the accumulator outputs (uo[7:0]) if
you want a visual indication of the CPU state. Otherwise, all interfacing can be done
directly via the pin signals.

Pinout

Input Output Bidirectional
0 Memory load address bit 0 (when ui[7]=1) Accumulator output bit 0 Data bus bit 0 for load mode (input), otherwise tri-stated
1 Memory load address bit 1 (when ui[7]=1) Accumulator output bit 1 Data bus bit 1 for load mode (input), otherwise tri-stated
2 Memory load address bit 2 (when ui[7]=1) Accumulator output bit 2 Data bus bit 2 for load mode (input), otherwise tri-stated
3 Memory load address bit 3 (when ui[7]=1) Accumulator output bit 3 Data bus bit 3 for load mode (input), otherwise tri-stated
4 Unused (available for other custom inputs) Accumulator output bit 4 Data bus bit 4 for load mode (input), otherwise tri-stated
5 Unused (available for other custom inputs) Accumulator output bit 5 Data bus bit 5 for load mode (input), otherwise tri-stated
6 Unused (available for other custom inputs) Accumulator output bit 6 Data bus bit 6 for load mode (input), otherwise tri-stated
7 Load mode enable (1=program load, 0=run) Accumulator output bit 7 Data bus bit 7 for load mode (input), otherwise tri-stated

123

Priority-Encoded Arbiter [100]

• Author: Aditya Patra
• Description: Cycles through states based on enable state signals
• GitHub repository
• HDL project
• Mux address: 100
• Extra docs
• Clock: 10000000 Hz

How it works

This project is a priority-encoded state machine with 4 states. It has 3 enable signals -
one corresponding to each of states 1, 2, and 3. In each clock cycle, the project checks
whether each enable signal is on in order of priority(states 1 to 3). If an enable signal
is found to be on, a counter is used to keep track of how long the signal remains on. If
the signal is on for 100000 consecutive clock cycles, the corresponding state is enabled
for 100000000 clock cycles.

How to test

To test the project, feed it enable signals from ui_in. ui_in[0] is the enable signal for
state 1, ui_in1 is the enable signal for state 2, and ui_in2 is the enable signal for state
3. The output state enable signals are sent to the following ports: uo_out[0] is state
1 enabled, uo_out1 is state 2 enabled, and uo_out2 is state 3 enabled.

External hardware

No external hardware is necessary for the core functionality of this project, however,
the reason I created it is to create a proximity warning system. To create this, you
need 3 LIDAR sensors attached to the input ports and 3 buzzers attached to the output
ports

Pinout

Input Output Bidirectional
0 sensor1 speaker1
1 sensor2 speaker2

124

https://github.com/aditya-patra/tt10-verilog
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
2 sensor3 speaker3
3
4
5
6
7

125

ALU in verilog [102]

• Author: Carl Emil Vinten
• Description: Simple ALU in verilog
• GitHub repository
• HDL project
• Mux address: 102
• Extra docs
• Clock: 0 Hz

How it works

Uses a push button to switch between addition subtraction, multiplication and divi-
sion.

How to test

I don’t know.

External hardware

switches for input, LEDS for output

Pinout

Input Output Bidirectional
0 in_2 out_0 inout_0
1 in_0 out_1 inout_1
2 in_1 out_2 inout_2
3 in_3 out_3 inout_3
4 in_4 out_4 inout_4
5 in_5 out_5 inout_5
6 in_6 out_6 inout_6
7 in_7 out_7 inout_7

126

https://github.com/CarlVinten/TinyTapeout_1

Overengineered Checkers [104]

• Author: htfab
• Description: Recreation of the Checkers demo with each layer generated by a

different Python-based HDL
• GitHub repository
• HDL project
• Mux address: 104
• Extra docs
• Clock: 25175000 Hz

How it works

Reproduces the classic Checkers demo by Renaldas Zioma from the VGA Playground,
but each layer is generated by a separate module written in a different Python-based
HDL:

• Layer A uses Amaranth
• Layer B uses MyHDL
• Layer C uses PyCDE
• Layer D uses PyRTL
• Layer E uses PyMTL3

How to test

Connect to a screen using the TinyVGA Pmod. Sit back and enjoy. Optionally toggle
the ui_in inputs to change the colors.

External hardware

TinyVGA Pmod

127

https://github.com/htfab/tt10-py-checkers
https://vga-playground.com/
../src/layer_a/layer_a.py
https://github.com/amaranth-lang/amaranth
../src/layer_b/layer_b.py
https://github.com/myhdl/myhdl
../src/layer_c/layer_c.py
https://github.com/llvm/circt/tree/main/docs/PyCDE
../src/layer_d/layer_d.py
https://github.com/UCSBarchlab/PyRTL
../src/layer_e/layer_e.py
https://github.com/pymtl/pymtl3

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 main red R1
1 main green G1
2 main blue B1
3 sub red VSync
4 sub green R0
5 sub blue G0
6 foreground B0
7 background HSync

128

toni_clk_gen [106]

• Author: Antoni Ruiz
• Description: Multiple clock generation
• GitHub repository
• HDL project
• Mux address: 106
• Extra docs
• Clock: 50000000 Hz

How it works

Generate multiple clocks dividng the frequency

How to test

DOnt know yet

External hardware

A clock genrator

Pinout

Input Output Bidirectional
0 clk_div1
1 clk_div2
2
3
4
5
6
7

129

https://github.com/toniklippeo/toni_clk_gen

spi_pwm [108]

• Author: djuara
• Description: This is a PWM generator and 8-bit width IO, spi controlled (2

different interfaces, just for testing).
• GitHub repository
• HDL project
• Mux address: 108
• Extra docs
• Clock: 0 Hz

How it works

This design is an SPI controlled PWM generator and 8-pin IO controller. IOs can
be configure as output or input. Through registers we can configure number of ticks
the PWM signal is ON and the cycle. Ticks are related to the system clk provided
externally.

The design contain 8 registers that can be accessed by the two SPI interfaces. With
these registers user can control PWM generator, allowing control of time on and cycle
time. Also there are 8 IOs that can be set as inputs or outputs.
If two SPI writes occurs at the same time, SPI_CLK prevails over SPI_SAMPLED.

Configuration example

130

https://github.com/djuara-rbz/tt_spi_pwm

PWM Configuration of PWM is based on system clk. Registers to be configured
are TICKS_ON and TICKS_CYCLE, which is basically the number of ticks of system
clk the pwm signal is on and the period.
So assuming a system clk of 50 MHz, if we want to obtain a PWM signal with period
1 ms and duty cycle of 33%:
We need to calculate the number of clk ticks that are in 1 ms:
cycle_ticks = T / T_clk = 1 ms / (1 / 50 MHz) = 50 MHz * 1 ms = 50000 ticks
And now calculate the number of clk ticks the signal is on:
on_ticks = cycle_ticks * duty_cycle = 50000 * 0.33 = 16500 ticks
So configuring the registers with these values, and activating PWM (through external
signal or register)

IOs In order to use the IOs, we just need to configure the IO_DIR register in order
to set the pin as input or output.
Then, if it is an input, just read the IO_VALUE register, and if it is an output, just
write the desired value to the IO_VALUE register.

Ports

Port in/out Description
ui_in[7] in Input and’ed with ena and reported in bit 7 of reg 0x01
ui_in[6] in Control start of PWM externally
ui_in[5] in CS signal of SPI_SAMPLED
ui_in[4] in MOSI signal of SPI_SAMPLED
ui_in[3] in SCLK signal of SPI_SAMPLED
ui_in2 in CS signal of SPI_CLK
ui_in1 in MOSI signal of SPI_CLK
ui_in[0] in SCLK signal of SPI_CLK
uo_out[7:3] out Always 0
uo_out2 out PWM output
uo_out1 out MISO signal of SPI_SAMPLED
uo_out[0] out MISO signal of SPI_CLK
uio_in[7:0] in Input signals of IOs
uio_out[7:0] out Output signals of IOs
uio_oe[7:0] out OE signals of IOs
ena in Design selected signal
clk in System clk

131

http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture

Port in/out Description
rst_n in Active low reset

Registers

Reg Addr Addr Description Default
ID 0x00 R Identification register 0x96
PWM_CTRL 0x01 R/W Control register 0x00
TICKS_ON_LSB 0x02 R/W Ticks PWM signal is on LSB 0x14
TICKS_ON_MSB 0x03 R/W Ticks PWM signal is on MSB 0x82
TICKS_CYCLES_LSB 0x04 R/W PWM period in ticks LSB 0x50
TICKS_CYCLES_MSB 0x05 R/W PWM period in ticks MSB 0xC3
IO_DIR 0x06 R/W Set the dir of each IO pin 0x00
IO_VALUE 0x07 R/W Set the IO_output value 0x00

Only 3 bits of address are taken into account for addressing.
When PWM is active, registers cannot be written.

ID This register is read only, it’s value is 0x96.

PWM_CTRL This register controls the PWM. Bit 0 control if it’s on (Bit 0 set)
or off (Bit 0 clear). This register also contain the AND value of inputs ui_in[7] & ena
in bit 7.

TICKS_ON LSB and MSB This two registers contains the number of ticks of
the system clk that the PWM signal is high. It’s a 16 bit wide value, separate in LSB
and MSB.

TICKS_CYCLES LSB and MSB This two registers contains the period of the
PWM signal in number of ticks of the system clk. It’s a 16 bit wide value, separate in
LSB and MSB.

IO_DIR In this register each bits configure the direction of each io pin. Value 0
indicates input and value 1 indicate output

132

IO_VALUE This register contain the value of the io pin. When read it reports the
values of uio_in, when writes it sets the values of uio_out (depending on values set in
IO_DIR).

SPI Interfaces Registers are accesed through one of the two SPI interfaces. Both
interfaces share the access to the registers, so just one interface can be accessed at
the same time.
SPI mode is CPOL = 0 and CPHA = 1. Signal changes on rising edges and is capture
on falling edges.

SPI CLK This interface is clocked with the sclk clock of the SPI.
To write a register, 16 bits must be written.

• Bit 15 (MSB, first sent) is the R/W bit, for writes, must be 0
• Bits 14 to 11 are ignored
• Bit 10 to 8 is address
• Bit 7 to 0 is data to be written

To read a register, 24 bits must be sent

• Bit 23 (MSB, first sent) is the R/W bit, for reads, must be 1
• Bits 22 to 19 are ignored
• Bit 18 to 16 is address
• Bit 15 to 8 is dummy bits
• Bit 7 to 0 is data read in MISO line

133

SPI SAMPLED This interface is sampled with the system clk. As this interface
needs to be sampled twice in order to avoid errors due to CDC, the frequency for the
SPI_CLK must be equal or less than sys_freq/6. If this is not met, reads would be
erroneous
To write a register, 16 bits must be written.

• Bit 15 (MSB, first sent) is the R/W bit, for writes, must be 0
• Bits 14 to 11 are ignored
• Bit 10 to 8 is address
• Bit 7 to 0 is data to be written

To read a register, 16 bits must be sent

• Bit 15 (MSB, first sent) is the R/W bit, for reads, must be 1
• Bits 14 to 11 are ignored
• Bit 10 to 8 is address
• Bit 7 to 0 is data read in MISO line

How to test

Different tests to check all functionalities:

• SPI Reads: Read the ID register (0x00) and the byte received should be 0x96.
Use both SPI_CLK and SPI_SAMPLED interface.

134

• SPI Writes: you can write a register different than ID register, and then read it
back an check you read the value previously written. Use both SPI_CLK and
SPI_SAMPLED interface.

• PWM output: Configure a desired pwm cycle in the corresponding registers
TICKS_ON_LSB/MSB and TICKS_CYCLES_LSB/MSB, and activate the
PWM output in PWM_CONTROL register. Check PWM output.

• External PWM on/off: Set high value on ui_in[6] and check PWM output.

• Bidir ios: Configure direction of ios with IO_DIR, and set values for the outputs
in IO_VALUE, then read IO_VALUE and check correctness.

• Spare in/out: Set ui_io[7] to high and check bit 7 of PWM_CTRL is high when
this design is selected.

External hardware

Some devices to peform SPI transactions

135

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 clk_sclk clk_miso IO0
1 clk_mosi sampled_miso IO1
2 clk_cs pwm IO2
3 sampled_sclk IO3
4 sampled_mosi IO4
5 sampled_cs IO5
6 start pwm ext IO6
7 input and’ed with ena IO7

136

BINCounterAndGates [110]

• Author: conrad franke
• Description: Binary counter with io gates
• GitHub repository
• Wokwi project
• Mux address: 110
• Extra docs
• Clock: 1 Hz

How it works

This project is fairly straightforward as it is my first TT run and I know time is of the
essence … of which in this case there is a lot of but much waiting. This circuit is a
binary counter using D flip flops. There is also a gate example on the GPIO pins that
are included with TT09. The way to test this is to hook up a 1HZ oscillator (you could
go faster but I would recommend a 1HZ freq) to the clk pin and to provide power to
the processor then watch the output as the LEDs start counting up. These will go to
15 (hex F) and then roll back to 0 (so you could even say it goes to 30… a stretch).
The figure below has the circuit I created.

The I/O pins can be controlled with pushbuttons or DIP switches such as the ones
that are in the schematic/circuit editor.

137

https://github.com/TinyTapeout/dummy
https://wokwi.com/projects/411783629732984833

How to test

Flip through gates for representation of logic elements. For the binary counter attach
a 1HZ oscillator and watch the LEDS start to go. To manually crawl through the
binary counter, flip the oscillator circuit switch to connect to the pushbutton then step
through manually with the button.

External hardware

555 Timer configured for 1HZ oscillation, A dip switch (2 SPQT would be nice TBF for
the Input pins but a 8 pos SPST switch will do), 12 LED’s, 12 resistors, the oscillator
switch, and the step pushbutton.
Thank you tiny tapeout for this opportunity. It has been very cool building this and I
look forward to making more TT IC’s in the future.

Update

Build was good. Here is an image of the 2d model.

138

Pinout

Input Output Bidirectional
0 IN0 OUT0 D0
1 IN1 OUT1 D1
2 IN2 OUT2 D2
3 IN3 OUT3 D3
4 IN4 OUT4 D4
5 IN5 OUT5 D5
6 IN6 OUT6 D6
7 IN7 OUT7 D7

139

tt09-pettit-wokproc-trainer [112]

• Author: Ken Pettit
• Description: An 8-bit CPU trainer
• GitHub repository
• Wokwi project
• Mux address: 112
• Extra docs
• Clock: 10000 Hz

What is WocProc Trainer?

WocProc Trainer is a partial CPU implementation coded entirely in Wokwi! While
it is not a fully functional CPU capable of fetching instructions and running code, it
does provide the ALU, registers and opcode deocde for performaing CPU operations
when you “feed” it instructions. Turning it into a full CPU would require addition of
a Program Counter (PC), execution state machine, flow control opcodes (jump, call,
return, conditional branches, etc.), and an interface for fetching opcodes.

How it works

It works by “feeding” it opcodes and data via the ui[7:0] and ui[0] input pins and then
executing them by toggling the uio1 input pin. Some instructions require additional
“Immediate Data” to be supplied via the ui[7:0] input pins prior to toggling the uio1
“execute” input.

140

https://github.com/TinyTapeout/dummy
https://wokwi.com/projects/412635532198550529
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

The WokProc has an 8-bit accumulator and 4 8-bit working registers and can perform
ADD, SUBTRACT and the standard logical functions AND,OR,XOR and NOT, as well
as shift left/right operations. It also keeps track of CARRY and ZERO bits to reflect
the results of operations.

How to test

1. Provide a 10KHz clock then issue rst_n pulse.
2. Select the desired output mode for viewing results. For this testing, set

uio_in[5:2] all LOW.
uio_in2: Selects 7-Segment (LOW) or binary (HIGH) output format uio_in[4]:
Selects auto nibble / digit display (LOW) or manual (HIGH) uio_in[3]: Manual
digit select when uio_in[4] is HIGH. uio_in[5]: Selects value to output (LOW =
ACC reg, HIGH = new ACC load value)

3. Monitor the results using the 7-Seg display and uio_out[7:6] bits:

uio_out[6]: Indicates if CARRY bit is set
uio_out[7]: Indicates if ZERO bit is set

4. Perform an addition. After reset, the opcode register contains opcode 0x00,
which is A = A + IMM. So supply a binry input value on ui_in[7:0] and toggle the
EXECUTE input (uio_in1) HIGH then LOW. The 7-Seg display should display
the HEX value of the sum.

5. The first addition just looked like a ‘load’ since Acc was zero from the reset. Add
the value a second time (or supply a different value on ui_in[7:0]) and toggle
the EXECUTE input again. The 7-Segment display should show the result of
the addiiton.

6. Load register r0 from the A register. First enter the opcode (7’b1100_0000 from
the opcode table) and then toggle the LOAD (ui_in[0]) input HIGH then LOW
to load ui_in[7:] to the opcode register. Now toggle the EXECUTE (ui_in1)
input HIGH then LOW. Register r0 should now contain the value from A.

7. Test if register r0 was loaded. First clear the Acc register (load opcode
7’b0111_0000 and EXECUTE it). The 7-Seg should show “00.”. Now load and
execute the opcode to load register r0 to Acc (opcode 7’b0110_0000). The
7-Seg should show the result of the summation that was stored in r0.

8. Perform a NOT operation on the A register by loading and executing opcode
7’0111_0001. The 7-Seg should show the compliment value of what was in A.

141

http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

9. Try additional oerations from the opcode table by loading and executing them.
For any opcode that uses IMM data, uio_in[7:0] inputs must be changed to the
immediate data AFTER loading the opcode but BEFORE executing it.

Opcodes supported:

Opcode Operation Description
0000_0000 A <= A + IMM Add A + immediate data
0000_1000 A <= A + IMM + Carry Add with carry A + immediate
0001_0000 A <= A - IMM Subtract immediate from A
0001_1000 A <= A - IMM - Borrow Subtract with borrow immediate
0010_00rr A <= A + R[1:0] Add register rr to A
0010_10rr A <= A + R[1:0] + Carry Add with carry register rr
0011_00rr A <= A - R[1:0] Subtract register rr from A
0011_10rr A <= A - R[1:0] - Borrow Subtract with borrow register rr
0100_0000 A <= IMM Load A with immediate data
0110_00rr A <= R[1:0] Load A from register rr
0110_01rr A <= A ^ R[1:0] XOR A with register rr
0110_10rr A <= A OR R[1:0] OR A with register rr
0110_11rr A <= A & R[1:0] AND A with register rr
0111_0000 A <= Zero Clear A
0111_0001 A <= !A Invert (1’s compliment) A‘
0111_01rr A <= !R[1:0] Load A from rr compliment
0111_1000 Cy <= 0 Clear the carry flag
0111_1001 Cy <= !Cy Compliment the carry flag
0111_1010 {A, Cy} <= {Cy, A} Shift right A through Carry
0111_1011 {Cy, A} <= {A, Cy} Shift left A through Carry
0111_1100 A <= {0, A[7:1]} Shift right A
0111_1101 A <= {A[6:0], 0} Shift left A
0111_1110 A <= {A[7], A[7:1]} Signed shift right A
1000_00rr R[1:0] <= A + IMM Load register rr with sum
1001_00rr R[1:0] <= A - IMM Load register rr with difference
1010_00rr R[1:0] <= A + R[1:0] Load register rr with sum
1011_00rr R[1:0] <= A - R[1:0] Load register rr with difference
1100_00rr R[1:0] <= IMM Load immediate data to rr
1101_00rr R[1:0] <= A Load A to rr
1110_RRrr R[1:0] <= R[3:2] Copy register RR to rr

142

Selecting the Output

The uo_out port is used to display the state of the WocProc trainer. It can display
either 7-Segment LED encoded register data or direct binary data.

uio_in2 uo_out Format
LOW 7-Segment
HIGH Binary

The data output to uo_out (either 7-Segment or binary) is selected via the uio_in[5]
input:

uio_in[5] uo_out Data
LOW Acc Register
HIGH ALU result (value loaded upon EXECUTE)

For 7-Segment output format, a single digit LED display is used to show both the
upper and lower nibble of the selected output data. When the LOWER nibble is being
displayed, the 7-Segment Decmial Point (DP) will be illuminted and when the UPPER
nibble is displayed, it will be turned off, such as:

F1.

The nibble display can be configured using uio_in[4:3] as follows:

uio_in[4:3] Displayed Nibble
2’b0x Auto toggle (counter tuned for 10KHz clock)
2’b10 Lower nibble (plus DP)
2’b11 Upper nibble

Hardware needed:

Dip switches and 7-Segment LED.

Pinout

143

http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
0 op/imm[0] seg_a load_opcode
1 op/imm1 seg_b execute_opcode
2 op/imm2 seg_c sevenSeg_binary
3 op/imm[3] seg_d digit_select
4 op/imm[4] seg_e manual_digit
5 op/imm[5] seg_f digit_a_reg
6 op/imm[6] seg_g carry_out
7 op/imm[7] seg_dp zero_out

144

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Duffy [114]

• Author: Jonathan Duffy
• Description: trying out an oscillator or delay line
• GitHub repository
• Wokwi project
• Mux address: 114
• Extra docs
• Clock: 0 Hz

How it works

This is pretty much just a string of inverters to try to make a delay line or ring oscillator.
Also there’s an xor gate on the bidir pins, maybe test as a mixer?

How to test

Basic DC logic on the first couple pins, couldn’t describe any way other than the logic
itself OUT1 = IN3 ? (IN0 & IN1) : IN2 OUT0 and OUT2 are both !OUT1 and the
rest of the OUTs should be the same as OUT1 D2 = D0 ^ D1

External hardware

Nothing specific, switches or digital in to the input

Pinout

Input Output Bidirectional
0 IN0 OUT0 D0
1 IN1 OUT1 D1
2 IN2 OUT2 D2
3 IN3 OUT3 D3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

145

https://github.com/TinyTapeout/dummy
https://wokwi.com/projects/413385294512575489

pulse_add [128]

• Author: Jonny Edwards
• Description: a temporal add in digital
• GitHub repository
• HDL project
• Mux address: 128
• Extra docs
• Clock: 0 Hz

How it works

This is a simple circuit to calculate:

• a simple add but temporal …
• it’s one out due to enable

How to test

All tested through cocotb

External hardware

I intend for this to be driven by the RP2040 and to work as a “coprocessor” for vector
calculations Other.

Pinout

Input Output Bidirectional
0 in[0] out[0]
1 in1 out1
2 in2 out2
3 in[3] out[3]
4 in[4] out[4]
5 in[5] out[5]
6 in[6] out[6]
7 in[7] out[7]

146

https://github.com/Fountaincoder/trueadd
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

nyan [130]

• Author: Peter Nørlund
• Description: Nyan Cat
• GitHub repository
• HDL project
• Mux address: 130
• Extra docs
• Clock: 25000000 Hz

How it works

The Nyan Cat animation and music on infinite repeat

How to test

Connect the TinyVGA PMOD to the Out PMOD and Mike’ Audio PMOD to Bidir
PMOD.

External hardware

• TinyVGA PMOD
• Mike’s audio PMOD

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VSYNC
4 R0
5 G0
6 B0
7 HSYNC PWM output

147

https://github.com/peter-noerlund/tt08-nyan

Brailliance [132]

• Author: Akshat B, Evana T, John L, Rittrija M, Riley Gu
• Description: ASCII-to-Braille Converter
• GitHub repository
• HDL project
• Mux address: 132
• Extra docs
• Clock: 5000000 Hz

How it works

Input ASCII signals to 8-bit braille outputs (First two bits are zeroed for redundancy)

How to test

Connect to FPGA and use breadboards + LEDs/Push Pull Solenoid Actuators for
product demonstration

External hardware

• Breadboard
• Jumper Wires
• LEDs / Push Pull Solenoid Actuators
• Resistors

Pinout

Input Output Bidirectional
0 clk reader1_out[0]
1 reset reader1_out1
2 next reader1_out2
3 reader1_out[3]
4 reader1_out[4]
5 reader1_out[5]
6 reader1_out[6]
7 reader1_out[7]

148

https://github.com/rileyguu/tt08-brailliance
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Adder with Flow Control [134]

• Author: Yuri Panchul
• Description: An adder with a separate flow control for each argument and the

result
• GitHub repository
• HDL project
• Mux address: 134
• Extra docs
• Clock: 3 Hz

How it works

adder_with_flow_control design contains an adder with a separate flow control
for each argument and the result.
The design is an answer to an RTL job interview question described by Yuri Panchul in
an article (in Russian) on Habr website. The design is used as a part of systemverilog-
homework and basics-graphics-music GitHub repositories. These repos are maintained
by engineers and educators associated with the Verilog Meetup community.
In this solution to the interview question, the flow control is implemented
using one of the following pipeline register/buffer modules. The choice is spec-
ified inside the adder_with_flow_control.sv module using the define macro
FLOW_CONTROL_BUFFER.

• fcb_1_single_allows_back_to_back
• fcb_2_single_half_perf_no_comb_path
• fcb_3_single_for_pipes_with_global_stall
• fcb_4_wrapped_2_deep_fifo
• fcb_5_double_buffer_from_dally_harting

More details about the modules:

fcb_1_single_allows_back_to_back This module is a general-purpose flow-
controlled register which allows full back-to-back performance but has a combinational
path between down_rdy and up_rdy which can introduce timing problems in deep
pipelines.

149

https://github.com/yuri-panchul/tt08-adder-with-flow-control
https://habr.com/en/articles/706484/
https://github.com/yuri-panchul/systemverilog-homework
https://github.com/yuri-panchul/systemverilog-homework
https://github.com/yuri-panchul/basics-graphics-music
https://verilog-meetup.com/

fcb_2_single_half_perf_no_comb_path This flow-controlled register
has no combinational path at all, but cannot sustain a back-to-back stream of
data. However, it requires fewer gates than fcb_4_wrapped_2_deep_fifo or
fcb_5_double_buffer_from_dally_harting.

fcb_3_single_for_pipes_with_global_stall This flow-controlled register is
suitable if the designer wants to always stall the whole pipeline at once, without parts
of it making progress.

fcb_4_wrapped_2_deep_fifo The most high-bandwidth flow-controlled buffer
among those that have no combinational path between down_rdy and up_rdy. However
this solution occupies the largest area.

fcb_5_double_buffer_from_dally_harting This pipeline buffer is Yuri
Panchul’s edition of the code derived from Digital Design: A Systems Approach by
William James Dally and R. Curtis Harting. 2012. It has high bandwidth and no
combinational path between down_rdy and up_rdy, but not the highest possible
bandwidth for this adder_with_flow_control design.

How to test

A self-checking testbench for the design is located in a directory test_extra that con-
tains:

• clean.bash - a script to delete temporary files produced by simulate.bash.
• simulate.bash - a script that simulates the design together with a testbench using

Icarus Verilog and produces a log log.txt.
• tb.sv - a self-checking testbench that generates a log, a status PASS or FAIL,

and performance data.

After the manufacturing, the design can be manually tested in the same way it is tested
in the testbench. It is important to cover the following scenarios:

• Back-to-back data.
• Argument starvation (either A or B).
• Backpressure.

150

External hardware

Buttons and LEDs

Pinout

Input Output Bidirectional
0 a_vld a_rdy a_data[0]
1 b_vld b_rdy a_data1
2 sum_rdy sum_vld a_data2
3 sum_data[0] a_data[3]
4 sum_data1 b_data[0]
5 sum_data2 b_data1
6 sum_data[3] b_data2
7 sum_data[4] b_data[3]

151

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

i2c peripherals: leading zero count and fnv-1a hash [136]

• Author: Steve Jenson <stevej@gmail.com>
• Description: An implementation of HyperLogLog in Verilog for sky130
• GitHub repository
• HDL project
• Mux address: 136
• Extra docs
• Clock: 0 Hz

How it works

Fnv-1a 32-bit peripheral: send bytes via write requests, get the hash via a read request.
Every read request resets the hash.
LZC: send up to 32 bits with write request, read back the number of leading zeroes
with a read request.
ZeroOne: Sends the byte 0101_0101
OneZero: Sends the byte 1010_1010

How to test

Fnv-1a: Send a known set of bytes, get a known hash back.
LZC: Send 32 zeros, get the number 32 back. Send 32 1s, get 0 back
ZeroOne/OneZero: make a read request.

External hardware

i2c master device with test code. Arduino test code provided.

152

mailto:stevej@gmail.com
https://github.com/stevej/tt08-stevej-i2c-peripheral

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 (INT)
1 (RESET)
2 SCL
3 SDA
4
5
6
7

153

Rotary Encoder WS2812B Control [138]

• Author: Fabio Ramirez Stern
• Description: A rotary encoder controls 12 WS2812B LEDs on a ring PCB.
• GitHub repository
• HDL project
• Mux address: 138
• Extra docs
• Clock: 40000000 Hz

How it works

The rotary encoder adds/subtracts from a variable that determines which LED to turn
on. Periodically, the chip sends out a signal for 12 LEDs out via uo0, according to
the WS2812B protocol. The button connected to in2 inverts the LEDs, whether that
happens gets also indicated through out1. Further, the register value of the variable
will be put out via out2 to uo5. The colour can be activated as follows: in3 for green,
in4 for red and in5 for blue. Intensity is set with the remaining two bits, in6 and
in7.

How to test

Connect the rotary encoder outputs to in0 and in1. If your rotary encoder also has
a built in push button, conntect that to in2, or use another switch with a pull down
resistor. The LEDs should be wired in series. The first LED’s DIN input needs to be
connected to the out0 of the chip.
Give the project a reset after power up and then rotate the encoder back and forth to
see the light moving.

External hardware

1. A rotary encoder.
2. Any arrangement of 12 WS2812B like controlled LEDs. More or less will also

work, you will just not get the full range, or some LEDs will stay off.

The seller called what I bought this: LED Ring 5V RGB WS2812B 12-Bit 37mm

154

https://github.com/faramire/TT08-rotary-encoder-WS2812B

Pinout

Input Output Bidirectional
0 rotary encoder: CLK DOUT
1 rotary encoder: DT inverted
2 rotary encoder: SW count0
3 green count1
4 red count2
5 blue count3
6 intensity1
7 intensity2

155

Alarm Clock [140]

• Author: Kapilan Karunakaran
• Description: A simple alarm clock
• GitHub repository
• HDL project
• Mux address: 140
• Extra docs
• Clock: 0 Hz

How it works

This project was sponsored by The MITRE Corporation and MIT/LL Beaverworks
Summer Institute https://beaverworks.ll.mit.edu/CMS/bw/bwsi . This is a simple
alarm clock. There are two inputs alarm_hours and alarm_minutes. These two inputs
are to be set to values less than 23 and 59 respectively. The output pin “alarm” is
expected to be asserted when the internal counters hours and minutes hit the expected
alarm_hours and alarm_minutes respectively. Alarm output will be stuck at 1 until
reset. Time at which Alarm is triggered are also sent out as output for comparison.
Due to limited number of Inputs and outputs available, some of the inout pins are used
as well. output enable pins are used to mask the inputs and outputs appropriately.

How to test

Use below testbench to input specific values to inputs and observe alarm asserted and
output hours and minutes match with inputs. module tb();
reg clk, rst_n; reg [5:0] alarm_minutes; reg [4:0] alarm_hours;
tt_um_kapilan_alarm dut(.ui_in({alarm_minutes[2:0],alarm_hours[4:0]}),
.uo_out(), .uio_in({5’b0,alarm_minutes[5:3]}), .uio_out(), .uio_oe(), .ena(1’b1),
.clk(clk), .rst_n(rst_n));

156

https://github.com/gmkapilan/tt08-alarmclock
https://beaverworks.ll.mit.edu/CMS/bw/bwsi

initial begin rst_n = 1’b0; #100; rst_n = 1’b1; alarm_hours = 5’d3; alarm_minutes
= 6’d43; end initial begin clk = 1’b0; forever begin #20; clk = ~clk; end end initial
begin $dumpfile(“alarm_dump.vcd”); $dumpvars(0,tb); #1000000; $finish; end
endmodule

External hardware

Pinout

Input Output Bidirectional
0 alarm_hours[0] hours[0] alarm_minutes[3]
1 alarm_hours1 hours1 alarm_minutes[4]
2 alarm_hours2 hours2 alarm_minutes[5]
3 alarm_hours[3] hours[3]
4 alarm_hours[4] hours[4] minutes[3]
5 alarm_minutes[0] minutes[0] minutes[4]
6 alarm_minutes1 minutes1 minutes[5]
7 alarm_minutes2 minutes2

157

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

TSAL_TT [142]

• Author: Ephren Manning
• Description: FSAE EV Tractive System Active Light
• GitHub repository
• HDL project
• Mux address: 142
• Extra docs
• Clock: 8000000 Hz

How it works

This design is meant to fulfill FSAE Rule EV.5.9 on a student built electric vehicle.
Rules are shown below. The digital design held on the TinyTapeout chip will take the
digital value of an analog signal from an Analog Devices AD7476A 12-bit ADC chip.
The value of the signal will be compared against a decided value representing that the
tractive system is at 60V. Should the converted value be less than the decided value,
a digital line driving a green LED will be driven high. Should the value be greater, a
seperate digital line driving a red LED will flash at a rate of 4 hertz.
As of the 2024 Rules Ver. 1, operation is described as follows:
EV.5.9 Tractive System Active Light - TSAL
EV.5.9.1 The vehicle must include a Tractive Systems Active Light (TSAL) that
must:
 a. Illuminate when the GLV System is energized to indicate the status of the
Tractive System
 b. Be directly controlled by the voltage present in the Tractive System using hard
wired electronics. Software control is not permitted.
 c. Not perform any other functions.
EV.5.9.2 The TSAL may be composed of multiple lights inside a single housing
EV.5.9.3 When the voltage outside the Accumulator Container(s) exceeds T.9.1.1, the
TSAL must:
 a. Be Color: Red
 b. Flash with a frequency between 2 Hz and 5 Hz
EV.5.9.4 When the voltage outside the Accumulator Container(s) is below T.9.1.1, the
TSAL must:

158

https://github.com/ephrenm/tt08-tsal

 a. Be Color: Green
 b. Stay continuously illuminated

How to test

When testing, the digital line driving the green LED should be driven high only in
the case that converted analog value is less than the comparison value. When the
converted value is greater than or equal to the comparison value, the red LED should
blink at a rate of 4 hertz. This requires that simulations be ran for upwards of a second
to confirm LED blink speed.

External hardware

A PMOD AD1 from Digilent was used to test this project. The input/outputs on
the TinyTapeout Demo board were configured so that this PMOD could be used on
the top *(confirm) bidirectional port. Should a custom board be made to support
functionality, the Analog Devices AD7476A or compatible 12-bit ADC converter will
need to be used.

Pinout

Input Output Bidirectional
0 Comparison Value Bit 0 Green Led Chip Select
1 Comparison Value Bit 1 Red Led Serial Data
2 Comparison Value Bit 2
3 Comparison Value Bit 3 Serial Clock
4 Comparison Value Bit 4
5 Comparison Value Bit 5
6 Comparison Value Bit 6
7 Comparison Value Bit 7

159

Divided Ring Oscillator [144]

• Author: Ignatius Bezzam, Dhandeep Challagundla, Jarnail Sanghera, Russell
Kim

• Description: Ring Oscillator
• GitHub repository
• HDL project
• Mux address: 144
• Extra docs
• Clock: 10000000 Hz

How it works

A ring oscillator working in the GHz range is divided to give an observable output
frequency in the 20 MHz range.

Top-Level Complete Mixed-Signal Functionality Verification in Verilog

160

https://github.com/SmellyJelly01/tt08-ring-divider

PEX Sims Verifying Performance

How to test

A supply current of 1-2 mA when enable is high indicates that the ring oscillator is
functional. The final output can be observed in the 20 MHz range. Test/debug mode
verifies the divider functionality at low frequency. The ring oscillator can be disabled
by on-chip signals (ena = low).

External hardware

Oscilloscope (100 MHz), power supply, function generator (10 MHz, digital).

Pinout

Input Output Bidirectional
0 tst_clk final_out n1
1 osc_out n3
2 ena
3 clk

161

Input Output Bidirectional
4 rst_n
5 n2_buf
6 n4_buf
7

162

HACK CPU [146]

• Author: Dantong LUO, Nour MHANNA, Charbel SAAD
• Description: A 16-bit CPU based on the HACK architecture
• GitHub repository
• HDL project
• Mux address: 146
• Extra docs
• Clock: 12500000 Hz

How it works

The device we developed is a 16-bit CPU based on the HACK architecture. The figure
below shows the detailed architecture.

inM

instruction

(from FSM)
si

so

sclk

csb

spi_master

halt

FSM

enD (fromFSM)

D register

A register

enPC (from FSM) loadPC (from FSM)

PC

outM

ALU

MUX

MUX

csb

sclk

mi

mo

spi_slave

(from FSM)

enA (fromFSM)

selALU (from FSM)

selA (from FSM)

MUX

selSPIAddress (from FSM)

cpu_top

Text is not SVG - cannot display

As we can see, it contains three main registers, an ALU, and two SPI modules. Each
register has a unique function.

• D register stands as an accumulator.

163

https://github.com/bugavix/hack_cpu

• A register plays two roles. It first serves as an address register and also as a
direct access register.

• PC is the program counter.

The ALU takes two different operands and is driven by 6 control signals, resulting in
18 different operations possible. Control signals can turn an operand to zero, logically
reverse it, etc. The figure below shows how it is built.

Since we don’t have enough space on the chip, we can’t include the memory. Moreover,
we cannot fetch the 16-bit long instruction and data memory values at the same time
because we only have 24 I/O pins. This is why we had to think of another approach.
The idea we came up with is to fetch or save a 16-bit word once at a time and use a
serial protocol for the transfer. We can see below the state diagram of the CPU.

FETCH... FETCH... SAVE... LATCH

cab...

cab...

latchMemory

else

else

Text is not SVG - cannot display

For the serial communication protocol, we chose SPI since it is one of the simplest to
implement. We have to take into account 4 signals:

• MOSI: The signal containing the data transferred from the CPU to the memory.
• MISO: The signal transferring the data from the memory to the CPU.
• CSB: The signal that tells the memory that the CPU needs it.
• SCLK: The clock signal that cadences the transfer.

164

As shown in the figure below, SPI comes in 4 different modes. We are only going to
work with modes 0 and 3 (Flip at the negative edge of the clock then sample on the
positive edge).

Mode 0 Mode 1

Mode 2 Mode 3

FLIP SAMPLE FLIP SAMPLE

FLIP SAMPLE FLIP SAMPLE

Text is not SVG - cannot display

The two following figures contain the logic circuits handling the transfer signals. As
we can see, the MISO signal is latched in two different shift registers: one for the
instruction, the other for the memory data. The MOSI signal is generated via a 40 to
1 multiplexer driven by a counter. The SPI module is monitored by its own FSM.

The final module also processes SPI signals but is used for debugging purposes. This
time the SCLK and CSB are driven by the debugging device and the MISO and MOSI
signals are inverted. The figure below shows how the module is built.

165

To communicate, the debugging device sends two bits of data, and depending on these
bits, the CPU will output a specific value:

• 0: register D
• 1: register A
• 2: Program Counter
• 3: FSM state

How to test

The chip needs to be connected to an SPI RAM. We focused the design around the
23XX512, an SPI RAM developed by Microchip Inc. Just add the binary code to the
RAM and provide an adequate 12.5 MHz clock signal. For debugging, a microcontroller
with an SPI interface can do the job.
Since the chip is going to be soldered to a debug board with an RP2040 on it, we can
use the code provided by MichaelBell to emulate the RAM (Github repsitory). The
RP2040 can also be used as a debugger.

External hardware

• 65 KB SPI RAM.
• Microcontroller with SPI interface.

Pinout

Input Output Bidirectional
0 external halt signal (to use when debugging) GPIO21 - RAM CS
1 GPIO22 - RAM MOSI
2 GPIO23 - RAM MISO
3 GPIO24 - RAM SCK
4 DEBUG CS
5 DEBUG MOSI
6 DEBUG MISO
7 DEBUG SCK

166

https://github.com/MichaelBell
https://github.com/MichaelBell/spi-ram-emu.git

simon_cipher [161]

• Author: Simon Cipher
• Description: Bitserial implementation of Simon-128
• GitHub repository
• HDL project
• Mux address: 161
• Extra docs
• Clock: 0 Hz

How it works

This is a bitserial implementation of the SIMON Block Cipher. SIMON is a 128-bit
block cipher, see The SIMON and SPECK families of Lightweight Block Ciphers. A
bit-serial implementation exchanges throughput for area, thereby creating a compact
cipher that is dominated by flip-flops and multiplexer cells. However, the overal design
size becomes minimal. A detailed description of the bitserial implementation technique
for SIMON is available in SIMON Says, Break the Area Records for Symmetric Key
Block Ciphers on FPGAs .

Cell Count
flip-flop 281
mux 588
other logic 199
TOTAL 1068

The design uses a 3-bit input and a 2-bit output, in addition to clock and reset.

Port Function
ui[0] Bitserial Data Input
ui[7:6] Control Word
uo[0] Bitserial Data Output
uo[7] Data Output Valid

The data input is asserted by the control word, and must be valid when the control
word indicates a plaintext-loading or key-loading operation.
The data output is asserted by the valid bit, and should be ignored when the data valid
bit is 0. The output ciphertext is produced in 128 consecutive clock cycles.

167

https://github.com/Secure-Embedded-Systems/tt08-simon
https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2014/237
https://eprint.iacr.org/2014/237

The 2-bit control word defines the operation of the cipher. The LSB is a debug bit
study to key-loading process and to verify that the key register was correctly loaded.

Control Function
00 Idle
01 Load 128-bit plaintext
10 Load 128-bit key (see LIMITATIONS)
11 Encrypt and return ciphertext

LIMITATIONS

This design forces the key bits to 0 upon loading, so that the effective key value of
the cipher is always hardcoded to 00000000_00000000_00000000_00000000. This
disables the use of the design as a cipher, yet it still demonstrates how a bit-serial
architecture can be designed.

How to test

Study the testbench for example test vectors.

External hardware

No external hardware is needed for this project.

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0]
1 ui_in1 uo_out1
2 ui_in2 uo_out2
3 ui_in[3] uo_out[3]
4 ui_in[4] uo_out[4]
5 ui_in[5] uo_out[5]
6 ui_in[6] uo_out[6]
7 ui_in[7] uo_out[7]

168

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Wirecube [163]

• Author: Leo Moser
• Description: A demo for the Tiny Tapeout demoscene competition - see for

yourself!
• GitHub repository
• HDL project
• Mux address: 163
• Extra docs
• Clock: 50350000 Hz

How it works

The documentation will be updated after the competition has concluded.

How to test

Connect a Tiny VGA to the output Pmod port, set the clock frequency to two times
25.175 MHz = 50.350 MHz, make sure ui_in is set to 0x00 and enjoy the show!

External hardware

• Tiny VGA Pmod

Pinout

Input Output Bidirectional
0 toggle background bit 0 R1
1 toggle background bit 1 G1
2 toggle background bit 2 B1
3 toggle cube bit 0 VS
4 toggle cube bit 1 R0
5 toggle cube bit 2 G0
6 toggle speed bit 0 B0
7 toggle speed bit 1 HS

169

https://github.com/mole99/tt08-wirecube
https://github.com/mole99/tiny-vga

TT08 Pachelbel’s Canon demo [165]

• Author: Mike Bell
• Description: Tiny Tapeout visuals with the classic Canon soundtrack
• GitHub repository
• HDL project
• Mux address: 165
• Extra docs
• Clock: 36000000 Hz

How it works

The project plays Pachelbel’s Canon along with some fun visuals.

How to test

Set the inputs to 0, clock at 36MHz.

External hardware

Tiny Tapeout Audio Pmod in the bidir Tiny VGA Pmod in the output

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 vsync
4 R[0]
5 G[0]
6 B[0]
7 hsync PWM output

170

https://github.com/MichaelBell/tt08-canon
https://github.com/MichaelBell/tt-audio-pmod
https://github.com/mole99/tiny-vga
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Neural Net ASIC [166]

• Author: Neural Navigators: Linyang Lee, Harsha Ganta, Stephanie Shen, William
Li, Kiana Dai

• Description: MNIST Handwriting prediction on a neural network
• GitHub repository
• HDL project
• Mux address: 166
• Extra docs
• Clock: 10000000 Hz

How it works

Neural network

How to test

Test

Pinout

Input Output Bidirectional
0 ui[0] uo[0] uio[0]
1 ui1 uo1 uio1
2 ui2 uo2 uio2
3 ui[3] uo[3] uio[3]
4 ui[4] uo[4] uio[4]
5 ui[5] uo[5] uio[5]
6 ui[6] uo[6] uio[6]
7 ui[7] uo[7] uio[7]

171

https://github.com/piboi/tt08-nn
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Sequential Shadows [TT08 demo competition] [167]

• Author: Toivo Henningsson
• Description: My contribution to the TT08 demo competition
• GitHub repository
• HDL project
• Mux address: 167
• Extra docs
• Clock: 50400000 Hz

Intro

Curly / Medieval presents

my contribution to the Tiny Tapeout 8 demo competition. Code, graphics, and music
by Curly (Toivo Henningsson) of Medieval.
The demo can be seen at https://youtu.be/pkiTu3iLA_U (captured from a Verilator
simulation).

How it works

The demo code contains a few different parts:

• Ray caster
• Synthesizer
• Music sequencer
• Logo
• Combined timing generator for raster scan and synthesizer
• Dithering
• Top level sequencer
• Audio visualizer

172

https://github.com/toivoh/tt08-demo
https://youtu.be/pkiTu3iLA_U

The code was first written without the audio visualizer and top level sequencer. At this
point, there was music, but the demo was always showing the same moving landscape
as in the intro (without fade-in) with the static logo on top. Also, there was not very
much space left.
To add more contents, I went through the code looking for narrow control signals that
might do interesting things when changed, and experimented on FPGA with changing
them to see if I could get any interesting results. Examples:

• Sine plasma: Disable 3D part of ray caster
• Logo animation: Change address calculation into logo bitmap
• Jagged landscape: Change when bits are inverted in sine table lookup to modify

part of sine function

The final steps were to choose which of these effects to use and to tweak the demo
until I ran out of area and time.

Ray caster The ray caster is used to generate the landscapes. The height map is
procedurally generated as the sum of 3 sine waves; there was no space to store a full
height map. A sine table is used since the sine calculation needs to be fast. Summing
3 sine waves means that each height can be evaluated in 3 cycles, or 1.5 VGA pixels.
The calculated ground height is accumulated and stored in a register. The next ground
height can start to be calculated directly, but has to wait to update the register until
the previous height is no longer needed. There is also a mode to feed the sum of the 3
sine waves through the sine table to produce the final ground height, requiring 4 cycles
per ground height evaluation.
Each sine term has its own phase and phase increment registers. Each phase incre-
ment is set based on an angle that is increased for each scan line to look in different
directions. The angle is fed through the sine table (and the result scaled) to get the
phase increment. The initial phases and the initial angles for the phase increments are
updated each frame to animate the landscape.
The ray caster keeps track of the current ray height z, starting at eye level, and current
z increment dz, starting at 511 (pointing down as much as possible). If z is above
ground, the ray steps forward using dz, and the landscape steps forward to calculate
a new height. If z is below ground, the ray steps up by decreasing dz by one, and
decreasing z by the distance t the ray has travelled so far. This steps up to the ray
given by the new dz value.
The ray caster has to produce output pixels in time with the VGA timing, starting
from the left side of each scan line and producing a new pixel every two cycles. The x
coordinate where a ground hit should be displayed corresponds to the downward angle

173

of the ray, and is given by 511-dz. If the ray caster is about to run ahead of the
display (x) coordinate, it waits for the display coordinate to catch up. If the ray caster
is running behind the display coordinate, as often happens after running over the top
of a hill in the landscape, a shadow (black pixel) is displayed while the ray tries to
catch up.
As dz decreases along the scan line, a longer distance along the ray is needed to find
each new ground hit. To be able to keep up with the display coordinate, the step length
when moving along the ray is successively doubled after a given number of steps. This
works out ok visually since details appear smaller at greater distances, so the increased
step lengths don’t lose as much detail as they would if they were used from the start.

Synthesizer The synthesizer is based on a small ALU, with one accumulator register
and 7 numbered registers, each 11 bits wide. A program of 100 ALU operations is
looped, producing a new sample value between 0 and 99 for each loop. The program
is used to calculate sawtooth, triangle, and square waves, and sum them to create the
output sample. For the chords, 6 sawtooth waves are calculated based on the same
oscillator value (and the global counter) and added together.
All ALU operations update the accumulator. The accumulator value can then be
written to a numbered register. The numbered registers are implemented with latches,
and the accumulator value should be held constant while updating one to make sure
that the correct value is written. Fortunately, the numbered registers don’t need to be
updated that often. The numbered registers are:

• chord phase
• drum phase
• bass phase
• lead phase
• B: temporary register
• output accumulator
• output (written during the last cycle in the loop, never read by the ALU)

The output from the previous sample is compared to the current loop position to create
a PWM signal to output as the sound signal.
The phase values for the channels are updated in a similar way to the synth in https:
//github.com/toivoh/tt06-retro-console, with bit reversed phase compared to mantissa
to get a sawooth wave, and octave divider.
Wave forms used:

• chords: detuned sawtooth
• drum: triangle (with descending frequency)

174

https://github.com/toivoh/tt06-retro-console
https://github.com/toivoh/tt06-retro-console

• bass: triangle
• lead: sawtooth or square, sometimes detuned

Detuning is created by calculating and adding the same waveform twice, but adding
the global counter to the phase in one of the cases, suitably shifted.
The chords use different multipliers on the chord phase:

• major chord: 8, 10, 12
• minor chord: 10, 12, 15
• sus2 chord: 8, 9, 12

doubling some of the multipliers to create chord inversions. Each multiplication is
calculated as the sum of two shifts. The chord phase is multiplied by each multiplier
in turn, creating a sawtooth waveform that is added to the output.
Each ALU instruction has a tag field. A nonzero tag signifies conditional execution
for different effects: rase the bass drum one octave, change the lead waveform into a
square wave, etc…

Logo The logo stores two bits per 16x16 pixel square, one for each triangle half.
Which one to look up is calculated from the current screen coordinates, and an offset
for the logo animation effect.

Top level sequencer As much as possible is derived from the global counter. This
includes the top level sequencer, which is basically a big case statement that sets
different control signals depending on the current frame. Some of the control signals
feed into the music sequencer to change the music (alternate melody and bass line,
change lead between sawtooth and square wave, raise the bass one octave, …).

Audio visualizer The audio is produced in sync with the VGA signal, 8 samples per
scan line, so the audio visualizer mostly needs to look at the current audio output (0
or 1) after PWM comparison to decide the current pixel value. The synthesizer’s ALU
program was updated to invert every other sample value, and the audio output is also
inverted for these samples. This creates the mirroring effect in the visualizer (and also
makes the PWM output almost phase correct).
The music was transposed so that the root note is roughly a power of two times 60 Hz.
This avoids most audio channels feeding flicker into the audio visualizer. The drums
were cut a bit short when the visualizer is on, since their descending frequency can’t
avoid creating flicker. The bass line was raised one octave when the visualizer is on,
and the amplitude is halved, which also reduces flicker substantially.

175

How to test

Plug in a TinyVGA compatible Pmod on the TT08 demo board’s out Pmod. Plug in
a Pmod compatible with Mike’s audio Pmod on the TT08 demo board’s bidir Pmod.
Set all inputs to zero to get the default behavior. Warning: The default behavior
includes some flashing ligts. Set v_bass_off and v_drums_off (keep ui_in
at 3 instead of 0) to remove flashing. The demo starts directly after reset.
This demo is best viewed with the monitor rotated 90 degrees, with the left side facing
down.

Inputs There is no guarantee that changing the inputs after reset is released works
as intended, but it probably does. Some of the inputs provide options on how the demo
is run:

• v_bass_off: Setting this high reduces flashing when the audio visualizer is on
by turning off the bass.

• v_drums_off: Setting this high reduces flashing when the audio visualizer is
on by turning off the drums.

• v_bass_low: Setting this high keeps the bass at its default octave even when
the audio visualizer is on, which increases flashing.

• pause: While this is high, the demo is paused and the sound is turned off. Can
probably be used to start the demo paused.

• step_frame: While this is high, the the demo advances one frame per cycle.
Used for testing.

External hardware

This project needs

• a TinyVGA VGA Pmod.
• Mike’s audio Pmod.

Pinout

Input Output Bidirectional
0 v_bass_off R1
1 v_drums_off G1
2 v_bass_low B1
3 pause vsync

176

https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod
https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod

Input Output Bidirectional
4 R0
5 G0
6 B0
7 step_frame hsync audio_out

177

CYCLIPSONIC [171]

• Author: IITBBS_HEART
• Description: A dual-mode washing machine controller featuring a LiPSi micro-

processor and a standalone controller, selectable via a pin configuration.
• GitHub repository
• HDL project
• Mux address: 171
• Extra docs
• Clock: 20000000 Hz

How it works

Not meant for submission

How to test

TBD

External hardware

TBD

Pinout

Input Output Bidirectional
0 ui[0] uo[0]
1 ui1 uo1
2 ui2 uo2
3 ui[3] uo[3]
4 ui[4] uo[4]
5 ui[5] uo[5]
6 ui[6] uo[6]
7 ui[7] uo[7]

178

https://github.com/RohithManikanta7/iitbbsheart
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

TDC with SPI [175]

• Author: Tautvydas Brukstus
• Description: TDC with SPI design
• GitHub repository
• HDL project
• Mux address: 175
• Extra docs
• Clock: 50000000 Hz

How it works

SPI test design based from https://github.com/calonso88/tt07_alu_74181

How to test

See https://github.com/calonso88/tt07_alu_74181

External hardware

Nothing required

Pinout

Input Output Bidirectional
0 cpol busy
1 cpha
2 smapling_clk
3 start_signal spi_miso
4 stop_signal spi_cs_n
5 spi_clk
6 spi_mosi
7

179

https://github.com/Brukstus/tt10_tdc_with_spi
https://github.com/calonso88/tt07_alu_74181
https://github.com/calonso88/tt07_alu_74181

Atari 2600 [178]

• Author: Renaldas Zioma
• Description: Replica of Atari 2600
• GitHub repository
• HDL project
• Mux address: 178
• Extra docs
• Clock: 25175000 Hz

How it works

Replica of a classic Atari 2600 (SoC) System On a Chip

How to test

Plug and play!

External hardware

Tiny (mole99) VGA PMOD, Tiny Audio PMOD, VGA display.

Pinout

Input Output Bidirectional
0 UP / Difficulty Switch P1 R1 QSPI CS
1 DOWN / Difficulty Switch P2 G1 QSPI SD0
2 LEFT / Monochrome Switch B1 QSPI SD1
3 RIGHT VSync QSPI SCK
4 FIRE / Gamepad LATCH R0 QSPI SD2
5 SELECT / Gamepad CLK G0 QSPI SD3
6 Switches / Gamepad DATA B0
7 START HSync Audio (PWM)

180

https://github.com/rejunity/tiny-atari-2600

SPI FPU [179]

• Author: Sebastian Pfeiler
• Description: A 32bit floating point adder accessible over spi
• GitHub repository
• HDL project
• Mux address: 179
• Extra docs
• Clock: 50000000 Hz

How it works

This is a floating point unit accesible over SPI.

SCLK = ui[0]
NCS = ui[1]
COPI = ui[2]
CIPO = uo[0]

Constraint frequency(SCLK) &lt; 4*frequency(clk)

It features 4 internal floating point registers, writeable and readable over SPI.
Every SPI transaction starts with a command byte followed by the arguments to the
command. If the command outputs data, enough bytes need to be sent for the entire
data to be received.

+-------+---------+--- ... -+
|Command|Arguments|... |
+-------+---------+--- ... -+

WRITE_TO_REG Writes a floating point value (serialized on COPI) into an in-
ternal floating point register.

+----+----+----+----+----+----+
IN: |0x00|0x0r|b[0]|b[1]|b[2]|b[3]|

+----+----+----+----+----+----+
OUT:| und| und| und| und| und| und|

+----+----+----+----+----+----+

r is one of 0,1,2,3 corresponding to the 4 internal registers. b[0] is the lowest byte of
the floating point value. b[3] is the highest byte.

181

https://github.com/Qwendu/tt_spi_fpu

PERFORM_ADD Performs the computation register[in_c] = fadd(register[in_a],
register[in_b]) This computation takes a couple of cycles (6 I think right now).
These cycles are in reference to clk not to SCLK. Nevertheless add another dummy
byte after the command to ensure that the add is being performed.

+----+----+----+----+----+
IN: |0x00|in_a|in_b|in_c|0x00|

+----+----+----+----+----+
OUT:| und| und| und| und| und|

+----+----+----+----+----+

in_a,in_b,in_c can be one of 0x00,0x01,0x02,0x03

READ_FROM_REG Reads a float from the internal register and serialises it on
CIPO.

+----+----+----+----+----+----+
IN: |0x00|0x0r|xxxx|xxxx|xxxx|xxxx|

+----+----+----+----+----+----+
OUT:| und| und|b[0]|b[1]|b[2]|b[3]|

+----+----+----+----+----+----+

r is one of 0,1,2,3 b[0] is the lowest byte of the float b[3] is the highest byte of the
float

How to test

It is best to test with the provided arduino testbench in the repository
https://github.com/Qwendu/tt_float_adder in the directory src/testbenches/arduino_integration_test.
I have not managed to get it to work with the provided SPI controllers in arduino.
Maybe this is because my spi_rx has some bugs.

External hardware

For integration test:

• Arduino

182

Known Bugs

• 1 Denormalized numbers do not always add correctly.
• 2 When testing on an fpga it was observed that it sometimes worked flawlessly

and othertimes the output was always 0. to what extent that was a fault of the
testsetup or the tester or the actual code has yet to be determined.

Pinout

Input Output Bidirectional
0 SPI_CLK SPI_OUT Unused
1 SPI_NCS Unused Unused
2 SPI_IN Unused Unused
3 Unused Unused Unused
4 Unused Unused Unused
5 Unused Unused Unused
6 Unused Unused Unused
7 Unused Unused Unused

183

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

MAC [192]

• Author: Mahaa Santeep G, Shylashree N, Ravish Aradhya H V, RV College Of
Engineering, Sneha R V, PES University

• Description: Design and Implementation of MAC Unit Using Dadda Multiplier
and Kogge-Stone Adder

• GitHub repository
• HDL project
• Mux address: 192
• Extra docs
• Clock: 100 Hz

Credits : We gratefully acknowledge the COE in Integrated Circuits and Systems (ICAS)
and Department of ECE. Our special thanks to Dr K S Geetha (Vice Principal) and,
Dr. K N Subramanya (principal) for their constant support and encouragement to do
TAPEOUT in Tiny Tapeout 8 .

How it works

The tt_um_mac module is a Multiply-Accumulate (MAC) unit designed for high-
performance digital signal processing and embedded system applications. This module
integrates a Dadda multiplier and a Kogge-Stone adder to achieve efficient and fast
computations. The MAC unit performs a sequence of multiplication and accumulation
operations, which are essential in various digital signal processing tasks, such as filter-
ing and convolution. Functional Description Input and Output Ports • Inputs: o ui_in
(8-bit): Dedicated input for the first operand. o uio_in (8-bit): Input/Output interface
for the second operand. o clk (1-bit): Clock signal to synchronize all operations. o
rst_n (1-bit): Active-low reset signal to initialize the internal state of the MAC unit. •
Outputs: o uo_out (8-bit): Output that holds the final accumulated result. o uio_oe
(8-bit): Output enable signal, set to 0 indicating the uio is used as input. o uio_out
(8-bit): Unused output path in the current context. Internal Architecture

1. Dadda Multiplier The Dadda multiplier is a high-speed multiplier designed for
efficient computation. It reduces the partial products in a sequence of reduction
stages until the final product is obtained. In this design, a 4x4 Dadda multiplier
is used to compute the 8-bit product of the two 4-bit operands, A and B.

2. Pipeline Registers Pipeline registers are implemented to enhance the performance
of the MAC unit by storing intermediate results at each stage of the operation.
This design uses two pipeline registers: • Prod_stage: Holds the product of the
multiplication. • Sum_stage: Holds the result of the accumulation.

184

https://github.com/RVCE-ECE/TT8-MAC

3. Kogge-Stone Adder The Kogge-Stone adder is a parallel-prefix form of a carry-
lookahead adder, known for its high speed and efficiency in handling large bit-
width additions. It computes the sum of the product and the current accumulator
value (Acc), which is stored in the Sum_stage register.

4. Accumulator The accumulator (Acc) is a key component that stores the ongo-
ing sum of the products. It is updated with the result from the Kogge-Stone
adder on each clock cycle, allowing the MAC unit to perform repeated accumu-
lation operations. Reset Behavior When the reset signal (rst_n) is asserted low,
the pipeline registers (Prod_stage, Sum_stage) and the accumulator (Acc) are
cleared, resetting the MAC unit to its initial state.

How to test

How to Test

To verify the functionality of the tt_um_mac module, a testbench (tt_um_mac_tb)
has been provided. The testbench simulates different input scenarios and observes the
output behavior of the tt_um_mac module to ensure that it works correctly.

• The testbench will output the results of the simulation, including the values of
the inputs and the resulting output for each test case.

• Monitor the output in the console or waveform viewer to ensure the tt_um_mac
module behaves as expected.

Example Test Scenarios Below is a summary of the test cases used in the
tt_um_mac_tb testbench, along with their expected results.

Time (ns) ui_in (Input A) uio_in (Input B) Operation Expected uo_out (Output)
0-10 00000000 (0) 00000000 (0) Reset 00000000 (0)
10-30 00000011 (3) 00000010 (2) Multiply, Accumulate 00000110 (6)
30-50 00000001 (1) 00000100 (4) Multiply, Accumulate 00001010 (10)
50-70 00000101 (5) 00000011 (3) Multiply, Accumulate 00011001 (25)
70-90 00000111 (7) 00000010 (2) Multiply, Accumulate 00100111 (39)
90-110 00000000 (0) 00000000 (0) No Operation (Idle) 00100111 (39)
110-130 00000001 (1) 00000001 (1) Multiply, Accumulate 00101000 (40)

Monitoring Output During the simulation, you can monitor the console or wave-
form outputs for detailed step-by-step results. The testbench uses $monitor to display
real-time updates of the inputs and the resulting output.

185

initial begin
$monitor("Time=%0d | ui_in=%b, uio_in=%b | uo_out=%b", $time, ui_in, uio_in, uo_out);

end

This will provide you with a detailed trace of how the tt_um_mac module processes
the inputs to generate the expected outputs.

Pinout

Input Output Bidirectional
0 ui_in[[0] uo_out[0] uio_in[0]
1 ui_in[1 uo_out1 uio_in1
2 ui_in[2 uo_out2 uio_in2
3 ui_in[[3] uo_out[3] uio_in[3]
4 uo_out[4]
5 uo_out[5]
6 uo_out[6]
7 uo_out[7]

186

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

DPMU [194]

• Author: Sanjay Kumar M, Shylashree N, Ravish Aradhya H V, RV College Of
Engineering, Neha R V, PES Unoversity

• Description: Design and Implementation of Dynamic Power management unit
• GitHub repository
• HDL project
• Mux address: 194
• Extra docs
• Clock: 100 Hz

Credits : We gratefully acknowledge the COE in Integrated Circuits and Systems (ICAS)
and Department of ECE. Our special thanks to Dr K S Geetha (Vice Principal) and,
Dr. K N Subramanya (principal) for their constant support and encouragement to do
TAPEOUT in Tiny Tapeout 8 .
The code provided is a SystemVerilog module that implements a Dynamic Power Man-
agement Unit (DPMU) for an SoC (System on Chip). The DPMU dynamically adjusts
voltage and frequency levels based on inputs such as performance requirements, tem-
perature, battery level, and workload. The module uses a finite state machine (FSM)
to manage transitions between different power states.
Key Components
Inputs and Outputs: Inputs (ui_in): The primary input signals include performance
requirements, temperature sensor data, battery level, and workload. Outputs (uo_out,
uio_out): These include the power-saving indicator, voltage levels, and frequency levels
for different cores and memory. I/O (uio_in, uio_out, uio_oe): Handles bidirectional
signals; however, in this design, uio_in is not used, and uio_out is used for output.
Internal Signals:
State Variables: state and next_state manage the FSM that controls the DPMU’s
behavior. Power and Frequency Controls: Registers like vcore1, vcore2, vmem, fcore1,
fcore2, and fmem store the voltage and frequency settings. Finite State Machine
(FSM):
States: NORMAL: Default operating mode with standard voltage and frequency levels.
PERFORMANCE: High-performance mode with maximum voltage and frequency levels.
POWERSAVE: Low-power mode with reduced voltage and frequency levels. THER-
MAL_MANAGEMENT: Mode to handle high temperature by adjusting power levels
moderately. BATTERY_SAVING: Mode to conserve battery by minimizing voltage
and frequency levels.

187

https://github.com/RVCE-ECE/TT8_DPMU

State Transitions: Transitions between states occur based on the input conditions,
such as high performance request, low battery level, high temperature, or low workload.
Detailed Walkthrough Input and Output Mapping:
perf_req: Mapped to the least significant bit (LSB) of ui_in, indicating whether high
performance is needed. temp_sensor: 2-bit signal derived from ui_in[3:2], providing
temperature data. battery_level: 2-bit signal derived from ui_in[5:4], indicating the
battery’s charge status. workload_core: 3-bit signal derived from ui_in[7:6], represent-
ing the workload of a core. State Logic:
On each clock cycle (clk), the FSM checks the state and evaluates transitions based
on inputs. In NORMAL state, if perf_req is high, the system transitions to PERFOR-
MANCE state. If the battery level is low, it transitions to BATTERY_SAVING state.
If the temperature is high, it transitions to THERMAL_MANAGEMENT state. If the
workload is low, it transitions to POWERSAVE state. PERFORMANCE state sets all
voltages and frequencies to maximum. If perf_req drops, it returns to NORMAL. POW-
ERSAVE state reduces voltages and frequencies to conserve power. If the workload
increases, it returns to NORMAL. THERMAL_MANAGEMENT state adjusts power
levels to moderate values to manage high temperatures. If the temperature normalizes,
it returns to NORMAL. BATTERY_SAVING state minimizes voltages and frequencies
to conserve battery. If the battery level increases, it returns to NORMAL.
Output Assignment: The combined voltage (vcore1, vcore2, vmem) and frequency
(fcore1, fcore2, fmem) values are assigned to the uio_out and uo_out outputs. The
power_save signal is also part of the output, indicating whether the system is in power-
saving mode. Behavior under Reset:
When the reset (rst_n) is low (active), the system resets to the NORMAL state.
Here’s a table summarizing the expected output (uio_out, uo_out) based on the input
(ui_in) and time using the provided testbench for the tt_um_dpmu module. The table
provides the values for different states as the ui_in input changes over time.
Table: Testbench Expected Output
Time (ns) ui_in (Input) State uio_out (Expected Output) uo_out (Expected Output) 0
11110010 NORMAL 01010110 010_010010 10 00010010 PERFORMANCE 11111111
111_111111 30 11110010 NORMAL 01010110 010_010010 50 11110011 THER-
MAL_MANAGEMENT 10101011 011_011011 70 11110010 NORMAL 01010110
010_010010 90 11101010 THERMAL_MANAGEMENT 10101011 011_011011
110 11111010 BATTERY_SAVING 00000000 000_000000 130 11111110 BAT-
TERY_SAVING 00000000 000_000000 150 11111010 BATTERY_SAVING 00000000
000_000000
Explanation of Table Columns:

188

Time (ns): The simulation time when the ui_in input is applied. ui_in (Input): The
8-bit input value applied to the design. State: The state of the FSM based on the ui_in
input. The states are NORMAL, PERFORMANCE, THERMAL_MANAGEMENT,
and BATTERY_SAVING. uio_out (Expected Output): The expected 8-bit output
values for the uio_out signals. uio_out[0]: Power save mode indicator. uio_out[2:1],
uio_out[4:3], uio_out[6:5]: Voltage controls. uio_out[7]: Part of fcore1[0]. uo_out
(Expected Output): The expected 8-bit output values for the uo_out signals.
uo_out[0:1]: Part of fcore1[2:1]. uo_out[4:2]: fcore2[2:0]. uo_out[7:5]: fmem[2:0].
Explanation of Key Points: NORMAL State: When the inputs suggest a typical
operating environment (e.g., ui_in = 11110010), the design operates with default
voltage and frequency levels. PERFORMANCE State: Triggered by a performance
request (perf_req = 1), leading to maximum voltage and frequency levels. THER-
MAL_MANAGEMENT State: Triggered by high temperature (temp_sensor = 10 or
11), moderates the voltage and frequency to prevent overheating. BATTERY_SAVING
State: Triggered by low battery level (battery_level = 00 or 01), minimizing power
consumption by reducing voltage and frequency to the lowest levels.
Testbench Operation: The testbench applies different ui_in values at specific simula-
tion times. At each time step, it captures the output values (uio_out and uo_out) and
compares them with the expected values as per the design’s FSM logic. The $monitor
statement continuously logs the input and output values, helping to verify the design’s
behavior at each time point.

Pinout

Input Output Bidirectional
0 ui_in[[0] uo_out[0] uio_out[0]
1 ui_in[1 uo_out1 uio_out1
2 ui_in[2 uo_out2 uio_out2
3 ui_in[[3] uo_out[3] uio_out[3]
4 ui_in[[4] uo_out[4] uio_out[4]
5 ui_in[[5] uo_out[5] uio_out[5]
6 ui_in[[6] uo_out[6] uio_out[6]
7 ui_in[[7] uo_out[7] uio_out[7]

189

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

7 Segment Decode [196]

• Author: Jack Clayton
• Description: ASIC implementation of a university CPLD project which drives 4

multiplexed 7 segment displays, and scans a multiplexed keypad.
• GitHub repository
• HDL project
• Mux address: 196
• Extra docs
• Clock: 5000 Hz

How it works

The serial protocol implemented in this design consists of a simple single byte packet
which instructs the CPLD which column of the keypad to multiplex into MISO, which
screen should be displaying data, and what number should be displayed on the screen.
The screen select signal also doubles up as instructing which row of the keypad to be
scanned. Data is sent Most Significant Bit (MSB) first.

190

https://github.com/JAC-EE/tt08-SegDecode-ASIC

The high impedance programming state is not implemented in this ASIC. It is repre-
sented as a bit out instead.
Keep in mind: This system is clocked by the SPI clock, and therefore requires constant
clocking to function.

191

How to test

Build the supporting hardware as described in the schematic found in “Exteral hard-
ware”. Create a system which transmits SPI bytes, according to specifications in “How
it works”. The system will display your desired digits on the selected screens.
You may also use the MISO to implement a 4x4 keypad, which is interpreted by the
system creating the SPI bytes. This will not be detailed as to how to implement.

External hardware

Main external system schematic:

Simple keypad:

192

Pinout

Input Output Bidirectional
0 Out7S[0] ScreenSel[0]
1 MOSI Out7S1 ScreenSel1
2 EN Out7S2 ScreenSel2
3 RESET Out7S[3] ScreenSel[3]
4 KeyPlxr[0] Out7S[4] High-Z
5 KeyPlxr1 Out7S[5]
6 KeyPlxr2 Out7S[6]
7 KeyPlxr[3] MISO

193

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

PS2 Decoder [198]

• Author: Ben Payne
• Description: A PS2 keyboard decoder
• GitHub repository
• HDL project
• Mux address: 198
• Extra docs
• Clock: 25000000 Hz

How it works

This decoder works by first deboucing the inputs to make sure that we get a clean
sample of them that is syncronized to our clock. It then looks at the down transistion
of ps2_clk and reads the value of ps2_data. It shifts this int oa 11 bit shift register.
When ps2_clk remains high for more than 1/2 of the 10kHz ps2_clk cycle it knows
that the end of the data has arrived. It then triggers a valid flag to tell the system that
something has arrived. The valid flag, witch is exposed on a pin, will trigger the fifo to
read the byte of data and it will be stored to retrival but the host. When valid is trigger
it will also trigger the interupt pin. The valid pin is a pulse for one system clock cycle,
but the interupt will remain set until it is cleared. We also include a data_rdy signal
that test the host that there is data to read. This is useful if your interupt handler
needs to read multiple bytes.
When the host wants to read a byte, it asserts the chip select (cs) signal when the
system clock goes high. This will result in the uio bus being set with the data value.
The uio bus will be put into a output state only when cs is asserted, at all other times
it will be an input bus (but we never read it…)

How to test

Simply interface a PS2 keyboard to the PS2 clock and data lines. You will need to
level shift these signal to the 3.3v of the chip. At this point you can hit keys and they
be queued in the fifo. Then you would want to interface a retro computer to the CS,
interupt and data lines to read the fifo. This will depend on the system your using,
but note you’ll need external address decoding logic and for chips like the m68k you’ll
need to generate the DTACK and other signals elsewhere.

194

https://github.com/benpayne/tt08-ps2-68k

External hardware

Hook up an PS2 PMOD device to level shift the keyboards 5V to 3.3V for this chip. I
have a design for this if anyone wants it.

Pinout

Input Output Bidirectional
0 ps2_clk valid data_out[0]
1 ps2_data interupt data_out1
2 clear_int data_rdy data_out2
3 cs data_out[3]
4 data_out[4]
5 data_out[5]
6 data_out[6]
7 data_out[7]

195

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Super Mario Tune on A Piezo Speaker [200]

• Author: Milosch Meriac
• Description: Plays Super Mario Tune over a Piezo Speaker connected across

uio_out[1:0]
• GitHub repository
• HDL project
• Mux address: 200
• Extra docs
• Clock: 100000 Hz

How it works

This design will play Super Mario Tune over a Piezo Speaker connected across bidir[0:1]
and bidir[7]. The speaker is driven in differential PWM mode to increase its output
power. The changed pinout accomodates for the Tiny Tapeout Audio Pmod.

(see also the interactive version of this design)
Additionally - for testing purposes, the inputs ui[7:0] are copied to the hex segment
display 1:1 (uo[7:0]).

Verilog Design Files

• Playback Logic

196

https://github.com/meriac/tt08-play-tune
https://github.com/MichaelBell/tt-audio-pmod?tab=readme-ov-file#tiny-tapeout-audio-pmod
https://meriac.github.io/tt08-play-tune/
https://github.com/meriac/tt08-play-tune/blob/main/src/player.v#L38

• Autogenerated Super Mario Tune Storage. This project contains a Python-based
script for converting a RTTL ringtone into optimized Verilog. An additional
script converts TIM-file waveforms from the Verilog simulator back to a WAV-
sound file to verify the correctness of the hardware-based player’s sound.

PWM Waveform in Verilog Simulation Output Using GTKWave for visualiza-

tion of Simulation Results:

How to test

Provide 100kHz clock on clk, briefly lower reset (rst_n) and bidir[1:0]/bidir[7] will play
a differential sound wave over piezo speaker (Super Mario Tune).

External hardware

Piezo speaker connected across bidir[1:0] (loud) or between bidir[7] and GND (less
loud). Alternatively you can connect the Tiny Tapeout Audio Pmod to the bidir port
to listen to the music.

Pinout

Input Output Bidirectional
0 input pin 0 ui[0] piezo_speaker_p (uio_out[0])
1 input pin 1 ui1 piezo_speaker_n (uio_out1)
2 input pin 2 ui2 GND
3 input pin 3 ui[3] GND
4 input pin 4 ui[4] GND

197

https://github.com/meriac/tt08-play-tune/blob/main/src/tune.v#L42-L45
https://github.com/meriac/tt08-play-tune/blob/main/generator/generate.py#L38
https://github.com/meriac/tt08-play-tune/blob/main/generator/generate.py#L38
https://github.com/meriac/tt08-play-tune/blob/main/test/tim2wav-test.py#L38
https://github.com/meriac/tt08-play-tune/blob/main/test/tim2wav-test.py#L38
https://gtkwave.sourceforge.net/
https://github.com/MichaelBell/tt-audio-pmod
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
5 input pin 5 ui[5] GND
6 input pin 6 ui[6] GND
7 input pin 7 ui[7] piezo_speaker_n (uio_out[7])

198

AES Inverse S-box [202]

• Author: Dag Arne Osvik
• Description: Advanced Encryption Standard (AES) Inverse S-box
• GitHub repository
• HDL project
• Mux address: 202
• Extra docs
• Clock: 125000000 Hz

How it works

This circuit computes the inverse S-box of the Advanced Encryption Standard (AES).

How to test

Set the input byte, then read back the result from uo_out (unregistered) or uio_out
(registered).

External hardware

None.

Pinout

Input Output Bidirectional
0 x[0] y[0]
1 x1 y1
2 x2 y2
3 x[3] y[3]
4 x[4] y[4]
5 x[5] y[5]
6 x[6] y[6]
7 x[7] y[7]

199

https://github.com/daosvik/tt08-aes-invsbox
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

TT08 - experiments with latch-based shift registers [204]

• Author: Ciro Cattuto
• Description: A 512-bit latch-based shift register in 1 tile
• GitHub repository
• HDL project
• Mux address: 204
• Extra docs
• Clock: 0 Hz

How it works

This is an experiment. A 512-bit shift register (SR) implemented using D latches rather
than D flip flops. The shift logic relies on a single pulse rippling along the shift register,
from the output latch towards the input latch. The SR has one input, one output, and
an edge-triggered control signal that controls the shift update. The SR shifts on either
a rising or a falling edge of the control signal.

How to test

Shift zeros into the SR until it contains all zeros. Then shift in any sequence of 1s and
0s and observe it appear on the output of the SR after 512 transitions of the control
signal.

External hardware

No external hardware required.

Pinout

Input Output Bidirectional
0 shift register input shift register output
1 shift control (edge-triggered)
2
3
4
5
6

200

https://github.com/ccattuto/tt08-sr-latch

Input Output Bidirectional
7

201

Obstacle Detection [206]

• Author: Emmy Xu
• Description: Does the logic of when to send certain signals when objects are

close.
• GitHub repository
• HDL project
• Mux address: 206
• Extra docs
• Clock: 0 Hz

How it works

It takes in two different numbers one for a left sensor and one for a right sensor. There
is a threshold value of 1 or 0, if the threshold has been passed, it will have a value of
1. If only one side has a value of one, it will send a 2’b10 meant for a motor to the
opposite side. If both sides have a value of one, it will send 2’b01 to both sides meant
for motors.

How to test

Set it up so that a value of 1 or 0 is going into the sensor pins and connect the output
pins to something that can read what the chip is sending out. The reset pin resets
when power is sent to it, which just makes it output 0s to all the outputs.

External hardware

Ultrasonic Sensors, Microcontroller, and Haptic Motors

Pinout

Input Output Bidirectional
0 sensor_left left_buzz
1 sensor_right right_buzz
2 reset
3
4
5

202

https://github.com/emmyz00/Obstacle-Detector

Input Output Bidirectional
6
7

203

resfuzzy [208]

• Author: roshan
• Description: calculation
• GitHub repository
• HDL project
• Mux address: 208
• Extra docs
• Clock: 0 Hz

How it works

The project implements a fuzzy logic system that estimates “risk” based on rainfall
and soil moisture. It uses triangular membership functions to evaluate these inputs as
low, medium, or high. Three fuzzy rules fire depending on the overlap between rainfall
and soil moisture conditions. The system calculates the weighted average of the rule
strengths to produce the risk value. If no rules fire (i.e., denominator is zero), the
output risk is zero. The module updates the risk value on the clock edge when ef is
enabled.

How to test

To test the fuzzy logic system,simulate different conditions by changing the input
data_bus (rainfall/soil moisture data).Test the values of 80, 10, and 50 with ss (sensor
select) toggling between 0 and 1 to activate the fuzzy logic. The expected output is
a different risk value based on these input scenarios (FF,55,AA) (High,Low,Medium)
respectively.

External hardware

8 switches connected to the input ui_in[7:0] pins 1 switch to the uio_in[0] pin 8 bit
LED is needed to show the output values uo_out[7:0]

Pinout

Input Output Bidirectional
0 Input data from the sensors risk value sensor select
1 Input data from the sensors risk value

204

https://github.com/ROSHAN0120/tt08-verilog-resfuzzy

Input Output Bidirectional
2 Input data from the sensors risk value
3 Input data from the sensors risk value
4 Input data from the sensors risk value
5 Input data from the sensors risk value
6 Input data from the sensors risk value
7 Input data from the sensors risk value

205

CEJMU Beers and Adders [210]

• Author: Prof. Dr.-Ing. Matthias Jung, Philipp Wetzstein, Derek Christ,
Jonathan Hager

• Description: Several projects to show in lectures. Includes a simple state-
machine, a decoder and two 24 bit adders. Refer to documentation for details

• GitHub repository
• HDL project
• Mux address: 210
• Extra docs
• Clock: 12000000 Hz

How it works

The goal of our design is to be able to show different RTL designs on a real chip in our
lectures. Therefore, an internal multiplexer selects different projects. The multiplexer
is controlled by uio_in[1:0]. The following designs can be selected:

• state machine that models a vending machine
• decoder to attach the vending machine to a coin acceptor
• 24 bit Ripple Carry Adder
• 24 bit Carry Lookahead Adder

How to test

• 00: A state machine, which models a vending machine. This state machine
outputs 1, if 1.50€ have been fed into it. Inputs are taken from ui_in[1:0] with
the following meaning: 00 = 0€ (nothing changes), 01 = 0.50€, 10 = 1€, 11
= undefined

• 01: A module that decodes pulses coming from a coin acceptor into coin ids.
The number of pulses is equivalent with the decoded id. With a second instance
of the vending machine automaton, this module makes it possible to physically
insert coins into the machine.

• 10: Ripple Carry Adder with 24 bit input and 25 bit output
• 11: Carry Lookahead Adder with 24 bit input and 25 bit output

Since we only have 8 bit input and output, an internal logic is responsible for taking
the inputs in 8 bit chunks and outputting the results in 8 bit chunks. This logic can
be used as follows:

1. Select the adder you want to use: uio_in[1:0] == 10 (RCA) or 11 (CLA)

206

https://github.com/CEJMU/tt08_cejmu

2. Reset the chip for at least one cycle
3. ui_in[7:0] should now be assigned a[23:16]
4. Wait for one cycle, repeat with a[15:8], a[7:0]
5. Repeat with b[23:16], b[15:8], b[7:0]
6. The inputs are now read into the design and will be send to the adders by

asserting uio_in2 to 1 (this is done to have a reference signal when measuring)
7. If you are ready to read the outputs, set uio_in[3] to 1 and wait one cycle
8. z[23:16] can now be read from uo_out
9. Wait one cycle, z[15:8] can now be read

10. Repeat for z[7:0]

Note that the overflows of both adders are always brought out to uio_out[7:6] to allow
measurements. A reset upon changing the design is required to ensure valid results

External hardware

No external hardware is strictly required. Since the goal of both adders is to measure
the difference in execution speed, an oscilloscope is helpful. The decoder for the coin
acceptor was designed for the HX-916

Pinout

Input Output Bidirectional
0 Multiplexed to all designs (refer to documentation for details) Multiplexed from all designs (refer to documentation for details) Select design (input)
1 … … Select design (input)
2 … … start_calc
3 … … output_result
4 … … unused
5 … … unused
6 … … overflow bit of RCA (output)
7 … … overflow bit of CLA (output)

207

http://www.ericr.nl/wondrous/pathrecs.html

RGBW Color Processor [225]

• Author: Enrico Sanino
• Description: Color processor for RGBW LEDs, with generation of hue, tint and

intensity based on a color index. Is also a direct SPI to 4 channels PWM
converter.

• GitHub repository
• HDL project
• Mux address: 225
• Extra docs
• Clock: 66000000 Hz

How it works

Color generator for RGBW LEDs, with generation of hue, tint and intensity based on
a color index. Is also a direct SPI to 4 PWM channels converter, making it flexible to
any different kind of use. The system block diagram is as follow:

It is an SPI slave in Mode 0, with SPI protocol consisting of 8 byte long command,
discriminated with a preamble sequence (see Protocol and Test for the description).
This payload is unpacked in different data: red, green, blue, white, bypass mode,
intensity, color index. This data is then provided to the color wheel processor. If the

208

https://github.com/thexeno/tt08-rgbw-controller

bypass mode is activated, the RGBW info from the red, green, blue and white SPI
bytes is directly provided as a PWM output in the respective channels.
If bypass mode is not active, only the white, intensity and color index are considered,
from which the hue (RGB data) is generated based on the index, then a tint (hue +
white) and then the intensity is applied, forming the final color. This is then applied
to the PWM outpus to the respective channels.
When bypass mode is not active (color wheel mode), then there is a latency proportional
to the “rotation” of the color wheel, i.e. lower the number lower the latency. This is the
laterncy of the color wheel processing unit (CwPU), after which the desired complete
color is output on the PWM channels.

Debug pins A debug enable pin, when asserted, will output on the uio pins different
internal signals of the CwPU while in operation. This is just to check the internal signals
in case the tapeout goes wrong, and for curiosity purposes for fidelity against the gate
level simulation.

PWM modulator The PWM modulator has a period of t_pwm = t_clk_presc
* 256, and a resolution of 1/256 steps. The t_clk_presc is the prescaled clock,
t_clk_presc = t_clk * 2. Each update is synchronous to the period, hence any change
in the duty cycle will happens to the next PWM period without generating artifacts.

Clock and reset maanger The clock and reset manager will issue a precaled clock
to the whole system by a factor of 2, except for the multiplicator, which has to run
twice as fast w.r.t. the system. A toggle on the reset pin will reset the whole system
at the next reset release. Meaning, to reset the system, the reset (active low) must go
to LOW, then it must be deasserted to HIGH. By doing this, the clock must be always
present (sync reset).
When reset is deasserted (HIGH), the manager will start and will keep the rest of the
system in reset state for the next 128 t_clk cycles (main clock from the pin). This will
guarantee that the whole system will be correctly initialized.
Therefore any SPI transaction can take place after at least 128 clock cycles after reset
condition is deasserted, otherwise one SPI packed would be lost.

209

Color wheel processor The logic datapath of the CwPU is shown below:

The CwPU has all the data width of 8 bit, and the energy intensive color discrimination
path is active when non in bypass mode only. When active will take the index. Starting
from zero, increments the hue progression and compares against this index (i.e. rotates
the color wheel) to process at run time with no LUT, the corresponding requested hue.
During the rotation, the RGB internal values will also change, increasing and decreasing
the hue components to sweep all the combinations to match the requested one. The
final value will be used for the next step, which is the tint.
The next step is the sum of the white component, generating a tint, a white adjusted
color. It will sum the white up to the maximum value, and the value is output to
the intensity multiplier. Also the white is output to the multiplier. This is to not
only output an RGB to emualate the white, but to increase the color rendering in-
dex (CRI) by allowing to use a single output that can be connected to a pure white
generator/phosphor based white LED.
The multiplication for the intensity then takes place with a single multiplicator unit,
hence the local control takes care of the data load and synchonization, with 2 clock
cycles per operation. Since the multiplicator goes twice as fast, the CwPU has not ad-
ditional wait states, resulting in 1 CwPU clock cycle delay. Also the white is multiplied.
After this step, the output data of each component (R, G, B and W) are 16bit, but
the 8 LSB are truncated, generating a final 24 bit color information and 8 bit white.

210

This data is used by the 4 channel PWM modulator.
When in bypass mode, the CwPU will only replicate the same RGBW info in input to
the PWM modulator input in one clock cycle.

SPI protocol SPI is Mode 0 as shown in this timing diagram, highlighting the
preable and first byte transfer:

While a whole packet must be compliant with the following diagram:

Which contains:

1. preamble: 0x55
2. intensity: 0x00 - 0xFF
3. color index: 0x00 - 0xFF
4. red: 0x00 - 0xFF
5. green: 0x00 - 0xFF
6. blue: 0x00 - 0xFF
7. white: 0x00 - 0xFF
8. bypass mode: 0xA4 for the color generation, 0x21 bypass

Note that in between each byte is mandatory to toggle the CS signal, since in reality
a full transaction is interpreted as a 8 individual single byte transactions. Therefore,
if the bus gets corrupted, sending any data without preamble with more than 8 bytes,
will ensure a clean bus state ready to be synchronized again. Otherwise a reset is an
alternative.

How to test

This is normally tested with a micropython script to be interpreted directly from the
REPL interface of the TT08 demoboard (see https://tinytapeout.com/guides/get-
started-demoboard/). To test the design simply setup the demoboard, and run

211

https://tinytapeout.com/guides/get-started-demoboard/
https://tinytapeout.com/guides/get-started-demoboard/

the script in the test folder. It means it can be simply copy/pasted into the REPL
terminal.
To see an output, is suggested to wire some LEDs to the output of the demoboard
being careful to not overload the output pins. If you don’t know what you are doing,
then is better to get like 4x of these for the 4 LEDs tindie.com/products/aleadesigns or
any other LED controller that won’t load more than 4mA on the TT08 chip output
pads (see pad spec here).
A custom PMOD will come soon to ease the LED test.
With the RP2040 no input wiring is needed, and the output will be:
uo_out[0] -> Red LED
uo_out1 -> Green LED
uo_out2 -> BLue LED
uo_out[3] -> White LED

What to expect on the outputs

Given the HUE ternary (r,g,b) processed from the index by the CwPU, the final color
is RGBW = ((r,g,b)+w)intensity, having a PWM signal per each color channel.
So the white and intensity have a direct impact regardless the hue generated.
The output “color equation” with bypass is RGBW = spi(red, green, blue, white) with
NO intensity, NO automatic white. In this mode, the data provided via SPI is the data
taken by the PWM modulator as is.

External hardware

While we’re working at a PMOD right now, the external hardware are 4 LEDs, one
per each color, connected to the outputs. Be aware that the outputs cannot take
more than 4mA!!! So a dedicated circuit is needed (but will be provided soon). Stay
tuned.
To control the design, no external controller is needed since it uses the internal RP2040
of the demoboard, see the documentation here of the test and the REPL script here.
Alternatively, a custom firmware and another dedicated python script is provided with
the relative STM32 based project, briefly documented here.

212

https://www.tindie.com/products/aleadesigns/glighter-a-40w-hysteretic-led-driver
https://tinytapeout.com/specs/gpio/
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
../test/README.md
../test/rp2040_demoboard/bringup_test_pico.py
../test/README.md

Pinout

Input Output Bidirectional
0 red_pwm test_out_0
1 green_pwm test_out_1
2 blue_pwm test_out_2
3 test_pin white_pwm test_out_3
4 cs_n test_out_4
5 sck test_out_5
6 mosi test_out_6
7 clk_div_en test_out_7

213

Stochastic Multiplier, Adder and Self-Multiplier [227]

• Author: Ciecen Lestari, Chih-Kuan Ho, David Parent
• Description: Multiplier, Adder and Self-Multiplier using stochastic computing
• GitHub repository
• HDL project
• Mux address: 227
• Extra docs
• Clock: 50000000 Hz

How it works

214

https://github.com/CL-123-abc/tt_um_stochastic_addmultiply_CL123abc

215

REFERENCES USED
General Stochastic Computing Design:
A. Alaghi, W. Qian, and J. P. Hayes, “The Promise and Challenge of Stochastic
Computing,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., vol. 37, no. 8,
pp. 1515–1531, Aug. 2018, doi: 10.1109/TCAD.2017.2778107.
B. R. Gaines, “Stochastic computing,” in Proceedings of the April 18-20, 1967, spring
joint computer conference, in AFIPS ’67 (Spring). New York, NY, USA: Association for

216

Computing Machinery, Apr. 1967, pp. 149–156. doi: 10.1145/1465482.1465505.
Gross, W. J., & Gaudet, V. C. (Eds.). (2019). Stochastic Computing: Techniques and
Applications (1st ed. 2019.). Springer International Publishing. https://doi.org/10.1
007/978-3-030-03730-7
Qian, W. (2011). Digital yet deliberately random: Synthesizing logical computation on
stochastic bit streams (Order No. 3466985). Available from ProQuest Dissertations
& Theses Global: The Sciences and Engineering Collection. (885872145). Retrieved
from http://search.proquest.com.libaccess.sjlibrary.org/dissertations-theses/digital-
yet-deliberately-random-synthesizing/docview/885872145/se-2
LFSR Design in Stochastic Computing:
Jason H. Anderson, Yuko Hara-Azumi, and Shigeru Yamashita. 2016. Effect of LFSR
seeding, scrambling and feedback polynomial on stochastic computing accuracy. In
Proceedings of the 2016 Conference on Design, Automation & Test in Europe (DATE
’16). EDA Consortium, San Jose, CA, USA, 1550–1555. https://dl.acm.org/doi/abs
/10.5555/2971808.2972171
Digital QIF neuron:
E. J. Basham and D. W. Parent, “Compact digital implementation of a quadratic
integrate-and-fire neuron,” 2012 Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society, San Diego, CA, USA, 2012, pp. 3543-3548,
doi: 10.1109/EMBC.2012.6346731.
keywords: {Mathematical model;Clocks;Equations;Vectors;Computational model-
ing;Field programmable gate arrays;Neurons},

How to test

Input 2 repeating streams of 9 bits (+1 bit buffer) that represent the numbers to be
multiplied/added. The self multiplier only processes input from the 1st stream. Read
the serial output result, which is also 9bits (+1 bit buffer).

External hardware

ADALM2000

Pinout

217

https://doi.org/10.1007/978-3-030-03730-7
https://doi.org/10.1007/978-3-030-03730-7
http://search.proquest.com.libaccess.sjlibrary.org/dissertations-theses/digital-yet-deliberately-random-synthesizing/docview/885872145/se-2
http://search.proquest.com.libaccess.sjlibrary.org/dissertations-theses/digital-yet-deliberately-random-synthesizing/docview/885872145/se-2
https://dl.acm.org/doi/abs/10.5555/2971808.2972171
https://dl.acm.org/doi/abs/10.5555/2971808.2972171

Input Output Bidirectional
0 serial_input_1 serial_output_mul
1 serial_input_2 serial_output_add
2 serial_output_smul
3 clk_counter_reset
4
5
6
7

218

DL float MAC [229]

• Author: Ananya P & Nidhi M D
• Description: MAC unit for 16 bit DL float data type
• GitHub repository
• HDL project
• Mux address: 229
• Extra docs
• Clock: 40000000 Hz

Design Description

The digital design is a 5 stage pipelined architecture implementation of MAC Operation
for 16 bit DLFloat numbers. DLFloat is a 16-bit floating-point format designed for deep
learning training and inference, where speed is prioritized over precision.
Details of DLFloats:
Sign bit: 1 bit
Exponent width: 6 bits
Significand precision: 9 bits
Bias exponent: 31

Value Binary format
Max normal S. 111110.111111111
Min normal S. 000001.000000000
Zero S. 000000.000000000
Infinity-Nan (combined) S. 111111.111111111

219

https://github.com/ananya343B/tt08_dlfloat_mac

Work Flow Details:
• The two 16 bit DLFloat input operands are supplied through the ui_in and uio_in
(input)pins over two clock cycles getting stored in two registers.
• In the MAC module, the first stage involves multiplying the two inputs, followed
by addition of the multiplication result and the accumulated value. The accumulated
value in the MAC module starts at zero upon reset.
• After the MAC operation, the 16-bit accumulated result is pushed through uo_out
pins over two clock cycles. First the msb 8 bits are pushed out followed by lsb bits.

This arrangement helps in achieving a pipelined architecture where after 5 clock cycles
from reset the output values can be pushed out in every cycle.
Here the addition and multiplication follows the IEEE754 algorithm and the MAC
operation incorporates handling the special cases like inf, NaN ,subnormals, zero and
a full 16 bit precision range.
The Multiplier and Adder blocks also handle overflow and underflow cases with a
saturation logic where upon overflow the result is pushed to the largest number that can
be represented in the DLFloat format and similarly with underflow the result is pushed
to smallest number with the exception that in Multiplier the underflow is pushed to
zero to not affect the accumulated results.

How to test

The DLFloat inputs are fed as binary/hexadecimal equivalent of the binary floating
point format. The outputs can be read in similar manner

External hardware

An FPGA is required to drive the inputs to the device and needs to be programmed to
capture and display the 16-bit result, which arrives as 8 bits over two clock cycles.

220

Pinout

Input Output Bidirectional
0 FP16 in[0] FP16 out[0]/FP16 out[8] FP16 in[8]
1 FP16 in1 FP16 out1/FP16 out[9] FP16 in[9]
2 FP16 in2 FP16 out2/FP16 out[10] FP16 in[10]
3 FP16 in[3] FP16 out[3]/FP16 out[11] FP16 in[11]
4 FP16 in[4] FP16 out[4]/FP16 out[12] FP16 in[12]
5 FP16 in[5] FP16 out[5]/FP16 out[13] FP16 in[13]
6 FP16 in[6] FP16 out[6]/FP16 out[14] FP16 in[14]
7 FP16 in[7] FP16 out[7]/FP16 out[15] FP16 in[15]

221

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

schoolRISCV CPU with Fibonacci program [231]

• Author: Stanislav Zhelnio, Alexander Romanov, Yuri Panchul and Mike Kuskov
• Description: A minimalistic SoC with a schoolRISCV educational CPU and a

ROM memory with a program that computes the Fibonacci numbers.
• GitHub repository
• HDL project
• Mux address: 231
• Extra docs
• Clock: 50000000 Hz

How it works

A minimalistic SoC with a schoolRISCV educational CPU and a ROM memory with a
program that computes the Fibonacci numbers.
schoolRISCV was originally designed by Stanislav Zhelnio and Alexander Romanov
(HSE MIEM) by a suggestion from Yuri Panchul. The goal was to create the simplest
possible CPU suitable for the introductory Verilog and FPGA classes. The design was
based on a textbook Digital Design and Computer Architecture by David Harris and
Sarah Harris. Later on Yuri Panchul and Mike Kuskov (Innopolis) adopted the design
for the GitHub repositories systemverilog-homework and basics-graphics-music. Now
these repos are maintained by the engineers and educators associated with the Verilog
Meetup community.

How to test

SystemVerilog testbench A self-checking testbench for the design is located in a
directory test_extra that contains:

• clean.bash - a script to delete temporary files produced by simulate.bash.
• simulate.bash - a script that simulates the design together with a testbench using

Icarus Verilog, producing log.txt. Before the simulation, the script compiles as-
sembly program.s using the RARS instruction set simulator (ISS) that generates
a file program.hex. This program.hex is used to fill the ROM for both simulation
and synthesis.

• tb.sv - a self-checking testbench that generates a log and the status PASS or
FAIL.

222

https://github.com/ddvca/tt08-schoolriscv-cpu-with-fibonacci-program
https://github.com/yuri-panchul/systemverilog-homework
https://github.com/yuri-panchul/basics-graphics-music
https://verilog-meetup.com/
https://verilog-meetup.com/

cocotb testbench The cocotb testbench just runs the simulation for 300 clock
cycles checking that the value of the lowest two bits of the dedicated outputs uo_out
is equal to 01 at the end, which corresponds to self-diagnostics PASS and not FAIL.

Post silicon After the manufacturing, the design can be manually tested by resetting,
driving a clock, and observing the outputs. If the LED connected to the bit 0 of the
dedicated outputs (uo_out) turns on (PASS) and the LED connected to bit 1 turns
off (FAIL) the design probably works.
Furthermore, you can drive a slow 3 Hz clock and observe the LEDs connected to the
bidirectional signals uio_out. Those pins are configured as outputs and they output the
lowest 4 bits of the CPU program counter (PC) and the lowest 4 bits of the RISC_V
architecture register a0 (register 10) that contains the currently computed Fibonacci
number.

External hardware

LEDs.

Pinout

Input Output Bidirectional
0 Test pass CPU reg a0[0]
1 Test fail a01
2 a02
3 a0[3]
4 Program Counter pc[0]
5 pc1
6 pc2
7 pc[3]

223

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Rounding error [233]

• Author: Edwin Török
• Description: Competition entry
• GitHub repository
• HDL project
• Mux address: 233
• Extra docs
• Clock: 25250000 Hz

How it works

This started out as an attempt to implement a ray tracer in 2 TT tiles. However there
isn’t enough room for a proper one, precision has to be limited, which leads to rounding
errors that are unavoidable.
So embrace rounding errors, and make them the primary feature!
The RTL was written using HardCaml, that emits Verilog. For convenience the gener-
ated verilog is committed into the source tree, so no additional tools are needed
The “eye” Z coordinate is animated between 3.5 and 4.5 in 256 steps, where each
frame is one step.
The design runs at 640x480@60Hz.

How to test

Set pin ui[0] to 0 to run the default demo. Set pin ui[0] to 1 to show a test image
with color bars.
Provide a 25.25 MHz clock on the clk pin (RP2040 should be able to provide this
with no jitter). Or if you can try 25.175 MHz instead, but this will have some jitter.
YMMV.
The audio is a very simple mix of hsync and vsync signals.

224

https://github.com/edwintorok/roundingerror
https://github.com/janestreet/hardcaml

External hardware

Connect according to the Demoscene rules

• VGA output using Leo’s VGA PMOD on pins uo[0-7], connected to a monitor
supporting 640x480 resolution.

• Audio output using Mike’s audio PMOD on uio[7]

Pinout

Input Output Bidirectional
0 test mode (0=no, 1=yes) r1
1 g1
2 b1
3 vsync
4 r0
5 g0
6 b0
7 hsync PWM output

225

https://tinytapeout.com/competitions/demoscene/#what-are-the-rules
https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod

SIC-1 8-bit SUBLEQ Single Instruction Computer [234]

• Author: Uri Shaked
• Description: Hardware implementation of the 8-bit Single Instruction Computer
• GitHub repository
• HDL project
• Mux address: 234
• Extra docs
• Clock: 0 Hz

How it works

SIC-1 is an 8-bit Single Instruction computer. The only instruction it supports is
SUBLEQ: Subtract and Branch if Less than or Equal to Zero. The instruction has
three operands: A, B, and C. The instruction subtracts the value at address B from
the value at address A and stores the result at address A. If the result is less than or
equal to zero, the instruction jumps to address C. Otherwise, it proceeds to the next
instruction.

Memory map The SIC-1 computer has an address space of 256 bytes, and and
8-bit program counter. The first 253 bytes are used for the program memory, and the
last 3 bytes are used for input, output, and for halting the computer:

Address Label Read Write
253 @IN ui pins Ignored
254 @OUT Returns 0 uo pins
255 @HALT Returns 0 Ignored

Setting the program counter to 253, 254, or 255 will halt the computer.
Each instruction is 3 bytes long, and the program counter is incremented by 3 after
each instruction, except when a branch is taken.
For more information, check out the SIC-1 Assembly Language Reference.

Execution cycle Each instruction takes 6 cycles to execute, regardless of whether
a branch is taken or not. The execution of an instruction is divided into the following
stages:

1. Fetch A: Read the value at address PC

226

https://github.com/urish/tt09-sic1
https://github.com/jaredkrinke/sic1/blob/master/sic1-assembly.md

2. Fetch B: Read the value at address PC+1
3. Fetch C: Read the value at address PC+2
4. Read valA: Read the value at address A
5. Read valB: Read the value at address B
6. Store: Subtract valB from valA, store the result at A, and branch if the result

is less than or equal to zero.

The pseudocode for the execution cycle is as follows:

(1) A <= memory[PC]
(2) B <= memory[PC+1]
(3) C <= memory[PC+2]
(4) valA <= memory[A]
(5) valB <= memory[B]
(6) result <= valA - valB

memory[A] <= result
if result <= 0:
PC = C

else:
PC = PC + 3

Control signals The uio pins are used to load a program into the computer, and
to control the computer:

uio pin Name Type Description
0 run input Start the computer
1 halted output Computer has halted
2 set_pc input Set the program counter to the value on ui pins
3 load_data input Load the value from the ui pins into the memory at the PC
4 out_strobe output Pulsed for one clock cycle when the computer writes to @OUT (uo pins)

Programming the SIC-1

You can use the [https://jaredkrinke.itch.io/sic-1](online SIC-1 app) to compile and
simulate your SIC-1 programs. Click on “Run game” and then “Apply for the job”,
close the “Electronic mail” popup. Paste the code and click on “Compile” (on the
bottom left). You’ll see the compiled code in the “Memory” window on the right, and
will be able to step through the code.
To load a program and run a program, follow this sequence:

227

https://jaredkrinke.itch.io/sic-1

1. Set the ui pins to 0 (target address)
2. Pulse the the load_pc pin
3. Set the ui pins to the value you want to load
4. Pulse the load_data pin
5. Repeat steps 3-4 until you have loaded the entire program
6. Set the ui pins to the address you want to start at (usually 0)
7. Pulse the set_pc pin
8. Set the run pin to 1. The computer will start running the program, and the

halted pin will go high when the program is done.

If you want to step through the program, you can pulse the run pin to advance one
instruction at a time.

Pinout

Input Output Bidirectional
0 in[0] out[0] run
1 in1 out1 halted
2 in2 out2 set_pc
3 in[3] out[3] load_data
4 in[4] out[4] out_strobe
5 in[5] out[5]
6 in[6] out[6]
7 in[7] out[7]

228

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Sea Battle [235]

• Author: Yuri Panchul
• Description: Sea Battle is a VGA game with sprites for the Tiny Tapeout De-

moscene competition.
• GitHub repository
• HDL project
• Mux address: 235
• Extra docs
• Clock: 23000000 Hz

How it works

Sea Battle is a VGA game with sprites for the Tiny Tapeout Demoscene competition.
The Sea Battle design is used as a part of basics-graphics-music GitHub repository of
Verilog examples, which is maintained by the Verilog Meetup community.
The game uses two keys, left and right, to control a torpedo. Pressing any key starts
the movement. The goal is to hit the moving target.
The design is supposed to work on a 23 MHz frequency and connect to a VGA display
using a Tiny VGA board with 2 bits per color channel.

How to test

The design was tested on several FPGA boards and has no self-checking Verilog test-
bench for simulation. We just hope it is going to work on ASIC silicon as is.

External hardware

Buttons and a Tiny VGA connector.

Pinout

Input Output Bidirectional
0 Key right VGA red 1
1 Key left VGA green 1
2 VGA blue 1
3 VGA vsync

229

https://github.com/yuri-panchul/tt08-sea-battle-vga-game
https://github.com/yuri-panchul/basics-graphics-music
https://verilog-meetup.com/
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Input Output Bidirectional
4 VGA red [0]
5 VGA green [0]
6 VGA blue [0]
7 VGA hsync

230

Comm_IC [237]

• Author: Bhavuk
• Description: Communication protcols: UART, SPI, I2C
• GitHub repository
• HDL project
• Mux address: 237
• Extra docs
• Clock: 20000000000 Hz

How it works

Top module for the Comm_IC project. Submitted for the TinyTapeout8 (TT8).
Designed by: Bhavuk
Github ID: Bhavuk-HDL
Date of creation: 04-Sept-2024
Code version: V01
This project combines three different communication protocols, namely:

1. UART: Universal Aynchronous Receiver Transmitter
2. SPI: Serial Peripheral Interface
3. I2C: Inter Integrated Circuit

To communicate with this project, there is ‘data_en’ signal.
data_en should be low by default. When it gets high e receive 4 bit data
from data_in (MSB first) based on the clk rising edge.
First 4-bits of data bits will decide the comm. protocol and readwrite.
data_in = 4’bab_cd:
ab: 00-> Read
ab: 11-> Write
cd: 00-> UART
cd: 01-> SPI
cd: 10-> I2C
ab: 10-> Use previous settings: valid only in ‘write mode’.
Second 4-bits will have two directions: ‘read mode’ or ‘write mode’.
Read mode: data will be read from the comm protocol and interrupt will be
set to ‘0’.
Write mode: if cd was set to ‘11’ in the last cycle, we use previous
settings for the comunication. Otherwise we use fresh settings.
Next few 4-bit sequences will be used to send the data to resp. module.

231

https://github.com/Bhavuk-HDL/tty8_comm_ic

How to test

Refer to the test_bench folder in src for test cases.

External hardware

Not applicable

Pinout

Input Output Bidirectional
0 UART_RX UART_TX SDA_out
1 MISO SEN new_uart
2 data_en SCLK data_out[0]
3 MOSI data_out1
4 SCL data_out2
5 busy_uart data_out[3]
6 busy_spi error_i2c
7 busy_i2c

232

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

16 Mic Beamformer [239]

• Author: Armaan Gomes
• Description: A 0 delays fixed delay and sum beamformer that can utilize up to

16 input microphones
• GitHub repository
• HDL project
• Mux address: 239
• Extra docs
• Clock: 0 Hz

How it works

It does stuff (testing) Explain how your project works

How to test

You can test it (testing) Explain how to use your project

External hardware

You need 16 digital microphones, a clock generator (can be a raspberry pi, microcon-
troller, etc.), and something that recieves the I2S output (this can be a rapberry pi or
most auido output devices). List external hardware used in your project (e.g. PMOD,
LED display, etc), if any

Pinout

Input Output Bidirectional
0 PDM Input Mics 0,1 I2S Out Bit Clock (3.072 MHz)
1 PDM Input Mics 2,3 LR Clock (48kHz)
2 PDM Input Mics 4,5
3 PDM Input Mics 6,7
4 PDM Input Mics 8,9
5 PDM Input Mics 10,11
6 PDM Input Mics 12,13
7 PDM Input Mics 14,15

233

https://github.com/arghunter/CIC-Filter-Verilog

PDM Pitch Filter [241]

• Author: Armaan Gomes
• Description: It uses a moving average filter and decimator to filter out a specific

frequency
• GitHub repository
• HDL project
• Mux address: 241
• Extra docs
• Clock: 0 Hz

How it works

Explain how your project work This project pitch filters a microphone input stream.
Because the bitstream is pdm (1 or -1 at 3.072 Mhz) a sine wave of certain frequencies
has a certain length at which its average energy is 0. By making a moving average
filter of that length we can eliminate that frequency and its harmonics

How to test

Connect a microphone to the pin and use the spi port to se thte decimator and filter
length . Inprogress Explain how to use your project

External hardware

A pdm microphone spi input and clock generator List external hardware used in your
project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 Bit Clock (3.072 Mhz) PCM Out Mic 0 Delay Select 0
1 LR Clock (48Khz) PCM Out Mic 1 Delay Select 1
2 PDM Input Mics 0,1 PCM Out Mic 2 Delay Select 2
3 PDM Input Mics 2,3 PCM Out Mic 3 Delay Select 3
4 PDM Input Mics 4,5 PCM Out Mic 4 Delay Select 4
5 PDM Input Mics 6,7 PCM Out Mic 5 Beamformed PCM Output
6 PCM Out Mic 6 Mic Clock

234

https://github.com/arghunter/Customizable-PDM-Pitch-Filter-ASIC

Input Output Bidirectional
7 PCM Out Mic 7

235

Zoom Zoom [242]

• Author: Justin T, Andrew H, Simon Y, Kellen Y, Vallabh A, Nicole C
• Description: Custom Cpu with custome external memory bus and sha-3 and

CORDIC accelerators
• GitHub repository
• HDL project
• Mux address: 242
• Extra docs
• Clock: 60000000 Hz

What is Zoom Zoom?

Zoom Zoom is a custom, 16-bit, barebones CPU. We store memory externally using
either a custom parallel connection or SPI. We also have a simple UART protocal
implemented on the CPU as well as numerous accelerators(that may not be included
in the final design due to size constraints). (Link to Document with helpful coding
info)

236

https://github.com/ringedSquid/BWSI-ASICS-24-Zoom-Zoom
https://docs.google.com/spreadsheets/d/1K7lZab2l3JhwbvVq81M2FrRitQbvzn5ftnUr9ZXU4ik/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1K7lZab2l3JhwbvVq81M2FrRitQbvzn5ftnUr9ZXU4ik/edit?usp=sharing

Detailed List of Features

• Custom Architecture and ISA

– 16-bit instructions
– 5 types of instructions

• 6 general purpose registers

– 1 flag register
– 1 zero register

• UART Interface
• SPI and Custom Parallel Memeroy Interface

– 16 bit memory address
– supports up to 65536 memory addresses(2^16)

• Flexible design easy integration of accelerators as instructions

The Architecture

237

Instruction Layout

General Instructions

Instruction Name Type Opcode Settings Description
nop No Operation 0 0000
ld Load A 0101 0 reg out = mem[mem[inst addr + 1]]
ldr Load Register A 0101 1 reg out = mem[reg1]
str Store A 0110 0 mem[mem[inst addr + 1]] = reg2
strr Store Register A 0110 1 mem[reg1] = reg2
ldi Load Immediate L 0111 reg out = L9[7:15]

ALU Instructions

Instruction Name Type Opcode Settings Description
add Add A 0001 000 reg out = reg1 + reg2
sub Subtract A 0001 001 reg out = reg1 - reg2
mult Multiply A 0001 010 reg out = reg1[0:7] * reg 2[0:7]
nand NAND A 0001 011 reg out = !(reg1 & reg2)
addi Add Immediate I 0010 0 reg out = register 2 + L8[0:7]
multi Multiply Immediate I 0010 1 reg out = register 2 * L8[0:7]
shl Shift Legt A 0001 100 reg out = reg1 « 0
shr Shift Right A 0001 101 reg out = reg1 » 0

Branching Instructions

Instruction Name Type Opcode Settings Description
jmp Jump A 0100 000 inst addr = reg1
jmpz Jump if Zero A 0100 001 reg_out = inst addr; if (ZF) { inst addr = reg1 }
jmpg Jump if Greater A 0100 010 reg_out = inst addr; if (GF) { inst addr = reg1 }
jmpe Jump if Equal A 0100 111 reg_out = inst addr; if (EF) { inst addr = reg1 }
jmpl Jump if Less A 0100 011 reg_out = inst addr; if (!GF) { inst addr = reg1 }
jmpm Jump if Memory Flagged A 0100 100 reg_out = inst addr; if (MF) { inst addr = reg1 }
jmpu Jump if UART Flagged A 0100 101 reg_out = inst addr; if (UF) { inst addr = reg1 }
jmpi Jump Immediate A 0100 110 inst addr = mem[inst addr + 1]

238

Programming the CPU

� Memory Address 769 is reserved: The Assembler does not give a
warning currently!

To assemble, we use custoasm with installation instructions here. We rec-
ommend installation via rust’s package manager by running cargo install
customasm. You can then compile an assembly file by running customasm -o
&lt;outputfilename&gt; &lt;filename&gt;. The format
for the assembly file is to add #include &quot;x3q16_ruleset.asm&quot;
to the top of each .asm file as well as that file which is located here. Instruction
memory and General Purpose are all located in the same place. Thus, to store general
values in memory, just jump to wherever you store it in memory.

Accelerators

� Many are still a work in progress or aren’t supported by the
assembler

Keccakf1600 Approximately 50% of the computational time for the Kyber Algo-
rithm is hashing needed for random number generation. The Kyber algorthm uses
SHA-3 and SHAKE algorithms to generate cryptographically secure random polynomi-
als and numbers. Both of these algorithm rely on the keccakf1600 state permutation
which target to accelerate. More information on the keccak algorithm can be found
here and the kyber algorithm here.
The branch keccak_integration holds a complete state permuation accelerator
however this is not included in main since it’s too big to fit for tinytapeout. A smaller
accelerator is currently being worked on.

How to test

Generate the binary file from test/x3q16 and load it into memory. Reset the chip and
see if anything is written in memory.

External hardware

Either a SPI ram chip or a MCU emulator of parallel storage with custom protocol

239

https://github.com/hlorenzi/customasm
https://github.com/hlorenzi/customasm?tab=readme-ov-file#installation
../asm/x3q16_ruleset.asm
https://keccak.team/keccak_specs_summary.html
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf

Pinout

Input Output Bidirectional
0 lower_byte_in write_enable DATA0
1 upper_byte_in register_enable DATA1
2 rx read_enable DATA2
3 IN3 lower_bit DATA3
4 IN4 tx DATA4
5 IN5 upper_bit DATA5
6 IN6 OUT6 DATA6
7 IN7 OUT7 DATA7

240

PDM Correlator [243]

• Author: Armaan Gomes
• Description: A chip that performs either cross or auto correlatiion on PDM

microphone inputs
• GitHub repository
• HDL project
• Mux address: 243
• Extra docs
• Clock: 0 Hz

How it works

It performs an XOR on two input bitstreams and sums the result. The lower this value
is the higher correlation. Explain how your project works

How to test

Connect microphones to pins and stuff Explain how to use your project

External hardware

Micrrophones,clockgenerator, spi port List external hardware used in your project (e.g.
PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 Bit Clock (3.072 Mhz) PCM Out Mic 0 Delay Select 0
1 LR Clock (48Khz) PCM Out Mic 1 Delay Select 1
2 PDM Input Mics 0,1 PCM Out Mic 2 Delay Select 2
3 PDM Input Mics 2,3 PCM Out Mic 3 Delay Select 3
4 PDM Input Mics 4,5 PCM Out Mic 4 Delay Select 4
5 PDM Input Mics 6,7 PCM Out Mic 5 Beamformed PCM Output
6 PCM Out Mic 6 Mic Clock
7 PCM Out Mic 7

241

https://github.com/arghunter/Customizable-PDM-Cross-Correlator-ASIC

SPI Logic Analyzer with Charlieplexed Display [258]

• Author: ParallelLogic-
• Description: Displays contents of register map on charlieplexed display. Gener-

ates waveforms for PWM, UART, WS2812 in response to trigger.
• GitHub repository
• HDL project
• Mux address: 258
• Extra docs
• Clock: 10000000 Hz

How it works

The bi-directional pins are used to drive a charliplexed 8*7 LED display. A SPI se-
rial connection is used to set the values in a register map. Auxilary functions are
implemented, space/time permitting, ex: LFSR, PWM, freqency counting, ultrasonic
distance sensing

How to test

Use SPI to read/write values to the register map, observe the output on the LEDs
and/or in the serial response. CS active low SPI MODE 0 SPI_CLK <= SYS_CLK/2
Most signigicant bit is exchanged first

External hardware

Charlielexed 7*8 LED display

Pinout

Input Output Bidirectional
0 CS ASIC_OUT_0 MAT0
1 SCLK ASIC_OUT_1 MAT1
2 MOSI ASIC_OUT_2 MAT2
3 TRIGGER ASIC_OUT_3 MAT3
4 ASIC_IN_0 ASIC_OUT_4 MAT4
5 ASIC_IN_1 ASIC_OUT_5 MAT5
6 ASIC_IN_2 ASIC_OUT_6 MAT6

242

https://github.com/parallellogic-/TinyTapeoutLogic2024A

Input Output Bidirectional
7 ASIC_IN_3 MISO MAT7

243

Find The Damn Issue [259]

• Author: Leonel Gouveia Ergin (Synogate), Michael Offel (Synogate)
• Description: USB to UART/SPI/I2C/JTAG/GPIO adapter
• GitHub repository
• HDL project
• Mux address: 259
• Extra docs
• Clock: 12000000 Hz

How it works

It is a bit bang device to interface that can be used to communicate to various devices
over UART, SPI, 3wire, I2C, JTAG, GPIO or many custom protocols. To the host it
registers as a USB Communication Device Class (CDC) device.

UART mode It is in UART mode by default. In UART mode it can be used as a
standard CDC device with configurable baud rate and 8 data bits. You can make use
of any tool that supports COM ports, like Visual Studio’s Serial Monitor, to send and
receive data or configure the baud rate.
Pins TX, RX, DTR and RTS are used in UART mode. DTR and RTS can be set by
most tools and can be used as GPIO. There is no flow control implemented.

BitBang mode In BitBang mode, the device can be used similar to an FTDI
MPSSE. To enter BitBang mode set the baud rate to 57600 and par-
ity to even. A description of the protocol and its commands can be found in
/libs/gatery/doc/BitBangEngine/BitBangEngine.md. There is also a collection of ex-
amples and a c++ header-only API in /example/. In contrast to the FTDI chips this
is not a clone. It does not pretend to be from FTDI, nor does it support the FTDI
driver or API. It acts as a standard CDC device in BitBang mode and can be used by
and program that supports writing and reading to serial ports.
Note that on tiny tapeout we choose to follow the pinout templates of the tiny tapeout
wiki. The documentation is written for the default pinout. Instead, refer to the pinout
table below for each pins function.

244

https://github.com/synogate/find-the-damn-issue

How to test

1. Connect a device to communicate to. A good one is a LIS2DH12, for its wide
range of protocols and available example code in this repo.

2. Connect USB_DP and USB_DN to your computer’s USB. And attach the ex-
ternal pull up of 1.5k ohm to 3.3V.

3. Compile and run /example/LIS2DH12.cpp using CMake on Linux or Windows.
4. You should see sensor readings from the device on your screen.

External hardware

An external pull up of 1.5k to 3.3V on USB_DP is required.

Pinout

Input Output Bidirectional
0 GPIOh0 GPIOh0/DTR GPIOl0-CS
1 GPIOh1 GPIOh1/RTS GPIOl1-MOSI/TX
2 GPIOh2 GPIOh2 GPIOl2-MISO/RX
3 GPIOh3 GPIOh3 GPIOl3-CLK
4 GPIOh4 GPIOh4 GPIOl4-TMS
5 GPIOh5 GPIOh5 GPIOl5-WAIT
6 GPIOh6 GPIOh6 USB_DP
7 GPIOh7 GPIOh7 USB_DN

245

Sequential Shadows Deluxe [TT08 demo competition]
[262]

• Author: Toivo Henningsson
• Description: My contribution to the TT08 demo competition, extended version
• GitHub repository
• HDL project
• Mux address: 262
• Extra docs
• Clock: 50400000 Hz

Intro

Curly / Medieval presents

my contribution to the Tiny Tapeout 8 demo competition. Code, graphics, and music
by Curly (Toivo Henningsson) of Medieval.
This is the deluxe version, with Pmod VGA RGB444 output support and a few changes
from the original, in 2x2 tiles compared to the original’s 1x2.

How to test

Plug in a TinVGA compatible Pmod on the TT08 demo board’s out Pmod. Plug in
a Pmod compatbile with Mike’s audio Pmod compatible Pmod on the TT08 demo
board’s bidir Pmod. Set all inputs to zero to get the default behavior. Warn-
ing: The default behavior includes some flashing ligts. Set v_bass_off
and v_drums_off (keep ui_in at 3 instead of 0) to remove flashing. The demo
starts directly after reset.
This demo is best viewed with the monitor rotated 90 degrees, with the left side facing
down.

246

https://github.com/toivoh/tt08-demo-deluxe
https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod

Inputs There is no guarantee that changing the inputs after reset is released works
as intended, but it probably does. Some of the inputs provide options on how the demo
is run:

• v_bass_off: Setting this high reduces flashing, but also turns off the bass in
some parts.

• v_drums_off: Setting this high reduces flashing, but also turns off the drums
in some parts.

• v_bass_low: Setting this high keeps the bass at its default octave during the
entire demo, and increases flashing.

• pause: While this is high, the demo is paused and the sound is turned off.
• step_frame: While this is high, the the demo advances one frame per cycle.

Used for testing.
• rgb444_mode: Setting this high sets the output to RGB444 mode instead of

the default RGB222
• pmod_vga_pinout: Setting this high enables the alternative Pmod VGA pinout.

– The t_ outputs are used when pmod_vga_pinout is low. This fits the
TinyVGA Pmod pinout. (p_ only outputs are not driven.)

– The p_ outputs are used when pmod_vga_pinout is high. This fits the
Pmod VGA pinout.

• logo_shadow_off: When high, removes the logo’s shadow (like in the non-
deluxe version).

If using A Pmod VGA as output, set rgb444_mode unless you want the original
RGB222 experience.
For the demo competition, set pmod_vga_pinout and rgb444_mode if you have a
Pmod VGA, and please consider if you can still hook up the sound. Don’t set any of
the other inputs.

External hardware

This project needs

• either

– a TinVGA VGA Pmod.
– Mike’s audio Pmod.

• or a Pmod VGA

247

https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod
https://digilent.com/reference/pmod/pmodvga/start

– There is no ready option to output the audio in this case, but it’s still
present on the same pins, so you may be able to get it out with some
creative wiring, and e g feed it to Mike’s audio Pmod.

The choice of pinout is controlled by the pmod_vga_pinout input.

Pinout

Input Output Bidirectional
0 v_bass_off t_R1 / p_R0 p_G0
1 v_drums_off t_G1 / p_R1 p_G1
2 v_bass_low t_B1 / p_R2 p_G2
3 pause t_vsync / p_R3 p_G3
4 rgb444_mode t_R0 / p_B0 p_hsync
5 pmod_vga_pinout t_G0 / p_B1 p_vsync
6 logo_shadow_off t_B0 / p_B2 audio_out_n
7 step_frame t_hsync / p_B3 audio_out

248

https://github.com/MichaelBell/tt-audio-pmod

DDC [266]

• Author: Armaan Gomes
• Description: Converts I2S input to PDM output
• GitHub repository
• HDL project
• Mux address: 266
• Extra docs
• Clock: 0 Hz

How it works

It uses an inverted cic filter and modulator to convert an i2s signal to pdm Explain
how your project works

How to test

Can and I2s output and a pdm input deive Explain how to use your project

External hardware

I2s Output device and pdm input device
List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 Bit Clock (3.072 Mhz) PCM Out Mic 0 Delay Select 0
1 LR Clock (48Khz) PCM Out Mic 1 Delay Select 1
2 PDM Input Mics 0,1 PCM Out Mic 2 Delay Select 2
3 PDM Input Mics 2,3 PCM Out Mic 3 Delay Select 3
4 PDM Input Mics 4,5 PCM Out Mic 4 Delay Select 4
5 PDM Input Mics 6,7 PCM Out Mic 5 Beamformed PCM Output
6 PCM Out Mic 6 Mic Clock
7 PCM Out Mic 7

249

https://github.com/arghunter/DDC-Digital-to-DIgital-Converter

mulmul [270]

• Author: JJ Wong
• Description: Small 4-bit vector multiplication engine
• GitHub repository
• HDL project
• Mux address: 270
• Extra docs
• Clock: 0 Hz

How it works

Write the registers and vector length and accumulator value (optional) into the chip’s
registers using the read and write opcodes, then run the system with the run opcode.
The vectors will be multiplied and summed together in two clock cycles and output an
8-bit word.
Input words are 4 bits wide. Write the length of the 4-bit vectors you want to multiply
into address 0. The vectors should be in words 1-32. Word 1 will be multiplied by
word 17, etc. The result will be accumulated into words 33-34 (8 bits).

How to test

You can run the testbench tests in the test dir.

External hardware

Will be programmed by RP2040. No other external hardware.

Pinout

Input Output Bidirectional
0 addr[0] out[0] data[0]
1 addr1 out1 data1
2 addr2 out2 data2
3 addr[3] out[3] data[3]
4 addr[4] out[4] state[0]
5 addr[5] out[5] state1
6 op[0] out[6]

250

https://github.com/jayjaywong12/tt08
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture

Input Output Bidirectional
7 op1 out[7]

251

https://en.wikipedia.org/wiki/Collatz_conjecture

Warp [274]

• Author: sylefeb
• Description: Demo on TinyTapeout? Let’s do something!
• GitHub repository
• HDL project
• Mux address: 274
• Extra docs
• Clock: 25000000 Hz

Warp

Please make sure to watch the demo for a few minutes as various effects
play out before it loops. At start it waits for a few seconds to ensure VGA
sync is achieved.

How it works

Preface This demo is written in Silice, my HDL. Here is the actual source. Silice
now fully support TinyTapeout as a build target.

Graphics The core effect is a classical tunnel effect ; however this is normally done
with a “huge” pre-computed table having one entry per-pixel. So I thought it’d be
challenging and fun to do it while racing the beam! Plus, I really like this effect.
There are several tricks at play: a shallow CORDIC pipeline to compute an atan
and length, and a few precomputed 1/x distances to interpolate between – these form
keypoint rings along the tunnel. All the effects are then obtained by combining multiple
layers in various ways (like a tunnel effect processor which registers can be configured
for various effects).
The demos uses a lot of dithering (ordered Bayer dithering) given the output is RGB
2-2-2. All computations are grayscale and the RGB lense effect is obtained by delaying
the grayscale values using the tunnel distance in R and B.
I also tried to make the logo interesting by deviating from a classical pixelated look. It
is composed of tiles, either full or triangular, with a comparator and a bit of logic to
do all four possible triangles.

252

https://github.com/sylefeb/tt08-compo-entry
https://github.com/sylefeb/Silice/
../src/silice/vga_demo.si
https://lodev.org/cgtutor/tunnel.html
https://htmlpreview.github.io/?https://github.com/sylefeb/gfxcat/blob/main/runtime/gfxcat_tunnel.html
https://en.wikipedia.org/wiki/CORDIC

The tunnel viewpoint change is obtained simply by shifting the tunnel center. I was
surprised that a simple translation gives such a convincing effect (almost as if the
viewpoint was rotating).
The ‘blue-orange’ tunnel effect is obtained through temporal dithering, one frame being
the standard tunnel, the other the rotated tunnel. This gets combined with the RGB
lense distortion, achieving the final look.

Audio I am no musician, so making a soundtrack was a challenge for me, but that’s
something I’ve always wanted to try. In the end it was a very enjoyable part of the
design, and I was surprised at how compact this can be made, the soundtrack using
perhaps around 10% of the entire design.
I tried to make a track that matches the spirit and rhythm of the graphics. It is what
is is, but I’m happy that there’s sound at all!

How to test Plug the VGA+audio PMODs to the board and run. Maybe it
works?
Simulation of both audio and video can run on an ECPIX5, with the Diligent VGA
PMOD on ports 0,1 and an I2S audio PMOD on port 2 (upper row). The audio also
runs on an ULX3S using its DAC (but no video in this case).

External hardware
• VGA PMOD
• Audio PMOD

See https://tinytapeout.com/competitions/demoscene/

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VS
4 R0
5 G0
6 B0
7 HS Audio

253

https://tinytapeout.com/competitions/demoscene/

Supermic [275]

• Author: Armaan Gomes, Asmi Sawant, Ria Saheta, Vikhaash Kanagavel Chithra,
Morgan Packard, Sanjay Ravishankar

• Description: A 8 channel customizable beamforming signal processor
• GitHub repository
• HDL project
• Mux address: 275
• Extra docs
• Clock: 0 Hz

How it works

Cool stuff makes cool stuff happen Explain how your project works

How to test

Plug cool stuff into the chip and it will output cool stuff Explain how to use your
project

External hardware

You need some cool microphones and a cool clock generator and a cool i2s reciever
List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 Bit Clock (3.072 Mhz) PCM Out Mic 0 Delay Select 0
1 LR Clock (48Khz) PCM Out Mic 1 Delay Select 1
2 PDM Input Mics 0,1 PCM Out Mic 2 Delay Select 2
3 PDM Input Mics 2,3 PCM Out Mic 3 Delay Select 3
4 PDM Input Mics 4,5 PCM Out Mic 4 Delay Select 4
5 PDM Input Mics 6,7 PCM Out Mic 5 Beamformed PCM Output
6 PCM Out Mic 6 Mic Clock
7 PCM Out Mic 7

254

https://github.com/arghunter/Supermic-tt08

DPM_Unit [289]

• Author: Sanjay Kumar M, Shylashree N, Ravish Aradhya H V, RV College Of
Engineering, Neha R V, PES University

• Description: Design and Implementation of Dynamic Power management unit
• GitHub repository
• HDL project
• Mux address: 289
• Extra docs
• Clock: 100 Hz

Credits : We gratefully acknowledge the COE in Integrated Circuits and Systems (ICAS)
and Department of ECE. Our special thanks to Dr K S Geetha (Vice Principal) and,
Dr. K N Subramanya (principal) for their constant support and encouragement to do
TAPEOUT in Tiny Tapeout 8 .
The code provided is a SystemVerilog module that implements a Dynamic Power Man-
agement Unit (DPMU) for an SoC (System on Chip). The DPMU dynamically adjusts
voltage and frequency levels based on inputs such as performance requirements, tem-
perature, battery level, and workload. The module uses a finite state machine (FSM)
to manage transitions between different power states.
Key Components
Inputs and Outputs: Inputs (ui_in): The primary input signals include performance
requirements, temperature sensor data, battery level, and workload. Outputs (uo_out,
uio_out): These include the power-saving indicator, voltage levels, and frequency levels
for different cores and memory. I/O (uio_in, uio_out, uio_oe): Handles bidirectional
signals; however, in this design, uio_in is not used, and uio_out is used for output.
Internal Signals:
State Variables: state and next_state manage the FSM that controls the DPMU’s
behavior. Power and Frequency Controls: Registers like vcore1, vcore2, vmem, fcore1,
fcore2, and fmem store the voltage and frequency settings. Finite State Machine
(FSM):
States: NORMAL: Default operating mode with standard voltage and frequency levels.
PERFORMANCE: High-performance mode with maximum voltage and frequency levels.
POWERSAVE: Low-power mode with reduced voltage and frequency levels. THER-
MAL_MANAGEMENT: Mode to handle high temperature by adjusting power levels
moderately. BATTERY_SAVING: Mode to conserve battery by minimizing voltage
and frequency levels.

255

https://github.com/RVCE-ECE-Shylashree/TT8-DPMU

State Transitions: Transitions between states occur based on the input conditions,
such as high performance request, low battery level, high temperature, or low workload.
Detailed Walkthrough Input and Output Mapping:
perf_req: Mapped to the least significant bit (LSB) of ui_in, indicating whether high
performance is needed. temp_sensor: 2-bit signal derived from ui_in[3:2], providing
temperature data. battery_level: 2-bit signal derived from ui_in[5:4], indicating the
battery’s charge status. workload_core: 3-bit signal derived from ui_in[7:6], represent-
ing the workload of a core. State Logic:
On each clock cycle (clk), the FSM checks the state and evaluates transitions based
on inputs. In NORMAL state, if perf_req is high, the system transitions to PERFOR-
MANCE state. If the battery level is low, it transitions to BATTERY_SAVING state.
If the temperature is high, it transitions to THERMAL_MANAGEMENT state. If the
workload is low, it transitions to POWERSAVE state. PERFORMANCE state sets all
voltages and frequencies to maximum. If perf_req drops, it returns to NORMAL. POW-
ERSAVE state reduces voltages and frequencies to conserve power. If the workload
increases, it returns to NORMAL. THERMAL_MANAGEMENT state adjusts power
levels to moderate values to manage high temperatures. If the temperature normalizes,
it returns to NORMAL. BATTERY_SAVING state minimizes voltages and frequencies
to conserve battery. If the battery level increases, it returns to NORMAL.
Output Assignment: The combined voltage (vcore1, vcore2, vmem) and frequency
(fcore1, fcore2, fmem) values are assigned to the uio_out and uo_out outputs. The
power_save signal is also part of the output, indicating whether the system is in power-
saving mode. Behavior under Reset:
When the reset (rst_n) is low (active), the system resets to the NORMAL state.
Here’s a table summarizing the expected output (uio_out, uo_out) based on the input
(ui_in) and time using the provided testbench for the tt_um_dpmu module. The table
provides the values for different states as the ui_in input changes over time.
Table: Testbench Expected Output

Time (ns) ui_in (Input) State uio_out (Expected Output) uo_out (Expected Output)
0 11110010 NORMAL 01010110 010_010010
10 00010010 PERFORMANCE 11111111 111_111111
30 11110010 NORMAL 01010110 010_010010
50 11110011 THERMAL_MANAGEMENT 10101011 011_011011
70 11110010 NORMAL 01010110 010_010010
90 11101010 THERMAL_MANAGEMENT 10101011 011_011011
110 11111010 BATTERY_SAVING 00000000 000_000000
130 11111110 BATTERY_SAVING 00000000 000_000000
150 11111010 BATTERY_SAVING 00000000 000_000000

256

Time (ns) ui_in (Input) State uio_out (Expected Output) uo_out (Expected Output)

Explanation of Table Columns:
Time (ns): The simulation time when the ui_in input is applied. ui_in (Input): The
8-bit input value applied to the design. State: The state of the FSM based on the ui_in
input. The states are NORMAL, PERFORMANCE, THERMAL_MANAGEMENT,
and BATTERY_SAVING. uio_out (Expected Output): The expected 8-bit output
values for the uio_out signals. uio_out[0]: Power save mode indicator. uio_out[2:1],
uio_out[4:3], uio_out[6:5]: Voltage controls. uio_out[7]: Part of fcore1[0]. uo_out
(Expected Output): The expected 8-bit output values for the uo_out signals.
uo_out[0:1]: Part of fcore1[2:1]. uo_out[4:2]: fcore2[2:0]. uo_out[7:5]: fmem[2:0].
Explanation of Key Points: NORMAL State: When the inputs suggest a typical
operating environment (e.g., ui_in = 11110010), the design operates with default
voltage and frequency levels. PERFORMANCE State: Triggered by a performance
request (perf_req = 1), leading to maximum voltage and frequency levels. THER-
MAL_MANAGEMENT State: Triggered by high temperature (temp_sensor = 10 or
11), moderates the voltage and frequency to prevent overheating. BATTERY_SAVING
State: Triggered by low battery level (battery_level = 00 or 01), minimizing power
consumption by reducing voltage and frequency to the lowest levels.
Testbench Operation: The testbench applies different ui_in values at specific simula-
tion times. At each time step, it captures the output values (uio_out and uo_out) and
compares them with the expected values as per the design’s FSM logic. The $monitor
statement continuously logs the input and output values, helping to verify the design’s
behavior at each time point.

Pinout

Input Output Bidirectional
0 ui_in[[0] uo_out[0] uio_out[0]
1 ui_in[1 uo_out1 uio_out1
2 ui_in[2 uo_out2 uio_out2
3 ui_in[[3] uo_out[3] uio_out[3]
4 ui_in[[4] uo_out[4] uio_out[4]
5 ui_in[[5] uo_out[5] uio_out[5]
6 ui_in[[6] uo_out[6] uio_out[6]
7 ui_in[[7] uo_out[7] uio_out[7]

257

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Generate VGA output for Color Blindness Test [291]

• Author: Krushnasis Pradhan, Aniruddha Ranade
• Description: Generate VGA output which shall display the pattern similar to

Ishihara Plates
• GitHub repository
• HDL project
• Mux address: 291
• Extra docs
• Clock: 0 Hz

How it works

Generates VGA output for displaying pattern similar to Ishihara plates used for con-
ducting a color blindness test. (Disclaimer: Note that this is not an approved medical
test and test setup. The pattern generated is for purely experimental purpose.)

How to test

This project will work out of the box. Just connect a VGA display via TinyVGA
PMOD.

External hardware

TinyVGA PMOD to connect to a VGA display

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VSync
4 R0
5 G0
6 B0
7 HSync

258

https://www.linkedin.com/in/krushnasis-pradhan-35881518b/
https://www.linkedin.com/in/aniruddha-ranade/
https://github.com/AniruddhaRanade/TT08_VGA_CBTest
https://en.wikipedia.org/wiki/Ishihara_test
https://github.com/mole99/tiny-vga
https://github.com/mole99/tiny-vga
https://github.com/mole99/tiny-vga

4-bit CLA [293]

• Author: Wei Zhang
• Description: A 4 bit carry look-ahead adder
• GitHub repository
• HDL project
• Mux address: 293
• Extra docs
• Clock: 0 Hz

How it works

This is a 4-bit CLA. It can be used to construct the adder with higher bit.

How to test

The design has 3 input ports: a, b and ci It has 2 output ports: s and co a: an addend.
b: the other addend. ci: the carry signal for the input. s: the output sum. co: the
carry signal for the output.

External hardware

This project was tested by an U250 FPGA.

Pinout

Input Output Bidirectional
0 a[0] s[0] ci
1 a1 s1
2 a2 s2
3 a[3] s[3]
4 b[0] co
5 b1
6 b2
7 b[3]

259

https://github.com/Electom/tt08_CSA_4bits
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

SkyKing Demo [295]

• Author: Nicklaus Thompson
• Description: Types some text over an image of a plane flying into the sunset
• GitHub repository
• HDL project
• Mux address: 295
• Extra docs
• Clock: 25200000 Hz

How it works

The project presents an RGB222 VGA signal to the output port.

How to test

Runs automaticaly.

External hardware

VGA PMOD on UO.

Pinout

Input Output Bidirectional
0 HS
1 R0
2 G0
3 B0
4 VS
5 R1
6 G1
7 B1

260

https://github.com/FangameEmpire/tt08_skyking

Flame demo [297]

• Author: Konrad Beckmann & Linus Mårtensson
• Description: Flame demo
• GitHub repository
• HDL project
• Mux address: 297
• Extra docs
• Clock: 25000000 Hz

Flame - Konrad & Linus tinytapeout08 demo compo entry

How it works It shows a flame and plays audio. The VGA output is standard
640x480@60Hz, audio is simple 1 bit PWM.

How to test Run clock at 25MHz, connect VGA and sound Pmods, and give it a
reset pulse.

External hardware Follows the democompo hardware rules:
TinyVGA Pmod for video on o[7:0].

261

https://github.com/kbeckmann/tt08-flame
https://tinytapeout.com/competitions/demoscene/#what-are-the-rules
https://github.com/mole99/tiny-vga

1-bit sound on io[7], compatible with Tiny Tapeout Audio Pmod, or any basic ~20kHz
RC filter on io7 to an amplifier will work.

Pinout

Input Output Bidirectional
0 ui_in[0] ui_out[0] uio_out[0]
1 ui_in1 ui_out1 uio_out1
2 ui_in2 ui_out2 uio_out2
3 ui_in[3] ui_out[3] uio_out[3]
4 ui_in[4] ui_out[4] uio_out[4]
5 ui_in[5] ui_out[5] uio_out[5]
6 ui_in[6] ui_out[6] uio_out[6]
7 ui_in[7] ui_out[7] uio_out[7]

262

https://github.com/MichaelBell/tt-audio-pmod
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Metaballs [299]

• Author: Johannes Hoff
• Description: You can’t prove it’s not metaballs
• GitHub repository
• HDL project
• Mux address: 299
• Extra docs
• Clock: 50000000 Hz

How it works

An attempt at metaballs on a very rushed timeline. Keep your hopes down. Including
for this documentation.

How to test

Should work like other VGA projects. No sound.

External hardware

VGA PMOD

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 vsync
4 R[0]
5 G[0]
6 B[0]
7 hsync

263

https://github.com/johshoff/tt08-metaballs
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Simple Stopwatch [301]

• Author: Fabio Ramirez Stern
• Description: A simple stopwatch counting in 100th seconds and outputing it via

SPI to a MAX7219 chip controlling an 8 digit 7-segment display.
• GitHub repository
• HDL project
• Mux address: 301
• Extra docs
• Clock: 1000000 Hz

How it works

A clock divider turns 1 MHz into 100 Hz, which drives a stopwatch going from 00:00:00
to 59:59:99. To achieve this, a chain of two types of counting circuit, one per digit gives
it’s output to an SPI master that encodes the result to be displayed on a 7-segment
display with at least 6 digits.

How to test

The start/stop button toggles the clock, the lap time button pauses the display, while
the clock keeps running in the background. Pressing it again re-enables the display.
The time can be reset with the reset button on input 2, or with the chip/PCB wide
reset. The PCB wide reset affects everything, the input pin driven reset does only
resets the counters.

External hardware

2-3 buttons, one for start/stop and one for lap times. For the reset, either a third button
or the dev board’s reset for the whole chip can be used. 1 MAX7219/MAX7221 driven
7-segment display, or something that can interpret the SPI signal according to the
MAX’s specifications.

Pinout

Input Output Bidirectional
0 start/stop SPI MOSI
1 lap time SPI CS (active low)

264

https://github.com/faramire/TT08-simple-stopwatch

Input Output Bidirectional
2 reset (active high) SPI CLK
3 skip display setup (only output time, active high during reset) stopwatch enabled (counting up)
4 display enabled (goes low when showing lap time)
5
6
7

265

PWM generator [303]

• Author: Matea Samuel
• Description: Generate pwm signal with configurable period - 12-bit - and duty

cycle - 1%-99%.
• GitHub repository
• HDL project
• Mux address: 303
• Extra docs
• Clock: 50000000 Hz

How it works

This design intend to be used like a PWM generator. It contains two 12-bit registers:
one for duty cycle(duty_reg) respectively one for period(period_reg). When sel signal
is set to “0” the duty_reg will be selected and when sel is “1” the period_reg is selected.
If values for duty/period is set at the input, the value is written in the regs only after
wr_en is set to “1”. For duty cycle, will be used only 7 bits(from 0 to 6) the rest of
the bits beeing 0 hardcoded. the value for period_rescan be set between 2-4095(on
12 bits).

How to test

Connect the output to the osciloscope and verify if the frequency and duty cycle
correspond with your expectation.

External hardware

The external hardware will be only the wire used for the pwm_out and 14 inputs
(uController, digital pattern generator etc.) to set the period, duty cycle, set and
wr_en signals.

Pinout

Input Output Bidirectional
0 in[0] pwm_out in[8]
1 in1 in[9]
2 in2 in[10]

266

https://github.com/MateaSamuel/tt08-pwm-generator
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
3 in[3] in[11]
4 in[4]
5 in[5]
6 in[6] sel
7 in[7] wr_en

267

DMTD [305]

• Author: Armaan Gomes
• Description: A Dual Mixer Timer DIfferential
• GitHub repository
• HDL project
• Mux address: 305
• Extra docs
• Clock: 0 Hz

How it works

Cool stuff makes cool stuff happen Explain how your project works

How to test

Plug cool stuff into the chip and it will output cool stuff Explain how to use your
project

External hardware

You need some cool microphones and a cool clock generator and a cool i2s reciever
List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 Bit Clock (3.072 Mhz) PCM Out Mic 0 Delay Select 0
1 LR Clock (48Khz) PCM Out Mic 1 Delay Select 1
2 PDM Input Mics 0,1 PCM Out Mic 2 Delay Select 2
3 PDM Input Mics 2,3 PCM Out Mic 3 Delay Select 3
4 PDM Input Mics 4,5 PCM Out Mic 4 Delay Select 4
5 PDM Input Mics 6,7 PCM Out Mic 5 Beamformed PCM Output
6 PCM Out Mic 6 Mic Clock
7 PCM Out Mic 7

268

https://github.com/arghunter/DMTD-Verilog

I2S to PWM [307]

• Author: Armaan Gomes
• Description: An 8-bit I2S to PWM convertor
• GitHub repository
• HDL project
• Mux address: 307
• Extra docs
• Clock: 0 Hz

How it works

Cool stuff makes cool stuff happen Explain how your project works

How to test

Plug cool stuff into the chip and it will output cool stuff Explain how to use your
project

External hardware

You need some cool microphones and a cool clock generator and a cool i2s reciever
List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 Bit Clock (3.072 Mhz) PCM Out Mic 0 Delay Select 0
1 LR Clock (48Khz) PCM Out Mic 1 Delay Select 1
2 PDM Input Mics 0,1 PCM Out Mic 2 Delay Select 2
3 PDM Input Mics 2,3 PCM Out Mic 3 Delay Select 3
4 PDM Input Mics 4,5 PCM Out Mic 4 Delay Select 4
5 PDM Input Mics 6,7 PCM Out Mic 5 Beamformed PCM Output
6 PCM Out Mic 6 Mic Clock
7 PCM Out Mic 7

269

https://github.com/arghunter/I2S-to-PWM-Verilog

Basys 3 Over UART Link [322]

• Author: Devin Atkin
• Description: Run the main Basys 3 Peripherals over a 115200 Uart Link
• GitHub repository
• HDL project
• Mux address: 322
• Extra docs
• Clock: 50000000 Hz

How it works

The Basys 3 is a normal board for learning FPGA design or prototyping certain designs.
This project runs the main peripherals over a 115200 UART link. This code includes
the main block that takes 16 “Led” inputs, 16 “Switch” Outputs, 12 “7 Segment
Display” inputs, and 5 “Button” outputs; the block then gives a UART RX and UART
TX which are routed to the bi-directional PMOD bus.

How to test

Use the associated PMOD board or interact with the UART. The following are the
expected elements on the UART.

• “LD: 0xFFFF” Coming from this design going to the peripheral
• “SW: 0xFFFF” Coming from the peripheral going to the design
• “7S: 0xFFFF” Coming from this design going to the peripheral
• “BT: 0xFFFF” Coming from the peripheral going to the design

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 uart_tx
1 uart_rx
2 uart_tx_ready

270

https://github.com/devinatkin/tt09-basys3-uart-link

Input Output Bidirectional
3 uart_tx_valid
4 uart_rx_valid
5 uart_rx_ready
6
7

271

ITS-RISCV [326]

• Author: Bambang T. Wibowo, Chazim Fikri A., Hernanda A. P., M. Hafidzh,
Figo A. M., and Faiz S. K.

• Description: ITS RISC V based on the underserved TinyTapeout 07.
• GitHub repository
• HDL project
• Mux address: 326
• Extra docs
• Clock: 20000000 Hz

How it works

When the system boots up, it will start accessing the SPI bus to set up a connected
SPI Flash memory in XIP mode and start executing instructions from there. The GPIO
can be used to output data, e.g. as a bitbanged UART.

How to test

The testbench contains a model of an SPI Flash. A program in Verilog Hex format
can be preloaded into the Flash model.
Underserved can easiest be run locally using FuseSoC.
Install FuseSoC

pip install fusesoc

Create and enter a new workspace

mkdir workspace && cd workspace

272

https://github.com/BambangTW/tt09-ITS-RISCV

Register underserved as a library in the workspace

fusesoc library add underserved /path/to/prince

…if repo is available locally or… …to get the upstream repo

fusesoc library add underserved https://github.com/olofk/underserved

Show available cores in workspace (probally just underserved for now if you haven’t
added other libraries)

fusesoc core list

Show info about underserved

fusesoc core show underserved

Run linting (static code checks) using Verilator

fusesoc run --target=lint underserved

Run underserved testbench

fusesoc run --target=sim underserved

Run with modelsim instead of default tool (icarus)

fusesoc run --target=sim underserved --tool=modelsim

External hardware

Expects a compatible SPI Flash. The XIP controller was stolen from PicoSoC which
also contains some info about compatible SPI Flash components.

273

https://github.com/YosysHQ/picorv32

Pinout

Input Output Bidirectional
0 gpio0
1 gpio1
2 gpio2
3 gpio3
4 gpio4
5 sclk
6 cs_n
7 mosi miso

274

Zilog Z80 [330]

• Author: ReJ aka Renaldas Zioma
• Description: Z80 open-source silicon. Goal is to become a silicon proven, pin

compatible, open-source replacement for classic Z80.
• GitHub repository
• HDL project
• Mux address: 330
• Extra docs
• Clock: 16000000 Hz

How it works

On April 15 of 2024 Zilog has announced End-of-Life for Z80, one of the most famous 8-
bit CPUs of all time. It is a time for open-source and hardware preservation community
to step in with a Free and Open Source Silicon (FOSS) replacement for Zilog Z80.
The implementation is based around Guy Hutchison’s TV80 Verilog core.
The future work

• Add thorough instruction (including ‘illegal’) execution tests ZEXALL to test-
bench

• Compare different implementations: Verilog core A-Z80, Netlist based
Z80Explorer

• Create gate-level layouts that would resemble the original Z80 layout. Zilog
designed Z80 by manually placing each transistor by hand.

• Tapeout QFN44 package
• Tapeout DIP40 package

Z80 technical capabilities

• nMOS original frequency 4MHz. CMOS frequency up to 20 MHz. This tapeout
on 130 nm is expected to support frequency up to 50 MHz.

• 158 instructions including support for Intel 8080A instruction set as a subset.
• Two sets of 6 general-purpose reigsters which may be used as either 8-bit or

16-bit register pairs.
• One maskable and one non-maskable interrupt.
• Instruction set derived from Datapoint 2200, Intel 8008 and Intel 8080A.

Z80 registers

• AF: 8-bit accumulator (A) and flag bits (F)
• BC: 16-bit data/address register or two 8-bit registers

275

https://github.com/rejunity/z80-open-silicon
https://www.mouser.com/PCN/Littelfuse_PCN_Z84C00.pdf
https://github.com/hutch31/tv80
https://mdfs.net/Software/Z80/Exerciser/
https://github.com/gdevic/A-Z80
https://github.com/gdevic/Z80Explorer
https://en.wikipedia.org/wiki/Intel_8080
https://en.wikipedia.org/wiki/Datapoint_2200
https://en.wikipedia.org/wiki/Intel_8008
https://en.wikipedia.org/wiki/Intel_8080

• DE: 16-bit data/address register or two 8-bit registers
• HL: 16-bit accumulator/address register or two 8-bit registers
• SP: stack pointer, 16 bits
• PC: program counter, 16 bits
• IX: 16-bit index or base register for 8-bit immediate offsets
• IY: 16-bit index or base register for 8-bit immediate offsets
• I: interrupt vector base register, 8 bits
• R: DRAM refresh counter, 8 bits (msb does not count)
• AF': alternate (or shadow) accumulator and flags (toggled in and out with EX

AF, AF')
• BC', DE' and HL': alternate (or shadow) registers (toggled in and out with EXX)

Z80 Pinout

,---------.__.---------.
<-- A11 |1 40| A10 -->
<-- A12 |2 39| A9 -->
<-- A13 |3 Z80 CPU 38| A8 -->
<-- A14 |4 37| A7 -->
<-- A15 |5 36| A6 -->
--> CLK |6 35| A5 -->
<-> D4 |7 34| A4 -->
<-> D3 |8 33| A3 -->
<-> D5 |9 32| A2 -->
<-> D6 |10 31| A1 -->

VCC |11 30| A0 -->
<-> D2 |12 29| GND
<-> D7 |13 28| /RFSH -->
<-> D0 |14 27| /M1 -->
<-> D1 |15 26| /RESET <--
--> /INT |16 25| /BUSRQ <--
--> /NMI |17 24| /WAIT <--
<-- /HALT |18 23| /BUSAK -->
<-- /MREQ |19 22| /WR -->
<-- /IORQ |20 21| /RD -->

`----------------------'

How to test

Hold all bidirectional pins (Data bus) low to make CPU execute NOP instruction.
NOP instruction opcode is 0. Hold all input pins high to disable interrupts and signal
that data bus is ready.

276

Every 4th cycle 8-bit value on output pins (Address bus low 8-bit) should
monotonously increase.

Timing diagram, input pins

Z80CLK____ ____ ____ ____ ____ ____
__/ ____/ ____/ ____/ ____/ ____/ `____ ...
| | | | | |
| | | | | |

/RESET___
__/

/WAIT ___
__/

/INT ___
__/

/NMI ___
__/

/BUSRQ___
__/

D7..D0 NOP NOP NOP NOP NOP
__ XXXXXXXXX ___#00___ ___#00___ ___#00___ ___#00___ ___#00___

Expected signals on output pins
/M1 _________ ____________________

__________________/ _________
/MREQ ___________________ ______________________________

________/
/RD ___________________ ______________________________

________/
A0..A7

__ XXXXXXXXX ___#00___ ___#00___ XXXXXXXXX XXXXXXXXX ___#01___

External hardware

Bus de-multiplexor, external memory, 8-bit computer such as ZX Spectrum.
Alternatively the RP2040 on the TinyTapeout test PCB can be used to simulate RAM
and I/O.

277

https://en.wikipedia.org/wiki/ZX_Spectrum

Pinout

Input Output Bidirectional
0 /WAIT /M1, A0, A8 D0
1 /INT /MREQ, A1, A9 D1
2 /NMI /IORQ, A2, A10 D2
3 /BUSRQ /RD, A3, A11 D3
4 /WR, A4, A12 D4
5 /RFSH, A5, A13 D5
6 MUX – address lo/hi bits on the output pins /HALT, A6, A14 D6
7 MUX – control signals on the output pins /BUSAK, A7, A15 D7

278

2048 sliding tile puzzle game (VGA) [334]

• Author: Uri Shaked
• Description: Slide numbered tiles on a grid to combine them to create a tile

with the number 2048.
• GitHub repository
• HDL project
• Mux address: 334
• Extra docs
• Clock: 25175000 Hz

How it works

2048 is a single-player sliding tile puzzle video game. Your goal is to slide numbered
tiles on a grid to combine them and create a tile with the number 2048. The game is
won when a tile with the number 2048 appears on the board, hence the name of the
game. The game is lost when the board is full and no more moves can be made.
The game is played on a 4x4 grid, with numbered tiles that slide when a player moves
them using ui_in pins or using a SNES compatible controller along with the Gamepad
Pmod.
The game starts with two tiles with the number 2 on the board. The player can move
the tiles in four directions: up, down, left, and right. When the player moves the tiles
in a direction, the tiles slide as far as they can in that direction until they hit the edge
of the board or another tile. If two tiles with the same number collide, they merge into
a single tile with the sum of the two numbers. The resulting tile cannot merge with
another tile again in the same move.

How to test

Use the ui_in pins to move the tiles on the board:

ui_in pin Direction
0 Up
1 Down
2 Left
3 Right

Or use a SNES compatible controller along with the Gamepad Pmod. The game will
automatically detect the presence of the Pmod and switch to controller input mode.

279

https://github.com/urish/tt10-2048-game

After resetting the game, you will see a jumping “2048” animation on the screen. Press
any of the ui_in[3:0] pins (or the gamepad buttons) to start the game. The game
will start with two tiles with the number 2 on the board. Use the ui_in pins (or the
gamepad buttons) to move the tiles in the desired direction. The game will end when
the board is full and no more moves can be made.
The game offers two color themes: modern and retro. You can switch between the
two themes using the select button on the gamepad or by setting both ui_in[4]
and ui_in[5] to 1.
Setting ui_in[7] to 1 will enter unit test mode. In this mode, the game displays a
colorful rectangle on the top of the screen, and accepts debug commands on the uio
pins. Check out the test bench for more information.

External hardware

• TinyVGA Pmod
• Optional: Gamepad Pmod

Pinout

Input Output Bidirectional
0 btn_up R1 debug_cmd
1 btn_down G1 debug_cmd
2 btn_left B1 debug_cmd
3 btn_right VSync debug_cmd
4 gamepad_latch R0 debug_data
5 gamepad_clk G0 debug_data
6 gamepad_data B0 debug_data
7 debug_mode HSync debug_data

280

https://github.com/mole99/tiny-vga
https://github.com/psychogenic/gamepad-pmod

ChatGPT-generated Spiking Neural Network with Delays
[335]

• Author: Paola Vitolo
• Description: ChatGPT-generated Spiking Neural Network with Delays
• GitHub repository
• HDL project
• Mux address: 335
• Extra docs
• Clock: 50000000 Hz

Overview

How it works

This project implements 18 programmable digital LIF neurons with programmable de-
lays and a total of 144 synapsis. The neurons are arranged in 3 layers (8 inputs +
FC (8 neurons) + FC (8 neurons) + FC (2 neurons) +2 outputs). Spikes_in directly
maps to the inputs of the first layer neurons. When an input spike is received, it is
first multiplied by an 2-bit weight, programmable from an SPI interface, 1 per input
neuron. This value is then added to the membrane potential of the respective neuron.
When the first layer neurons activate, its pulse is routed to each of the 8 neurons in
the next layer. There are 144 (8x8+8x8+8x2) programmable weights describing the
connectivity between the input spikes and the first layer (64 weights=8x8), the first and
second layers (64 weights=8x8), and the second and third layers (16 weights=8x2).
Through a configurable selection signal via SPI, it is possible to read any of the mem-
brane potentials from any neuron in any layer, or the output spikes from any layer.

How to test

After reset, program the neuron threshold, decay rate, and refractory period. Addition-
ally program the first, second, and third layer weights and delays. Once programmed
activate spikes_in to represent input data, track spikes_out synchronously.

Memory Map Overview Each parameter (decay, refractory period, membrane
potential threshold, weights, and delays) and each configuration signal (value for
the configurable clock divider and output select signal) is accessible via SPI in specific
byte addresses. The memory is organized as follows:

281

https://github.com/PaolaUniSa/tt09_chatGPT_SNN_LD

Parameter Bit Range / Byte Address (Hex) Address (Decimal) Description
decay 5:0 bits in 2nd byte 0x00 0 Decay configuration parameter
refractory_period 5:0 bits in 3rd byte 0x01 1 Refractory period parameter
threshold 5:0 bits in 4th byte 0x02 2 Membrane potential threshold
div_value 5th byte 0x03 3 Division value for clock divider
weights 36 bytes (5th to 40th) 0x04 - 0x27 4 - 39 Synaptic weights
delays 72 bytes (41st to 112th) 0x28 - 0x6F 40 - 111 Synaptic delay
output_config 8 bits in 113th byte 0x70 112 Output select signal

Simulations

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 input_spike[0] output[0] CS
1 input_spike1 output1 MOSI
2 input_spike2 output2 MISO
3 input_spike[3] output[3] SCLK
4 input_spike[4] output[4] input_ready
5 input_spike[5] output[5] output_ready
6 input_spike[6] output[6] SNN_en
7 input_spike[7] output[7] spi_instruction_done

282

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Space Invaders ASIC [338]

• Author: Lukas Krupp, Adam Gebregziabher
• Description: HDL implementation of the retro game Space Invaders
• GitHub repository
• HDL project
• Mux address: 338
• Extra docs
• Clock: 25000000 Hz

How it works

Implementation of the Space Invaders game in Verilog. Use inputs 0 and 1 to move
the player to the right and to the left respectively. To shoot at the aliens, press button
2. It is intended that the game is played using the TinyTapeout Commander app. Via
the app the keyboard of the computer can be used to set the input pins of the ASIC.

How to test

Set the inputs and check the outputs. TinyTapeout VGA Playground is the preferred
way of testing.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 input1 out1
1 input2 out2
2 input3 out3
3 out4
4 out5
5 out6
6 out7
7 out8

283

https://github.com/ppurkl/tt10-chip-invaders

Demo by a1k0n [339]

• Author: Andy Sloane
• Description: Tiny Tapeout demo competition entry
• GitHub repository
• HDL project
• Mux address: 339
• Extra docs
• Clock: 48000000 Hz

a1k0n’s tinytapeout08 demo compo entry

How it works It’s a standalone VGA+sound demo that fits in two tiles; you’ll just
have to see.
This was developed with a 48MHz clock, so it’s in a funky VGA video mode – it’s
standard 640x480@60Hz VGA timing and 4:3 aspect ratio, but with 1220 horizontal

284

https://github.com/a1k0n/tt08-vgademo

pixels instead of 640. All graphics are dithered down to RGB222 with a Bayer matrix
which alternates each frame. Because of the dithering and the weird resolution, it looks
best on a real CRT, but any VGA monitor ought to work.
Sound is generated using a 16-bit sigma-delta DAC on io7 from an internal 3-channel
synth (triangle, noise, and square waves).
I will add more info here after the deadline passes, as the demo is in flux as I try to fit
effects into 2 tiles…

How to test Run clock at 48MHz, connect VGA and sound Pmods, and give it a
reset pulse.

External hardware Follows the democompo hardware rules:
TinyVGA Pmod for video on o[7:0].
1-bit sound on io[7], compatible with Tiny Tapeout Audio Pmod, or any basic ~20kHz
RC filter on io7 to an amplifier will work.

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VSync
4 R0
5 G0
6 B0
7 HSync AudioPWM

285

https://tinytapeout.com/competitions/demoscene/#what-are-the-rules
https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod

Clock Divider [353]

• Author: Armaan Gomes
• Description: A clock divider with lag correction
• GitHub repository
• HDL project
• Mux address: 353
• Extra docs
• Clock: 0 Hz

How it works

Cool stuff makes cool stuff happen Explain how your project works

How to test

Plug cool stuff into the chip and it will output cool stuff Explain how to use your
project

External hardware

You need some cool microphones and a cool clock generator and a cool i2s reciever
List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 Bit Clock (3.072 Mhz) PCM Out Mic 0 Delay Select 0
1 LR Clock (48Khz) PCM Out Mic 1 Delay Select 1
2 PDM Input Mics 0,1 PCM Out Mic 2 Delay Select 2
3 PDM Input Mics 2,3 PCM Out Mic 3 Delay Select 3
4 PDM Input Mics 4,5 PCM Out Mic 4 Delay Select 4
5 PDM Input Mics 6,7 PCM Out Mic 5 Beamformed PCM Output
6 PCM Out Mic 6 Mic Clock
7 PCM Out Mic 7

286

https://github.com/arghunter/Clock-Divider-Verilog

TinyFPGA resubmit for TT08 [355]

• Author: Emilian Miron
• Description: TinyFPGA
• GitHub repository
• HDL project
• Mux address: 355
• Extra docs
• Clock: 0 Hz

How it works

Configure the FPGA then look at outputs.

How to test

Configure the FPGA then look at outputs. See the tests.

External hardware

No special hardware needed.

Pinout

Input Output Bidirectional
0 input0 output0 n/a
1 input1 output1 n/a
2 input2 output2 n/a
3 input3 output3 n/a
4 output4 n/a
5 output5 n/a
6 cmd0 output6 n/a
7 cmd1 output7 n/a

287

https://github.com/diferential/tt08-muxpga

Dummy Counter [357]

• Author: Chinmay
• Description: A 16-bit counter
• GitHub repository
• HDL project
• Mux address: 357
• Extra docs
• Clock: 0 Hz

How it works

Like a 16-bit counter

How to test

Like a 16-bit counter

External hardware

NA

Pinout

Input Output Bidirectional
0 count_en b0 b8
1 mult_en b1 b9
2 m_a0 b2 b10
3 m_a1 b3 b11
4 m_a2 b4 b12
5 m_b0 b5 b13
6 m_b1 b6 b14
7 m_b2 b7 b15

288

https://github.com/pyamnihc/tt08-dummy-counter

RGB Mixer [359]

• Author: Tianmin (Kevin) Kong
• Description: First ASIC Project!
• GitHub repository
• HDL project
• Mux address: 359
• Extra docs
• Clock: 10000000 Hz

How it works

Debounce the inputs, drive an encoder module, and output a PWM signal for each
encoder.

How to test

Twist each encoder and the LEDs attached to the outputs should change in bright-
ness.
By setting the debug port to 0, 1 or 2, the internal value of each encoder is output on
the bidirectional outputs.

External hardware

Use 3 digital encoders attached to the first 6 inputs.

Pinout

Input Output Bidirectional
0 enc0 a pwm0 encoder bit 0
1 enc0 b pwm1 encoder bit 1
2 enc1 a pwm2 encoder bit 2
3 enc1 b encoder bit 3
4 enc2 a encoder bit 4
5 enc2 b encoder bit 5
6 debug bit 0 encoder bit 6
7 debug bit 1 encoder bit 7

289

https://github.com/ktm0228/tt08-rgb-mixer

32x8 LED Matrix Animation [361]

• Author: Ayla Lin, Pavit Thakur, Lauren Low
• Description: An animation using a 32x8 matrix, switching between a beaver logo

and the letters ‘BWSI’
• GitHub repository
• HDL project
• Mux address: 361
• Extra docs
• Clock: 33000000 Hz

How it works

This project contains 3 components:

• SPI for sending instructions and bitmaps to MAX7219/7221.
• ROM for storing bitmaps to display.
• Controller for instructing SPI and ROM.

How to test

Test using FPGA and a breadboard

External hardware

• 32x8 LED Matrix.
• MAX7219/7221.
• 5V battery.

Pinout

Input Output Bidirectional
0 spi_clk
1 spi_cs_n
2 spi_mosi
3
4
5

290

https://github.com/ayla-lin/led-matrix

Input Output Bidirectional
6
7

291

TT09Ball VGA Screensaver [363]

• Author: Rebecca G. Bettencourt; Uri Shaked
• Description: THE STRONGEST DVD style screen saver (640x480, TinyVGA

Pmod)
• GitHub repository
• HDL project
• Mux address: 363
• Extra docs
• Clock: 0 Hz

How it works

Displays THE STRONGEST bouncing logo on the screen, with animated color gradi-
ent.

How to test

Connect to a VGA monitor. Set the following inputs to configure the design:

• tile (ui_in[0]) to repeat the logo and tile it across the screen,
• solid_color (ui_in1) to use a solid color instead of an animated gradient.

292

https://github.com/RebeccaRGB/tt09ball-screensaver
https://en.wikipedia.org/wiki/Collatz_conjecture

External hardware

TinyVGA PMOD

Pinout

Input Output Bidirectional
0 tile R1
1 solid_color G1
2 B1
3 VSync
4 R0
5 G0
6 B0
7 HSync

293

https://github.com/mole99/tiny-vga

Color Bars [365]

• Author: Rebecca G. Bettencourt
• Description: VGA demo resembling NTSC color bars
• GitHub repository
• HDL project
• Mux address: 365
• Extra docs
• Clock: 0 Hz

How it works

Displays a test pattern on the screen resembling NTSC color bars. Optionally, you can
add a station ID, make the ID scroll, and make the color bars scroll.
The colors displayed are NOT accurate to actual NTSC color bars. This cannot be
used to adjust NTSC video equipment; it’s just for fun.

294

https://github.com/RebeccaRGB/tt-colorbars

How to test

Connect to a VGA monitor. Set the following inputs to configure the design:

• show_id (ui_in[0]) to add a station ID,
• custom_id (ui_in[1]) to use a custom ID (address on uio_out, data on

ui_in[7:4]),
• scroll_id (ui_in[2]) to make the ID scroll,
• scroll_bars (ui_in[3]) to make the color bars scroll.

External hardware

TinyVGA PMOD

Pinout

Input Output Bidirectional
0 show_id R1 A0 (custom id)
1 custom_id G1 A1 (custom id)
2 scroll_id B1 A2 (custom id)
3 scroll_bars VSync A3 (custom id)
4 D3 (custom id) R0 A4 (custom id)
5 D2 (custom id) G0 A5 (custom id)
6 D1 (custom id) B0 A6 (custom id)
7 D0 (custom id) HSync A7 (custom id)

295

https://github.com/mole99/tiny-vga

Hardware UTF Encoder/Decoder [367]

• Author: Rebecca G. Bettencourt
• Description: Converts Unicode code points between UTF-8, UTF-16, and UTF-

32.
• GitHub repository
• HDL project
• Mux address: 367
• Extra docs
• Clock: 0 Hz

How it works

This project contains hardware logic to convert between the UTF‑8, UTF‑16, and
UTF‑32 encodings for Unicode text.
It will detect and raise an error signal on overlong encodings, out of range code point
values, and invalid byte sequences.
(You can optionally disable range checking if you wish to use the original UTF‑8 spec
that supports values up to 0x7FFFFFFF.)

Basic operation

• In the initial state, all dedicated inputs should be set HIGH.
• At any time, set /RESET (rst_n) LOW and pulse CLK to reset all inputs and

outputs to initial state.
• At any time, set /ROUT (input 0) LOW and pulse CLK to seek to the beginning

of the output.
• You can set ERRS or /PROPS (input 1) HIGH to get an error status on the

dedicated outputs.
• You can set ERRS or /PROPS (input 1) LOW to get character properties on

the dedicated outputs.
• You can set CHK (input 2) HIGH to raise an error signal when the code point

value is out of range (�0x110000).
• You can set CHK (input 2) LOW to ignore out of range code point values and

encode/decode values up to 0x7FFFFFFF.
• You can set CBE (input 3) HIGH to specify big endian order for UTF‑32 and

UTF‑16 input and output.
• You can set CBE (input 3) LOW to specify little endian order for UTF‑32 and

UTF‑16 input and output.

296

https://github.com/RebeccaRGB/hardware-utf8

Inputting UTF‑32

1. Set READ or /WRITE (input 4) LOW.
2. Set /CIO (input 5, character I/O) LOW.
3. Set bidirectional I/O to the first byte of the UTF‑32 word and pulse CLK.
4. Set bidirectional I/O to the second byte of the UTF‑32 word and pulse CLK.
5. Set bidirectional I/O to the third byte of the UTF‑32 word and pulse CLK.
6. Set bidirectional I/O to the fourth byte of the UTF‑32 word and pulse CLK.
7. Set /CIO (input 5, character I/O) HIGH.
8. Set READ or /WRITE (input 4) HIGH.
9. If READY (output 0) is HIGH and ERROR (output 5) is LOW, the input and

output are both valid.
10. If READY (output 0) is LOW or ERROR (output 5) is HIGH, the input was out

of range (�0x110000 or, if CHK is LOW, �0x80000000).

Inputting UTF‑16

1. Set ERRS or /PROPS (input 1) LOW.
2. Set READ or /WRITE (input 4) LOW.
3. Set /UIO (input 6, UTF‑16 I/O) LOW.
4. Set bidirectional I/O to the first byte of the first UTF‑16 word and pulse CLK.
5. Set bidirectional I/O to the second byte of the first UTF‑16 word and pulse CLK.
6. If HIGHCHAR (output 3) is LOW, skip to step 9.
7. Set bidirectional I/O to the first byte of the second UTF‑16 word and pulse CLK.
8. Set bidirectional I/O to the second byte of the second UTF‑16 word and pulse

CLK.
9. Set /UIO (input 6, UTF‑16 I/O) HIGH.

10. Set READ or /WRITE (input 4) HIGH.
11. Set ERRS or /PROPS (input 1) HIGH.
12. If READY (output 0) is HIGH and ERROR (output 5) is LOW, the input and

output are both valid.
13. If RETRY (output 1) is HIGH, the first word was a high surrogate but the second

word was not a low surrogate. The output will be the high surrogate only; the
last word will need to be processed again.

Inputting UTF‑8

1. Set READ or /WRITE (input 4) LOW.
2. Set /BIO (input 7, byte I/O) LOW.
3. Set bidirectional I/O to the current byte of the UTF‑8 sequence and pulse CLK.

297

4. Repeat step 3 until READY (output 0) or ERROR (output 5) is HIGH.
5. If READY (output 0) is HIGH and ERROR (output 5) is LOW, the input and

output are both valid.
6. If RETRY (output 1) is HIGH, the UTF‑8 sequence was truncated (not enough

continuation bytes). The output will be the truncated sequence only; the last
byte will need to be processed again.

7. If INVALID (output 2) is HIGH, the UTF‑8 sequence was a single continuation
byte or invalid byte (0xFE or 0xFF).

8. If OVERLONG (output 3) is HIGH, the UTF‑8 sequence was an overlong encod-
ing.

9. If NONUNI (output 4) is HIGH, the UTF‑8 sequence was out of range
(�0x110000).

Outputting UTF‑32

1. Set READ or /WRITE (input 4) HIGH.
2. Set /CIO (input 5, character I/O) LOW.
3. Pulse CLK and read the first byte of the UTF‑32 word from the bidirectional

I/O.
4. Pulse CLK and read the second byte of the UTF‑32 word from the bidirectional

I/O.
5. Pulse CLK and read the third byte of the UTF‑32 word from the bidirectional

I/O.
6. Pulse CLK and read the fourth byte of the UTF‑32 word from the bidirectional

I/O.
7. Set /CIO (input 5, character I/O) HIGH.
8. If the UTF‑32 word is within range, the input and output are both valid.
9. If the UTF‑32 word is not within range, then the input was either incomplete or

invalid.

Outputting UTF‑16

1. Set READ or /WRITE (input 4) HIGH.
2. If UEOF (output 6) is HIGH, then the input was either incomplete or invalid.
3. Set /UIO (input 6, UTF‑16 I/O) LOW.
4. Pulse CLK and read the next byte of the UTF‑16 sequence from the bidirectional

I/O.
5. Repeat step 4 until UEOF (output 6) is HIGH.
6. Set /UIO (input 6, UTF‑16 I/O) HIGH.

298

Outputting UTF‑8

1. Set READ or /WRITE (input 4) HIGH.
2. If BEOF (output 7) is HIGH, then the input was either incomplete or invalid.
3. Set /BIO (input 7, byte I/O) LOW.
4. Pulse CLK and read the next byte of the UTF‑8 sequence from the bidirectional

I/O.
5. Repeat step 4 until BEOF (output 7) is HIGH.
6. Set /BIO (input 7, byte I/O) HIGH.

Error status

When ERRS or /PROPS (input 1) is HIGH, the dedicated outputs will be:

Name Meaning
0 READY The input and output are complete sequences.
1 RETRY The previous input was invalid or the start of another sequence and was ignored. Process the output, reset, and try the previous input again.
2 INVALID The input and output are invalid.
3 OVERLONG The UTF‑8 input was an overlong sequence.
4 NONUNI The code point value is out of range (�0x110000). (This is set independently of the CHK input; the CHK input only changes whether this counts as an error.)
5 ERROR Equivalent to (RETRY or INVALID or OVERLONG or (NONUNI and CHK)).

If all of these outputs are LOW, the accumulated input is incomplete and more input
is required (underflow).

Character properties

When ERRS or /PROPS (input 1) is LOW, the dedicated outputs will be:

Name Meaning
0 NORMAL The code point value is valid and not a C0 or C1 control character, surrogate, private use character, or noncharacter.
1 CONTROL The code point value is valid and a C0 or C1 control character (0x00-0x1F or 0x7F-0x9F).
2 SURROGATE The code point value is valid and a UTF‑16 surrogate (0xD800-0xDFFF).
3 HIGHCHAR The code point value is valid and either a high surrogate (0xD800-0xDBFF) or a non-BMP character (�0x10000).
4 PRIVATE The code point value is valid and either a private use character (0xE000-0xF8FF, �0xF0000) or the high surrogate of a private use character (0xDB80-0xDBFF).
5 NONCHAR The code point value is valid and a noncharacter (0xFDD0-0xFDEF or the last two code points of any plane).

If all of these outputs are LOW, there is no valid code point in the output.

299

How to test

The test.py file covers a comprehensive set of test cases which are listed in a separate
file to avoid bloating the TT09 manual.

External hardware

Any device that needs to process Unicode text.

Pinout

Input Output Bidirectional
0 /ROUT READY; NORMAL I/O LSB
1 ERRS, /PROPS RETRY; CONTROL I/O
2 CHK INVALID; SURROGATE I/O
3 CBE, /CLE OVERLONG; HIGHCHAR I/O
4 READ, /WRITE NONUNI; PRIVATE I/O
5 /CIO ERROR; NONCHAR I/O
6 /UIO UEOF I/O
7 /BIO BEOF I/O MSB

300

https://github.com/RebeccaRGB/hardware-utf8/blob/main/docs/test_cases.md
https://github.com/RebeccaRGB/hardware-utf8/blob/main/docs/test_cases.md

Styler [369]

• Author: Rebecca G. Bettencourt
• Description: 16x16 bitmap manipulation based on text mode attributes.
• GitHub repository
• HDL project
• Mux address: 369
• Extra docs
• Clock: 0 Hz

How it works

The styler chip is used to transform a 16x16 character glyph bitmap based on a set of
text mode attributes. It consists of a 4-bit scanline register, an 8-bit control register, a
16-bit bitmap register, and a 25-bit attribute register. Additionally, three independent
input lines are used to control polarity of faint text (even or odd pixels), text and cursor
blink rate, and cursor position.

301

https://github.com/RebeccaRGB/styler

Typical use of the styler chip follows these steps:

1. Set output enable (input 6) HIGH and write enable (input 7) LOW.
2. Set the address (inputs 0-2) to 0.
3. Set the bidirectional pins to the physical scanline number.
4. Pulse clk.
5. Set output enable (input 6) LOW and write enable (input 7) HIGH.
6. Read the logical scanline number from the bidirectional pins.
7. Set output enable (input 6) HIGH and write enable (input 7) LOW.
8. Set the address (inputs 0-2) to 2.
9. Set the bidirectional pins to the right half of the row of the character bitmap

corresponding to the logical scanline number.
10. Pulse clk.
11. Set the address (inputs 0-2) to 3.
12. Set the bidirectional pins to the left half of the row of the character bitmap

corresponding to the logical scanline number.
13. Pulse clk.
14. Set output enable (input 6) LOW and write enable (input 7) HIGH.
15. Set the address (inputs 0-2) to 2.
16. Read the right half of the final character bitmap from the bidirectional pins.
17. Set the address (inputs 0-2) to 3.
18. Read the left half of the final character bitmap from the bidirectional pins.

You can also read from the dedicated output pins without changing output enable or
write enable.
The register layout is as follows:

302

Address Bits Description
0 0-3 Input: physical scanline number; output: logical scanline number.
0 4-7 Input: ignored; output: 0.
1 0 Show cursor at bottom of character cell.
1 1 Show cursor at top of character cell.
1 2 Enable cursor blink.
1 3 Enable cursor.
1 4 Enable character underline, strikethrough, overline attributes.
1 5 Enable character blink, alternate attributes.
1 6 Reserved.
1 7 Reserved.
2 0-7 Right half of character glyph bitmap.
3 0-7 Left half of character glyph bitmap.
4 0 X offset. (Determines which half of a double-width character.)
4 1 Double width.
4 2 Y offset. (Determines which half of a double-height character.)
4 3 Double height.
4 4 X premirror (flip input bitmap horizontally).
4 5 X postmirror (flip output bitmap horizontally).
4 6 Y premirror (invert physical scanline).
4 7 Y postmirror (invert logical scanline).
5 0 Bold.
5 1 Faint.
5 2 Italic.
5 3 Reverse italic.
5 4 Blink (text only, VT100-style).
5 5 Alternate (text and background, Apple II-style).
5 6 Inverse.
5 7 Hidden.
6 0 Underline.
6 1 Double underline.
6 2 Dotted underline.
6 3 Strikethrough.
6 4 Double strikethrough.
6 5 Dotted strikethrough.
6 6 Overline.
6 7 Double overline.
7 0 Dotted overline.
7 1-7 Input: ignored; output: 0.

The input pin assignments are as follows:

303

Pin Description
0 A0 (address line 0).
1 A1 (address line 1).
2 A2 (address line 2).
3 Faint text polarity (even or odd pixels).
4 Blink phase.
5 Cursor enable.
6 /OE (output enable).
7 /WE (write enable).

How to test

The test.py file covers a variety of test cases.

External hardware

The styler chip is intended to be used as part of a larger text mode video display
hardware project.

304

Pinout

Input Output Bidirectional
0 A0 (address) D0 D0
1 A1 (address) D1 D1
2 A2 (address) D2 D2
3 faint text polarity D3 D3
4 blink phase D4 D4
5 cursor enable D5 D5
6 /OE (output enable) D6 D6
7 /WE (write enable) D7 D7

305

VGA Timing Experiments [371]

• Author: Rebecca G. Bettencourt
• Description: Configurable VGA signal generator for experimentation purposes.
• GitHub repository
• HDL project
• Mux address: 371
• Extra docs
• Clock: 0 Hz

How it works

Generates VGA signals. All signal timings (display area, front porch, back porch, hsync,
vsync, polarity) are fully configurable and several test patterns are included to enable
experimentation.

How to test

Connect to a VGA monitor. Set ui_in[3:0] all LOW and pulse ui_in[7] to set
signal timings to a “known good” configuration of 640×480 at 60Hz. Observe the
vertical color bars. Set either ui_in[0] or ui_in[1] HIGH and pulse ui_in[7] to
change the displayed test pattern.
Set ui_in[3:0] to a register address, set {ui_in[6:4], uio_in} to a register
value, and pulse ui_in[7] to change individual timing values. (When setting hsync
width or vsync height, set ui_in[6] HIGH for positive polarity or LOW for negative
polarity.)

Address Description Default
0 Reset.
1 Next pattern.
2 Previous pattern.
3 Pattern number. 31
4 Horizontal visible width. 640
5 Horizontal front porch (right border). 16
6 Horizontal sync width (polarity on ui_in[6]). 96
7 Horizontal back porch (left border). 48
8 Vertical visible height. 480
9 Vertical front porch (bottom border). 10
10 Vertical sync height (polarity on ui_in[6]). 2

306

https://github.com/RebeccaRGB/vga-timing-experiments

Address Description Default
11 Vertical back porch (top border). 33
12 Pattern color. 0
13 Next color.
14 Previous color.
15 Reset.

Pattern Description
0 Solid color.
1 1×1 pixel checkerboard.
2 2×2 pixel checkerboard.
3 4×4 pixel checkerboard.
4 8×8 pixel checkerboard.
5 16×16 pixel checkerboard.
6 32×32 pixel checkerboard.
7 64×64 pixel checkerboard.
8 8×8 pixel grid.
9 16×16 pixel grid.
10 32×32 pixel grid.
11 64×64 pixel grid.
12 1×1 pixel color table.
13 2×2 pixel color table.
14 4×4 pixel color table.
15 8×8 pixel color table.
16 16×16 pixel color table.
17 32×32 pixel color table.
18 1×1 pixel color antidiagonal lines.
19 2×2 pixel color antidiagonal lines.
20 4×4 pixel color antidiagonal lines.
21 8×8 pixel color antidiagonal lines.
22 16×16 pixel color antidiagonal lines.
23 32×32 pixel color antidiagonal lines.
24 1×1 pixel color diagonal lines.
25 2×2 pixel color diagonal lines.
26 4×4 pixel color diagonal lines.
27 8×8 pixel color diagonal lines.
28 16×16 pixel color diagonal lines.
29 32×32 pixel color diagonal lines.
30 Horizontal color bars.
31 Vertical color bars.

307

External hardware

TinyVGA PMOD

Pinout

Input Output Bidirectional
0 A0 R1 D0
1 A1 G1 D1
2 A2 B1 D2
3 A3 VSync D3
4 D8 R0 D4
5 D9 G0 D5
6 D10 B0 D6
7 WE HSync D7

308

https://github.com/mole99/tiny-vga

JTAG TAP [385]

• Author: Sean Patrick O’Brien
• Description: JTAG TAP with Boundary Scan
• GitHub repository
• HDL project
• Mux address: 385
• Extra docs
• Clock: 0 Hz

How it works

A simple “inner project” drives a seven-segment display from either an internal 4-bit
counter or from a 4-bit value presented on ui[4:1].
The “outer project” adds a boundary scan register and JTAG TAP that supports the
following instructions:

• IDCODE
• SAMPLE/PRELOAD
• EXTEST
• INTEST
• CLAMP
• BYPASS

How to test

At startup, the project will drive the seven-segment display from either the internal
4-bit counter (if ui[0] is low) or from ui[4:1] (if ui[0] is high).
A BSDL file is provided for testing the TAP and boundary scan register. A tool like
UrJTAG can be used to control the output pins (via the EXTEST instruction) or to test
the inner project (via the INTEST instruction).

External hardware

JTAG adapter connected to uio[7:4]

Pinout

309

https://github.com/obriensp/tt10-spo-jtag
../bsdl/tt10.bsd
https://urjtag.sourceforge.io

Input Output Bidirectional
0 output_mode seven_segment
1 output_value[0] seven_segment
2 output_value1 seven_segment
3 output_value2 seven_segment
4 output_value[3] seven_segment TCK
5 seven_segment TMS
6 seven_segment TDI
7 seven_segment TDO

310

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

7-segment with LFSR [387]

• Author: Jun-ichi OKAMURA
• Description: TEST 7-segment/LFSR
• GitHub repository
• HDL project
• Mux address: 387
• Extra docs
• Clock: 50000000 Hz

How it works

This design uses a set of registers to divide the clock and combinational logic to convert
binary values into decimal for display.

• Inputs[0]: Selects between a fixed period or a pseudo-random period for counting
up the seven-segment display.

• Inputs1: Chooses between displaying either a hexadecimal sequence (“0” to “F”)
or the text ”-OPENSUSI-AISol-” on the display.

• Bidirectional Outputs: The bottom 8 bits of a 24-bit counter are placed on the
bidirectional outputs.

Fixed Period Mode:

• The internal 16-bit compare register is set to 10,000.
• This results in the display incrementing by one each second in case the CLK

input is 10KHz.

Pseudo-Random Period Mode:

• If Input[0] is set to 1, an 8-bit pseudo-random value is used as bits 6 to 12 of
the 16-bit compare register, introducing variation in the counting period.

311

https://github.com/jun1okamura/tt10_um_jun1okamura
https://en.wikipedia.org/wiki/Collatz_conjecture

How to test

After reset, the counter will increment by one every second, assuming a 10MHz input
clock.
You can experiment by modifying Inputs[1:0] to:

• Change the display characters
• Adjust the pseudo-random sequence of periodic speed

External hardware

Only TT-EVB.

Note

This is the first test project designed by “jun1okamura”, supported by OpenSUSI (non-
profit) and AIST Solutions inc. in Japan.

312

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 sel0 segment a counter bit 0
1 sel1 segment b counter bit 1
2 compare bit 13 segment c counter bit 2
3 compare bit 14 segment d counter bit 3
4 compare bit 15 segment e counter bit 4
5 compare bit 16 segment f counter bit 5
6 compare bit 17 segment g counter bit 6
7 compare bit 18 dot counter bit 7

313

TT10 HPDL 1414 Uart [389]

• Author: Andrew Tudoroi
• Description: Uart interface for 4xHPDL 1414 PMOD Module
• GitHub repository
• HDL project
• Mux address: 389
• Extra docs
• Clock: 12000000 Hz

How it works

This project is a compact UART transceiver with an integrated display update mecha-
nism. It operates at 115200 baud and stores received data in a 16-byte internal buffer.
The data is asynchronously transferred to four HPDL-1414 alphanumeric LED modules.
When new characters arrive and the buffer is full, the existing characters shift left to
make space. A blinking cursor indicates the current input position, and backspace
(Ctrl-H) is supported for navigating back and editing.

How to test

1. Connect the UART interface to a computer or microcontroller configured at
115200 baud.

2. Send ASCII characters over the UART interface.
3. Observe the received characters displayed on the HPDL-1414 modules.
4. Test the character shifting behavior by exceeding 16 characters.
5. Use Ctrl-H to test the backspace functionality.

External hardware

HPDL-1414 Pmod module https://github.com/ADDTDR/HPDL-1414-Pmod-Modu
le

314

https://github.com/ADDTDR/tt10-hpdl1414-uart
https://github.com/ADDTDR/HPDL-1414-Pmod-Module
https://github.com/ADDTDR/HPDL-1414-Pmod-Module

Signal test

315

Pinout

Input Output Bidirectional
0 HPDL_D0 HPDL_A0
1 HPDL_D1 HPDL_A1
2 HPDL_D2 HPDL_WR1
3 HPDL_D3 HPDL_WR2
4 HPDL_D4 HPDL_WR3
5 HPDL_D5 HPDL_WR4
6 HPDL_D6 UART_TX
7 UART_RX

316

KCH CD101 Saw Synth [391]

• Author: Johannes Pfau
• Description: Fork of the KCH CD101 Synth Generating Saw Waves
• GitHub repository
• HDL project
• Mux address: 391
• Extra docs
• Clock: 25000000 Hz

How it works

This project provides a simple digital synth. It consists of a pulse-wave generator
with programmable frequency, ADSR amplitude modulation with adjustable ADSR
parameters and a simple one-pole IIR filter with programmable cutoff frequency. Digital
audio output is generated using a simple first-order delta-sigma modulator. The lowpass
filter for the reconstruction of this signal must be realized externally.
All parameters can be programmed using a simple SPI slave interface. Sound generation
for a note starts when asserting the trigger signal and stops when the trigger is de-
asserted again. Triggering can happen both via a dedicated input or via SPI, which
enables fully customizeable operation using the SPI port. A VST/CLAP plugin is
provided to generate the SPI commands from DAWs.
This project is educational and therefore makes some decisions that might not lead to
an optimal design. For example, the structural presentation of the signal processing
pipeline is directly realized in hardware. Some parts of the design are therefore clocked
with a frequency as low as the sample rate and some even lower. This wastes a lot
of possible performance, but it is easier for students to map the audio application to
the circuit mentally, compared to introducing a more complex microcontroller-based
system (which might be a more efficient design). The design shows how to realize a
serial-parallel multiplier, use negative edge clocking, use simple small clock dividers,
use multiple clocks etc.
More detailed information on all these topics will be provided later on.

How to test

As the design generates a lot of data on the single serial output pin, testing generates
a lot of data. The cocotb testbench simulates and external lowpass and stores the
audio data to a .s16 file which you can convert to .wav using ffmpeg:

317

https://github.com/jpf91/cd101-tt-saw

Play the output file to assess whether the output is reasonable.
In addition, the testbench also compares to a golden reference output datastream,
that was generated from behavioral simulation. This test is used to determine if there
are any differences for the final implemented designs.

External hardware

• Button PMOD
• Audio PMOD
• SPI Master (No PMOD available. Use Adafruit board)

TODO: More detailed information about these things.

Pinout

Input Output Bidirectional
0 Trigger Audio Data
1 SPI CLK
2 SPI MOSI
3 SPI nSS
4
5
6
7

318

tt10_zhouzhouthezhou_adder [393]

• Author: Kyle Zhou
• Description: Adds 2 4bit numbers and displays the output on the 8 segment
• GitHub repository
• HDL project
• Mux address: 393
• Extra docs
• Clock: 16000 Hz

How it works

Adds 2 4bit numbers together Verilog then goes into an always block where it maps
the sum to a number on the 8 segment If the sum is a number the 8 segment cannot
display, it will show a . Overflow is not handled

How to test

Use the dip switches to set the input, will add the upper 4 bits to the lower 4 bits

External hardware

N/A

Pinout

Input Output Bidirectional
0 ui_0 uo_1
1 ui_1 uo_2
2 ui_2 uo_3
3 ui_3 uo_4
4 ui_4 uo_5
5 ui_5 uo_6
6 ui_6 uo_7
7 ui_7 uo_8

319

https://github.com/zhouzhouthezhou/tt10-zhouzhouthezhou-adder

Asynchronous Locking Unit [395]

• Author: Tórur Biskopstø Strøm
• Description: An asynchronous lock with 8 request signals and 8 grant signals
• GitHub repository
• HDL project
• Mux address: 395
• Extra docs
• Clock: 0 Hz

How it works

Each input corresponds to a separate request for the lock. The lock is given to the
single output signal that goes high.

Pinout

Input Output Bidirectional
0 req0 ack0
1 req1 ack1
2 req2 ack2
3 req3 ack3
4 req4 ack4
5 req5 ack5
6 req6 ack6
7 req7 ack7

320

https://github.com/torurstrom/tt10-async-lock

XOR Cipher [397]

• Author: Damian
• Description: Simple XOR Cipher with UART
• GitHub repository
• HDL project
• Mux address: 397
• Extra docs
• Clock: 50000000 Hz

How it works

You send a char via a uart port (8bit data, no partity bit) and it sends an “encrypted”
char back
To update the key : briefly activate a 1 signal on updateKey port, the circuit will now
wait for the next input and set it as the new key once received

the activation signal for updateKey should be held down before sending
the new key otherwise the circuit will stay in the updateKey state

The default key is b10101010.

How to test

A python file containing a code to communicate with the serial port may be transformed
to work with the TT board.

External hardware

It requires an input clock of 50Mhz
It has two inputs : ui[0]: “updateKey” ui[7]: “rx”
and one output uo[0]: “tx”

321

https://github.com/gantover/tt10-verilog-gantover

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 updateKey tx
1
2
3
4
5
6
7 rx

322

Verilog based clock to 7-segment counter [399]

• Author: EnJens
• Description: Verilog based clock to 7-segment counter
• GitHub repository
• HDL project
• Mux address: 399
• Extra docs
• Clock: 1 Hz

How it works

I have no idea yet! But something something counting and showing it on 7-segment.

How to test

Enable it, get a clock and watch it work.

External hardware

7-segment display from demo board

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN4 OUT5
6 IN5 OUT6
7 IN6 OUT7

323

https://github.com/EnJens/tt10-workshop-verilog

TT10_Luke_Clock [401]

• Author: Luca Pezzarossa
• Description: A VGA based binary clock
• GitHub repository
• HDL project
• Mux address: 401
• Extra docs
• Clock: 25175000 Hz

How it works

The TT10 Luke Clock project implements a VGA-based binary clock using Chisel.
The clock displays hours, minutes, and seconds in a binary format using a matrix of
squares, which updates every second. Each colums shows the binary value of a digit
of the time in the format HH:MM:SS.

324

https://github.com/lucapezza/tt10_luke_clock

Facts
• The clock supports multiple time-clock sources (internal and expternal)

selectable via input settings and allows user interaction through input buttons
(see description in the user input below).

• The display colors change randomly every day (randomized with LFSR) or with
input by the used. The display layout can also be changed by the user.

• The VGA output generates a 640x480 image at 60 fps.
• All user inputs (buttons and switches) are debounced interanlly.

Module inputs (ui_in)
• ui_in(0): Select time clock source [bit 0]
• ui_in(1): Select time clock source [bit 1]

– 00: Use internal clock (if set at 25.175 MHz)
– 01: Use internal clock (if set at 25 MHz)
– 10: Use external 32.768 kHz clock from ui_in(2)
– 11: Use external 1 Hz clock from ui_in(3)

• ui_in(2): Time clock 1Hz

– External 1 Hz time clock input

• ui_in(3): Time clock 32768Hz

– External 32.768 kHz time clock input

• ui_in(4): Plus – Used to set the clock or change layout (deoending on select
mode inputs)

• ui_in(5): Minus (button) – Used to set the clock or change layout (deoend-
ing on select mode inputs)

• ui_in(6): Select mode [bit 0]
• ui_in(7): Select mode [bit 1]

– 00: Adjust seconds (Plus: clear seconds, Minus: clear seconds)
– 01: Adjust minutes (Plus: increase minutes, Minus: decrease minutes)
– 10: Adjust hours plus: (Plus: increase hours, Minus: decrease hours)
– 11: Switch layout/color (Plus: changes layout, Minus: changes colors)

Module outputs (uo_out) The outputs are uused to connect the VGA monitor.
They are compatible with with the TT VGA PMOD interface.

• uo_out(0): Red [bit 1]
• uo_out(1): Green [bit 1]

325

• uo_out(2): Blue [bit 1]
• uo_out(3): Vertical sync
• uo_out(4): Red [bit 0]
• uo_out(5): Green [bit 0]
• uo_out(6): Blue [bit 0]
• uo_out(7): Horizontal sync

Module bidirectionals (uio) The following bidirectionals (all used as output) pro-
vide debugging information for internal signals.

• uio_out(0): (Debug output) tClk
• uio_out(1): (Debug output) cntReg [bit 0]
• uio_out(2): (Debug output) cntReg [bit 1]
• uio_out(3): (Debug output) cntReg [bit 2]
• uio_out(4): (Debug output) cntReg [bit 3]
• uio_out(5): (Debug output) inDisplayArea
• uio_out(6): (Debug output) modeReg [bit 0]
• uio_out(7): (Debug output) modeReg [bit 1]

How to test

1. Connect VGA: Connect the TT VGA PMOD to the board and to the VGA
monitor.

2. Connect buttons and switches: Ensure all input buttons are wired correctly
to control clock settings and layout changes.

3. Select time source: Use the input settings to choose between the internal
clock, an external 32.768 kHz clock, or an external 1 Hz clock.

4. Set time and layout: Use the Plus and Minus buttons and the Select mode
switches to adjust hours, minutes, and seconds, or switch between different
display layouts and colors.

5. Observe VGA output: The binary clock should now display the current time,
with automatic updates and color changes occurring daily.

6. Test debugging outputs: If required, observe uio_out signals to verify in-
ternal timing and display area status.

7. Enjoy the clock: Watch the binary time representation update in real-time on
the VGA display.

External hardware

• TT VGA PMOD modules

326

• Buttons and switches
• (Optional) Real-Time Clock (RTC)

– For precision timekeeping, an RTC generating 1 Hz or 32.768 kHz can be
connected as an external time-clock input.

Pinout

Input Output Bidirectional
0 select time clock source [bit 0] (switch) red [bit 1] (debug output) tClk
1 select time clock source [bit 1] (switch) green [bit 1] (debug output) cntReg [bit 0]
2 time clock 1Hz blue [bit 1] (debug output) cntReg [bit 1]
3 time clock 32768Hz vsync (debug output) cntReg [bit 2]
4 plus (button) red [bit 0] (debug output) cntReg [bit 3]
5 minus (button) green [bit 0] (debug output) inDisplayArea
6 select mode [bit 0] (switch) blue [bit 0] (debug output) modeReg [bit 0]
7 select mode [bit 1] (switch) hsync (debug output) modeReg [bit 1]

327

SSMCl [403]

• Author: Oliver Keszocze
• Description: Slow 3-bit unsigned multiplier
• GitHub repository
• HDL project
• Mux address: 403
• Extra docs
• Clock: 0 Hz

How it works

This design contains a three-bit multiplier that aims to be area/resource efficient at
the expense of using multiple clock cycles to compute the product.
When start is asserted, the values at the x and y inputs are then being streamed into
the actual multiplier, taking 3 cycles in total. The multiplier computes the product in
9 cycles and then steams back the 6-bit product in 6 cycles. The result can be seen at
the output bit in cycle 18. This is illustrated by the simplified wave trace below.

The result will be held until the next multiplication starts streaming back its result (the
streaming aspect is fully hidden from the end user in this design!). The following wave
trace shows this in full detail (there might be an off-by-one error there; I tend to make
those. The general mode of operation is correctly captured by the trace!).

328

https://github.com/keszocze/tt10_SSMCl

How to test

The input to the multiplier can conveniently be controlled using the web interface of
the motherboard. Alternatively, you can connect the input/ouptut pmods as shown in
the table in the pinout section below.

Pinout

Input Output Bidirectional
0 y[0] product[0]
1 y1 product1
2 y2 product2
3 x[0] product[3]
4 x1 product[4]
5 x2 product[5]
6
7 start valid

329

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Configurable Logic Block [416]

• Author: Gary Mejia
• Description: A small CLB with a LUT3
• GitHub repository
• HDL project
• Mux address: 416
• Extra docs
• Clock: 0 Hz

How it works

The chip takes in two 8-bit inputs uin_in, this is the three arguments to the boolean
function, write enable of the LUT, and clock enable of the CLB, and uio_in is the
actual boolean function. The single output is the evaluation of the boolean function
given the argument.

How to test

A simple hardware test would be to set the uio_in to 011111111 to get a NAND3. Use
uin_in[3] to program the LUT with the seed and use uin_in[4] to make the output
synchronous. Use uin_in[2:0] to input values into the NAND3.

External hardware

Switches on all inputs and leds on all outputs.

Common Boolean Functions and Seeds

Function Seed
NAND3 01111111
NOR3 00000001
NOT 01010101
XOR2 01100110
Majority 11101000
Even Parity 01101001
One Hot 00010110

330

https://github.com/gmejiamtz/tt09-clb

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0] uio_in[0]
1 ui_in1 uo_out1 uio_in1
2 ui_in2 uo_out2 uio_in2
3 ui_in[3] uo_out[3] uio_in[3]
4 ui_in[4] uo_out[4] uio_in[4]
5 ui_in[5] uo_out[5] uio_in[5]
6 ui_in[6] uo_out[6] uio_in[6]
7 ui_in[7] uo_out[7] uio_in[7]

331

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Gamepad Pmod Demo [417]

• Author: Uri Shaked
• Description: Gamepad Pmod + Tiny VGA demo from VGA Playground
• GitHub repository
• HDL project
• Mux address: 417
• Extra docs
• Clock: 25175000 Hz

How it works

This project demonstrates how to use the Gamepad Pmod to get input from a gamepad
and display it on a VGA monitor.

How to test

Connect the TinyVGA and Gamepad Pmods to the Tiny Tapeout board, activate the
project, reset it, and start pressing buttons on the gamepad.
When you press a button on the gamepad, its corresponding symbol will appear in
green on the VGA display.

External hardware

• TinyVGA Pmod
• Gamepad Pmod

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VSync
4 gamepad_latch R0
5 gamepad_clk G0
6 gamepad_data B0

332

https://github.com/urish/tt10-gamepad-pmod-demo
https://github.com/mole99/tiny-vga
https://github.com/psychogenic/gamepad-pmod

7 HSync

333

4-bit up/down binary counter [418]

• Author: claudiotalarico
• Description: 4-bit up/down binary counter with enable and test mode
• GitHub repository
• HDL project
• Mux address: 418
• Extra docs
• Clock: 50000000 Hz

How it works

4 bit up/down binary counter with enable

Pin Mapping

direction | pin name | function
----------+--------------+-------------------
in | clk | clk
in | rst_n | rst_n
in | ui_in[0] | test (test mode)
in | ui_in[1] | ud (up/down)
in | ui_in[2] | en (enable)
out | ui_out[3:0] | cnt[3:0] (count)

How to test

Connect input pin EN to VDD
Connect input pin TEST to GND
Connect input pin UD to VDD or GND through a switch
Connect input pin RST_N to an R-C startup circuit
Connect input pin CLK to a 50 MHz square waveform
Connect the output pins CNT[3:0] to 4 LEDs

External hardware

switch 4 LEDs R-C startup circuit

334

https://github.com/claudiotalarico/tt-count

Pinout

Input Output Bidirectional
0 test cnt[0]
1 ud cnt1
2 en cnt2
3 cnt[3]
4
5
6
7

335

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

6Digit7SegClock [419]

• Author: Patrick Lampl
• Description: A digital clock multiplexed to a 6 digit 7 segment display
• GitHub repository
• HDL project
• Mux address: 419
• Extra docs
• Clock: 32768 Hz

How it works

This project is a six digit clock displaying time in a hh:mm:ss format. Two active
high pushbuttons are available to increment both the hours and minutes for setting
the time. The dot between the hour and minute numbers as well as between the
minute and second numbers are blinking in the interval of a second. The outputs are
active low control signals for a common anode seven segment display. The signals are
multiplexed for all six digits and PMOS or PNP transistors are intended to enable the
six digits/anodes.

How to test

Supply a clock of 32768 Hz clock to the circuit and connect two push buttons to
input pins 0 and 1, connect a 7-segment display to the eight output ports. The 8-
bits are coded from MSB to LSB: dot, segments a, b, c, d, e, f and g. Conncet the
bidirectional ports (all configured as outputs) to the digit enable transistors. The coding
for the 6-bits is as follows: enable hour_tens, hour_ones, minute_tens, minute_ones,
second_tens, second_ones.

External hardware

Two active high push buttons with pull down resistors, a six digit seven segment display,
six PMOS or PNP transistors to enable the digits. Mounted on a breadboard or a
custom PCB.

Pinout

336

https://github.com/meisterlampe99/tt10-6Digit7SegClock

Input Output Bidirectional
0 minute increment segment g digit ena second ones
1 hour increment segment f digit ena second tens
2 segment e digit ena minute ones
3 segment d digit ena minute tens
4 segment c digit ena hour ones
5 segment b digit ena hour tens
6 segment a
7 segment dot

337

Team 17’s 8 bit DAC [420]

• Author: Vance Wiberg
• Description: This 8 bit digital to analogue converter uses a SAR to convert

signals from Digial into Analoge
• GitHub repository
• HDL project
• Mux address: 420
• Extra docs
• Clock: 0 Hz

How it works

Uses nonlinear sampling to convert a input coming from a comparator to a digital
signal

How to test

In put comparator values, check for desired digital outputs

External hardware

Analog comparator and resistor array

Pinout

Input Output Bidirectional
0 A[0] Z[0] O[0]
1 A1 Z1
2 A2 Z2
3 A[3] Z[3]
4 A[4] Z[4]
5 A[5] Z[5]
6 A[6] Z[6]
7 A[7] Z[7]

338

https://github.com/VanceWiberg/8bitSAR
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

MAC Operation [421]

• Author: Sachin & Sandeep
• Description: Multiplication & accumulation
• GitHub repository
• HDL project
• Mux address: 421
• Extra docs
• Clock: 100000 Hz

How it works

It multiply and accumulates the data

How to test

Using Memory Operation

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 ui[0] uo[0]
1 ui1 uo1
2 ui2 uo2
3 ui[3] uo[3]
4 ui[4] uo[4]
5 ui[5] uo[5]
6 ui[6] uo[6]
7 ui[7] uo[7]

339

https://github.com/OnSachinSharma/tt10-verilog-MAC_Accelerator
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Tiny Registers [422]

• Author: Roni Kant, Jeremy Kam
• Description: Various Registers for 8-bit CPU
• GitHub repository
• HDL project
• Mux address: 422
• Extra docs
• Clock: 50000000 Hz

How it works

The various registers used for a basic 8-bit CPU design. Consists of a simple general
purpose register, a memory address register, and an instruction register. The 3 registers
are selected using the 6th and 7th uio pins. | uio[7] | uio[6] | Selected Register | |––
–––––|–––––––|—————––| | 0 | 0 | General Purpose Register | | 0 | 1 | Memory
Address Register | | 1 | 0 | Instruction Register |

Design Specifications

Instruction Register

Label Input/Output Description
CLK [1 bit] Input Clock signal. Executes actions on rising edges.
W bus [8 bit] Input Takes 8 bits with the most significant 4 bits representing the opcode and the least significant 4 bits representing any other necessary value. Write them to the instruction register.
\LI [1 bit] Input Control signal that decides whether to read from the bus.
\EI [1 bit] Input Control signal that decides tri-state buffer output to bus (drive register value if enabled, Z if disabled).
CLR [1 bit] Input Clears the instruction register’s data.
Instruction register[3:0] [4 bit] Output Output to W bus
Instruction register[7:4] [4 bit] Output Output to controller/sequences

Pinouts when instruction register is selected

Test Input Name Description
clk CLK
ui_in[7:0] W bus
uio_in [4] \LI
uio_in [5] \EI
rst_n CLR

340

https://github.com/Penguronik/TinyRegisters

Test Input Name Description
uio_out[3:0] Instruction register[7:4]
uo_out[3:0] Instruction register[3:0]

• Note: All simulations pictured in this document were run using a 10 ns clock.
The actual design will have a 100 ns clock.

Test Input Connections (as seen in waveform)

Test Input Name Description
clk CLK
ui_in[7:0] W bus
uio_in 1 \LI
uio_in 2 \EI
uio_in [0] CLR
uio_out[3:0] Instruction register[7:4]
uo_out[3:0] Instruction register[3:0]

Output Register

Label Input/Output Description
CLK [1 bit] Input Clock signal. Executes actions on rising edges.
W bus [8 bit] Input Data from the bus lines that are to be written to the Output register.
\LO [1 bit] Input Control signal that decides whether to read from the bus and load onto the output register.
Output register [8 bit] Output Register data that will be written to the binary display.

Pinouts when output register is selected

341

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Test Input Name Description
clk CLK
ui_in[7:0] W bus
uio_in [4] \LO
uo_out[7:0] Output register

Test Input Connections (as seen in waveform)

Test Input Name Description
clk CLK
ui_in[7:0] W bus
uio_in [0] \LO
uo_out[7:0] Output register

B Register

Label Input/Output Description
CLK [1 bit] Input Clock signal. Executes actions on rising edges.
W bus [8 bit] Input Data from the bus lines that are to be written to the B register.
\LB [1 bit] Input Control signal that decides whether to read from the bus and load onto the B register.
B register [8 bit] Output Register data that will be written to adder/subtractor.

Pinouts when b register is selected

Test Input Name Description
clk CLK
ui_in[7:0] W bus
uio_in [4] \LB
uo_out[7:0] B register

342

Test Input Connections (as seen in waveform)

Test Input Name Description
clk CLK
ui_in[7:0] W bus
uio_in [0] \LB
uo_out[7:0] B register

Input and MAR

Label Input/Output Description
CLK [1 bit] Input Clock signal. Executes actions on rising edges.
W bus [8 bit] Input Data from the bus lines that are to be written either Input or MAR register.
\LMD [1 bit] Input Control signal that decides if W bus data is to be written to the Input register. Should not be active at the same time as the MA control signal.
\LMA [1 bit] Input Control signal that decides if W bus data is to be written to the MAR register. Should not be active at the same time as the MD control signal.
Input register [8 bit] Output Register data to be written to memory.
MAR [4 bit] Output Register data taken by RAM that controls where the data is to be written.

Pinouts when input and mar register is selected

Test Input Name Description
clk CLK
ui_in[7:0] W bus
uio_in [4] \LMD
uio_in [5] \LMA
uo_out[7:0] Input register
uio_out[3:0] MAR

Test Input Connections (as seen in waveform)

Test Input Name Description
clk CLK

343

Test Input Name Description
ui_in[7:0] W bus
uio_in [0] \LMD
uio_in 1 \LMA
uo_out[7:0] Input register
uio_out[3:0] MAR

Pinout

Input Output Bidirectional
0 in_0 out_0 extra_output_0
1 in_1 out_1 extra_output_1
2 in_2 out_2 extra_output_2
3 in_3 out_3 extra_output_3
4 in_4 out_4 extra_input_0
5 in_5 out_5 extra_input_1
6 in_6 out_6 register_select_0
7 in_7 out_7 register_select_1

344

https://en.wikipedia.org/wiki/Collatz_conjecture

Xor-Logic [423]

• Author: Haohua Li
• Description: A xor logic from input to output pins
• GitHub repository
• HDL project
• Mux address: 423
• Extra docs
• Clock: 0 Hz

How it works

It uses SPI interface for serial input and convert 8 bit data to parallel output.

How to test

Use RP2040 or other boards to communicate.

External hardware

WIP.

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0] uio_in[0]
1 ui_in1 uo_out1 uio_in1
2 ui_in2 uo_out2 uio_in2
3 ui_in[3] uo_out[3] uio_in[3]
4 ui_in[4] uo_out[4] uio_in[4]
5 ui_in[5] uo_out[5] uio_in[5]
6 ui_in[6] uo_out[6] uio_in[6]
7 ui_in[7] uo_out[7] uio_in[7]

345

https://github.com/eggfly/tt10-xor-logic
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Leaky Integrate Fire Neuron [424]

• Author: Rocky Lim
• Description: Simulates a Leaky Integrate Fire Neuron based on snnTorch’s im-

plementation
• GitHub repository
• HDL project
• Mux address: 424
• Extra docs
• Clock: 0 Hz

How it works

This chip takes in an 8-bit number voltage to simulate a Leaky Fire Integrate (LIF)
Network. The 8-bit number is split into two different neurons in which they have
their respective layers, and it takes that voltage to act as an input current to the LIF
neurons. Each neuron generates a spike when the threshold, defined to be 8, is reached
or surpassed. Once an input current is passed through, each neuron will decay the value
over each clock cycle by shifting the bits of the current state once as it constantly takes
the input current. The idea behind the layers is for more significant spikes to be able
to reach the output states while less significant events would not affect the output.

How to test

N/A

External hardware

N/A

Pinout

Input Output Bidirectional
0 Input Current Bit [0] (Input Neuron 1) State Variable Bit [0] (Output Neuron 1) Spike Bit (Output Layer, Neuron 2)
1 Input Current Bit 1 (Input Neuron 1) State Variable Bit 1 (Output Neuron 1) Spike Bit (Output Layer, Neuron 1)
2 Input Current Bit 2 (Input Neuron 1) State Variable Bit 2 (Output Neuron 1) Spike Bit (Inner Layer 2, Neuron 2)
3 Input Current Bit [3] (Input Neuron 1) State Variable Bit [3] (Output Neuron 1) Spike Bit (Inner Layer 2, Neuron 1)
4 Input Current Bit [4] (Input Neuron 2) State Variable Bit [4] (Output Neuron 2) Spike Bit (Inner Layer 1, Neuron 2)

346

https://github.com/bluemeaniez/tt09-chip4lyfe
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
5 Input Current Bit [5] (Input Neuron 2) State Variable Bit [5] (Output Neuron 2) Spike Bit (Inner Layer 1, Neuron 1)
6 Input Current Bit [6] (Input Neuron 2) State Variable Bit [6] (Output Neuron 2) Spike Bit (Input Layer, Neuron 2)
7 Input Current Bit [7] (Input Neuron 2) State Variable Bit [7] (Output Neuron 2) Spike Bit (Input Layer, Neuron 1)

347

Simon Says memory game [425]

• Author: Uri Shaked
• Description: Repeat the sequence of colors and sounds to win the game
• GitHub repository
• HDL project
• Mux address: 425
• Extra docs
• Clock: 50000 Hz

How it works

Simon says is a simple electronic memory game: the user has to repeat a growing
sequence of colors. The sequence is displayed by lighting up the LEDs. Each color also
has a corresponding tone.
In each turn, the game will play the sequence, and then wait for the user to repeat the
sequence by pressing the buttons according to the color sequence. If the user repeated

348

https://github.com/urish/tt10-simon-game

the sequence correctly, the game will play a “leveling-up” sound, add a new color at
the end of the sequence, and move to the next turn.
The game continues until the user has made a mistake. Then a game over sound is
played, and the game restarts.
Check out the online simulation at https://wokwi.com/projects/408757730664700929
(including wiring diagram).

Clock settings

The clk_sel input selects the clock source:

• 0: external 50 KHz clock, provided through the clk input.
• 1: internal clock, generated by the ring_osc module, with a frequency of ~55

KHz.

The internal clock is generated by a 13-stage ring oscillator, divided by 16384 to get
the desired frequency. The divider value was determined by running the ring oscillator
simulation in <xschem/simulation/ring_osc.spice>.
When using the internal clock, its signal is also output on the uo_out[7] pin for
debugging purposes.

How to test

Use a Simon Says Pmod to test the game.
Provide a 50 KHz clock input, reset the game, and enjoy!
If you don’t have the Pmod, you can still connect the hardware manually as follows:

1. Connect the four push buttons to pins btn1, btn2, btn3, and btn4. Also
connect each button to a pull down resistor.

2. Connect the LEDs to pins led1, led2, led3, and led4, matching the colors
of the buttons (so led1 and btn1 have the same color, etc.). Don’t forget
current-limiting resistors!

3. Connect the speaker to the speaker pin (optional).
4. Connect the seven segment display as follows: seg_a through sev_g to individ-

ual segments, dig1 to the common pin of the tens digit, dig2 to the common
pin of the ones digit. Set seginv according to the type of 7 segment display
you have: high for common anode, low for common cathode.

5. Reset the game, and then press any button to start it. Enjoy!

349

https://wokwi.com/projects/408757730664700929
https://github.com/urish/tt-simon-pmod

External Hardware

Simon Says Pmod or four push buttons (with pull-down resistors), four LEDs, and
optionally a speaker/buzzer and two digit 7-segment display.

Pinout

Input Output Bidirectional
0 btn1 led1 seg_a
1 btn2 led2 seg_b
2 btn3 led3 seg_c
3 btn4 led4 seg_d
4 seginv speaker seg_e
5 dig1 seg_f
6 dig2 seg_g
7 clk_sel clk_internal

350

https://github.com/urish/tt-simon-pmod

Tiny Tapeout Group 7 Lab D [426]

• Author: Will and Andrea
• Description: Our project implements a 4x4 array multiplier
• GitHub repository
• HDL project
• Mux address: 426
• Extra docs
• Clock: 0 Hz

How it works

Our program works by using a 4x4 array multiplier computes the product of two 4-bit
binary numbers, m and q, through bitwise multiplication and summing partial products.
Each bit of q is multiplied by every bit of m, generating partial products that are shifted
based on their significance. Full adders (FA) then sum these partial products. At each
stage, the full adders combine two partial product bits and any carry from the previous
stage. As the process progresses through the rows, the number of bits to sum increases,
which is managed by additional full adders. The final output is an 8-bit product p, with
the least significant bit produced by the sum of the first row and the most significant
bit formed by the final carry after all additions.

How to test

To test the 4x4 multipler feed the multiplier two 4 bit inputs. From here the partial
products will be calculated and the remaining product should be a binary representation
of the decimal product. To verify you can convert final products between binary and
decimal and compare expected values.

External hardware

Tiny Tapeout design

Pinout

Input Output Bidirectional
0 m[0] p[0]
1 m1 p1

351

https://github.com/WillPelech/tt09-secD7-array-multiplier
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Input Output Bidirectional
2 m2 p2
3 m[3] p[3]
4 q[0] p[4]
5 q1 p[5]
6 q2 p[6]
7 q[3] p[7]

352

http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

SPI 7-segment display [427]

• Author: Garima Bajpayi
• Description: A small SPI slave module driving the 7-segment display on the

TT-Carrier board
• GitHub repository
• HDL project
• Mux address: 427
• Extra docs
• Clock: 0 Hz

How it works

A small SPI slave device, receives 6-bit messages to display the lower 4-bits on the
7-segment display on the TinyTapeout Carrier board

How to test

• SCLK, SS and MOSI is provided through the inputs clk, ui[0] and ui[1]
respectively.

• First two bits in 6-bit message serve as the command, and can be 01 or 10.
• 01 causes the decimal point (uo[7]) to turn on and display the next 4 bits on

the 7-segment display.
• 10 behaves exactly the same, just switches the decimal point off.
• In case of malformed instructions (11 or 00), the decimal point switches on,

with the rest of the display off.

External hardware

• Carrier board Seven Segment Display
• Microcontroller to drive the SPI slave device

Pinout

Input Output Bidirectional
0 SS Segment A
1 MOSI Segment B
2 Segment C

353

https://github.com/garima19bajpayi/tt10-spi-7seg

Input Output Bidirectional
3 Segment D
4 Segment E
5 Segment F
6 Segment G
7 SCLK Segment DP

354

8-bit-CARRY_SKIP [428]

• Author: Aaquil Kasham, Temiloluwa Omomuwasan
• Description: 8 bit input adder
• GitHub repository
• HDL project
• Mux address: 428
• Extra docs
• Clock: 0 Hz

How it works

This project implements an 8-bit carry-skip adder using a combination of ripple-carry
and skip logic for enhanced performance. The adder is divided into two 4-bit sections.
The lower 4 bits compute the initial partial sum and generate a carry-out, which is then
either passed directly to the upper 4-bit section or skipped, depending on the carry-
propagate signal. This design reduces the delay associated with carry propagation,
making it more efficient than a conventional ripple-carry adder. The final 8-bit sum is
registered and outputted in sync with the clock signal.

How to test

To test the carry-skip adder:

Load the design into your simulation environment.
Set the ui_in and uio_in inputs with the desired 8-bit values for addition.
The result of the addition will appear on uo_out after each rising edge.
Verify that the output matches expected values by comparing uo_out with the sum of the inputs.

For more extensive testing, a testbench can be used to automate input combinations
and check results across various cases.

External hardware

No external hardware is required for this project. List external hardware used in your
project (e.g. PMOD, LED display, etc), if any

355

https://github.com/thekashmasher/CarSkipAdd

Pinout

Input Output Bidirectional
0 a[0] sum[0] b[0]
1 a1 sum1 b1
2 a2 sum2 b2
3 a[3] sum[3] b[3]
4 a[4] sum[4] b[4]
5 a[5] sum[5] b[5]
6 a[6] sum[6] b[6]
7 a[7] sum[7] b[7]

356

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

AtomNPU [429]

• Author: Aakash Apoorv
• Description: A 4-bit Neural Processing Unit performing multiply-accumulate

operations
• GitHub repository
• HDL project
• Mux address: 429
• Extra docs
• Clock: 100000000 Hz

How it works

The AtomNPU (Neural Processing Unit) is a compact, 4-bit processing module de-
signed to perform basic multiply-accumulate (MAC) operations, essential for neu-
ral network computations. This NPU efficiently processes input activations and weights
to produce quantized output results.

Functional Components
1. Inputs:

• input_data [3:0] (ui_in[3:0]): Represents the 4-bit activation vec-
tor input to the NPU.

• weight [3:0] (uio_in[3:0]): Represents the 4-bit weight vector ap-
plied to the activation vector.

• start (uio_in[4]): A control signal that initiates the MAC operation.

2. Outputs:

• output_data [3:0] (uo_out[3:0]): The 4-bit result of the multiply-
accumulate operation.

• done (uo_out[4]): A status signal indicating the completion of the MAC
operation.

3. Control Signals:

• clk (Clock): Synchronizes the operations within the NPU.
• rst_n (Reset): An active-low signal that resets the NPU to its initial

state.

357

https://github.com/ToyMath/AtomNPU-tt10

Operational Workflow
1. Initialization (IDLE State):

• Upon receiving a reset (rst_n low), the NPU enters the IDLE state.
• All internal registers, including the accumulator and bit counter, are reset

to 0.
• The done signal is deasserted (0).

2. Start Operation (CALC State):

• When the start signal is asserted (1), the NPU transitions from IDLE
to CALC.

• The input_data and weight vectors are loaded into their respective
registers.

• The accumulator is initialized to 0, and the bit counter is reset to 0.

3. Multiply-Accumulate Process:

• The NPU processes each bit of the weight vector in a shift-add manner
over 4 clock cycles (one for each bit).

• For each bit (bit_count from 0 to 3):
– Check the Least Significant Bit (LSB) of weight:

∗ If the LSB (weight[0]) is 1, the input_data is left-shifted
by the current bit_count and added to the accumulator.

∗ This effectively multiplies the input_data by the corresponding
bit weight.

– Shift Right: The weight is shifted right by 1 bit to process the
next bit in the subsequent cycle.

– Increment Bit Counter: Moves to the next bit.

4. Completion (DONE State):

• After processing all 4 bits, the NPU transitions to the DONE state.
• Clamping Logic:

– If the accumulator exceeds 15 (8'd15), the output_data is
clamped to 15 to maintain the 4-bit width.

– Otherwise, the accumulator’s lower 4 bits are assigned to
output_data.

• The done signal is asserted (1) to indicate the operation’s completion.
• The NPU returns to the IDLE state, ready for the next operation.

358

Clamping Mechanism To prevent overflow and ensure the output remains within
the 4-bit constraint, the NPU incorporates a clamping mechanism:

• Condition: If the accumulator value after the MAC operation exceeds 15.
• Action: The output_data is set to 15 (4'd15).
• Else: The output_data reflects the accumulator’s value.

How to test

Below is a step-by-step guide to facilitate thorough testing.

Testing Procedure
1. Initialization:

• Power Up: Ensure the ASIC is properly powered.
• Reset: Press the reset button (asserting rst_n low) to initialize the

NPU.

2. Setting Inputs:

• Input Data (input_data [3:0]):
– Use switches/buttons connected to ui_in[3:0] to set the 4-bit

activation vector.
• Weight (weight [3:0]):

– Use switches/buttons connected to uio_in[3:0] to set the 4-bit
weight vector.

3. Initiating Operation:

• Press the start button (connected to uio_in[4]) to begin the MAC
operation.

• The start signal is internally connected to initiate the NPU’s state ma-
chine.

4. Observing Outputs:

• output_data [3:0] (uo_out[3:0]):
– Observe the LEDs connected to uo_out[3:0] to view the resulting

4-bit output.
• done Signal (uo_out[4]):

– The status LED connected to uo_out[4] will illuminate (1) once
the operation is complete.

359

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 input_data[0] output_data[0] weight[0]
1 input_data1 output_data1 weight1
2 input_data2 output_data2 weight2
3 input_data[3] output_data[3] weight[3]
4
5
6
7

360

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Semana UCU Verilog [430]

• Author: Universidad Católica del Uruguay
• Description: Union of proyects done in class
• GitHub repository
• HDL project
• Mux address: 430
• Extra docs
• Clock: 0 Hz

Summary

This project is a compilation of designs created by students with little to no knowledge
in electronics, as a part of a hands-on learning course during * SEMANA UCU* , with
their outputs multiplexed so we can test all. There were 15 total projects submitted,
based on 3 different guidelines. Select the project using mux_in[0:3].

Guidelines

1- Basic Project
• Description: A shift register with ui_in[0] as input and ui_in1 as external clock.

When the shift register contains a specific key chosen by the students, ui_out[0]
is driven to 1.

• How to test: Connect ui_in1 with an external clock and insert the key via ui_in1
form MSB to LSB

2- Advanced Project N°1
• Description: Decoder from 3 bits to 7 segment display with ui_in[2:0] as inputs.

Some groups upped it to 4 bits
• How to test: Input a 3 bit number through ui_in[2:0] and check if the output

lights up the correct number (Watch out, most groups made ui_in[0] be the
MSB and ui_in2 be the LSB of your input)

361

https://github.com/Franco-Barto/Semana_UCU_verilog
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

3- Advanced Project N°2
• Description: A 3 bit counter, driven by an external clock through ui_in[0], con-

nected to the 3 bits to 7 segment display decoder from Advanced Project N°1.
Once again some groups upped both the counter and the decoded to 4 bits.

• How to test: Connect ui_in[0] to an external clock and check if the 7 segment
display lights up correctly.

Projects (Ordered by mux value)

Group 0
• Member(s): Locatelli, Roldós
• Wokwi: https://wokwi.com/projects/410732069226456065
• Guideline chosen for project: Advanced Project N°1
• Details: Uses 4 bits as input, and a common cathode display

Group 1
• Member(s): Giacometti, Salvo, Varela
• Wokwi: https://wokwi.com/projects/410463015062285313
• Guideline chosen for project: Advanced Project N°2
• Details: Uses a common cathode display, and counts up to 10 and overflows.

Group 2
• Member(s): Raposo
• Wokwi: https://wokwi.com/projects/410724169008053249
• Guideline chosen for project: Advanced Project N°1
• Details: Uses 3 bits as input, and a common cathode display

Group 3
• Member(s): Bava, Perez
• Wokwi: https://wokwi.com/projects/410732939207035905
• Guideline chosen for project: Advanced Project N°1
• Details: Uses 3 bits as input, and a common cathode display

362

https://wokwi.com/projects/410732069226456065
https://wokwi.com/projects/410463015062285313
https://wokwi.com/projects/410724169008053249
https://wokwi.com/projects/410732939207035905

Group 4
• Member(s): Firpo, Pursals
• Wokwi: https://wokwi.com/projects/410570046815176705
• Guideline chosen for project: Advanced Project N°1
• Details: Uses 3 bits as input, and a common cathode display

Group 5
• Member(s): Martinez
• Wokwi: https://wokwi.com/projects/410640428205329409
• Guideline chosen for project: Advanced Project N°2
• Details: Uses a common cathode display, and counts up to 8 and overflows.

Group 6
• Member(s): Nasso, Juarez
• Wokwi: https://wokwi.com/projects/410553650788005889
• Guideline chosen for project: Advanced Project N°2
• Details:Uses a common cathode display, and counts up to 16 and overflows.

(Only displays correctly up to 9)

Group 7
• Member(s): Lenzuen, Gauthier
• Wokwi: https://wokwi.com/projects/410463710171875329
• Guideline chosen for project: Advanced Project N°2
• Details:Uses a common anode display, and counts up to 8 and overflows. In this

case, clock is driven by ui_in1, and ui_in[0] sets the counter to 7

Group 8
• Member(s): Mendez, Vago
• Wokwi: https://wokwi.com/projects/410463176068023297
• Guideline chosen for project: Advanced Project N°2
• Details:Uses a common cathode display, and counts up to 16 and overflows.

(Only displays correctly up to 9)

363

https://wokwi.com/projects/410570046815176705
https://wokwi.com/projects/410640428205329409
https://wokwi.com/projects/410553650788005889
https://wokwi.com/projects/410463710171875329
https://en.wikipedia.org/wiki/Collatz_conjecture
https://wokwi.com/projects/410463176068023297

Group 9
• Member(s): Albín
• Wokwi: https://wokwi.com/projects/410462842465590273
• Guideline chosen for project: Basic Project
• Details: Key is 0x11

Group 10
• Member(s): Muniz
• Wokwi: https://wokwi.com/projects/410463191701250049
• Guideline chosen for project: Basic Project
• Details: Key is 0xB2

Group 11
• Member(s): Cerizola, Mesa
• Wokwi: https://wokwi.com/projects/410555856765101057
• Guideline chosen for project: Basic Project
• Details: Key is 0x80

Group 12
• Member(s): Romano, Ventós
• Wokwi: https://wokwi.com/projects/410463349567547393
• Guideline chosen for project: Basic Project
• Details: Both 0x7F and 0xFF work as key

Group 13
• Member(s): Locatelli, Roldós
• Wokwi: https://wokwi.com/projects/410639448686247937
• Guideline chosen for project: Basic Project
• Details: Key is 0x49

Group 14
• Member(s): Hernández, Pedron
• Wokwi: https://wokwi.com/projects/410643958389030913
• Guideline chosen for project: Basic Project
• Details: Key is 0x55

364

https://wokwi.com/projects/410462842465590273
https://wokwi.com/projects/410463191701250049
https://wokwi.com/projects/410555856765101057
https://wokwi.com/projects/410463349567547393
https://wokwi.com/projects/410639448686247937
https://wokwi.com/projects/410643958389030913

Schematic

365

External hardware

7 segment displays (common anode and common cathode) LEDs

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0]
1 ui_in1 uo_out1
2 ui_in2 uo_out2
3 ui_in[3] uo_out[3]
4 mux_in[0] uo_out[4]
5 mux_in1 uo_out[5]
6 mux_in2 uo_out[6]
7 mux_in[3]

366

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Enigma - 52-bit Key Length [431]

• Author: Virantha Ekanayake
• Description: Silicon implementation of an Enigma I machine with a limited

plugboard supporting 3 wires
• GitHub repository
• HDL project
• Mux address: 431
• Extra docs
• Clock: 10000000000 Hz

How it works

Background This project features a silicon implementation of a 52-bit equivalent
key model of the WWII-era Enigma code machine used by the Germans. The British,
led by Alan Turing (as depicted in The Imitation Game), cracked this code, giving the
Allies a crucial advantage in the war.
This electronic version is accurate and will match any simulator you can find on the
web12. Although almost every Enigma operates on similar principles, the particular
model implemented here is the Enigma I34 used by the German Army and Air Force; it
comes with 3 rotor slots, the 5 original Rotors, the UKW-B Reflector, and plugboard.
The only limitation is that the plugboard only supports 3 wires, whereas the
actual wartime procedure was to use up to 10 wires. This limits the key length of
this implementation to 52-bits. The calculation is shown below.

Key-length Calculation The Enigma is a symmetric56 encryption engine, and the
equivalent key length is comprised of the different settings and ways the rotors and
plugboard can be arranged. See the excellent analysis78 from Dr. Ray Miller at NSA
for more details on the calculations below:

1. Selecting the three rotors, which can be arranged from right to left in any order:

1https://piotte13.github.io/enigma-cipher/
2https://www.dcode.fr/enigma-machine-cipher
3https://www.cryptomuseum.com/crypto/enigma/i/index.htm
4https://www.cryptomuseum.com/crypto/enigma/i/index.htm
5https://crypto.stackexchange.com/questions/33628/how-many-possible-enigma-machine-settings
6https://crypto.stackexchange.com/questions/33628/how-many-possible-enigma-machine-settings
7https://www.nsa.gov/portals/75/documents/about/cryptologic-heritage/historical-figures-publications/publicati

ons/wwii/CryptoMathEnigma_Miller.pdf
8https://www.nsa.gov/portals/75/documents/about/cryptologic-heritage/historical-figures-publications/publicati

ons/wwii/CryptoMathEnigma_Miller.pdf

367

https://github.com/virantha/tt10-enigma
https://piotte13.github.io/enigma-cipher/
https://www.dcode.fr/enigma-machine-cipher
https://www.cryptomuseum.com/crypto/enigma/i/index.htm
https://www.cryptomuseum.com/crypto/enigma/i/index.htm
https://crypto.stackexchange.com/questions/33628/how-many-possible-enigma-machine-settings
https://crypto.stackexchange.com/questions/33628/how-many-possible-enigma-machine-settings
https://www.nsa.gov/portals/75/documents/about/cryptologic-heritage/historical-figures-publications/publications/wwii/CryptoMathEnigma_Miller.pdf
https://www.nsa.gov/portals/75/documents/about/cryptologic-heritage/historical-figures-publications/publications/wwii/CryptoMathEnigma_Miller.pdf
https://www.nsa.gov/portals/75/documents/about/cryptologic-heritage/historical-figures-publications/publications/wwii/CryptoMathEnigma_Miller.pdf
https://www.nsa.gov/portals/75/documents/about/cryptologic-heritage/historical-figures-publications/publications/wwii/CryptoMathEnigma_Miller.pdf

5 x 4 x 3 = 60 possible ways

2. Starting position of each rotor:

26 * 26 * 26 = 17576

3. Ring of each rotor (only two right rotors matter):

26*26 = 676

4. Plugboard with 3 wires (see table on p.9 for p=3910):

= 26! / (26-6)! / 3! / 8 = 3,453,450 ways to plug in 3 wires

The total ways (# of keys) to set up this particular Enigma is therefore:

60 * 17576 * 676 * 3,453,450 = 2,461,904,276,832,000 ways

yielding a key length of ~52-bits.

Implementation Using the Python-based hardware description tool Amaranth
HDL1112 for the first time made building, testing, and generating the Verilog imple-
mentation much easier. Given the complexity of the rotors’ input-output mappings, I
would’ve needed to write Python scripts anyway to generate Verilog logic. Amaranth
streamlined this process and allowed seamless integration with my reference Python
implementation for test generation.

• Rotor design: three separate combinational hardware rotors was too large and
lacked

– Meeting the tight area requirements involved several design iterations that
narrowly missed targets late in the cycle. Amaranth’s flexibility made re-
architecting much simpler. For example, my initial approach of implement-
ing

configurability. I ultimately created a single reconfigurable rotor block that pro-
cesses data over six cycles, effectively forming a six-rotor pipeline (three forward,
three backward after reflection).

• Plugboard Design:
9https://www.cryptomuseum.com/crypto/enigma/i/index.htm

10https://www.cryptomuseum.com/crypto/enigma/i/index.htm
11https://amaranth-lang.org/docs/amaranth/latest/
12https://amaranth-lang.org/docs/amaranth/latest/

368

https://www.cryptomuseum.com/crypto/enigma/i/index.htm
https://www.cryptomuseum.com/crypto/enigma/i/index.htm
https://amaranth-lang.org/docs/amaranth/latest/
https://amaranth-lang.org/docs/amaranth/latest/

– Initial Attempt: A 26-entry, 5-bit lookup table using DFFs, which proved
too large.

– Next Approach: A scan-chain-based design, but the hold-fix buffers and
comparison logic made it even larger.

– Final Solution: A 26-entry, 5-bit lookup table using Skywater 130 standard-
cell latches. This worked well since the plugboard functions like a ROM,
with only a few initial writes to set the configuration. These writes are
precisely pulsed using the state machine.

Key statistics
Utilization 81%
Cells 1583
DFF 67
Latches 130
Frequency 35MHz

Operation The Enigma is designed to accept an 8-bit input (command plus data)
at the clk edge. The internal state machine then takes a varying number of clk cycles
to respond, raising the “Ready” signal when it’s ready to accept the next command. If
the command generates an output, the raw value will be output on the bidir pins, and
the LCD display will show the character generated.

Pinouts

Description Width Direction Signal(s)
Command 3 in ui_in[7:5]
Data 5 in ui_in[4:0]
Scrambled output char 5 out uio_out[4:0]
Ready 1 out uio_out[5]
7-segment LCD 7 out uo_out[6:0]

Commands The machine accepts the following 8 commands:

Encoding13 Command Data Description
000 NOP N/A Do nothing
001 LOAD_START Setting 0-25 (A-Z) Set the start position of a rotor. Do this three times in succession to set each of the three rotors (right to left)
010 LOAD_RING Setting 0-25 (A-Z) Set the ring setting of a rotor. Do this three times in succession to set each of the three rotors (right to left)

369

Encoding13 Command Data Description
011 RESET N/A Go back to the initial state
100 SCRAMBLE Input char 0-25 (A-Z) Run a letter through the rotor. The Ready signal will be asserted when the scrambled character is output
101 LOAD_PLUG_ADDR Src 0-25 (A-Z) Set an internal register to where the start of the plug should go. This command should be followed by LOAD_PLUG_DATA to set the destination
110 LOAD_PLUG_DATA Dst 0-25 (A-Z) Set the other end of the plug. Note that this connection is unidirectional, so if you want A,B connected, then you need to do two sequences of these commands to first set A->B and then B->A
111 SET_ROTORS Rotor 0-4 Pick the Rotor type for each slot where Rotor I=0, Rotor II=1, … Rotor V=4. Do this three times in succession to pick each of the rotors (right to left). Default is Rotor I, II, III from right to left, where Rotor I is closest to the plugboard

Sample run At some point, I’ll have some code ready for running on the RPi on the
PC, but for now, here is the pseudo code for setting up and scrambling/descrambling
with this machine:

Install the rotors
send_command(SET_ROTORS, 0) # Set slot 0 to Rotor I
send_command(SET_ROTORS, 1) # Set slot 0 to Rotor II
send_command(SET_ROTORS, 2) # Set slot 0 to Rotor III

Dial start position of the rotors
send_command(LOAD_START, 15) # Set rotor 0 start position to P
send_command(LOAD_START, 5) # Set rotor 1 start position to F
send_command(LOAD_START, 1) # Set rotor 2 start position to B

Dial ring position of the rotors
send_command(LOAD_RING, 18) # Set rotor 0 start position to S
send_command(LOAD_RING, 5) # Set rotor 1 start position to F
send_command(LOAD_RING, 24) # Set rotor 2 start position to Y

Set up the plugboard
First, configure the plugboard default configuration with
no swizzling of letters
for i in range(26):

send_command(LOAD_PLUG_ADDR, i)
send_command(LOAD_PLUG_DATA, i)

Now, plug in three wires
send_command(LOAD_PLUG_ADDR, 0) # connect A -> N
send_command(LOAD_PLUG_DATA, 13)

send_command(LOAD_PLUG_ADDR, 13) # connect N -> A

13See the src/defines.py file

370

send_command(LOAD_PLUG_DATA, 0)

send_command(LOAD_PLUG_ADDR, 3) # connect D -> E
send_command(LOAD_PLUG_DATA, 4)

send_command(LOAD_PLUG_ADDR, 4) # connect E -> D
send_command(LOAD_PLUG_DATA, 3)

send_command(LOAD_PLUG_ADDR, 25) # connect Z -> B
send_command(LOAD_PLUG_DATA, 1)

send_command(LOAD_PLUG_ADDR, 1) # connect D -> Z
send_command(LOAD_PLUG_DATA, 25)

Now, enter letters into the machine and watch the coded char
appear on the display
send_command(SCRAMBLE, 11) # 'L' -> 'X'
send_command(SCRAMBLE, 14) # 'O' -> 'K'
.
.
.

371

Control FSM
The state machine diagram source can be found on github1415.

How to test

Design verification
1. Generate the verilog from the Amarangth HDL source

cd tt10-enigma
python -m src.top

This will write a file src/am_top.v with the Enigma block. This block is
connected to the TinyTapeout harness using src/project.v

14https://github.com/virantha/tt10-enigma/blob/main/docs/fsm.md
15https://github.com/virantha/tt10-enigma/blob/main/docs/fsm.md

372

https://github.com/virantha/tt10-enigma/blob/main/docs/fsm.md
https://github.com/virantha/tt10-enigma/blob/main/docs/fsm.md

2. Run the functional test

cd test
make

3. Run the gate-level tests: After hardening (synthesis/pnr/gds), copy the
gate_level_netlist.v into the test/ directory. Then:

make -B GATES=yes

External hardware

None. Uses the built-in 7-segment display on the PCB.

Pinout

Input Output Bidirectional
0 din[0] seg[0] dout[0]
1 din1 seg1 dout1
2 din2 seg2 dout[3]
3 din[3] seg[3] dout[4]
4 din[4] seg[4] dout[5]
5 cmd[0] seg[5] ready
6 cmd1 seg[6]
7 cmd2 GND

373

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Frequency Encoder and Decoder [432]

• Author: Miguel Robles
• Description: Simple implementation of an 8-bit frequency encoder/decoder for

a 1 bit frequency channel
• GitHub repository
• HDL project
• Mux address: 432
• Extra docs
• Clock: 10000000 Hz

How it works

Takes an 8-bit input voltage and treats it as a current injection to a LIF neuron

How to test

Do something

External hardware

NA

Pinout

Input Output Bidirectional
0 Input frequency channel for decoder OR input bit for encoder [0] LSB output of decoder [0] OR output frequency channel for encoder Input selector bit to choose between encoder or decoder
1 Input encoder bit 1 Output encoder bit 1
2 Input encoder bit 2 Output encoder bit 2
3 Input encoder bit [3] Output encoder bit [3]
4 Input encoder bit [4] Output encoder bit [4]
5 Input encoder bit [5] Output encoder bit [5]
6 Input encoder bit [6] Output encoder bit [6] Input configuration bit for encoder sample rate [0]
7 Input encoder bit [7] Output encoder bit [7] Input configuration bit for encoder sample rate 1

374

https://github.com/mroblesh1/tt09-ece-110
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture

synth_simple [433]

• Author: MM
• Description: Simple monophonic synth with PWM output
• GitHub repository
• HDL project
• Mux address: 433
• Extra docs
• Clock: 50000000 Hz

How it works

Simple monophonic synth with PWM output: 5 inputs, 8 switches to choose
sounds/notes, left/right output channels

How to test

Connect the

External hardware

5 IR modules to generate notes, 8 switches to choose sounds/notes, two low-pass filters
to generate left/right audio signals

Pinout

Input Output Bidirectional
0 note_enn_i[0] pwm_left sw_i[0]
1 note_enn_i1 pwm_right sw_i1
2 note_enn_i2 sw_i2
3 note_enn_i[3] sw_i[3]
4 note_enn_i[4] sw_i[4]
5 sw_i[5]
6 sw_i[6]
7 sw_i[7]

375

https://github.com/maurizio-martina/synth_simple
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

carry skip adder [434]

• Author: Dron Sankhala
• Description: two 8-bit input adder
• GitHub repository
• HDL project
• Mux address: 434
• Extra docs
• Clock: 0 Hz

How it works

This project implements an 8-bit carry-skip adder using a combination of ripple-carry
and skip logic for enhanced performance. The adder is divided into two 4-bit sections.
The lower 4 bits compute the initial partial sum and generate a carry-out, which is then
either passed directly to the upper 4-bit section or skipped, depending on the carry-
propagate signal. This design reduces the delay associated with carry propagation,
making it more efficient than a conventional ripple-carry adder. The final 8-bit sum is
registered and outputted in sync with the clock signal.

How to test

To test the carry-skip adder:

1. Load the design into your simulation environment.
2. Set the ui_in and uio_in inputs with the desired 8-bit values for addition.
3. The result of the addition will appear on uo_out after each rising edge.
4. Verify that the output matches expected values by comparing uo_out with the

sum of the inputs.

For more extensive testing, a testbench can be used to automate input combinations
and check results across various cases.

External hardware

No external hardware is required for this project.

Pinout

376

https://github.com/dronsankhala2605/TinyTapeout

Input Output Bidirectional
0 a[0] sum[0] b[0]
1 a1 sum1 b1
2 a2 sum2 b2
3 a[3] sum[3] b[3]
4 a[4] sum[4] b[4]
5 a[5] sum[5] b[5]
6 a[6] sum[6] b[6]
7 a[7] sum[7] b[7]

377

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

VGA clock [435]

• Author: Matt Venn
• Description: Shows the time on a VGA screen
• GitHub repository
• HDL project
• Mux address: 435
• Extra docs
• Clock: 31500000 Hz

How it works

Races the beam! Font is pre generated and loaded into registers. 6 bit colour keeps
register count low.
Every minute the colours cycle.

How to test

Hook up a VGA monitor to the outputs and provide a clock at 31.5 MHz.
Adjust time with the inputs[2:0], and choose the type of VGA PMOD with the in-
put[3].

External hardware

VGA PMOD - you can use one of these VGA PMODs:

• https://github.com/mole99/tiny-vga
• https://github.com/TinyTapeout/tt-vga-clock-pmod

Set input[3] low to use tiny-vga and high to use vga-clock

378

https://github.com/mattvenn/tt08-vga-clock
https://github.com/mole99/tiny-vga
https://github.com/TinyTapeout/tt-vga-clock-pmod

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 adjust hours hsync / R1
1 adjust minutes vsync / G1
2 adjust seconds B0 / B1
3 PMOD type select B1 / VS
4 G0 / R0
5 G1 / G0
6 R0 / B0
7 R1 / HS

379

Crossyroad [449]

• Author: Matt, Jovan, Ryan
• Description: Crossyroad game recreated on an ASIC
• GitHub repository
• HDL project
• Mux address: 449
• Extra docs
• Clock: 25000000 Hz

How it works

Chicken tries to cross the never ending roads with dangerous cars
Move chicken up by pressing the move_btn on ui_in[0]
Score increments while pressing the movement button

How to test

Hook up ui_in[0] to a debounced button, supply clk @25Mhz, connect to vga display

External hardware

• Debouned button to ui_in[0]
• 25Mhz clock to clk pin

Pinout

Input Output Bidirectional
0 move_btn red
1 green
2 blue
3 vsync
4 red
5 green
6 blue
7 hsync

380

https://github.com/mchen26/tt10-vga-crossyroad

zc-sushi-demo [451]

• Author: Zachary Chen
• Description: sushi running
• GitHub repository
• HDL project
• Mux address: 451
• Extra docs
• Clock: 25200000 Hz

How it works

Sushi running across the screen

How to test

connect using TinyVGA PMOD and reset

External hardware

TinyVGA PMOD

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 vsync
4 R0
5 G0
6 B0
7 hsync

381

https://github.com/zacharyzgc/zc-sushi-demo

kch cd101 [453]

• Author: Johannes Pfau
• Description: KCH Things
• GitHub repository
• HDL project
• Mux address: 453
• Extra docs
• Clock: 25000000 Hz

How it works

This project provides a simple digital synth. It consists of a pulse-wave generator
with programmable frequency, ADSR amplitude modulation with adjustable ADSR
parameters and a simple one-pole IIR filter with programmable cutoff frequency. Digital
audio output is generated using a simple first-order delta-sigma modulator. The lowpass
filter for the reconstruction of this signal must be realized externally.
All parameters can be programmed using a simple SPI slave interface. Sound generation
for a note starts when asserting the trigger signal and stops when the trigger is de-
asserted again. Triggering can happen both via a dedicated input or via SPI, which
enables fully customizeable operation using the SPI port. A VST/CLAP plugin is
provided to generate the SPI commands from DAWs.
This project is educational and therefore makes some decisions that might not lead to
an optimal design. For example, the structural presentation of the signal processing
pipeline is directly realized in hardware. Some parts of the design are therefore clocked
with a frequency as low as the sample rate and some even lower. This wastes a lot
of possible performance, but it is easier for students to map the audio application to
the circuit mentally, compared to introducing a more complex microcontroller-based
system (which might be a more efficient design). The design shows how to realize a
serial-parallel multiplier, use negative edge clocking, use simple small clock dividers,
use multiple clocks etc.
More detailed information on all these topics will be provided later on.

How to test

As the design generates a lot of data on the single serial output pin, testing generates
a lot of data. The cocotb testbench simulates and external lowpass and stores the
audio data to a .s16 file which you can convert to .wav using ffmpeg:

382

https://github.com/kit-kch/cd101-tt

Play the output file to assess whether the output is reasonable.
In addition, the testbench also compares to a golden reference output datastream,
that was generated from behavioral simulation. This test is used to determine if there
are any differences for the final implemented designs.

External hardware

• Button PMOD
• Audio PMOD
• SPI Master (No PMOD available. Use Adafruit board)

TODO: More detailed information about these things.

Pinout

Input Output Bidirectional
0 Trigger Audio Data
1 SPI CLK
2 SPI MOSI
3 SPI nSS
4
5
6
7

383

SimpleSPIdev [455]

• Author: Zedulo
• Description: SPI device with GPIO/mem interface
• GitHub repository
• HDL project
• Mux address: 455
• Extra docs
• Clock: 0 Hz

How it works

See readme.md

How to test

Use e.g. a USB to SPI interface such as an MCP2210 based board. Interface to the
device SPI interface.

External hardware

None for the board.

Pinout

Input Output Bidirectional
0 SPI MOSI SPI MISO
1 SPI CLK debug
2 SPI CS system clk mirror
3
4
5
6 status
7 spi reset status

384

https://github.com/ZeduloAdmin/TT10_SPICtrl

RNG_test [457]

• Author: Ba-Anh Dao
• Description: trying to implement lightweight all digital trng
• GitHub repository
• HDL project
• Mux address: 457
• Extra docs
• Clock: 50000000 Hz

How it works

Trial of Implementing the RO-based TRNG design

How to test

Just power up and get the data from the UART terminal

External hardware

UART terminal, PC to run the randomness test, Oscilloscope to measure the RO
output

Pinout

Input Output Bidirectional
0 RX_Serial TX_Serial
1 o_RO
2 o_RG
3 led
4
5
6
7

385

https://github.com/daobaanh/tt10-trng-test

15bit GCD [459]

• Author: stephan
• Description: Greatest common denominator
• GitHub repository
• HDL project
• Mux address: 459
• Extra docs
• Clock: 100000 Hz

How it works

This project is a 15 bit Greatest Common Divisor module. Hand it two integers and it
will calculate the GCD and output it.
15 bits input on ui and uio, where ui[0] is lsb, and uio[6] is MSB. So:

MSB LSB
uio[6] uio[5] uio[4] uio[3] uio2 uio1 uio[0] ui[7] ui[6] ui[5] ui[4] ui[3] ui2 ui1 ui[0]

uio[7] is used as request signal to signal when first number and second number has
been inputted. Request should be hold high when second number has inputted.
uo[7] is used as acknowledge signal, signalling when first input has been received and
when GCD has been calculated.
uo[0] to uo[6] will output the GCD when acknowledge is high.

MSB LSB
uo[6] uo[5] uo[4] uo[3] uo2 uo1 uo[0]

How to test

Assign and hold an integer to the first 15 bits of ui_in and uio_in. Set REQ high.
Wait for ACK. Set REQ low. Assign and hold an integer to the first 15 bits of ui_in
and uio_in. Set REQ high. Wait for ACK. Read out the GCD. Release REQ to allow
for a new calculation.

386

https://github.com/StephanAAU/tt10-verilog
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture

External hardware

Buttons and LEDs.

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0] uio_in[0]
1 ui_in1 uo_out1 uio_in1
2 ui_in2 uo_out2 uio_in2
3 ui_in[3] uo_out[3] uio_in[3]
4 ui_in[4] uo_out[4] uio_in[4]
5 ui_in[5] uo_out[5] uio_in[5]
6 ui_in[6] uo_out[6] uio_in[6]
7 ui_in[7] uo_out[7] uio_in[7]

387

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

XY Spacewar [461]

• Author: Nicklaus Thompson
• Description: A scaled-down Spacewar game with a VGA mode. Might be Aster-

oids instead.
• GitHub repository
• HDL project
• Mux address: 461
• Extra docs
• Clock: 50000000 Hz

How it works

It’s just the controller example from VGA playground, but you can also move a little
square on the screen. It would have been an entire game if I hadn’t taken a break when
the Efabless shutdown was announced.

How to test

Operating the controller D-Pad will move the square around the screen.

External hardware

It accepts the VGA PMOD, Audio PMOD, and SNES PMOD. The pinout is configured
for the demoscene competition.

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VSync
4 gamepad_latch R0
5 gamepad_clk G0
6 gamepad_data B0
7 HSync

388

https://github.com/FangameEmpire/tt10_xy_spacewar

16-bit Logarithmic Approximate Floating Point Multiplier
[463]

• Author: Anwesh Rao, B S Gurucharan, Shreyas M Iliger, Tushar M, Shylashree
N, RV College of Engineering

• Description: A 16-bit floating-point multiplier utilizing logarithmic approxima-
tion to achieve fast and power-efficient floating-point multiplication with reduced
hardware.

• GitHub repository
• HDL project
• Mux address: 463
• Extra docs
• Clock: 50000000 Hz

� Credits

We sincerely acknowledge the Center of Excellence in Integrated
Circuits and Systems (CoE-ICAS) and the Department of Elec-
tronics and Communication Engineering, RV College of Engi-
neering, Bengaluru, for their invaluable support in providing us with
the necessary knowledge and training.

We extend our special gratitude to Dr. H V Ravish Aradhya (HoD,
ECE), Dr. K S Geetha (Vice Principal) and Dr. K N Subramanya
(Principal) for their continuous encouragement and support, enabling us
to achieve TAPEOUT in Tiny Tapeout 10.

We are also deeply grateful to Mahaa Santeep G (RVCE Alumni)
for his mentorship and invaluable guidance throughout the completion of
this project.

The code provided is a Verilog module that implements a 16-bit logarithmic approx-
imate floating-point multiplier. This module utilizes logarithmic approximation tech-
niques to perform floating-point multiplication efficiently, reducing computational com-
plexity while maintaining accuracy. It incorporates a state machine that processes the
LSB(lower 8 bits) of the inputs in the first cycle and the MSB(upper 8 bits) in the
next cycle, subsequently producing the LSB(lower 8 bits) of the output first, followed
by the MSB(upper 8 bits) in the next cycle.
Key Components
The Logarithmic Approximate Floating-Point Multiplier (LAFPM) is a hardware-
efficient multiplier that processes two 16-bit floating-point numbers using logarithmic

389

https://github.com/RVCE-ECE-Shylashree/TT10_LogAFPM-16

approximation techniques. Instead of traditional multiplication, this design reduces
complexity by leveraging logarithmic transformations, shifts, and additions. This
approach significantly lowers power consumption and area, making it ideal for
resource-constrained applications such as machine learning accelerators and embedded
systems. The multiplier operates using a finite state machine (FSM) that progresses
through several key states:
IDLE – The system remains in this state until a non-zero input is detected. Once an
input is received, it transitions to the next stage.
COLLECT – The multiplier collects the two 8-bit portions of each operand over
multiple cycles to reconstruct the 16-bit floating-point numbers. After both parts are
received, it moves to processing.
PROCESS_1 – The floating-point components, including the sign, exponent, and
mantissa, are extracted for further computation.
PROCESS_2 – The mantissas undergo logarithmic approximation through
bit-shifting techniques, reducing the complexity of multiplication.
PROCESS_3 – The approximated mantissas are added together using a logarithmic-
based summation.
PROCESS_4 – A carry-out bit is determined, which helps adjust the exponent in
the next stage.
PROCESS_5 – The new exponent is computed, and an additional approximation
step refines the mantissa for better accuracy.
PROCESS_6 – The final floating-point result is assembled, combining the computed
sign, exponent, and mantissa.
OUTPUT – The computed result is transmitted over multiple cycles. Once completed,
the system returns to the IDLE state, ready for the next operation.
Inputs and Clock Frequency
u_in and uio_in are used to receive operands A and B through multiple cycles.
rst_n is the active-low reset signal.
clk operates at a 50 MHz frequency.
Table: State Transition for FP-16 Multiplication of (0x43BC)*(0x4190) | Time (ns)
| ui_in (Input A) | uio_in (Input B) | Reset | State | uo_out (Output)
| Clock | |—————|———————|—————————|———–|–––––––––––
|———————|———–| | 0 | 00000000 | 00000000 | 0 | Reset | xxxxxxxx |0 | |
10 | 00000000 | 00000000 | 0 | Reset | 00000000 |1 | | 20 | 10111100 | 10010000
| 1 | Reset | 00000000 |0 | | 30 | 10111100 | 10010000 | 1 | IDLE | 00000000 |1

390

| | 50 | 10111100 | 10010000 | 1 | COLLECT_1 | 00000000 |1 | | 60 | 01000011
| 01000001 | 1 | COLLECT_1 | 00000000 |0 | | 70 | 01000011 | 01000001 | 1
| COLLECT_2 | 00000000 |1 | | 90 | 01000011 | 01000001 | 1 | PROCESS_1 |
00000000 |1 | | 110 | 01000011 | 01000001 | 1 | PROCESS_2 | 00000000 |1 | |
130 | 01000011 | 01000001 | 1 | PROCESS_3 | 00000000 |1 | | 150 | 01000011
| 01000001 | 1 | PROCESS_4 | 00000000 |1 | | 170 | 01000011 | 01000001 | 1
| PROCESS_5 | 00000000 |1 | | 190 | 01000011 | 01000001 | 1 | PROCESS_6 |
00000000 |1 | | 210 | 01000011 | 01000001 | 1 | OUTPUT_1 | 01110101 |1 | |
220 | 01000011 | 01000001 | 1 | OUTPUT_1 | 01110101 |0 | | 230 | 01000011
| 01000001 | 1 | OUTPUT_2 | 01001001 |1 | | 240 | 01000011 | 01000001 | 1 |
OUTPUT_2 | 01001001 |0 |
Other Operands can also given as follows: Table: Multiple Operands with Expected
output | Input A | Input B | Output | |–––––––|–––––––|————| | 0x4871 |
0x482e | 0x54a6 | | 0x41bd | 0x46ef | 0x4d31 | | 0x436c | 0x45aa | 0x4d4c | |
ox44df | 0x483d | 50x12c |

Pinout

Input Output Bidirectional
0 A[0]/A[8] P[0]/P[8] B[0]/B[8]
1 A1/A[9] P1/P[9] B1/B[9]
2 A2/A[10] P2/P[10] B2/B[10]
3 A[3]/A[11] P[3]/P[11] B[3]/B[11]
4 A[4]/A[12] P[4]/P[12] B[4]/B[12]
5 A[5]/A[13] P[5]/P[13] B[5]/B[13]
6 A[6]/A[14] P[6]/P[14] B[6]/B[14]
7 A[7]/A[15] P[7]/P[15] B[7]/B[15]

391

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

TT_spiralPattern [465]

• Author: rkarl
• Description: Creates A Controllable Spiral Pattern
• GitHub repository
• HDL project
• Mux address: 465
• Extra docs
• Clock: 25000000 Hz

How it works

Creates a arcemedes spiral (r=theta) using vga.

How to test

Set the frequency to 25 MHz and connect a pmod to vga to work. Changing the input
values alters the foreground/background and speed of the spiral.

External hardware

PMOD VGA Switches (optional for control)

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0]
1 ui_in1 uo_out1
2 ui_in2 uo_out2
3 ui_in[3] uo_out[3]
4 ui_in[4] uo_out[4]
5 ui_in[5] uo_out[5]
6 ui_in[6] uo_out[6]
7 ui_in[7] uo_out[7]

392

https://github.com/rkarl2/TT_spiral
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

ledtest [467]

• Author: jellyant
• Description: Turns one output ON.
• GitHub repository
• HDL project
• Mux address: 467
• Extra docs
• Clock: 10000000 Hz

How it works

It turns ON an output.

How to test

Don’t do anything.

External hardware

No need.

Pinout

Input Output Bidirectional
0 A[0]
1 A1
2 A2
3 A[3]
4 A[4]
5 A[5]
6 A[6]
7 A[7]

393

https://github.com/jellyant/helloworld
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

I2C and SPI [480]

• Author: Vidyamol and Arun A V
• Description: Design of I2C and SPI communication protocols
• GitHub repository
• HDL project
• Mux address: 480
• Extra docs
• Clock: 400000 Hz

How it works

I2C and SPI protocol

How to test

send data enable clk

External hardware

No external hardware

Pinout

Input Output Bidirectional
0 i2c_data_in sck_o
1 i2c_clk_in mosi_o
2 miso_i i2c_data_out
3 i2c_clk_out
4 i2c_data_oe
5 i2c_wb_err_i i2c_clk_oe
6 i2c_wb_rty_i
7

394

https://github.com/arunav321/tt09-i2c

VGA Screensaver with Tiny Tapeout Logo [481]

• Author: Uri Shaked
• Description: Tiny Tapeout Logo bouncing around the screen (640x480, TinyVGA

Pmod)
• GitHub repository
• HDL project
• Mux address: 481
• Extra docs
• Clock: 25175000 Hz

How it works

Displays a bouncing Tiny Tapeout logo on the screen, with animated color gradient.

How to test

Connect to a VGA monitor. Set the following inputs to configure the design:

• tile (ui_in[0]) to repeat the logo and tile it across the screen,
• solid_color (ui_in1) to use a solid color instead of an animated gradient.

If you have a Gamepad Pmod connected, you can also use the following controls:

• Start button: start/pause bouncing

395

https://github.com/TinyTapeout/tt10-logo-screensaver
https://en.wikipedia.org/wiki/Collatz_conjecture

• Left/right/up/down: change the bouncing direction (if bouncing) or move the
logo around the screen (if paused)

External hardware

• Tiny VGA Pmod
• Optional: Gamepad Pmod

Pinout

Input Output Bidirectional
0 tile R1
1 solid_color G1
2 B1
3 VSync
4 gamepad_latch R0
5 gamepad_clk G0
6 gamepad_data B0
7 HSync

396

https://github.com/mole99/tiny-vga
https://github.com/psychogenic/gamepad-pmod

Perceptron Neuron [482]

• Author: Michael Chun
• Description: Makes a NAND gate with a perceptron neuron
• GitHub repository
• HDL project
• Mux address: 482
• Extra docs
• Clock: 0 Hz

How it works

Placeholder

How to test

Placeholder

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 Input current bit [0] State variable bit [0]
1 Input current bit 1 State variable bit 1
2 Input current bit 2 State variable bit 2
3 Input current bit [3] State variable bit [3]
4 Input current bit [4] State variable bit [4]
5 Input current bit [5] State variable bit [5]
6 Input current bit [6] State variable bit [6]
7 Input current bit [7] State variable bit [7] Output bit

397

https://github.com/mtchun1/tt09-ECE210_mtchun
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

SPI test [483]

• Author: Matt Venn
• Description: SPI test design
• GitHub repository
• HDL project
• Mux address: 483
• Extra docs
• Clock: 50000000 Hz

How it works

SPI test design based from https://github.com/calonso88/tt07_alu_74181

How to test

See https://github.com/calonso88/tt07_alu_74181

External hardware

Nothing required

Pinout

Input Output Bidirectional
0 cpol
1 cpha
2
3 spi_miso
4 spi_cs_n
5 spi_clk
6 spi_mosi
7

398

https://github.com/mattvenn/tt10-spi-test
https://github.com/calonso88/tt07_alu_74181
https://github.com/calonso88/tt07_alu_74181

Histogramming [484]

• Author: isil isiksalan
• Description: histogramming unit
• GitHub repository
• HDL project
• Mux address: 484
• Extra docs
• Clock: 0 Hz

Histogramming on Chip for Short Luminescence Signals

Isil Isiksalan

09 November 2024

Background To measure the lifetime of short luminescence signals effectively, Time-
Correlated Single Photon Counting (TCSPC) is commonly used. TCSPC measures the
time intervals between photon pulse detections and a synchronized reference signal,
usually from a laser. This data is used to create a histogram of photon arrival times,
which helps in calculating luminescence lifetimes.

This module is useful in TCSPC systems, particularly after a Time-to-Digital Converter (TDC)
or other time-tagging components. It processes 6-bit time-tagged data by sorting these events into
bins. Designed for systems capable of supporting up to 64 bins, our module uses only the odd-
numbered bins, mapping data into 32 bins to save space. This approach allows the estimation of
missing bins after the decay fitting process.

Main Idea

The main idea is to integrate histogramming functionality within a digital chip to simplify data
processing.

Overview of thettumhistogrammingModule

Thettumhistogrammingmodule is designed for digital signal processing, particularly for tasks
that require data binning based on their values. Implemented in Verilog, this module handles
an 8-bit input stream, using the last 6 bits to classify values, and communicates the status and

399

https://github.com/isiksalan/tt09-histogramming

results of its operations through a finite state machine with states IDLE, OUTPUTDATA, and
RESETBINS.

Description of the Module

Inputs and Outputs:

- Inputs:
- uiin[7:0]: Main 8-bit input where binning is derived from the last 6 bits.
- uioin[7:0]: Auxiliary input, not used in the current logic.
- clk: Clock input for synchronization.
- rstn: Active-low reset signal.
- ena: Enable signal to activate histogramming.

- Outputs:
- uoout[7:0]: Outputs the count of the current bin.
- uioout[7:0]: Provides status flags including data validity, last bin output, and readi-

ness for new data.
- uiooe[7:0]: Output enable signal foruioout.

Working Principle:

1.Initialization and Resetting:Clears bins to zero and sets the module for new data
intake.

2.Data Handling and Binning:Receives data, determines the bin index, and updates bin
counts according to the input conditions.

3.State Management:Manages data output and resets based on binning outcomes.

Module Testing

The module underwent thorough testing using a testbench that simulated various operational sce-
narios, including:

- Initial reset and setup.
- Ignoring even-numbered inputs.

400

- Filling multiple odd bins and managing overflow conditions.
- Checking reset functionality after data output.

- Testing operational robustness with manipulated enable signals.

All tests verified the module’s functionality.

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0]
1 ui_in1 uo_out1
2 ui_in2 uo_out2
3 ui_in[3] uo_out[3]
4 ui_in[4] uo_out[4]
5 ui_in[5] uo_out[5]
6 ui_in[6] uo_out[6]
7 ui_in[7] uo_out[7]

401

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Huffmann_Coder [485]

• Author: Marvin Barth
• Description: compresses ASCII input into Huffman codes
• GitHub repository
• HDL project
• Mux address: 485
• Extra docs
• Clock: 0 Hz

How it works

This ASIC compresses ASCII characters into Huffman codes, using a lookup table.

How to test

Send an ASCII character to ui[6:0], set ui[7] = 1 (Load), wait for valid_out = 1, then
read the Huffman code from uo and uio.

External hardware

To communicate with the ASIC, you need either the RP2040 or an external MCU to
send ASCII input and read the compressed Huffman output.

Pinout

Input Output Bidirectional
0 ASCII_in[0] Huffman_out[0] Huffman_out[8]
1 ASCII_in1 Huffman_out1 Huffman_out[9]
2 ASCII_in2 Huffman_out2 Valid_out
3 ASCII_in[3] Huffman_out[3] Bit_length[0]
4 ASCII_in[4] Huffman_out[4] Bit_length1
5 ASCII_in[5] Huffman_out[5] Bit_length2
6 ASCII_in[6] Huffman_out[6] Bit_length[3]
7 Load Huffman_out[7]

402

https://github.com/MarvinBrth/tt10-huffman-coder
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

RLE Video Player [486]

• Author: Mike Bell
• Description: Reads run length encoded data from QSPI flash, displays on VGA
• GitHub repository
• HDL project
• Mux address: 486
• Extra docs
• Clock: 24000000 Hz

How it works

A 6bpp run length encoded image or video is read from a W25Q128JV or similar QSPI
flash, and output to 640x480 VGA.
This is perfect for displaying the Bad Apple music video.

Run Length Encoding The encoding uses 16-bit words. Most words are a run
length in the top 10 bits, and a colour in the bottom 6 bits. A run must come to the
end at the end of each row.
A run must be at least 2 pixels, and any group of 3 consecutive runs within a row must
be at least 12 pixels, otherwise the data buffer will empty.

403

https://github.com/MichaelBell/tt09-rle-vga

8-bit mono audio data can be interleaved into the video stream. The PWM output
value is updated by the value 0xC000 + sample, these must be at the end of a row,
but do not have to be present on every row. With a 24MHz project clock the row
clock is exactly 30kHz.
To compress the audio slightly, sample deltas can also be used, packing 2, 3 or 4
samples into one command. These add a signed offset to the current sample value at
the end of the next 2, 3 or 4 rows:

• 0xD000 + (offset1 &lt;&lt; 6) + offset2 with 2 6-bit
signed offsets

• 0xE000 + (offset1 &lt;&lt; 8) + (offset2 &lt;&lt;
4) + offset3 with 3 4-bit signed offsets

• 0xF000 + (offset1 &lt;&lt; 9) + (offset2 &lt;&lt;
6) + (offset3 &lt;&lt; 3) + offset4 with 4 3-bit signed
offsets

This means that quieter audio takes less space!
Note that row and frame repeat, which were supported on the TT07 and TT IHP
0p2 versions are not supported here because audio data is interleaved into the video
data.
The data is read starting at address 0. The special word 0xBFC0 causes the player
to stop and restart from address 0 at the beginning of the next frame, restarting the
video. This could also be used to display a still image.

How to test

Create a RLE binary file (docs/scripts to do this TBD) and load onto the flash. The
pinout matches the QSPI Pmod. This should be plugged into the audio Pmod, and
then the audio Pmod plugged into the bidir pins. Note the flash must support the h6B
Fast Read Quad Output command, with 8 dummy cycles between address and data.
Connect the Tiny VGA PMOD to the output pins.
Inputs 2-0 set the read latency for the SPI in half clock cycles, it’s likely that will need
to be set to 2 (set input 1 high and inputs 0 and 2 low). This latency depends on the
total round trip time through the mux and out to the flash and back. Valid values are
1 to 4.
Run with a 24MHz clock.

404

https://github.com/mole99/qspi-pmod
https://github.com/MichaelBell/tt-audio-pmod
https://github.com/mole99/tiny-vga

Maximum file size The 16MB flash is only enough for the first minute of Bad Apple.
But because the flash read is just one very long read it would be straightforward to
supply the data stream from the RP2040 or other external source. To make it easier
to do this from the demo board RP2040, the QSPI pin configuration can be modified
by setting in3 high so that the 4 data pins are contiguous.

External hardware

• QSPI PMOD plugged into Audio PMOD
• Tiny VGA PMOD

Pinout

Input Output Bidirectional
0 SPI latency[0] R1 CS
1 SPI latency1 G1 SD0 / SCK
2 SPI latency2 B1 SD1 / SD0
3 Select QSPI pinout vsync SCK / SD1
4 R[0] SD2
5 G[0] SD3
6 B[0] Unused CS
7 hsync PWM audio

405

https://github.com/mole99/qspi-pmod
https://github.com/MichaelBell/tt-audio-pmod
https://github.com/mole99/tiny-vga
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture

Vedic multiplier [487]

• Author: Vivek Chiranjit
• Description: 8-bit binary unsigned multiplier
• GitHub repository
• HDL project
• Mux address: 487
• Extra docs
• Clock: 0 Hz

How it works

This is a 8-bit binary multiplier
Inputs: mul_ip_A mul_ip_B
Ouputs: prod_low prod_high

How to test

Give the two 8-bit inputs thorugh ui_in and uio_in. The multiplied data will be received
at uo_out and uio_out

External hardware

None

Pinout

Input Output Bidirectional
0 uin uo uio
1 uin uo uio
2 uin uo uio
3 uin uo uio
4 uin uo uio
5 uin uo uio
6 uin uo uio
7 uin uo uio

406

https://github.com/ChiranjitPatel/tt10-multiplier_UART_SPI

8-Bit CPU [488]

• Author: University of Waterloo - Fall 2024 ECE 298A
• Description: A basic 8-bit CPU design building off the SAP-1
• GitHub repository
• HDL project
• Mux address: 488
• Extra docs
• Clock: 50000000 Hz

How it works

This project is a basic 8-bit CPU design building off the SAP-1. It is a combination
of various modules developed as a part of the ECE298A Course at the University of
Waterloo.
The control block is implemented using a 6 stage sequential counter for sequencing
micro-instructions, and a LUT for corresponding op-code to operation(s).
The program counter enumerates all values between 0 and F (15) before looping back
to 0 and starting again. The counter will clear back to 0 whenever the chip is reset.
The Instruction register stores the current instructions and breaks it up into the opcode
and address, which are passed into corresponding locations
The 16 Byte memory module consists of 16 memory locations that store 1 byte each.
The memory allows for both read and write operations, controlled by input signals, as
well as data supplied by the MAR.
The MAR is a register which handles RAM interactions, namely specifying the address
for store/load, as well as the data to be stored.
The 8-bit ripple carry adder assumes 2s complement inputs and thus supports addition
and subtraction. It pushes the result to the bus via tri-state buffer. It also includes a
zero flag and a carry flag to support conditional operation using an external microcon-
troller. These flags are synchronized to the rising edge of the clock and are updated
when the adder outputs to the bus.
The Accumulator register functions to store the output of the adder. It is synchronized
to the positive edge of the clock. The accumulator loads and outputs its value from
the bus and is connected via tri-state buffer. The accumulator’s current value is always
available as an output (and usually connected to the Register A input of the ALU)
The B register stores the second operand for ALU operations which is loaded from
RAM.

407

https://github.com/gjrchen/8-Bit-CPU-top

The Output register outputs the value from register A onto the uo_out pins.
The 8 Bit Bus is driven by various blocks. We allow multiple blocks that are able to
write using tri-state buffers.

Supported Instructions

Mnemonic Opcode Function
HLT 0x0 Stop processing
NOP 0x1 No operation
ADD {address} 0x2 Add B register to A register, leaving result in A
SUB {address} 0x3 Subtract B register from A register, leaving result in A
LDA {address} 0x4 Put RAM data at {address} into A register
OUT 0x5 Put A register data into Output register and display
STA {address} 0x6 Store A register data in RAM at {address}
JMP {address} 0x7 Change PC to {address}

Instruction Notes
• All instructions consist of an opcode (most significant 4 bits), and an address

(least significant 4 bits, where applicable)

Control Signal Descriptions

Control Signal Array Component Function
Cp 14 PC Increments the PC by 1
Ep 13 PC Enable signal for PC to drive the bus
Lp 12 PC Tells PC to load value from the bus
nLma 11 MAR Tells MAR when to load address from the bus
nLmd 10 MAR Tells MAR when to load memory from the bus
nCE 9 RAM Enable signal for RAM to drive the bus
nLr 8 RAM Tells RAM when to load memory from the MAR
nLi 7 IR Tells IR when to load instruction from the bus
nEi 6 IR Enable signal for IR to drive the bus
nLa 5 A Reg Tells A register to load data from the bus
Ea 4 A Reg Enable signal for A register to drive the bus
Su 3 ALU Activate subtractor instead of adder
Eu 2 ALU Enable signal for Adder/Subtractor to drive the bus
nLb 1 B Reg Tells B register to load data from the bus

408

Control Signal Array Component Function
nLo 0 Output Reg Tells Output register to load data from the bus

Sequencing Details

• The control sequencer is negative edge triggered, so that control signals can be
steady for the next positive clock edge, where the actions are executed.

• In each clock cycle, there can only be one source of data for the bus, however
any number components can read from the bus.

• Before each run, a CLR signal is sent to the PC and the IR.

Instruction Micro-Operations

Stage HLT NOP STA JMP
T0 Ep, nLma Ep, nLma Ep, nLma Ep, nLma
T1 Cp Cp Cp Cp
T2 nCE, nLi nCE, nLi nCE, nLi nCE, nLi
T3 ** - nEi, nLma nEi, Lp
T4 - - Ea, nLmd
T5 - - nLr

Stage LDA ADD SUB OUT
T0 Ep, nLma Ep, nLma Ep, nLma Ep, nLma
T1 Cp Cp Cp Cp
T2 nCE, nLi nCE, nLi nCE, nLi nCE, nLi
T3 nEi, nLma nEi, nLma nEi, nLma Ea, nLo
T4 nCE, nLa nCE, nLb nCE, nLb -
T5 - Eu, nLa Su, Eu, nLa -

Instruction Micro-Operations Notes
• First three micro-operations are common to all instructions.
• NOP operation executes only the first three micro-operations.
• Cp signal is not asserted during the HLT instruction in T2.
• ** Halt internal register is set to 1. More on this later

409

Programmer

Stage Control Signals Programmer specific signals
T0 Ep, nLMA ready = 1
T1 Cp ready = 0
T2 - -
T3 nLmd read_ui_in = 1
T4 nLr read_ui_in = 0, done_load = 1
T5 - done_load = 0

Detailed Overview T0: Control Signals the same as the typical default microin-
struction \– load the MAR with the address of the next instruction. Assert ready signal
to alert MCU programmer (off chip) that CPU is ready to accept next line of RAM
data.
T1: Increment the PC, the same as the typical default microinstruction. De-assert
ready signal since the MCU programmer is polling for the rising edge.
T2: Do nothing to allow an entire clock cycle for programmer to prepare the data.
T3: Load the MAR with the data from the bus. Also, assert the read_ui_in signal
which controls a series of tri-state buffers, attaches the ui_in pins straight to the bus.
T4: Load the RAM from the MAR. De-assert the read_ui_in signal (disconnect the
ui_in pins from driving the bus since the ui_in pin data might be now inaccurate).
Assert the done_load signal to indicate to the MCU that the chip is done with the
ui_in data.
T5: De-assert done_load signal.

Programmer Notes The MCU must be able to provide the data to the ui_in pins
(steady) between receiving the ready signal (assume worst case end of T0), and the
bus needing the values (assume worst case beginning of T3).
Therefore, the MCU must be able to provide the data at a maximum of 2 clock
periods.

IO Table: CB (Control Block)

410

Name Verilog Description I/O Width Trigger
clk clk Clock signal I 1 Edge Transition
resetn rst_n Set stage to 0 I 1 Active Low
opcode opcode Opcode from IR I 4 NA
out control_signals Control Signal Array O 15 NA
programming programming Programming mode I 1 Active High
done_load done_load Executed Load during prog O 1 Active High
read_ui_in read_ui_in Push ui_in onto bus O 1 Active High
ready ready_for_ui Ready to prog next byte O 1 Active High
HF HF Halting flag O 1 Active High

IO Table: PC (Program Counter)

Name Verilog Description I/O Width Trigger
bus bus[3:0] Connection to bus IO 4 NA
clk clk Clock signal I 1 Falling Edge
clr_n rst_n Clear to 0 I 1 Active Low
cp Ep Allow counter increment I 1 Active High
ep Cp Output to bus I 1 Active High
lp Lp Load from bus I 1 Active High

PC (Program Counter) Notes
• Counter increments only when Cp is asserted, otherwise it will stay at the current

value.
• Ep controls whether the counter is being output to the bus. If this signal is low,

our output is high impedance (Tri-State Buffers).
• When CLR is low, the counter is cleared back to 0, the program will restart.
• The program counter updates its value on the falling edge of the clock.
• Lp indicates that we want to load the value on the bus into the counter (used for

jump instructions). When this is asserted, we will read from the bus and instead
of incrementing the counter, we will update each flip-flop with the appropriate
bit and prepare to output.

• The least significant 4 bits from the 8-bit bus will be used to store the value on
the program counter (0-15). Will be read from (JMP asserted) and written to
(Ep asserted).

• clr_n has precedence over all.
• Lp takes precedence over Cp.

411

IO Table: Instruction Register (IR)

Name Verilog Description I/O Width Trigger
bus bus Connection to bus IO 8 NA
clk clk Clock signal I 1 Rising Edge
clear ~rst_n Clear to 0 I 1 Active High
opcode opcode Opcode from IR O 4 NA
n_load nLi Load from Bus I 1 Active Low
n_enable nEi Output to bus O 1 Active Low

Instruction Register (IR) Notes
• The A Register updates its value on the rising edge of the clock.
• nEi controls whether the instruction is being output to the bus[3:0]. If this signal

is high, our output is high impedance (Tri-State Buffers).
• nLi indicates that we want to load the value on the bus into the IR. When this

is low, we will read from the bus and write to the register.
• When clear is high, the opcode is cleared back to NOP.
• IR always outputs the current value of the register to CB.

IO Table: RAM

Name Verilog Description I/O Width Trigger
addr mar_to_ram_addr Address for read/write I 4 NA
data_in mar_to_ram_data Data for write I 8 NA
data_out bus Connection to bus O 8 NA
lr_n nLr Load data from MAR I 1 Active Low
ce_n nCE Output to bus I 1 Active Low
clk clk Clock Signal I 1 Rising edge
rst_n ‘1’ Clear RAM I 1 Active Low

RAM Notes
• Addressing: The memory is 4-bit addressable, where the address specifies which

register (out of 16) is being accessed for reading or writing.
• Write operation: A byte of data is written to specific register in RAM, where

the location is determined by the address. Requires write enable lr_n signal as
active (low) and the clock edge to occur.

412

• Read operation: Data can be read from a specific register in RAM determined
by the input address. Requires chip enable ce_n signal as active (low). The
data is output on the bus, and it is updated on the clock edge.

• Output: Data is presented on the bus line when the chip is enabled for reading,
and high-impedance (Z) otherwise.

• RAM is never reset, rather, we always flash it.

IO Table: MAR

Name Verilog Description I/O Width Trigger
bus bus Connection to bus IO 8 NA
clk clk Clock signal I 1 Rising Edge
addr mar_to_ram_addr Address for read/write O 4 NA
data mar_to_ram_data Data for write O 8 NA
n_load_data nLmd Load data from Bus I 1 Active Low
n_load_addr nLma Load address from Bus I 1 Active Low

MAR Notes
• The MAR updates its value on the rising edge of the clock.
• nLmd indicates that we want to load the value on the bus into the data register.

When this is low, we will read from the bus and write to the register.
• nLma indicates that we want to load the value on the bus[3:0] into the address

register. When this is low, we will read from the bus and write to the register.
• MAR always outputs the current value of the data and address registers to the

RAM module.

IO Table: ALU (Adder/Subtractor)

Name Verilog Description I/O Width Trigger
clk clk Clock Signal I 1 Rising edge
enable_out Eu Output to bus I 1 Active High
Register A reg_a Accumulator Register I 8 NA
Register B reg_b Register B I 8 NA
subtract sub Perform Subtraction I 1 Active High
bus bus Connection to bus O 8 NA
Carry Out CF Carry-out flag O 1 Active High
Result Zero ZF Zero flag O 1 Active High

413

ALU (Adder/Subtractor) Notes
• Eu controls whether the counter is being output to the bus. If this signal is low,

our output is high impedance (Tri-State Buffers).
• A Register and B Register always provide the ALU with their current values.
• When sub is not asserted, the ALU will perform addition: Result = A + B
• When sub is asserted, the ALU will perform subtraction by taking 2s complement

of operand B: Result = A - B = A + !B + 1
• Carry Out and Result Zero flags are updated on rising clock edge.

IO Table: Accumulator (A) Register

Name Verilog Description I/O Width Trigger
clk clk Clock Signal I 1 Rising edge
bus bus Connection to bus IO 8 NA
load nLa Load from bus I 1 Active Low
enable_out Ea Output to bus I 1 Active High
Register A reg_a Accumulator Register O 8 NA
clear rst_n Clear Signal I 1 Active Low

Accumulator (A) Register Notes
• The A Register updates its value on the rising edge of the clock.
• Ea controls whether the counter is being output to the bus. If this signal is low,

our output is high impedance (Tri-State Buffers).
• nLa indicates that we want to load the value on the bus into the A Register.

When this is low, we will read from the bus and write to the register.
• When CLR is low, the register is cleared back to 0.
• (Register A) always outputs the current value of the register to the ALU.

IO Table: B Register

Name Verilog Description I/O Width Trigger
bus bus Connection to bus IO 8 NA
clk clk Clock Signal I 1 Rising edge
n_load nLb Load from bus I 1 Active Low
value reg_b B Register value O 8 NA

414

B Register Notes
• The B Register updates its value on the rising edge of the clock.
• nLb indicates that we want to load the value on the bus into the B Register.

When this is low, we will read from the bus and write to the register.
• B Register always outputs the current value of the register to the ALU.

IO Table: Output Register

Name Verilog Description I/O Width Trigger
bus bus Connection to bus IO 8 NA
clk clk Clock Signal I 1 Rising edge
n_load nLo Load from bus I 1 Active Low
value uo_out B Register value O 8 NA

Output Register Notes
• The Output Register updates its value on the rising edge of the clock.
• nLo indicates that we want to load the value on the bus into the B Register.

When this is low, we will read from the bus and write to the register.

How to test

Provide input of op-code. Check that the correct output bits are being asserted/de-
asserted properly.

Setup
1. Power Supply: Connect the chip to a stable power supply as per the voltage

specifications.
2. Clock Signal: Provide a stable clock signal to the clk pin.
3. Reset: Ensure the rst_n pin is properly connected to allow resetting the chip.

415

Testing Steps
1. Initial Reset:

• Perform a sync reset by pulling the rst_n pin low, waiting for 1 clock
signal, and then pulling pulling the rst_n high to initialize the chip.

2. Load Program into RAM:

• Use the ui_in pins to load a test program into the RAM. Ensure the
programming pin is high during this process.

• Perform a sync reset by pulling the rst_n pin low, waiting for 1 clock
signal, and then pulling pulling the rst_n high to initialize the chip.

• Wait for the ready_for_ui signal to go high, indicating that the CPU is
ready to accept data.

• Provide the first byte of data on the ui_in pins.
• Wait for the done_load signal to go high, indicating that the data has been

successfully loaded into the RAM.
• Repeat the process for each byte of data:

– Wait for ready_for_ui to go high.
– Provide the next byte of data on the ui_in pins.
– Wait for done_load to go high.

• Example program data:

0x10, # NOP
0x73, # JMP 0x3
0x00, # HLT
0x4F, # LDA 0xF
0x2E, # ADD 0xE
0x6D, # STA 0xD
0x50, # OUT
0x3F, # SUB 0xF
0x50, # OUT
0x4D, # LDA 0xD
0x50, # OUT
0x72, # JMP 0x2
0x10, # NOP
0x00, # Padding/empty instruction
0x02, # Constant 2 (data)
0x01 # Constant 1 (data)

416

3. Run Test Program:

• Set the programming pin low to exit programming mode.
• Perform a sync reset by pulling the rst_n pin low, waiting for 1 clock

signal, and then pulling pulling the rst_n high to initialize the chip.
• Monitor the uo_out and uio_out pins for expected outputs.
• Verify the control signals and data outputs at each clock cycle.

4. Functional Tests:

• Perform specific functional tests for each instruction (e.g., ADD, SUB,
LDA, STA, JMP, HLT).

• Verify the correct execution of each instruction by checking the output and
control signals.

Example Test Cases
• HLT Instruction: Example program data:

0x4E, # LDA 0xE
0x50, # OUT
0x00, # HLT
0x4F, # LDA 0xF
0x50, # OUT
0x00, # HLT
0x00, # Padding/empty instruction
0x00, # Padding/empty instruction
0x00, # Padding/empty instruction
0x00, # Padding/empty instruction
0x00, # Padding/empty instruction
0x00, # Padding/empty instruction
0x00, # Padding/empty instruction
0x00, # Padding/empty instruction
0x09, # Constant 9 (data)
0xFF # Constant 255 (data)

This program should first output 9 and then NOT change that to 255. HF
should be set to 1

• NOP Instruction: Example program data:

0x42, # LDA 0x2
0x50, # OUT
0x10, # NOP / Constant 16 (data)

417

0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x4E, # LDA 0xF
0x50, # OUT
0x1F, # NOP
0x1F, # NOP / Constant 31 (data)

This program should flash the lower 4 bits of the output register on and off with
different on/off times

• NOP Instruction: Example program data:

0x42, # LDA 0x2
0x50, # OUT
0x10, # NOP / Constant 16 (data)
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x1F, # NOP
0x4E, # LDA 0xF
0x50, # OUT
0x1F, # NOP
0x1F, # NOP / Constant 31 (data)

This program should flash the lower 4 bits of the output register on and off with
different on/off times

• ADD Instruction Example program data:

0x50, # OUT
0x2E, # ADD 0xE
0x70, # JMP 0x0

418

0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0x01, # Constant 1 (data)
0xFF, # Padding/empty instruction

This program should add 1 to the A register, display it and loop back to the
start. The output should be a counter from 0 to 255, then repeat.
CF should be set to 1 when the A register overflows, and 0 when it doesn’t.
CF=1 happens when the A register is 255 and 1 is added to it.
ZF should be set to 1 when the A register is 0, and 0 otherwise.

• SUB Instruction Example program data:

0x50, # OUT
0x3E, # SUB 0xE
0x70, # JMP 0x0
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0x01, # Constant 1 (data)
0xFF, # Padding/empty instruction

This program should subtract 1 to the A register, display it and loop back to the
start. The output should be a counter from 255 to 0, then repeat.
CF should be set to 1 when the A register overflows, and 0 when it doesn’t.
CF=0 happens when the A register is 0 and 1 is subtracted from it.

419

ZF should be set to 1 when the A register is 0, and 0 otherwise.
• LDA Instruction

See above for example program data.
• OUT Instruction

See above for example program data.
• STA Instruction

Example program data:

0x4E, # LDA 0xE
0x2F, # ADD 0xF
0x5F, # OUT
0x6E, # STA 0xF
0x2F, # ADD 0xE
0x5F, # OUT
0x00, # HLT
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0x09, # Constant 9 (data)
0xFF # Constant 255 (data) -> Constant 8 (data)

This program should load 9 to the A register, add 255 to it, resulting in 8 (CF
should set to 1) display it, store it in 0xF, add 9 to it, resulting in 17 (CF should
set to 0) and display it. Then, it should halt, and set HF to 1.

• JMP Instruction
Example program data:

0x44, # LDA 0x4
0x5F # OUT
0x7D, # JMP 0xD
0x0F, # HLT
0x00, # Constant 0 (data)
0xFF, # Constant 5 (data)
0xFF, # Padding/empty instruction

420

0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0xFF, # Padding/empty instruction
0x45, # LDA 0x5
0x5F # OUT
0x0F, # HLT

This program should load 0x4 (0) to the A register, display it, NOT HALT, jump
to 0xD, then load 0x5 (255) to the A register, display it, and halt. HF should
be set to 1.

Acknowledgements

• Darius Rudaitis, Eshann Mehta: RAM
• Evan Armoogan, Catherine Ye: PC
• Damir Gazizullin, Owen Golden: ALU, Accumulator
• Roni Kant, Jeremy Kam: MAR, B Register, Output Register, Instruction Regis-

ter
• Gerry Chen, Siddharth Nema: Control Block and Programmer
• ECE 298A Course Staff: Prof. John Long, Prof. Vincent Gaudet, Refik Yalcin

Pinout

Input Output Bidirectional
0 prog_in_0 output_register_0 in_programming
1 prog_in_1 output_register_1 out_ready_for_ui
2 prog_in_2 output_register_2 out_done_load
3 prog_in_3 output_register_3 out_CF
4 prog_in_4 output_register_4 out_ZF
5 prog_in_5 output_register_5 out_HF
6 prog_in_6 output_register_6
7 prog_in_7 output_register_7

421

Tiny piano [489]

• Author: Kenneth Petersen
• Description: A tiny musical note generator with 16 notes across 4 octaves and

tremolo effect
• GitHub repository
• HDL project
• Mux address: 489
• Extra docs
• Clock: 10000000 Hz

How it works

This digital tone generator turns binary inputs into musical notes through the ancient
art of frequency division:

• 20-bit counter that ticks away until it’s time to toggle a square wave
• 16 musical notes to choose from
• 4 octaves, because sometimes you want to annoy dogs, sometimes submarines
• Tremolo effect for when regular beeping isn’t dramatic enough
• 7-segment LED display that dances along, pretending to be a visualizer

Really it’s just a binary counter that gets impatient at musically-appropriate intervals.
Seemed simple enought since time sort of ran out from this project.

How to test

1. Note selection: Set ui_in[3:0] to pick your poison:

• 0 = C
• 9 = A/440Hz
• The others are somewhere in between

2. Octave selection: ui_in[5:4] lets you choose your pitch range:

• 00: Standard frequencies (for normal people)
• 01: One octave higher (for annoying people)
• 10: Two octaves higher (for annoying pets)
• 11: Three octaves higher (for annoying bats)

3. Master switch: ui_in[6] = 1 turns it on. Set to 0 for silence.
4. Tremolo: ui_in[7] = 1 adds cool effects.

422

https://github.com/kentrane/tt-tiny_spectrum

The main square wave output comes out from uo_out[7], while uo_out[6:0] provides
visual confirmation that yes, you are indeed making noise, while also letting you know
which kind. Solder jumpers to all pins except the DP since that one is the audio
(uo_out[7]) I think it should be able to control the inputs from the Pi Pico, and maybe
I could make a small keyboard for attaching also to control it.

External hardware

you’ll need:

• RC low-pass filter (probably 1kΩ + 0.1µF will do)
• DC blocking capacitor (unless playing AC/DC)
• Speaker or headphones
• Audio amplifier (optional)

Pinout

Input Output Bidirectional
0 Note select bit 0 Audio out
1 Note select bit 1 Note LED 1
2 Note select bit 2 Note LED 2
3 Note select bit 3 Note LED 3
4 Octave select bit 0 Note LED 4
5 Octave select bit 1 Note LED 5
6 Enable tone Note LED 6
7 Enable tremolo Note LED 7

423

carry_select [490]

• Author: Juan, Leyang
• Description: This project designs a 8-bit carry select adder.
• GitHub repository
• HDL project
• Mux address: 490
• Extra docs
• Clock: 0 Hz

How it works

The 8-bit carry select adder works through the full adder and mux. The Carry Select
Adder works by essentially using two ripple adders, with one having cin = 0 and the
other cin = 1. Through this procedure, we are able to speed up the calculation of
selecting which sum depending on our cin.
The ripple adder works by using a cascade of several full adders connected in series
with each other. Each full adder is resposible for their adding their corresponding
bits from both inputs and outputs their carryout to the carryin of the next full adder
until both inputs have been fully added together. The ripple adder, and by extension
the carry select adder is simple to implement and requires minimal logic gates to
implement, making it inexpensive and space-efficient compared to other methods of
addition. However, there is a delay due to the carry propagation which limits the ripple
adder (and therefore the carry-select adder) in its effective speed with larger bitwidth
inputs. However, for this application (8-bits), this adder is very efficient in both space
and speed.
This project uses ’https://github.com/FCHXWH823/Verilog-Adders\XeTeXglyph\nu
mexpr\XeTeXcharglyph”0027\relax{} as reference.

How to test

We tested all the combinations. This means two 8 bits input sum to a 8 bit output,
and we ignore the carry out bit.
Therefore, we expect both the input and the output to be in the range of 0 to 255.

External hardware

We did not use any external hardware.

424

https://github.com/JuanGGil/tt09-carryselect8bit
https://github.com/FCHXWH823/Verilog-Adders\XeTeXglyph \numexpr \XeTeXcharglyph "0027\relax {}
https://github.com/FCHXWH823/Verilog-Adders\XeTeXglyph \numexpr \XeTeXcharglyph "0027\relax {}

Pinout

Input Output Bidirectional
0 a[0] sum[0] b[0]
1 a1 sum1 b1
2 a2 sum2 b2
3 a[3] sum[3] b[3]
4 a[4] sum[4] b[4]
5 a[5] sum[5] b[5]
6 a[6] sum[6] b[6]
7 a[7] sum[7] b[7]

425

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Asynchronous I2C Registerfile Interface [491]

• Author: DTU
• Description: async. i2c if to regfile
• GitHub repository
• HDL project
• Mux address: 491
• Extra docs
• Clock: 0 Hz

How it works

Async I2C to register file, shows up as an I2C interface. To be used to configure analog
blocks.

How to test

Address as I2C peripheral, write and read words.

External hardware

LED

Pinout

Input Output Bidirectional
0 SDA
1
2
3
4
5
6
7

426

https://github.com/SimoneGuglielmino/I2C_register

test_friday2 [492]

• Author: Niles Peter
• Description: class
• GitHub repository
• HDL project
• Mux address: 492
• Extra docs
• Clock: 0 Hz

8-bit KoggeStone Adder

Author: Niles Villaverde, Joshua Cho Language: Verilog

How it works

The KoggeStone Adder computes in parallel, first the sum from the two different inputs
and then computes the carry-out for each bit. Then uses the calculated carry-out and
sum of each bit to compute the final result of the adder. Note: No carry-out so values
greater than 255 can not be outputted
In the project.v file, there are 5 different modules: BigCircle, SmallCircle, Square,
Triangle, and tt_um_koggestone_adder8.
Shown in figure 1 below is the block diagram for the flow for the KoggeStone Adder

427

https://github.com/nuv203/KoggeStoneAdder_TinyTapeout

Figure 1: KoggeStone Adder Block Diagram

BigCirle Module The BigCircle module represents the carry generator for the
KoggeStone Adder. It calculates the generated and propagated signal in each bit
stage in the Adder. In comparison to carry-ripple adders, the KoggeStone adder allows
for the carry information to propagate efficiently to multiple bit positions. This allows
for the number of sequential steps in calculating the final carry-out to be reduced.
The BigCircle takes in the generate and propagate signals from the current position in
the adder and the previous position in the adder. Using these signals, BigCircle updates
the generate signal for the bit position to reflect if the carry is generated from this bit
position or propagated from the previous. Then calculates the propagation signal to
decide whether if a carry can be passed through this position.

SmallCircle Module The SmallCircle module passes the carry in signal and gener-
ated carry signal to the next position

Square Module The Square module calculates the current generate and propagate
signal by ANDing the inputs A and B as well as XORing the inputs A and B respec-
tively.

428

Triangle Module The Triangle module calcualtes the sum bit by XORing the prop-
agate bit with the previous carry-in bit.

tt_um_koggestone_adder8 Module The tt_um_koggestone_adder8 module
takes in two 8-bit inputs, ui_in and uio_in. The module also outputs an 8-bit output,
uo_out. Input Signals: Two 8-bit, a and b which are mapped to ui_in and uio_in,
respectively. Cin, carry-in for the addition which is set to zero. g and p, generate and
propagation signal for each bit. c, carries for each bit position.
The first sequence is to use the Square Module to create the initial generate and
progagate calculations. Then uses the BigCircle Module to calculate the intermediate
generate and propagation signals of each bit. In the second stage of the BigCircle
Module, by combining the signals over groups of 4 bits, it further propagates the carry.
In the third stage of the BigCircle Module, it continues the carry propagation over
an even wider spans of bits. Then using the SmallCircle Module, the final Carry-Out
signals for each position are calculated. Then the final sum is calculated using the
Triangle Modules.

How to test

The two different inputs, ui_in[7:0] and uio_in[7:0] are iterated through each possible
combination of 8-bit numbers to test all corner cases. The outputs are set to the
calculated values calculated by the KoggeStone Adder. If the sum between the two
values are greater than 255, the test is skipped as limitations on the hardware prevent
us from having a carry-out value.

External hardware

no external hardware

Pinout

Input Output Bidirectional
0 a[0] sum[0] b[0]
1 a1 sum1 b1
2 a2 sum2 b2
3 a[3] sum[3] b[3]
4 a[4] sum[4] b[4]
5 a[5] sum[5] b[5]

429

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
6 a[6] sum[6] b[6]
7 a[7] sum[7] b[7]

430

Tappu [493]

• Author: Tobias Jensen
• Description: A simple 8 bit CPU inspired by the esoteric language BF
• GitHub repository
• HDL project
• Mux address: 493
• Extra docs
• Clock: 20 Hz

How it works

This project implements the Tappu CPU with a ROM memory that turns blinks all
outputs

How to test

Watch the output blink :)

External hardware

None

Pinout

Input Output Bidirectional
0 Input for Tappu Output for Tappu
1 Input for Tappu Output for Tappu
2 Input for Tappu Output for Tappu
3 Input for Tappu Output for Tappu
4 Input for Tappu Output for Tappu
5 Input for Tappu Output for Tappu
6 Input for Tappu Output for Tappu
7 Input for Tappu Output for Tappu

431

https://github.com/tobias1012/tt10-tappu

Perceptron [494]

• Author: Mimi Rapoport
• Description: Simulates a perceptron
• GitHub repository
• HDL project
• Mux address: 494
• Extra docs
• Clock: 0 Hz

How it works

The perceptron takes in three inputs, multiplies them by weights and then sums the
products. It then weighs the sum against a threshold to decide whether to outpur 1 or
0. The perceptron also takes in a desired output and performs a weight update when
the desired output and actual output don’t match. .

How to test

Make sure that the clock and reset are working.

External hardware

None

Pinout

Input Output Bidirectional
0 Input bit [0] Output bit [0]
1 Input bit 1 Output bit 1
2 Input bit 2
3 Input bit [3]
4 Input bit [4]
5 Input bit [5]
6 Input bit [6]
7 Input bit [7]

432

https://github.com/Rapoport-Mimi/Mimi-Rapoport-ECE-210
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

mp_LIF_neuron [495]

• Author: Andreas Schorer
• Description: Mixed precision Leaky integrate and fire (LIF) neuron
• GitHub repository
• HDL project
• Mux address: 495
• Extra docs
• Clock: 0 Hz

How it works

This project implements a mixed precision leaky integarte and fire (LIF) neuron. It
either computes one neuron at a time with 24bit membrane value and 8 bit weights or
two neurons with 12bit membrane values and 4 bit weights.

How to test

Apply the weight at the input and observe spikes. <- Will be updated later

External hardware

none

Pinout

Input Output Bidirectional
0 w0 spk_upper ready
1 w1 spk_lower
2 w2
3 w3
4
5
6
7

433

https://github.com/schorand/LIF_CORE

Hopfield Network with Izhikevich-type RS and FS Neurons
[496]

• Author: Daniel Solis
• Description: An on-chip implementation of a Hopfield neural network using

Izhikevich-type regular spiking (RS) and fast spiking (FS) neurons with on-chip
Hebbian learning for pattern storage and retrieval.

• GitHub repository
• HDL project
• Mux address: 496
• Extra docs
• Clock: 16000000 Hz

How it works

It is a leaky Integrated Neuron

How to test

Just Test

External hardware

No

Pinout

Input Output Bidirectional
0 learning_enable spikes[0]
1 pattern_input[0] spikes1
2 pattern_input1 spikes2
3 pattern_input2 spikes[3]
4 pattern_input[3] spikes[4]
5 spikes[5]
6 spikes[6]
7

434

https://github.com/cellular-alchemist/tt09-danielsolis
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

digital LIF Neuron [497]

• Author: Kosmas Wernhard
• Description: digital LIF Neuron
• GitHub repository
• HDL project
• Mux address: 497
• Extra docs
• Clock: 0 Hz

How it works

Digital LIF Neuron, Reset by subtraction, Set Leakage and Threshold

How to test

Input Weight and Spike, See if it spikes

External hardware

No external Hardware needed

Pinout

Input Output Bidirectional
0 Weight0 Spike_OUT
1 Weight1
2 Weight2
3 Weight3
4
5
6
7 Spike_IN

435

https://github.com/Strider93/tt_verilog_test

Tinysynth [498]

• Author: Erling Rennemo Jellum
• Description: A tiny square wave oscillator accepting MIDI commands.
• GitHub repository
• HDL project
• Mux address: 498
• Extra docs
• Clock: 50000000 Hz

How it works

Accepts MIDI commands over UART, generates a corresponding square wave signal
using PWM.

How to test

External hardware

A Pmod AMP2 connected to the PMOD connector.

Pinout

Input Output Bidirectional
0 a x0 b0
1 b x1 b1
2 c x2 b2
3 d x3 b3
4 e x4 b4
5 f x5 b5
6 g x6 b6
7 h x7 b7

436

https://github.com/erlingrj/tinysynth2

Hero on Tape [499]

• Author: Marcus Sand
• Description: Echoes out a predefined text onto a 16x2 character LCD.
• GitHub repository
• HDL project
• Mux address: 499
• Extra docs
• Clock: 0 Hz

How it works

Echoes out a predefined text onto a 16x2 character LCD.

How to test

Connect up a character LCD according to the pinout, and set the clock.

External hardware

A 16x2 character LCD (LCD1602)

Pinout

Input Output Bidirectional
0 CLK RS
1 E
2 D4
3 D5
4 D6
5 D7
6
7

437

https://github.com/HeroGamers/Tiny-Tapeout-Hero

16 Bit Izhikevich Neuron [512]

• Author: Noah Williams
• Description: Izhikevich neuron model with 16 bit arithmetic.
• GitHub repository
• HDL project
• Mux address: 512
• Extra docs
• Clock: 0 Hz

How it works

Izhikevich model

The Izhikevich model is a simple spiking neuron model that builds on the
dynamics of the simplistic leaky integrate-and-fire model, adding
complexity of the Hodgkin-Huxley model with minimal computational
cost.

The model is described by the following system:

v' = 0.04*v^2 + 5*v + 140 - u + I
u' = a*(b*v - u)
if v >= 30 then {v = c; u = u + d}

where:
a, b, c, d = dimensionless constants

Regular Spiking (RS) Excitatory Neuron:
a = 0.02, b = 0.2, c = -65, d = 8

v = membrane potential
u = membrane recovery (Na and K, neg feedback to v)
a = time scale of the recovery variable u (small = slow recovery)
b = sensitivity of the recovery variable u to v

Larger values increase sensitivity and lead to more
spiking behavior. b<a(b>a) is saddle-node

c = after spike reset value of v
caused by fast K+ channels

d = after spike reset value of u

438

https://github.com/nomuwill/tt_um_nomuwill

caused by slow Na+ & K+ channels
I = input current

The constants for the model differential equation v' are experimentally
determined by fitting the model to the desired neuron behavior. In
the original paper (from which the equations are taken), the model
was fit to experimental data from Regular Spiking of a rat cortical
neuron.

References:
https://www.izhikevich.org/publications/spikes.pdf

How to test

To test the model, use the supplied test-bench. The test-bench will run through
three different scenarios. The first case is the reset test case, which
ensure that the model resets properly given a reset condition (res_n = 1).
The next test case checks to make sure that the model doesn't spike when
the input current is below threshold. The spike value for each of these
included non-spike test cases should be 0. The final test case is the spike
test that ensures the model spikes when the input is above the threshold. This
includes a test for the maximum current to test overflow conditions. Each condition
is checked with an assert statement.

External hardware

N/A at the moment :)

Pinout

Input Output Bidirectional
0 Input current bit [0] State variable bit [0]
1 Input current bit 1 State variable bit 1
2 Input current bit 2 State variable bit 2
3 Input current bit [3] State variable bit [3]
4 Input current bit [4] State variable bit [4]
5 Input current bit [5] State variable bit [5]
6 Input current bit [6] State variable bit [6]

439

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
7 Input current bit [7] State variable bit [7] Spike bit

440

dff_mem [514]

• Author: dmrudait
• Description: 16 byte RAM built out of DFFs
• GitHub repository
• HDL project
• Mux address: 514
• Extra docs
• Clock: 0 Hz

How it works

This project implements a 16 Byte memory module (it consists of 16 memory locations
that store 1 byte each). The memory allows for both read and write operations,
controlled by input signals. The module requires a 4-bit address input, control signals
lr_n and ce_n, a clock, 8-bit data input (for writes), and a reset signal.
Signals

• ui_in[7:0]: Dedicated input line for all control signals
• ce_n (Active Low): Chip enable signal for reading data.
• lr_n (Active Load): Load/write signal, enabling writing to memory.
• uio_in[7:0]: Bidrectional IO line for input (used an the input line for data)
• uio_out[7:0]: Bidrectional IO line for output.
• uio_oe (Active High): Used to set the bidirectional IO line to an input to be

able to input data
• ena (Active High): Tiny Tapeout signal for enabling the module
• clk: global clock. Operations happen on the positive edge
• rst_n (Active low): Resets all contents in RAM to NULL.
• uo_out[7:0]: Dedicated output line (outputs ram contents when ce_n is low

(active).

Addressing: The memory is 4-bit addressable, where the address specifies which
register (out of 16) is being accessed for reading or writing.
Write operation: A byte of data is written to specific register in RAM, where the
location is determined by the address. Requires write enable lr_n signal as active
(low) and the clock edge to occur.
Read operation: Data can be read from a specific register in RAM determined by the
input address. Requires chip enable ce_n signal as active (low). The data is output on
the uo_out ports, and it is updated asynchronously (independant of the clock edge).

441

https://github.com/Troops3/TinyRAM

Output: Data is presented on the uo_out line when the chip is enabled for reading,
and high-impedance (Z) otherwise.

How to test

To test, set the address and corresponding inputs to desired values. Clear lr_n for a
write operation and ce_n for a read operation. Then pulse the clock to run signals.
The CocoTB testbenches located in the test.py file, test various scenarios for the
module. First, it tests a write operation to each address in the module followed by
a read operation at each address, to ensure correct behaviour. The script then sets
ui_in, lr_n high and clears ce_n to setup for a Read with RAM output enabled. It
then iterates over and reads from each address, comparing the recevied value (uo_out),
to the expected byte from that address. If there are any mismatches, an assertion error
is raised, specifying the faulty address and value.

Figure 1: Gate level Test

Figure 2: Ideal Test

442

External hardware

This RAM module is intended to be integrated into an 8-bit processor. However, it is
being submitted to TT as an indiviudal tile for testing. An external MAR would thus
be required to program RAM and subseqently read memory. The MAR would act as a
programmer according to the avove described specifications.

Pinout

Input Output Bidirectional
0 addr[0] out[0] in[0]
1 addr1 out1 in1
2 addr2 out2 in2
3 addr[3] out[3] in[3]
4 addr[4] out[4] in[4]
5 out[5] in[5]
6 lr_n out[6] in[6]
7 ce_n out[7] in[7]

443

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Verilog ring oscillator V2 [516]

• Author: algofoogle (Anton Maurovic)
• Description: Multiple simple ring oscillators by instantiating sky130 inv_2 in-

verter rings
• GitHub repository
• HDL project
• Mux address: 516
• Extra docs
• Clock: 0 Hz

What is this?

Everyone has done a ring oscillator using inverter cells. Now it’s my turn!
I already submitted tt09-ring-osc on TT09 and rather than muck that up with extra
stuff I decided to submit this alternate version which features:

• 4 simple independent rings instead of 1, hoping to run at different speeds:

– ring_125: 125 inverters, maybe 112MHz out? Could be too fast for IO.
– ring_251: 251 inverters, hopefully good for ~56MHz.
– ring_501: 501 inverters, ~28MHz.
– ring_1001: 1001 inverters, ~14MHz.

• Some other PWM experiments on faster ring oscillators.

Approximate frequences are estimated on the assumption that each inverter introduces
a delay of ~70ps.
These use Verilog to instantiate the rings of (an odd number of) sky130_fd_sc_hd__inv_2
cells – UPDATE: Actually, since this is targeting IHP instead, there is a polyfill that
somebody else wrote to map sky130 cells to generic cells (that OpenLane will then
map to IHP cells).

Pinout

Input Output Bidirectional
0 pwm2_in[0] ring_125 dummy
1 pwm2_in1 ring_251 pwm3a_out
2 pwm3_in[0] ring_501
3 pwm3_in1 ring_1001

444

https://github.com/algofoogle/tt09-ring-osc2
https://github.com/algofoogle/tt09-ring-osc
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Input Output Bidirectional
4 c0_3
5 pwm3a_in[0] c1_3
6 pwm3a_in1 c2_5 pwm2_out
7 pwm3a_in2 c3_5 pwm3_out

445

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Basic model for Systollic array implementation of LIF [518]

• Author: Sulaiman Islam
• Description: A model for systolic array implementation of LIF neurons. Hazard

cases have been taken into account such as overstimulation of LIF nuerons with
bypass cases.

• GitHub repository
• HDL project
• Mux address: 518
• Extra docs
• Clock: 0 Hz

How it works

The model represents how a generative implementation of SNN training can be im-
plemented in verilog. Hazards that were predicted were that of LIF overstimulation
due to excessive accumilation of the multiply accumilate MAC operations. In order
to prevent this I implemented bypass conditions that made regulated the LIF inputs
to choose between 0 and the output of the MAC operatios. The LIF would only take
in the value of the MAC operation when the threeshold for firing was reached by the
output of the MAC. One clock cylce later the MAC Accumilation would be reset. This
was a weight stationary implemenation that had fixed constant weights on each of the
MACS. Several Blocks of these weight stationary MACS could be implemented with
their respective LIFS in theory, however due to size restrictions there is only one small
block in the Top module. The user input ui_in is used to drive the MAC inputs. The
uo_out individual bits were used to drive the spike to inidcate that the bypass had
occured and that the LIF had spiked.

How to test

Using ui_in to vary X and checking uo_out for expected behavior based on the MAC
operations.

External hardware

N/A

Pinout

446

https://github.com/suaislam/tt09-ece110

Input Output Bidirectional
0 input current bit [0] State variable bit [0]
1 input current bit 1 State variable bit 1
2 input current bit 2 State variable bit 2
3 input current bit [3] State variable bit [3]
4 input current bit [4] State variable bit [4]
5 input current bit [5] State variable bit [5]
6 input current bit [6] State variable bit [6]
7 input current bit [7] State variable bit [7] spike bit

447

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Leaky integrate and fire spiking neural network [520]

• Author: Aliyaa Islam
• Description: simulates a lif neuron
• GitHub repository
• HDL project
• Mux address: 520
• Extra docs
• Clock: 0 Hz

How it works

It takes input voltages and treats that as the input injection to the LIF neuron

How to test

Do something

External hardware

NA

Pinout

Input Output Bidirectional
0 Input current bit [0] State varibale bit [0]
1 Input current bit 1 State varibale bit 1
2 Input current bit 2 State varibale bit 2
3 Input current bit [3] State varibale bit [3]
4 Input current bit [4] State varibale bit [4]
5 Input current bit [5] State varibale bit [5]
6 Input current bit [6] State varibale bit [6]
7 Input current bit [7] State varibale bit [7] Spike bit

448

https://github.com/alnislam/tt09-ece-110
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

tinydsp-lol [522]

• Author: Tassilo Tanneberger
• Description: testing digital dsp
• GitHub repository
• HDL project
• Mux address: 522
• Extra docs
• Clock: 2000000 Hz

How it works

This is just a test project to explore Chisel.

How to test

It should have a ChiselTest to run with sbt test.

External hardware

Nothing at the moment.

Pinout

Input Output Bidirectional
0 a x0 b0
1 b x1 b1
2 c x2 b2
3 d x3 b3
4 e x4 b4
5 f x5 b5
6 g x6 b6
7 h x7 b7

449

https://github.com/tanneberger/tt09-dsp

Shifter [524]

• Author: Ethan Sifferman
• Description: Input » Inout
• GitHub repository
• HDL project
• Mux address: 524
• Extra docs
• Clock: 0 Hz

How it works

Output = Input[7:0] » Inout[7:0]

How to test

The LEDs will output the shifted value of Output = Input[7:0] » Inout[7:0].

External hardware

Switches on the inputs, LEDs on the outputs

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0] uio_in[0]
1 ui_in1 uo_out1 uio_in1
2 ui_in2 uo_out2 uio_in2
3 ui_in[3] uo_out[3] uio_in[3]
4 ui_in[4] uo_out[4] uio_in[4]
5 ui_in[5] uo_out[5] uio_in[5]
6 ui_in[6] uo_out[6] uio_in[6]
7 ui_in[7] uo_out[7] uio_in[7]

450

https://github.com/sifferman/tt09-subtractor
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

LRC - Longitudinal Redundancy Check generator [526]

• Author: Steve Jenson <stevej@gmail.com>
• Description: LRC implementation for Tiny Tapeout 09
• GitHub repository
• HDL project
• Mux address: 526
• Extra docs
• Clock: 0 Hz

How it works

Calculates a running error correcting code. For each new byte applied to the input
pins, calculates a running longitudinal redundancy code.

How to test

Supply a byte to ui_in, read the LRC on uo_out. Keep feeding it bytes and you’ll
keep getting new LRC codes. Code resets when the chip resets.

External hardware

No external hardware needed.

Pinout

Input Output Bidirectional
0 Input Bit 0 Output Bit 0
1 Input Bit 1 Output Bit 1
2 Input Bit 2 Output Bit 2
3 Input Bit 3 Output Bit 3
4 Input Bit 4 Output Bit 4
5 Input Bit 5 Output Bit 5
6 Input Bit 6 Output Bit 6
7 Input Bit 7 Output Bit 7

451

mailto:stevej@gmail.com
https://github.com/stevej/tt09-lrc-stevej

Workshop demo [528]

• Author: Tommy Thorn
• Description: Just a demo
• GitHub repository
• HDL project
• Mux address: 528
• Extra docs
• Clock: 50000000 Hz

How it works

It’s magic

How to test

Connect the TX pin to your favorite terminal (more to be written)

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 rx tx
1 pdm_out
2
3
4
5
6
7

452

https://github.com/tommythorn/tt09-tommythorn-workshop

A Tale of Two NCOs [530]

• Author: Mike Ng
• Description: Two NCOs enter, one signal leaves
• GitHub repository
• HDL project
• Mux address: 530
• Extra docs
• Clock: 50000000 Hz

How it works

This design contains two NCOs, implemented with phase accumulators and sine lookup
tables. The outputs of the NCOs are multiplied together by default. NCO B can be
bypassed to a constant “one” or “half”. There is also a boxcar filter for funsies.
When operating at 50 MHz, it should be possible to tune NCO A from 24.8 MHz to
0.195 MHz. NCO B has one less bit in its increment control, so it can only go up to
12.3 MHz.

How to test

The output is intended for something simple like an R-2R DAC. Don’t expect it to be
pretty at high frequency.

External hardware

• DAC
• Oscilloscope

Pinout

Input Output Bidirectional
0 phase_incr_A[0] OUT0 phase_incr_B[0]
1 phase_incr_A1 OUT1 phase_incr_B1
2 phase_incr_A2 OUT2 phase_incr_B2
3 phase_incr_A[3] OUT3 phase_incr_B[3]
4 phase_incr_A[4] OUT4 phase_incr_B[4]
5 phase_incr_A[5] OUT5 phase_incr_B[5]

453

https://github.com/mng2/tt09-wokwi
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
6 phase_incr_A[6] OUT6 low_amplitude_B
7 filter_on OUT7 bypass_B

454

Wokwi Group #7 [544]

• Author: Tiny Tapeout
• Description: Combined project to save space for ttihp25a
• GitHub repository
• HDL project
• Mux address: 544
• Extra docs
• Clock: 0 Hz

• SimplePattern by Poorn
• Drew’s First Wokwi Design by ReanimationXP
• Not Good BCD Decoder by Erik Shimizu
• JCB First WOKWI Design by Jared Bruce
• Jacks First Project by Jack B
• APTT by Andy
• Trubick - Tiny Tapeout Logic Gate by Zane Trubick
• Metastable Chip by Patrick McDermott
• Yared Fente’s Tiny Tapeout by Yared Fente
• project by ahmad
• TT-Farhad by Farhad
• Ripple counter by Marc Mignard
• chip by Olivia
• Full adder Design by Mithun
• sarah’s first chip by sarah

Pinout

Input Output Bidirectional
0 in0 out0 sel0
1 in1 out1 sel1
2 in2 out2 sel2
3 in3 out3 sel3
4 in4 out4
5 in5 out5
6 in6 out6
7 in7 out7

455

https://github.com/TinyTapeout/dummy
tt_um_wokwi_413387009513254913/info.md
tt_um_wokwi_413387186248679425/info.md
tt_um_wokwi_413918244906651649/info.md
tt_um_wokwi_413919454053401601/info.md
tt_um_wokwi_413919458626244609/info.md
tt_um_wokwi_413919565287453697/info.md
tt_um_wokwi_413919752282163201/info.md
tt_um_wokwi_413919794360480769/info.md
tt_um_wokwi_413921849611724801/info.md
tt_um_wokwi_413929752291913729/info.md
tt_um_wokwi_414120379026893825/info.md
tt_um_wokwi_414120414884012033/info.md
tt_um_wokwi_414120432405727233/info.md
tt_um_wokwi_414120800422397953/info.md
tt_um_wokwi_414124471705253889/info.md

Wokwi Group #6 [546]

• Author: Tiny Tapeout
• Description: Combined project to save space for ttihp25a
• GitHub repository
• HDL project
• Mux address: 546
• Extra docs
• Clock: 0 Hz

• Input Counter by Benjamin Meyer
• Bad Logic by AaronV
• MuxLED by Alex Moore
• TINY TAPE OUT by Slaiman
• BadeTP by Brandon D
• YoshiTP by Yeshua M (Yoshi)
• Light LED by Baruas
• TinyTapeout1 by Matthew H
• four flip flops by Arjun Vedantham
• Tiniest of tapeouts by J Money
• 3bitFullAdder by Isabella Phung
• 4 bit adder by Angel Lim Hui Yi
• Mini-Adder and Clock Divider by Marcus
• rhTinyTapeout by Raphael Huang
• Tiny_Tapeout_Adder! by Abhinav Chaubey

Pinout

Input Output Bidirectional
0 in0 out0 sel0
1 in1 out1 sel1
2 in2 out2 sel2
3 in3 out3 sel3
4 in4 out4
5 in5 out5
6 in6 out6
7 in7 out7

456

https://github.com/TinyTapeout/dummy
tt_um_wokwi_413386973689694209/info.md
tt_um_wokwi_413386988538584065/info.md
tt_um_wokwi_413918279810604033/info.md
tt_um_wokwi_413919522908184577/info.md
tt_um_wokwi_413919767806333953/info.md
tt_um_wokwi_413919833599252481/info.md
tt_um_wokwi_413923202390383617/info.md
tt_um_wokwi_413923260134423553/info.md
tt_um_wokwi_414117854728812545/info.md
tt_um_wokwi_414120391864616961/info.md
tt_um_wokwi_414120407679244289/info.md
tt_um_wokwi_414120518107969537/info.md
tt_um_wokwi_414121442515858433/info.md
tt_um_wokwi_414121555407659009/info.md
tt_um_wokwi_414125777368065025/info.md

Wokwi Group #5 [548]

• Author: Tiny Tapeout
• Description: Combined project to save space for ttihp25a
• GitHub repository
• HDL project
• Mux address: 548
• Extra docs
• Clock: 0 Hz

• RAYS FIRST TAPEOUT rev 2 by RAY STITS
• joes-first-tiny-tapeout by securelyfitz
• Speller by Aaron Eiche
• OR gate by Joe Merriam
• 1st by HUSSAIN
• Kevin Project by Kevin
• AndLogicPass by James Nguyen
• ovl abc chip by oliver lazaras
• D_flipflop_hold_test by Nicole Ramirez
• one by Neil
• Odd or even by Eliana
• add it by alex b
• Tian TT9 by Tianxin Wu
• 2_bit_7seg by Nathaniel_Laurente
• 2-bit Full Adder by Shreya

Pinout

Input Output Bidirectional
0 in0 out0 sel0
1 in1 out1 sel1
2 in2 out2 sel2
3 in3 out3 sel3
4 in4 out4
5 in5 out5
6 in6 out6
7 in7 out7

457

https://github.com/TinyTapeout/dummy
tt_um_wokwi_413387064715554817/info.md
tt_um_wokwi_413387076188030977/info.md
tt_um_wokwi_413387224567846913/info.md
tt_um_wokwi_413919465666386945/info.md
tt_um_wokwi_413919524873217025/info.md
tt_um_wokwi_413919775044656129/info.md
tt_um_wokwi_413919927206703105/info.md
tt_um_wokwi_413921836641882113/info.md
tt_um_wokwi_413925554587918337/info.md
tt_um_wokwi_414117926152578049/info.md
tt_um_wokwi_414120201832165377/info.md
tt_um_wokwi_414120415300298753/info.md
tt_um_wokwi_414120868401584129/info.md
tt_um_wokwi_414121421011660801/info.md
tt_um_wokwi_414126546375915521/info.md

Wokwi Group #4 [550]

• Author: Tiny Tapeout
• Description: Combined project to save space for ttihp25a
• GitHub repository
• HDL project
• Mux address: 550
• Extra docs
• Clock: 0 Hz

• Shadoff Test by David Shadoff
• 6 Bit shift register by MOMO
• FB GDS by Fahad Bastaki
• First Tapeout Chip - OCR by Owen Robertson
• Andrew Vo - Repository by Andrew Vo
• Tiny Tapeout-Huerta by Fernando Huerta
• 2 Bit Times 2 Bit Plus 4 Bit MAD and 5 Bit Binary to 7 Segment Display by

Nathan
• Encoder by Mohammad Almutair
• Steven’s Wokwi Test by Steven Abrego
• Four Bit Adder by Anahit
• fulladder by Keoni Gandall
• 2-Bit-Adder by Jamin
• half adder by Adam Wu
• dummy by Naveen
• 2 bit adder by Aadarsha Kandel
• NAND Flip-Flop by Luigi C.

Pinout

Input Output Bidirectional
0 in0 out0 sel0
1 in1 out1 sel1
2 in2 out2 sel2
3 in3 out3 sel3
4 in4 out4
5 in5 out5
6 in6 out6
7 in7 out7

458

https://github.com/TinyTapeout/dummy
tt_um_wokwi_413387120998931457/info.md
tt_um_wokwi_413387352465821697/info.md
tt_um_wokwi_413919531169918977/info.md
tt_um_wokwi_413919540668975105/info.md
tt_um_wokwi_413919972072132609/info.md
tt_um_wokwi_413920033033205761/info.md
tt_um_wokwi_413920370058172417/info.md
tt_um_wokwi_413920825278643201/info.md
tt_um_wokwi_414107691971107841/info.md
tt_um_wokwi_414120157271867393/info.md
tt_um_wokwi_414120207283716097/info.md
tt_um_wokwi_414120357164073985/info.md
tt_um_wokwi_414120583702696961/info.md
tt_um_wokwi_414121281003682817/info.md
tt_um_wokwi_414124843472659457/info.md
tt_um_wokwi_414122362169493505/info.md

Wokwi Group #3 [552]

• Author: Tiny Tapeout
• Description: Combined project to save space for ttihp25a
• GitHub repository
• HDL project
• Mux address: 552
• Extra docs
• Clock: 0 Hz

• achasen workshop validation by adam chasen
• Secret Code by Rex
• And Gates that don’t do much by Chris Collins
• comparator by prtx
• Clocked Display by Dooseok
• Encoder by Peilin
• Secret Initial by Kiarash
• My First ASIC by Michael A. Enright
• Hamad’s design by Hamad Alwaqayan
• xor gate with registered output by claudiotalarico
• Tiny Tapeout 9 by Maya Choudhury
• Tiny Tapeout 9 Template Version 1 Tata Luka by lukab
• adder-tt09 by Philip Solomatnikov
• Sigma-Delta ADC by Martin Schoeberl
• TinySnake by Ken Pettit
• Broken Two Bit Adder by Mann

Pinout

Input Output Bidirectional
0 in0 out0 sel0
1 in1 out1 sel1
2 in2 out2 sel2
3 in3 out3 sel3
4 in4 out4
5 in5 out5
6 in6 out6
7 in7 out7

459

https://github.com/TinyTapeout/dummy
tt_um_wokwi_412367067047460865/info.md
tt_um_wokwi_413387015959903233/info.md
tt_um_wokwi_413387122850717697/info.md
tt_um_wokwi_413686101237123073/info.md
tt_um_wokwi_413879612498222081/info.md
tt_um_wokwi_413919625901452289/info.md
tt_um_wokwi_413920089540972545/info.md
tt_um_wokwi_413920096493033473/info.md
tt_um_wokwi_413923245817165825/info.md
tt_um_wokwi_413923639862662145/info.md
tt_um_wokwi_414120299211357185/info.md
tt_um_wokwi_414120303651028993/info.md
tt_um_wokwi_414120388391730177/info.md
tt_um_wokwi_414121715329142785/info.md
tt_um_wokwi_414123795172381697/info.md
tt_um_wokwi_414120696731857921/info.md

Wokwi Group #2 [554]

• Author: Tiny Tapeout
• Description: Combined project to save space for ttihp25a
• GitHub repository
• HDL project
• Mux address: 554
• Extra docs
• Clock: 0 Hz

• S-R latch by Albert
• Tiny Tapeout Take 2 by Stephanie Rosales
• 2bit adder by Ya-Chin, Hu
• Half adder by Keyshon Howard
• Full bit adder by Alan
• Light by Natnael Atnafu
• Half Adder by Janani P Srinivasan
• chip_fab by Aleksi
• LCA’s first Wokwi design by leahcorbett18
• my First WokWi Design by Mani Rayabarapu
• 7-bit arbiter by Kira Tran
• tt09-4bit-adder-dhags by Danny
• rand by mahi
• gatesoup by Elio Bourcart
• UART TX by Shaokai Lin
• Logic Gates 7-Segment Display by Abdul Karim Tamim

Pinout

Input Output Bidirectional
0 in0 out0 sel0
1 in1 out1 sel1
2 in2 out2 sel2
3 in3 out3 sel3
4 in4 out4
5 in5 out5
6 in6 out6
7 in7 out7

460

https://github.com/TinyTapeout/dummy
tt_um_wokwi_413387348132056065/info.md
tt_um_wokwi_413387462882977793/info.md
tt_um_wokwi_413872016164217857/info.md
tt_um_wokwi_413919492911554561/info.md
tt_um_wokwi_413919666547418113/info.md
tt_um_wokwi_413920340558577665/info.md
tt_um_wokwi_413920640800531457/info.md
tt_um_wokwi_414118269335820289/info.md
tt_um_wokwi_414120349028170753/info.md
tt_um_wokwi_414120368966850561/info.md
tt_um_wokwi_414120435997105153/info.md
tt_um_wokwi_414120472316644353/info.md
tt_um_wokwi_414120509472942081/info.md
tt_um_wokwi_414120513895838721/info.md
tt_um_wokwi_414122607025630209/info.md
tt_um_wokwi_413923045171059713/info.md

Wokwi Group #1 [556]

• Author: Tiny Tapeout
• Description: Combined project to save space for ttihp25a
• GitHub repository
• HDL project
• Mux address: 556
• Extra docs
• Clock: 0 Hz

• Abey’s 1st Chip Design by Abey Varghese
• 4-1 mux by zhengfeng wu
• Jordan by Jordan Medina
• Bit Counter by Philip Measor
• GJAA Design by Guadalupe de Jesus Avelar Anguiano
• TinyTapeOut by Siyem Russom
• My First TinyTapeout by Case Kirk
• GDS by Ben
• Vincent’s First Design by Vincent Harkins
• NAND-Equ by DanT
• Full Adder by Harish Prabhakaran
• Counter by Alex Solomatnikov
• 7-seg display checker by Ryan Taylor
• 2 input multiplexor by chad
• XorTree by Ammar Ratnani
• gta6 by henry

Pinout

Input Output Bidirectional
0 in0 out0 sel0
1 in1 out1 sel1
2 in2 out2 sel2
3 in3 out3 sel3
4 in4 out4
5 in5 out5
6 in6 out6
7 in7 out7

461

https://github.com/TinyTapeout/tinytapeout-ihp-25a-sources
tt_um_wokwi_413387481972305921/info.md
tt_um_wokwi_413871526879619073/info.md
tt_um_wokwi_413917903548951553/info.md
tt_um_wokwi_413919500942601217/info.md
tt_um_wokwi_413919675346023425/info.md
tt_um_wokwi_413920442846133249/info.md
tt_um_wokwi_413921288682183681/info.md
tt_um_wokwi_413923188546028545/info.md
tt_um_wokwi_414118423095874561/info.md
tt_um_wokwi_414120295047458817/info.md
tt_um_wokwi_414120372939908097/info.md
tt_um_wokwi_414120378768943105/info.md
tt_um_wokwi_414120404427608065/info.md
tt_um_wokwi_414120526876163073/info.md
tt_um_wokwi_414120591467404289/info.md
tt_um_wokwi_414127944900611073/info.md

Will It NAND? [558]

• Author: Daniel Samarin
• Description: A bunch of nand gates to test the tool chain… for now.
• GitHub repository
• Wokwi project
• Mux address: 558
• Extra docs
• Clock: 0 Hz

How it works

Yo, it’s just a bunch of NANDs.

How to test

Be a man, use your hand to connect up your NAND.

External hardware

Put it in the sand, like it’s silicon, because you’re a silly con.

Pinout

Input Output Bidirectional
0 NAND1a NAND1out
1 NAND1b NAND2out
2 NAND2a NAND3out
3 NAND2b NAND4out
4 NAND3a
5 NAND3b
6 NAND4a
7 NAND4b

462

https://github.com/TinyTapeout/dummy
https://wokwi.com/projects/413387190167208961

sphereinabox hello [560]

• Author: Nick Winters
• Description: Hello World
• GitHub repository
• Wokwi project
• Mux address: 560
• Extra docs
• Clock: 0 Hz

How it works

I’ve built 8-input logic gates, all using each of the 8 inputs…. or will eventually

How to test

Set the inputs 0..7 to your desired 8 inputs.
Observe the outputs the corresponding output pins.

External hardware

No specific external hardware is expected for this project.

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

463

https://github.com/TinyTapeout/dummy
https://wokwi.com/projects/413387093939376129

L display [562]

• Author: Matt Lamparter
• Description: Displays L character on a 7 seg display when 00101111 entered on

the input (and pressing the Step button to enable display)
• GitHub repository
• Wokwi project
• Mux address: 562
• Extra docs
• Clock: 0 Hz

How it works

Enter the right combination of bits to display an “L” on the seven segment display. The
combination is 0b00101111. Once that combination is entered you’ll need to press the
“Step” button in order to display the L on the display. Releasing the Step button will
clear the display.

How to test

Try different combinations of inputs. The only time the output should be displayed is
when the right bit combination is entered and the Step button is pressed.

External hardware

Requires a 7 segment display, a push button connected to power, and a 8 bit wide DIP
switch.

Pinout

Input Output Bidirectional
0 IN0
1 IN1
2 IN2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6

464

https://github.com/TinyTapeout/dummy
https://wokwi.com/projects/413387014781302785

Input Output Bidirectional
7 IN7

465

7-Segment Digital Desk Clock [576]

• Author: Samuel Ellicott
• Description: 7-Segment Desk Clock
• GitHub repository
• HDL project
• Mux address: 576
• Extra docs
• Clock: 50000000 Hz

How it works

Simple digital clock, displays hours, minutes, and seconds in either a 24h format. Since
there are not enough output pins to directly drive a 6x 7-segment displays, the data is
shifted out over SPI to a MAX7219 in 7-segment mode. The time can be set using
the hours_set and minutes_set inputs. If set_fast is high, then the the hours or
minutes will be incremented at a rate of 5Hz, otherwise it will be set at a rate of 2Hz.
Note that when setting either the minutes, rolling-over will not affect the hours setting.
If both hours_set and minutes_set are presssed at the same time the seconds will
be cleared to zero.
A block diagram of the system is shown below.

1

0

clk_gen_inst
i_clk

i_refclk

i_reset_n

o_1hz_stb

o_debounce_stb

o_fast_set_stb

o_slow_set_stb

clock_reg_inst
i_1hz_stb

i_clk

i_reset_n

i_set_hours

i_set_minutes

i_set_stb

o_hours

o_minutes

o_seconds

display_control_inst
i_1hz_stb

i_clk

i_clk_set

i_clk_set_stb

i_display_ack

i_reset_n

o_display_stb

o_write_config

display_inst
i_clk

i_dp

i_hours

i_minutes

i_reset_n

i_seconds

i_stb

i_write_config

o_ack

o_busy

o_serial_clk

o_serial_dout

o_serial_load

dp_control_inst
i_am_pm

i_seconds

i_set_time

o_dp

input_debounce
i_12h_mode

i_clk

i_debounce_stb

i_fast_set

i_reset_n

i_set_hours

i_set_minutes

o_12h_mode_db

o_fast_set_db

o_set_hours_db

o_set_minutes_db

mode_conv_inst
i_12h_mode

i_hours

i_minutes

i_seconds

o_am_pm

o_hours

o_minutes

o_seconds

refclk_sync_inst
i_clk

i_refclk

i_reset_n

o_refclk_sync

i_reset_n

i_clk

i_en

i_refclk

i_fast_set

i_set_hours

i_set_minutes

i_12h_mode

o_serial_load

o_serial_dout

o_serial_clk

/6/

/5/

/6/

/6//6/

/5/

/6/

/6/

How to test

Apply a 5MHz clock to the clock pin and 32.786Khz signal to the refclk pin. Use the
hours_set and minutes_set pins to set the time.

466

https://github.com/sellicott/tt09_desk_alarm_clock

External hardware

Connect the BIDIR PMOD to a MAX7219 7-segment display, For reference Tiny Tape-
out SPI

Pinout

Input Output Bidirectional
0 refclk Display CS
1 Display MOSI
2 Fast/Slow Set
3 Set Hours Display SCK
4 Set Minutes
5 12-Hour Mode
6
7

467

https://tinytapeout.com/specs/pinouts/#spi
https://tinytapeout.com/specs/pinouts/#spi

Basic Perceptron + ReLU [578]

• Author: UDXS
• Description: Basic Perceptron + ReLU Layer
• GitHub repository
• HDL project
• Mux address: 578
• Extra docs
• Clock: 0 Hz

How it works

It connects a small single-cycle multiply-accumulation unit to a ReLU output.

How to test

Reset and then, for every following cycle, provide pairs of signed 4-bit numbers rep-
resenting the weight-input pair for a given model layer invocation. The output will
change cycle-to-cycle. Sample it while providing your last inputs and then reset to
attempt another invocation.

Pinout

Input Output Bidirectional
0 Weight[0] ReLU[0] ReLU[8]
1 Weight1 ReLU1 ReLU[9]
2 Weight2 ReLU2 ReLU[10]
3 Weight[3] ReLU[3] ReLU[11]
4 Input[0] ReLU[4] ReLU[12]
5 Input1 ReLU[5] ReLU[13]
6 Input2 ReLU[6] ReLU[14]
7 Input[3] ReLU[7] ReLU[15]

468

https://github.com/UDXS/tt09-mlp
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Basic Matrix-Vector Multiplication [580]

• Author: Andy Ly
• Description: Basic matrix and vector multiplier that multiplies a 2x2 matrix with

a 2x1 vector. Inputs are limited to 2 bit elements
• GitHub repository
• HDL project
• Mux address: 580
• Extra docs
• Clock: 0 Hz

How it works

Take input voltages and treats them as input current injection to lif neuron

How to test

Test it

External hardware

Possibly

Pinout

Input Output Bidirectional
0 Input bit [0] for matrix element 11 Output bit [0] for output vector element 1 Output bit [3] for output vector element 2
1 Input bit 1 for matrix element 11 Output bit 1 for output vector element 1 Output bit [4] for output vector element 2
2 Input bit [0] for matrix element 12 Output bit 2 for output vector element 1
3 Input bit 1 for matrix element 12 Output bit [3] for output vector element 1
4 Input bit [0] for matrix element 21 Output bit [4] for output vector element 1 Input bit [0] for input vector element 1
5 Input bit 1 for matrix element 21 Output bit [0] for output vector element 2 Input bit 1 for input vector element 1
6 Input bit [0] for matrix element 22 Output bit 1 for output vector element 2 Input bit [0] for input vector element 2
7 Input bit 1 for matrix element 22 Output bit 2 for output vector element 2 Input bit 1 for input vector element 2

469

https://github.com/andyly37/tt09-ECE-110
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture

8 bit MAC Unit [582]

• Author: Devesh Bhaskaran
• Description: Implementation Of 8-bit MAC Using Vedic Multipliers And Re-

versible Gates
• GitHub repository
• HDL project
• Mux address: 582
• Extra docs
• Clock: 40000000 Hz

How it works

The project aims to implement a 8-bit MAC unit for unsigned integer data type using
Vedic Multipliers and Reversible gates. The two inputs are to be taken in through
input pins and bi-directional pins using half a clock cycle and stored in registers. The
MAC operation is performed on the values stored in these registers. The multiplier and
adder takes half clock cycle each. The result of the operation is then sent through the
output and bidirectional pins.

How to test

The project will be used to perform mac operations on 8-bit unsigned integers. This is
mainly used in systems with fast computation and also primarly explores the concepts
of reversible gates for energy efficiency.

External hardware

No external hardware is used for this project.

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0] uio[0]
1 ui_in1 uo_out1 uio1
2 ui_in2 uo_out2 uio2
3 ui_in[3] uo_out[3] uio[3]
4 ui_in[4] uo_out[4] uio[4]

470

https://github.com/devesh-b/tt09-deveshb-8-bitMAC
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
5 ui_in[5] uo_out[5] uio[5]
6 ui_in[6] uo_out[6] uio[6]
7 ui_in[7] uo_out[7] uio[7]

471

Programmable PWM Generator [584]

• Author: Anas Alam
• Description: Programmabel PWM Generator
• GitHub repository
• HDL project
• Mux address: 584
• Extra docs
• Clock: 0 Hz

How it works

A programmable PWM generator. The desired frequency and duty cycle is programmed
by setting pwm_top and pwm_threshold. A counter counts from 0 to pwm_top (over
and over), the pwm signal is high as when the counter is <= pwm_threshold.
pwm_top is wired to uio (all of them are used as inputs) pwm_threshold is wired to
ui
They are encoded as follows
pwm_top &lt;= uio(7 downto 5) &lt;&lt; uio(4 downto
0)

pwm_threshold &lt;= ui(7 downto 5) &lt;&lt; ui(4
downto 0)

Resulting frequency of PWM signal is: 𝑓𝑜𝑢𝑡 = 𝑓𝑖𝑛
𝑝𝑤𝑚𝑡𝑜𝑝+1

Resulting duty cycle is: 𝑓 = 𝑝𝑤𝑚𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑+1
𝑝𝑤𝑚𝑡𝑜𝑝+1

The goal is to have wide as possible frequency range while still being able to go from
0% to 100% in duty cycle.

How to test

Use above formulas to determine value of pwm_threshold and pwm_top, hard ware
them to this value or connect through switches. Probe output on oscilloscope

External hardware

Switches and oscilloscope

472

https://github.com/SyedAnasAlam/TinyTapeout09

Pinout

Input Output Bidirectional
0 pwm_threshold shift_amount[0] pwm output input: pwm_top shift_amount[0]
1 pwm_threshold shift_amount1 design is enabled (active high) input: pwm_top shift_amount1
2 pwm_threshold shift_amount2 wired 0 input: pwm_top shift_amount2
3 pwm_threshold shift_amount[3] wired 0 input: pwm_top shift_amount[3]
4 pwm_threshold shift_amount[4] wired 0 input: pwm_top shift_amount[4]
5 pwm_threshold base[0] wired 0 input: pwm_top base[0]
6 pwm_threshold base1 wired 0 input: pwm_top base1
7 pwm_threshold base[3] wired 0 input: pwm_top base2

473

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Verilog test project [586]

• Author: Alexander Symons
• Description: It adds the input and the IO pins
• GitHub repository
• HDL project
• Mux address: 586
• Extra docs
• Clock: 0 Hz

How it works

It adds the dedicated input to an internal register every clock cycle Least significant
bits: dedicated output Most significant bits: bidirectional output

How to test

Put numbers on the input and see the accumulated value on all the leds

External hardware

Switches on inputs, leds on outputs and bidirectionals

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0] uio_out[0]
1 ui_in1 uo_out1 uio_out1
2 ui_in2 uo_out2 uio_out2
3 ui_in[3] uo_out[3] uio_out[3]
4 ui_in[4] uo_out[4] uio_out[4]
5 ui_in[5] uo_out[5] uio_out[5]
6 ui_in[6] uo_out[6] uio_out[6]
7 ui_in[7] uo_out[7] uio_out[7]

474

https://github.com/FlyingFish800/tt09
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Basic LIF Neuron [588]

• Author: stewedbeef
• Description: This is a basic LIF neuron
• GitHub repository
• HDL project
• Mux address: 588
• Extra docs
• Clock: 0 Hz

How it works

This is a simple leaky integrate-and-fire neuron which performs the integration by
addition and leaks by dividing by two every time step. The neuron has an enable pin
which causes the neuron to enable and move forward in time roughly once every second
when fed a clock of approximately 50 MHz.

How to test

The LED wired up to output seven should turn on and off approximately once every
second, with a period of approximately two seconds, to allow synchronisation by the
user. Each time the LED switches on or off a time step has occurred. The user should
stimulate the neuron by “providing” an input current, which is achieved by switching
the inputs manually to indicate to the neuron, in binary, how much current should flow
in. With enough stimulus, the neuron will fire a spike, visible on LEDs zero to six, for
one time period. The neuron has a timeout which prevents it from having a constant
output from overstimulation.

External hardware

Wire switches to all input ports and LEDs to all output ports. Bidirectional ports are
unused.

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0]
1 ui_in1 uo_out1

475

https://github.com/stewedbeef/tt09-verilog-template
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Input Output Bidirectional
2 ui_in2 uo_out2
3 ui_in[3] uo_out[3]
4 ui_in[4] uo_out[4]
5 ui_in[5] uo_out[5]
6 ui_in[6] uo_out[6]
7 ui_in[7] uo_out[7]

476

http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Integrate-and-Fire Neuron Circuit [590]

• Author: FNU Ashwine
• Description: A simple integrate-and-fire neuron model implemented in Verilog.
• GitHub repository
• HDL project
• Mux address: 590
• Extra docs
• Clock: 0 Hz

How it works

The Leaky Integrate-and-Fire (LIF) Neuron is a simple model of neuronal behavior. In
this design, the neuron receives an input signal (spike) and integrates this input over
time by increasing its internal membrane potential. If there is no input, the membrane
potential “leaks” or decays gradually over time, simulating the natural loss of charge
in biological neurons.
When the membrane potential reaches a defined threshold, the neuron fires a spike
output, after which the membrane potential resets to zero. This process emulates the
firing and reset cycle of biological neurons, providing a digital approximation of spiking
behavior.
LIF Neuron Diagram - https://drive.google.com/uc?export=view&id=19_hF5C_uv
8FfWdlOOItlB8326t2pqFBz

How to test

Do something

External hardware

NA

477

https://github.com/Ashwine-git/tt09-verilog-template
https://drive.google.com/uc?export=view&id=19_hF5C_uv8FfWdlOOItlB8326t2pqFBz
https://drive.google.com/uc?export=view&id=19_hF5C_uv8FfWdlOOItlB8326t2pqFBz

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 Input current bit [0] State variable bit [0]
1 Input current bit 1 State variable bit 1
2 Input current bit 2 State variable bit 2
3 Input current bit [3] State variable bit [3]
4 Input current bit [4] State variable bit [4]
5 Input current bit [5] State variable bit [5]
6 Input current bit [6] State variable bit [6]
7 Input current bit [7] State variable bit [7] Spike bit

478

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Michaels Tiny Tapeout ALU [592]

• Author: Michael McCulloch
• Description: Should work as a 2 6 bit input ALU, which then can choose from

the RISCV ALU opcodes to select the operation which will be outputed in 8bit
• GitHub repository
• HDL project
• Mux address: 592
• Extra docs
• Clock: 0 Hz

How it works

In short the first 6 bits of the bidirection IO is A, then bits 7 and 7 of the bidirectional
and bits 0 to 3 of the single way input are B and the last 4 bits are the ALU opcode
(based on RISCV) Values get outputted in 8bit from the single way output bus

How to test

Setting the inputs and testing the outputs for certain opcodes

External hardware

None at the moment… Could attach LEDs for testing

Pinout

Input Output Bidirectional
0 Bit 2 of ALU Input B Bit 0 of ALU Output Bit 0 of ALU Input A
1 Bit 3 of ALU Input B Bit 1 of ALU Output Bit 1 of ALU Input A
2 Bit 4 of ALU Input B Bit 2 of ALU Output Bit 2 of ALU Input A
3 Bit 5 of ALU Input B Bit 3 of ALU Output Bit 3 of ALU Input A
4 Bit 0 of ALU OpCode Bit 4 of ALU Output Bit 4 of ALU Input A
5 Bit 1 of ALU Opcode Bit 5 of ALU Output Bit 5 of ALU Input A
6 Bit 2 of ALU OpCode Bit 6 of ALU Output Bit 0 of ALU Input B
7 Bit 3 of ALU OpCode Bit 7 of ALU Output Bit 1 of ALU Input B

479

https://github.com/MichaelMcCulloch1/tt09-verilog-Michael-ALU

8-bit CBILBO [594]

• Author: Devesh Bhaskaran, Om Shivshankar Shigarkanti, Garima Bajpayi
• Description: Concurrent Built–In Logic BlockIn Logic Block Observer for Mem-

ory Test
• GitHub repository
• HDL project
• Mux address: 594
• Extra docs
• Clock: 40000000 Hz

How it works

In this Verilog code, we implement a BILBO (Built-In Logic Block Observer) shift
register with multiple stages, using a combination of logic gates (AND, XOR), D flip-
flops (DFF), and multiplexers (MUX) for feedback and shifting operations. We include
input and output paths for Tiny Tapeout and support asynchronous reset and clocked
logic. The modules interact to store and shift data, providing internal feedback and
driving outputs for observation.

How to test

To test this project, we would create a testbench that provides stimulus for the inputs
(ui_in, uio_in, clk, rst_n) and checks the outputs (uo_out, uio_out, uio_oe).
We would simulate the shifting and feedback behavior of the BILBO shift register,
verifying that the data is properly shifted and the feedback logic functions correctly
across all stages of the register.

External hardware

No external hardware required for this project.

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0] uio[0]
1 ui_in1 uo_out1 uio1
2 ui_in2 uo_out2 uio2

480

https://github.com/garima19bajpayi/tt09-.gxrii-BILBO
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
3 ui_in[3] uo_out[3] uio[3]
4 ui_in[4] uo_out[4] uio[4]
5 ui_in[5] uo_out[5] uio[5]
6 ui_in[6] uo_out[6] uio[6]
7 ui_in[7] uo_out[7] uio[7]

481

Wokwi Group #8 [608]

• Author: Tiny Tapeout
• Description: Combined project to save space for ttihp25a
• GitHub repository
• HDL project
• Mux address: 608
• Extra docs
• Clock: 0 Hz

• JonsFirstTapeout by ghangas
• patrick’s project by patrick marcus
• TT Test by Austin
• Half Adder by Brendon
• Letter H by Hannah Thoreson
• tinytapeoutkr by kamila ramirez
• Tahiti by Harrison
• Dipankar’s first Wowki design by Dipankar Shakya
• Zero to Nine Display Count by Mariano
• tinytapeout by Htun
• print by Syeva
• AND and NOT gate testing by Aman Maldar
• Full Adder by David De La Luz
• seven by nikmign
• Name Speller by Conor Van Bibber

Pinout

Input Output Bidirectional
0 in0 out0 sel0
1 in1 out1 sel1
2 in2 out2 sel2
3 in3 out3 sel3
4 in4 out4
5 in5 out5
6 in6 out6
7 in7 out7

482

https://github.com/TinyTapeout/dummy
tt_um_wokwi_413387214966034433/info.md
tt_um_wokwi_413391266378724353/info.md
tt_um_wokwi_413471588783557633/info.md
tt_um_wokwi_413918022277139457/info.md
tt_um_wokwi_413919454138338305/info.md
tt_um_wokwi_413919507057902593/info.md
tt_um_wokwi_413919777312727041/info.md
tt_um_wokwi_413919970097662977/info.md
tt_um_wokwi_413923150973445121/info.md
tt_um_wokwi_413923702485727233/info.md
tt_um_wokwi_414120202583995393/info.md
tt_um_wokwi_414120239772801025/info.md
tt_um_wokwi_414120569974735873/info.md
tt_um_wokwi_414124428088683521/info.md
tt_um_wokwi_414174625969437697/info.md

Wokwi Group #9 [610]

• Author: Tiny Tapeout
• Description: Combined project to save space for ttihp25a
• GitHub repository
• HDL project
• Mux address: 610
• Extra docs
• Clock: 0 Hz

• Gabe’s Big AND by GabeMake
• Project by calculus
• Two PFD by Soumobrata Ghosh
• tt09 kathyhtt by kathyh
• Yohan Tiny Tapeout Project by Juan
• halfadder+not by Vincent Phan
• Encoder by Hoang Le
• Tiny Tapeout by Andy
• Nathan’s chip by Nathineal
• Binary to 7 Segment Display Decoder by Robert McLintock
• SK Test Workshop by sreela
• Tiny Tapeout 9 Template by Jason
• Full Adder by Amogha Srinivas
• hello by vishwajeet
• Morse Code for J and R by Jainil Rao

Pinout

Input Output Bidirectional
0 in0 out0 sel0
1 in1 out1 sel1
2 in2 out2 sel2
3 in3 out3 sel3
4 in4 out4
5 in5 out5
6 in6 out6
7 in7 out7

483

https://github.com/TinyTapeout/dummy
tt_um_wokwi_413387032609197057/info.md
tt_um_wokwi_413387065963362305/info.md
tt_um_wokwi_413849515516143617/info.md
tt_um_wokwi_413916532008126465/info.md
tt_um_wokwi_413918243645213697/info.md
tt_um_wokwi_413919484652961793/info.md
tt_um_wokwi_413919502227108865/info.md
tt_um_wokwi_413919889872144385/info.md
tt_um_wokwi_413923521595851777/info.md
tt_um_wokwi_413960876763056129/info.md
tt_um_wokwi_414041465275103233/info.md
tt_um_wokwi_414120320168203265/info.md
tt_um_wokwi_414120459831246849/info.md
tt_um_wokwi_414120500233937921/info.md
tt_um_wokwi_414124872671308801/info.md

Wokwi Group #10 [612]

• Author: Tiny Tapeout
• Description: Combined project to save space for ttihp25a
• GitHub repository
• HDL project
• Mux address: 612
• Extra docs
• Clock: 0 Hz

• Pseudo Random Generator Using 2 Ring Oscillators by Michael Yim
• Redco by Shrikrishna Kaje
• Test_project by Ash
• Lynn’s TinyTapeout Design by Lynn Francis
• Encoder by Ryan Schrader
• Big J’s Big Circuit by Jonathan Miller
• Logic Gates by Adonai Cruz
• Samson’s Tiny Tapout Project by Samson
• 8 bit LFSR by Aaron Nowack
• Kai’s Death Adder by Kai Linsley
• Who knows what’s happening Tiny Tapeout by Ryan Kuo
• Manchester Encoder by Prajwal Shashidhar Chavadi
• TinyTapeout workshop - Wokwi 8 Bit LFSR by Nate Voorhies
• Kanoa’s first Wokwi deseign Tinytapeout 2024 Nonsense by Kanoa Mignard
• Adbe_Project by Aditya_Bedekar

Pinout

Input Output Bidirectional
0 in0 out0 sel0
1 in1 out1 sel1
2 in2 out2 sel2
3 in3 out3 sel3
4 in4 out4
5 in5 out5
6 in6 out6
7 in7 out7

484

https://github.com/TinyTapeout/dummy
tt_um_wokwi_413387152803294209/info.md
tt_um_wokwi_413407859783959553/info.md
tt_um_wokwi_413883347321632769/info.md
tt_um_wokwi_413919428470231041/info.md
tt_um_wokwi_413919442353385473/info.md
tt_um_wokwi_413919543420439553/info.md
tt_um_wokwi_413919847886104577/info.md
tt_um_wokwi_413920489444856833/info.md
tt_um_wokwi_414120263584922625/info.md
tt_um_wokwi_414120435095328769/info.md
tt_um_wokwi_414120458938907649/info.md
tt_um_wokwi_414120492890759169/info.md
tt_um_wokwi_414121532514097153/info.md
tt_um_wokwi_414124597390729217/info.md
tt_um_wokwi_414125058137148417/info.md

Wokwi Group #11 [614]

• Author: Tiny Tapeout
• Description: Combined project to save space for ttihp25a
• GitHub repository
• HDL project
• Mux address: 614
• Extra docs
• Clock: 0 Hz

• Full Adder by May Wang
• TinyTapeout 4 bit ripple carry adder by Georg Brink Dyvad
• Extremely cool stuff (secret) by Alexander Aakersø
• TinyChipDesign by Oliver
• example1 by Hassan Sirelkhatim
• my_own_chip by Abdala
• 3-bit register print by Emad Maroun
• Hero on Tape by Marcus Sand
• Special code for letter n by Nuno Jorge
• Adder by Ehsan
• Four basic building blocks by Thomas novotny
• First design by Mathias Vestergaard
• Enter-Code by Imad
• ANDNOT by HKG
• Tinytapeout_design_ANP by Ashrfun Naher Pinky
• 4 Bit Adder with Overflow Counter by Yousif

Pinout

Input Output Bidirectional
0 in0 out0 sel0
1 in1 out1 sel1
2 in2 out2 sel2
3 in3 out3 sel3
4 in4 out4
5 in5 out5
6 in6 out6
7 in7 out7

485

https://github.com/TinyTapeout/dummy
tt_um_wokwi_422957657550394369/info.md
tt_um_wokwi_422957918936350721/info.md
tt_um_wokwi_422957954050029569/info.md
tt_um_wokwi_422958894385882113/info.md
tt_um_wokwi_422959954857061377/info.md
tt_um_wokwi_422959974126748673/info.md
tt_um_wokwi_422960054456096769/info.md
tt_um_wokwi_422960078645704705/info.md
tt_um_wokwi_422960080008854529/info.md
tt_um_wokwi_422960085743520769/info.md
tt_um_wokwi_422960130190575617/info.md
tt_um_wokwi_422960174616660993/info.md
tt_um_wokwi_422960332734617601/info.md
tt_um_wokwi_422960491546730497/info.md
tt_um_wokwi_422961309631153153/info.md
tt_um_wokwi_422962760920307713/info.md

Wokwi Group #12 [616]

• Author: Tiny Tapeout
• Description: Combined project to save space for ttihp25a
• GitHub repository
• HDL project
• Mux address: 616
• Extra docs
• Clock: 0 Hz

• tt08-octal-alu by Theo Kachelski
• Simple 8 Bit ALU by Joseph Johnson
• Traffic-light-sequence by Shaurya Sharma
• Logic Test by Eric Ulteig
• Abacus Lock by Raunak Singh
• Counter by Jasmin Mittelman
• simplePass by Shawko
• Emil Njor’s Design by Emil Njor
• Holm’s TinyTapeOut 4-bit adder by Jakob Holm
• test/15/02/25 by Viktor Hougaard Jørgensen
• NAND by kofi
• DaliaProjekt by Dalia
• 3 Bit Adder by Victor Ding
• Encoder by Damianos
• Simple NAND 2 by Mad

Pinout

Input Output Bidirectional
0 in0 out0 sel0
1 in1 out1 sel1
2 in2 out2 sel2
3 in3 out3 sel3
4 in4 out4
5 in5 out5
6 in6 out6
7 in7 out7

486

https://github.com/TinyTapeout/dummy
tt_um_wokwi_407760296956596225/info.md
tt_um_wokwi_407852791999030273/info.md
tt_um_wokwi_408118380088342529/info.md
tt_um_wokwi_408216451206371329/info.md
tt_um_wokwi_408231820749720577/info.md
tt_um_wokwi_408237988946759681/info.md
tt_um_wokwi_422962904571040769/info.md
tt_um_wokwi_422962914561876993/info.md
tt_um_wokwi_422962959838345217/info.md
tt_um_wokwi_422964381148718081/info.md
tt_um_wokwi_422964384478997505/info.md
tt_um_wokwi_422964754310747137/info.md
tt_um_wokwi_422965035809389569/info.md
tt_um_wokwi_422968416190311425/info.md
tt_um_wokwi_422968696249282561/info.md

triggerer [618]

• Author: Krzysztof Skrzynecki
• Description: Module capturing timestamps of input signals (triggers) referenced

to internal counter
• GitHub repository
• HDL project
• Mux address: 618
• Extra docs
• Clock: 50000000 Hz

How it works

This module is capturing high edges in input lines (triggers) and stores the timestamp
when this happened. Period of internal counter is order of 30ms (24b).
Main clk is used for intetrnal logic and timestamp timer. When edge on trigger input
is detected, time is captured (max capture frequency is clk/2, but preferably even
lower).
When data to read is available it is signalled on data reayd output pin.
In order to read the data, first set high enable pin, hold it and while holding start
clocking data clk input. (max data clk rate should be over 2 times slower than clk).
Read the data on output pin on data clk rising edge. 3 bytes should be read. Most
significant bit is transferred first.

How to test

Just hope that this works (tested maually on simulator exactly once..)

External hardware

None, but signal generator bursting a few edges into trig input might be helpful

487

https://github.com/tetrap/tt10_triggerer

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 DAT_CLK DAT_RDY
1 DAT_ENA DAT_OUT
2 TRIGG_0
3
4
5
6
7

488

Wokwi Group #13 [620]

• Author: Tiny Tapeout
• Description: Combined project to save space for ttihp25a
• GitHub repository
• HDL project
• Mux address: 620
• Extra docs
• Clock: 0 Hz

• Test by Bruno
• nothing-yet by elen
• counter_KS by wendelin
• snake by Anton Gerasimov
• TinyTapeoutRocks by Theodote
• Secret code by Kevin Geppert
• TinyTapeoutWorkshop by Torben
• TestFlipflop by Benjaminas Sulcas
• Simple Test Project by MZ
• Tape Out and Find Out by Zoe
• spinny by Daniel Rojas
• tinyflipout by lg
• Synchronous hex counter decoder by Spehro
• OR Gate-Based 7-Segment Display Decoder by Kirill
• Blinking 7 by Milos Lompar
• tt_micha01 by Michael Wiebusch

Pinout

Input Output Bidirectional
0 in0 out0 sel0
1 in1 out1 sel1
2 in2 out2 sel2
3 in3 out3 sel3
4 in4 out4
5 in5 out5
6 in6 out6
7 in7 out7

489

https://github.com/TinyTapeout/dummy
tt_um_wokwi_425498066535550977/info.md
tt_um_wokwi_425498096996685825/info.md
tt_um_wokwi_425498138683883521/info.md
tt_um_wokwi_425498175661927425/info.md
tt_um_wokwi_425498176219770881/info.md
tt_um_wokwi_425498190842166273/info.md
tt_um_wokwi_425498200554080257/info.md
tt_um_wokwi_425498241932991489/info.md
tt_um_wokwi_425498323071819777/info.md
tt_um_wokwi_425498338463870977/info.md
tt_um_wokwi_425498675799185409/info.md
tt_um_wokwi_425498910144429057/info.md
tt_um_wokwi_425499372555997185/info.md
tt_um_wokwi_425499738293047297/info.md
tt_um_wokwi_425500385593779201/info.md
tt_um_wokwi_425501309236263937/info.md

Multiplier Group #1 [622]

• Author: Tiny Tapeout
• Description: Combined project to save space for ttihp25a
• GitHub repository
• HDL project
• Mux address: 622
• Extra docs
• Clock: 0 Hz

• 4 x 4 array multiplier NuKoP by Aiden Li, Mahid Hosen
• 4x4multiplier by hirod nazari, samarth pusegaonkar
• ECE2204 4x4 Array Multiplier by Jason Brandon
• 4x4 Array Multiplier by Adrian Lopez and Jack Verdis
• tt09-C6-array-multiplier by Jonathan Farah and Josef Anurov
• 4-bit multiplier by Annie Huang and Sharon Chi
• my_4bit_multiplier by Terry Mu, Omobolaji Alabi
• Array_Multiplier by Taegahm Kang
• 4-bit Multiplier by Sarp Sevil
• Array multiplier by Wyte wu ,Xintong Hu
• Array Multiplier by Leon Ha, Jegyeoung An
• Array Multiplier by Jeryl Ho & Justin Park
• 4x4 Multiplier by Fajr Baig, Sahana Long
• 4 bit array multiplier by Abdulrahman Albaoud, Joe Leighthardt
• ece2204 project for tapeout by Yiqiao, Geno
• Array Multiplier by Will Shang, Tyler Huynh

Pinout

Input Output Bidirectional
0 in0 out0 sel0
1 in1 out1 sel1
2 in2 out2 sel2
3 in3 out3 sel3
4 in4 out4
5 in5 out5
6 in6 out6
7 in7 out7

490

https://github.com/TinyTapeout/dummy
tt_um_4x4_array_multiplier_NuKoP/info.md
tt_um_4x4multiplier/info.md
tt_um_A_6_array_multiplier/info.md
tt_um_B_14_array_multiplier/info.md
tt_um_C6_array_multiplier/info.md
tt_um_C8_array_mult/info.md
tt_um_C_1_4bit_multiplier/info.md
tt_um_LabA_Groutt_um_a_4_array_multiplier/info.md
tt_um_SarpHS_array_mult/info.md
tt_um_a3_array_multiplier/info.md
tt_um_a_0_array_multiplier/info.md
tt_um_a_4_array_multiplier/info.md
tt_um_arrayMultFajrSahana/info.md
tt_um_array_mult_joe_leighthardt/info.md
tt_um_array_mult_structural/info.md
tt_um_array_mult_structural_GnahsLliw/info.md

Multiplier Group #2 [624]

• Author: Tiny Tapeout
• Description: Combined project to save space for ttihp25a
• GitHub repository
• HDL project
• Mux address: 624
• Extra docs
• Clock: 0 Hz

• Array Multiplier by Rebecca Boadu & Sarah Herrera
• 4-bit Array Multiplier by Minjae Kim, Jiawei Ding
• 4-bit-array-multiplier by HenryZ-ErickR
• Lab B Group 1 Array Multiplier by MarcAnthony Williams & Ivy Zheng
• Lab B Group 10 Array Multiplier by Abhinav and Annay
• ECE2204 4x4 Array Multiplier by Jack Li Bill Li
• Array Multiplier by Jaden Daily
• 4x4 Array Multiplier by Marisol and Shahran
• 4 by 4 Array Multiplier by Hanyuan (Bob) Huang
• 4-bit Multiplier by Jeremy Kang, Idris Al-Wazani
• Lab C 4x4 Mult-Array by Justin Morris, Alexa
• 4-bit Multiplier by Asfaq Fahim & Sreeja Ghose
• 4-bit-multiplier by Eric Cheung, Bethel Sisay
• 4bit multiplier by Kylian Yan
• ECE-UY 2204 4x4 Array Multiplier by Jane Manalu, Isabella Menshouse, KJ

Moses
• 4-bit Multiplier by Nick Pham, Nathan Macapinlac

Pinout

Input Output Bidirectional
0 in0 out0 sel0
1 in1 out1 sel1
2 in2 out2 sel2
3 in3 out3 sel3
4 in4 out4
5 in5 out5
6 in6 out6
7 in7 out7

491

https://github.com/TinyTapeout/dummy
tt_um_array_mult_structural_sarahherrera/info.md
tt_um_array_mult_structural_sectionD_group3/info.md
tt_um_arry_mult_structural/info.md
tt_um_b_0_array_multiplier/info.md
tt_um_b_10_array_multiplier/info.md
tt_um_b_12_array_multiplier/info.md
tt_um_b_2_array_multiplier/info.md
tt_um_b_6_array_multiplier/info.md
tt_um_b_8_array_multiplier/info.md
tt_um_c13_array_mult/info.md
tt_um_c1_array_mult_structural/info.md
tt_um_c7_array_mult/info.md
tt_um_c_2_array_mult/info.md
tt_um_c_4_4b_mult/info.md
tt_um_d_4_array_multiplier/info.md
tt_um_four_bit_multiplier_nasan016_npham2003/info.md

Multiplier Group #3 [626]

• Author: Tiny Tapeout
• Description: Combined project to save space for ttihp25a
• GitHub repository
• HDL project
• Mux address: 626
• Extra docs
• Clock: 0 Hz

• 4x4 array multiplier by Gabriela Perez, Martha McQuillan
• 4x4 Array Multiplier by Dominic Iafrate
• ece2204_4x4_mult by Eric Wang, Alan Zhu
• ECE-2204 4x4 Array Multiplier by Evan Dworkin, Dante Minasyan
• Array Multiplier by Noah Rivera & Filip Bukowski
• array_multiplier by xg2523_cw4483
• ECE2204MultiplierProject by CaoKeHanMax
• Array Multiplier by Theodore Hua

Pinout

Input Output Bidirectional
0 in0 out0 sel0
1 in1 out1 sel1
2 in2 out2 sel2
3 in3 out3 sel3
4 in4 out4
5 in5 out5
6 in6 out6
7 in7 out7

492

https://github.com/TinyTapeout/dummy
tt_um_m4rthaswur1d/info.md
tt_um_multiplier_tt09/info.md
tt_um_secA_11_nyancar_alanz23/info.md
tt_um_secA_group5_array_multiplier/info.md
tt_um_secB_15_array_multiplier/info.md
tt_um_secd_8_array_mult/info.md
tt_um_section_d_group_fifteen_array_mult_structural/info.md
tt_um_tt09_array_multiplier/info.md

Ternary 128-element Dot Product [640]

• Author: ReJ aka Renaldas Zioma
• Description: sum(A * B) where A is a binary vector, B is a ternary vector
• GitHub repository
• HDL project
• Mux address: 640
• Extra docs
• Clock: 0 Hz

How it works

On-chip neural net with ternary weigths and 1-bit activations.

How to test

Use commander app to set inputs and weights.

External hardware

No additional hardware needed.

Pinout

Input Output Bidirectional
0 binary vector A element 0 out (LSB) (in serial) ternary vector B element ZERO
1 binary vector A element 1 out (in serial) ternary vector B element SIGN
2 binary vector A element 2 out out
3 binary vector A element 3 out out
4 binary vector A element 4 out out
5 binary vector A element 5 out out
6 binary vector A element 6 out out
7 binary vector A element 7 out out (MSB)

493

https://github.com/rejunity/tt10-ternary-dot-product

GUS16 CPU [642]

• Author: J. Arias
• Description: 16-bit CPU design
• GitHub repository
• HDL project
• Mux address: 642
• Extra docs
• Clock: 24000000 Hz

How it works

This project includes a 16-bit experimental CPU (GUS16) with a serial port and a
few more peripherals (see GUS16_tt.pdf). Memory has to be provided externally. An
included bootloader allows the execution of programs loaded through the serial port.

How to test

Connect a serial port 8-bit, no parity, 115200 bps, and send an ‘L’. The bootloader code
should reply with another ‘L’. For more complete tests an external board with SRAM
memory and address latches has to be attached to the PMOD ports of the prototype
board.

External hardware

A memory board has to be attached to user PMOD connectors (still pending design)

More docs

https://www.ele.uva.es/~jesus/cpu_v2.pdf (older designs, spanish)
https://www.ele.uva.es/~jesus/GUS16v6.pdf (current CPU version)
https://www.ele.uva.es/~jesus/a2.pdf (CPU usage in a floppy disk emulator for
apple-IIs in FPGAs)

Pinout

494

https://github.com/jesari-git/tt10-gus16-jarias
https://www.ele.uva.es/~jesus/cpu_v2.pdf
https://www.ele.uva.es/~jesus/GUS16v6.pdf
https://www.ele.uva.es/~jesus/a2.pdf

Input Output Bidirectional
0 gpi[0] xbh xd[0]
1 gpi1 xlal xd1
2 gpi2 xlal xd2
3 rxd pwmout xd[3]
4 gpi[3] txd xd[4]
5 gpi[4] gpo xd[5]
6 gpi[5] xoeb xd[6]
7 gpi[6] xweb xd[7]

495

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Warp [644]

• Author: sylefeb
• Description: Demo on TinyTapeout? Let’s do something!
• GitHub repository
• HDL project
• Mux address: 644
• Extra docs
• Clock: 25000000 Hz

Warp

Please make sure to watch the demo for a few minutes as various effects
play out before it loops. At start it waits for a few seconds to ensure VGA
sync is achieved.

How it works
But does it work?

Preface This demo is written in Silice, my HDL. Here is the actual source. Silice
now fully support TinyTapeout as a build target.

Graphics The core effect is a classical tunnel effect ; however this is normally done
with a “huge” pre-computed table having one entry per-pixel. So I thought it’d be
challenging and fun to do it while racing the beam! Plus, I really like this effect.
There are several tricks at play: a shallow CORDIC pipeline to compute an atan
and length, and a few precomputed 1/x distances to interpolate between – these form
keypoint rings along the tunnel. All the effects are then obtained by combining multiple
layers in various ways (like a tunnel effect processor which registers can be configured
for various effects).
The demo uses a lot of dithering (ordered Bayer dithering) given the output is RGB
2-2-2. All computations are grayscale and the RGB lense effect is obtained by delaying
the grayscale values using the tunnel distance in R and B.
I also tried to make the logo interesting by deviating from a classical pixelated look. It
is composed of tiles, either full or triangular, with a comparator and a bit of logic to
do all four possible triangles.

496

https://github.com/sylefeb/tt08-compo-entry
https://github.com/sylefeb/Silice/
../src/silice/vga_demo.si
https://lodev.org/cgtutor/tunnel.html
https://htmlpreview.github.io/?https://github.com/sylefeb/gfxcat/blob/main/runtime/gfxcat_tunnel.html
https://en.wikipedia.org/wiki/CORDIC

The tunnel viewpoint change is obtained simply by shifting the tunnel center. I was
surprised that a simple translation gives such a convincing effect (almost as if the
viewpoint was rotating).
The ‘blue-orange’ tunnel effect is obtained through temporal dithering, one frame being
the standard tunnel, the other the rotated tunnel. This gets combined with the RGB
lense distortion, achieving the final look.

Audio I am no musician, so making a soundtrack was a challenge for me, but that’s
something I’ve always wanted to try. In the end it was a very enjoyable part of the
design, and I was surprised at how compact this can be made, the soundtrack using
perhaps around 10% of the entire design.
I tried to make a track that matches the spirit and rhythm of the graphics. It is what
is is, but I’m happy that there’s sound at all!

How to test Plug the VGA+audio PMODs to the board and run. Maybe it
works?
Simulation of both audio and video can run on an ECPIX5, with the Diligent VGA
PMOD on ports 0,1 and an I2S audio PMOD on port 2 (upper row). The audio also
runs on an ULX3S using its DAC (but no video in this case).

External hardware
• VGA PMOD
• Audio PMOD

See https://tinytapeout.com/competitions/demoscene/

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VS
4 R0
5 G0
6 B0
7 HS Audio

497

https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod
https://tinytapeout.com/competitions/demoscene/

VGA Drop (audio/visual demo) [646]

• Author: ReJ aka Renaldas Zioma, eriQue aka Erik Hemming, Matthias Kampa
• Description: Tiny 8 part Megademo! TBL^Nesnausk^SonikClique
• GitHub repository
• HDL project
• Mux address: 646
• Extra docs
• Clock: 25200000 Hz

How it works

VGA signal generator

How to test

We are learning how VGA and Sky130 works here

External hardware

VGA PMOD

Pinout

Input Output Bidirectional
0 R1 Audio (PWM)
1 G1 Audio (PWM)
2 B1 Audio (PWM)
3 VSYNC Audio (PWM)
4 R0 Audio (PWM)
5 G0 Audio (PWM)
6 B0 Audio (PWM)
7 HSYNC Audio (PWM)

498

https://github.com/rejunity/tt08-vga-drop

Classic 8-bit era Programmable Sound Generator AY-3-8913
[648]

• Author: ReJ aka Renaldas Zioma
• Description: The AY-3-8913 is a 3-voice programmable sound generator (PSG)

chip from General Instruments. The AY-3-8913 is a smaller variant of AY-3-8910
or its analog YM2149.

• GitHub repository
• HDL project
• Mux address: 648
• Extra docs
• Clock: 2000000 Hz

How it works

This Verilog implementation is a replica of the classical AY-3-8913 programmable
sound generator. With roughly a 1500 logic gates this design fits on a single tile of
the TinyTapeout.
The goals of this project

1. closely replicate the behavior and eventually the complete design of the orig-
inal AY-3-891x with builtin DACs

2. provide a readable and well documented code for educational and hardware
preservation purposes

3. leverage the modern fabrication process

A significant effort was put into a thorough test suite for regression testing and
validation against the original chip behavior.
Chip technical capabilities

• 3 square wave tone generators
• A single white noise generator
• A single envelope generator able to produce 10 different shapes
• Chip is capable to produce a range of waves from a 30 Hz to 125 kHz, defined

by 12-bit registers.
• 16 different volume levels

Registers The behavior of the AY-3-891x is defined by 14 registers.

499

https://github.com/rejunity/tt05-psg-ay8913
https://en.wikipedia.org/wiki/General_Instrument_AY-3-8910

Register Bits used Function Description
0 xxxxxxxx Channel A Tone 8-bit fine frequency
1xxxx —//— 4-bit coarse frequency
2 xxxxxxxx Channel B Tone 8-bit fine frequency
3xxxx —//— 4-bit coarse frequency
4 xxxxxxxx Channel C Tone 8-bit fine frequency
5xxxx —//— 4-bit coarse frequency
6 ...xxxxx Noise 5-bit noise frequency
7 ..CBACBA Mixer Tone and/or Noise per channel
8 ...xxxxx Channel A Volume Envelope enable or 4-bit amplitude
9 ...xxxxx Channel B Volume Envelope enable or 4-bit amplitude
10 ...xxxxx Channel C Volume Envelope enable or 4-bit amplitude
11 xxxxxxxx Envelope 8-bit fine frequency
12 xxxxxxxx —//— 8-bit coarse frequency
13xxxx Envelope Shape 4-bit shape control

Square wave tone generators Square waves are produced by counting down the
12-bit counters. Counter counts up from 0. Once the corresponsding register value is
reached, counter is reset and the output bit of the channel is flipped producing square
waves.
Noise generator Noise is produced with 17-bit Linear-feedback Shift Register (LFSR)
that flips the output bit pseudo randomly. The shift rate of the LFSR register is
controller by the 5-bit counter.
Envelope The envelope shape is controlled with 4-bit register, but can take only 10
distinct patterns. The speed of the envelope is controlled with 16-bit counter. Only a
single envelope is produced that can be shared by any combination of the channels.
Volume Each of the three AY-3-891x channels have dedicated DAC that converts 16
levels of volume to analog output. Volume levels are 3 dB apart in AY-3-891x.
Historical use of the AY-3-891x
The AY-3-891x family of programmable sound generators was introduced by General
Instrument in 1978. Soon Yamaha Corporation licensed and released a very similar
chip under YM2149 name.
Both variants of the AY-3-891x and YM2149 were broadly used in home computers,
game consoles and arcade machines in the early 80ies.

• home computers: Apple II Mockingboard sound card, Amstrad CPC, Atari ST,
Oric-1, Sharp X1, MSX, ZX Spectrum 128/+2/+3

• game consoles: Intellivision, Vectrex, Amstrad GX4000

500

https://en.wikipedia.org/wiki/Linear-feedback_shift_register
https://en.wikipedia.org/wiki/Mockingboard
https://en.wikipedia.org/wiki/Amstrad_CPC
https://en.wikipedia.org/wiki/Atari_ST
https://en.wikipedia.org/wiki/Oric
https://en.wikipedia.org/wiki/Sharp_X1
https://en.wikipedia.org/wiki/MSX
https://en.wikipedia.org/wiki/ZX_Spectrum
https://en.wikipedia.org/wiki/Intellivision
https://en.wikipedia.org/wiki/Vectrex
https://en.wikipedia.org/wiki/Amstrad_GX4000

• arcade machines: Frogger, 1942, Spy Hunter and etc.

The AY-3-891x chip family competed with the similar Texas Instruments SN76489.
The original pinout of the AY-3-8913
The AY-3-8913 was a 24-pin package release of the AY-3-8910 with a number of
internal pins left simply unconnected. The goal of AY-3-8913 was to reduce complexity
for the designer and reduce the foot print on the PCB. Otherwise the functionality of
the chip is identical to AY-3-8910 and AY-3-8912.

,--._.--.
GND ---|1 24|<-- /cs*
BDIR -->|2 23|<-- a8*
BC1 -->|3 22|<-- /a9*
DA7 <->|4 21|<-- /RESET
DA6 <->|5 20|<-- CLOCK
DA5 <->|6 19|--- GND
DA4 <->|7 18|--> CHANNEL C OUT
DA3 <->|8 17|--> CHANNEL A OUT
DA2 <->|9 16| not connected
DA1 <->|10 15|--> CHANNEL B OUT
DA0 <->|11 14|<-- test*

test* <--|12 13|<-- VCC
`-------'

* -- omitted from this Verilog implementation

Difference from the original hardware
This Verilog implementation is a completely digital and synchronous design that dif-
fers from the original AY-3-8913 design which incorporated internal DACs and analog
outputs.
Audio signal output While the original chip had no summation The module provides
two alternative outputs for the generated audio signal:

1. digital 8-bit audio output suitable for external Digital to Analog Converter (DAC)
2. pseudo analog output through Pulse Width Modulation (PWM)

Master output channel In contrast to the original chip which had only separate
channel outputs, this implementation also provides an optional summation of the chan-
nels into a single master output.
No DC offset This implementation produces output 0/1 waveforms without DC
offset.

501

https://www.vgmpf.com/Wiki/index.php/AY-3-8910#Games
https://en.wikipedia.org/wiki/Texas_Instruments_SN76489

No /A8, A9 and /CS pins The combination of /A8, A9 and /CS pins orginially
were intended to select a specific sound chip out the larger array of devices connected
to the same bus. In this implementation this mechanism is omitted for simplicity, /A8,
A9 and /CS are considered to be tied low and chip behaves as always enabled.
Synchronous reset and single phase clock The original design employed 2 phases
of the clock and asynchronous reset mechanism for operation of the registers.
To make it easier to synthesize and test on FPGAs this implementation uses single
clock phase and synchronous reset for registers.
The reverse engineered AY-3-891x
This implementation would not be possible without the reverse engineered schematics
and analysis based on decapped AY-3-8910 and AY-3-8914 chips.
Explain how your project works

How to test

Summary of commands to communicate with the chip
The AY-3-8913 is programmed by updating its internal registers via the data bus. Below
is a short summary of the communication protocol of AY-3-891x. Please consult AY-
3-891x Technical Manual for more information.

BDIR BC1 Bus state description
0 0 Bus is inactive
0 1 (Not implemented)
1 0 Write bus value to the previously latched register #
1 1 Latch bus value as the destination register #

Latch register address First, put the destination register adress on the bus of the
chip and latch it by pulling both BDIR and BC1 pins high.
Write data to register Put the desired value on the bus of the chip. Pull BC1 pin
low while keeping BDIR pin high to write the value of the bus to the latched register
address.
Inactivate bus by pulling both BDIR and BC1 pins low.

Register Format Description Parameters
0,2,4 ffffffff A/B/C tone period f - low bits
1,3,5 0000FFFF —//— F - high bits

502

https://github.com/lvd2/ay-3-8910_reverse_engineered
https://github.com/lvd2/ay-3-8910_reverse_engineered
https://siliconpr0n.org/map/gi/ay-3-8910
https://siliconpr0n.org/map/gi/ay-3-8914
https://github.com/rejunity/tt05-psg-ay8913/blob/main/docs/AY-3-8910_Manual.pdf
https://github.com/rejunity/tt05-psg-ay8913/blob/main/docs/AY-3-8910_Manual.pdf

Register Format Description Parameters
6 000fffff Noise period f - noise period
7 00CBAcba Noise / tone per channel CBA - noise off,

cba - tone off
8,9,10 000Evvvv A/B/C volume E - envelope on,

v - volume level
11 ffffffff Envelope period f - low bits
12 FFFFFFFF —//— F - high bits
13 0000caAh Envelope Shape c - continue, a - attack, A - alternate, h - hold

Note frequency
Use the following formula to calculate the 12-bit period value for a particular note:

𝑡𝑜𝑛𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑐𝑦𝑐𝑙𝑒𝑠 = 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(16𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

For example 12-bit period that plays 440 Hz note on a chip clocked at 2 MHz would
be:

𝑡𝑜𝑛𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑐𝑦𝑐𝑙𝑒𝑠 = 2000000𝐻𝑧/(16𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 440𝐻𝑧) = 284 = 11𝐶ℎ𝑒𝑥

An example to play a note at a maximum volume

BDIR BC1 DA7..DA0 Explanation
1 1 xxxx0000 Latch tone A coarse register address 0 = 0000𝑏𝑖𝑛
1 0 xxxx0001 Write high 4-bits of the 440 Hz note 1 = 0001𝑏𝑖𝑛
1 1 xxxx0001 Latch tone A fine register address 1𝑑𝑒𝑐 = 0001𝑏𝑖𝑛
1 0 00011100 Write low 8-bits of the note 1𝐶ℎ𝑒𝑥 = 00011100𝑏𝑖𝑛
1 1 xxxx1000 Latch channel A volume register address 8 = 1000𝑏𝑖𝑛
1 0 xxx01111 Write maximum volume level 15𝑑𝑒𝑐 = 1111𝑏𝑖𝑛 with the envelope disabled

Timing diagram

CLK ____ ____ ____ ____ ____ ____
__/ `____/ `____/ `____/ `____/ `____/ `____ ...
| | | | | |
| | | | | |

BDIR ______ ______ ______ ______ ______ ______

503

_/ `__/ `__/ `__/ `__/ `__/ `__

BC1 _______ _______ ________
_/ `___________/ `__________/ `___________

DA7..DA0_____ ________ ________ ________ ________ ________
_/ 0000 `/xxxx0001`/ 0001 `/00011100`/ 1000 `/xxx01111`

latch write latch write latch

Externally configurable clock divider

SEL1 SEL0 Description Clock frequency
0 0 Standard mode, clock divided by 8 1.7 .. 2.0 MHz
1 1 —–//—– 1.7 .. 2.0 MHz
0 1 New mode for TT05, no clock divider 250 .. 500 kHZ
1 0 New mode for TT05, clock div. 128 25 .. 50 MHz

SEL1 SEL0 Formula to calculate the 12-bit tone period value for a note
0 0 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(16𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
1 1 —–//—–
0 1 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(2𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
1 0 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(128𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

External hardware

The data bus of the AY-3-8913 chip has to be connected to microcontroller and receive
a regular stream of commands. The AY-3-8913 produces audio output and has to be
connected to a speaker. There are several ways how the overall schematics can be
established.
8-bit parallel output via DAC One option is to connect off the shelf data parallel
Digital to Analog Converter (DAC) for example Digilent R2R Pmod to the output pins
and route the resulting analog audio to piezo speaker or amplifier.

uController AY-3-8913
,---------. ,---._.---.
| | 2 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|BC1 SEL1|<-- 0
| GPIOx|----------->|BDI | ,----------.

504

https://digilent.com/reference/pmod/pmodr2r/start

| GPIOx|----------->|DA0 OUT0|-------->|LSB |
| GPIOx|----------->|DA1 OUT1|-------->| |
| GPIOx|----------->|DA2 OUT2|-------->| pDAC | Headphones
| GPIOx|----------->|DA3 OUT3|-------->| or | or
| GPIOx|----------->|DA4 OUT4|-------->| RESISTOR | Buzzer
GPIOx	----------->	DA5 OUT5	-------->	ladder	/	
GPIOx	----------->	DA6 OUT6	-------->		.--/	
GPIOx	----------->	DA7 OUT7	-------->	MSB	-----	
`---------' `---------' `----------' `--` |

| `|
|

GND ---

AUDIO OUT through RC filter Another option is to use the Pulse Width Modu-
lated (PWM) AUDIO OUT pin that combines 4 channels with the Resistor-Capacitor
based low-pass filter or better the Operation Amplifier (Op-amp) & Capacitor based
integrator:

uController AY-3-8913
,---------. ,---._.---.
| | 2 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|BC1 SEL1|<-- 0
GPIOx	----------->	BDIR
GPIOx	----------->	DA0
GPIOx	----------->	DA1
GPIOx	----------->	DA2
GPIOx	----------->	DA3
GPIOx	----------->	DA4
GPIOx	----------->	DA5
GPIOx	----------->	DA6 AUDIO
GPIOx	----------->	DA7 OUT
`---------' `---------' | }---+---||---| |

,--|+/ `--` |
| |/ | `|
| |

GND --- GND ---

Separate channels through the Op-amp The third option is to externally combine
4 channels with the Operational Amplifier and low-pass filter:

505

uController AY-3-8913
,---------. ,---._.---.
| | 2 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|BC1 SEL1|<-- 0
GPIOx	----------->	BDIR
GPIOx	----------->	DA0
GPIOx	----------->	DA1
GPIOx	----------->	DA2
GPIOx	----------->	DA3
GPIOx	----------->	DA4
GPIOx	----------->	DA5 A
GPIOx	----------->	DA6 B
GPIOx	----------->	DA7 C
`---------' `---------' | }---+---||---| |

,--|+/ `--` |
| |/ | `|
| |

GND --- GND ---

Pinout

Input Output Bidirectional
0 DA0 - multiplexed data/address bus LSB audio out (PWM) (in) BC1 bus control
1 DA1 - multiplexed data/address bus digita audio LSB (in) BDIR bus direction
2 DA2 - multiplexed data/address bus digita audio (in) SEL0 clock divider
3 DA3 - multiplexed data/address bus digita audio (in) SEL1 clock divider
4 DA4 - multiplexed data/address bus digita audio (out) channel A (PWM)
5 DA5 - multiplexed data/address bus digita audio (out) channel B (PWM)
6 DA6 - multiplexed data/address bus digita audio (out) channel C (PWM)
7 DA7 - multiplexed data/address bus MSB digita audio MSB (out) AUDIO OUT master (PWM)

506

SoCET UART with FIFO buffers [650]

• Author: Miguel Isrrael Teran, Yashashwini Singh, Michael Li, Rafael Monteiro
Martins Pinheiro, Vito Gamberini

• Description: General-purpose UART with hardware control flow and FIFO buffer
capacity developed by Purdue’s SoCET team

• GitHub repository
• HDL project
• Mux address: 650
• Extra docs
• Clock: 50000000 Hz

How it works

This project is a UART module that includes FIFO buffers to store bytes of data. The
module has standard UART input and output pins, such as rx, tx, cts, and rts.
Additional inputs allow the configuration of operation mode(s): Idle, RX, TX or
Buffer Clear, and desired baud rate is user-configurable through the Control pins.
Bidirectional data pins are used to send and receive test data. Additional outputs
include an error flag, as well as the TX FIFO’s full flag, and the RX FIFO’s empty
flag.

How to test

Steps for testing are the following:

1) Supply a 50 MHz clock signal to the UART
2) Configure the control settings: Control[1:0] (ui[3:2]) are used to choose

between preloaded baud rates. Here are the following baud rate configurations
based on the values of Control[1:0]:

Value of ui[3:2] Baud rate (bits/s)
0 9600
1 19200
2 38400
3 115200

Control[3:2] (ui[5:4]) set the UART’s mode of operation for the current byte
of data being processed. Each non-idle control signal must be preceded with an idle

507

https://github.com/Purdue-SoCET/tt09-purdue-socet

signal to perform a valid transaction/manage the FIFO buffers. Here are the following
UART mode configurations determined by the values of Control[3:2]:

Value of ui[5:4] Mode Configuration
0 IDLE
1 TX
2 RX
3 BUFFER CLEAR

3) If you have 2 PCBs with the TT09 ASIC, you can load the same UART design in
both and cross-connect their rx, tx, cts, and rts pins as shown in the image
below. Then, you can use one of them as a Transmitter and the other as a
Receiver. If you only have 1 PCB, you can test the UART with the FT232RL
Mini USB to TTL Serial Adapter Module (see next section).

External hardware

We suggest using switches for the Control pins (this way you can keep the mode
of operation stable). Image below shows the FT232RL module that can be used for
testing and connecting serially to a computer’s USB port. More information on the
product can be found here.

Pinout

Input Output Bidirectional
0 rx tx data[0]
1 cts rts data1
2 Control[0] err data2
3 Control1 tx_buffer_full data[3]
4 Control2 rx_buffer_empty data[4]
5 Control[3] data[5]
6 data[6]
7 data[7]

508

https://components101.com/modules/ft232rl-usb-to-ttl-converter-pinout-features-datasheet-working-application-alternative
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Simon’s Caterpillar [652]

• Author: htfab
• Description: Port of Caterpillar Logic to Simon Says PMOD
• GitHub repository
• HDL project
• Mux address: 652
• Extra docs
• Clock: 50000 Hz

How it works

Simon’s Caterpillar is a re-implementation of the game Caterpillar Logic by Fuks
Michael targeting Tiny Tapeout with the Simon Says PMOD.
The game consists of 20 levels. Each level has a secret rule that is valid for certain
sequences of colors. For instance, if the rule is “contains exactly two yellow tokens” then
blue-yellow-green-yellow is a valid sequence and yellow-red-blue is an invalid one.
A new level starts in exploration mode. You can ask an unlimited number of questions
where you learn whether a particular sequence is valid or not. Once you know the rule
you can activate challenge mode. Now the roles are reversed and the game asks you
15 questions. If you can answer all of them correctly, you advance to the next level.

How to test

Set the clock to 50 kHz. Activate and reset the project. The 7-segment display should
indicate level 1 and only the blue led should light up. You are in exploration mode.

Exploration mode A sequence of up to 7 colors can be typed into the buffer with
short presses of the buttons. The leds indicate the sequence status in real time:

• red: sequence is invalid
• green: sequence is valid
• blue: buffer is empty
• yellow: buffer is full

(The empty sequence is neither valid nor invalid.)
Further operations are available as long button presses or a combination of two but-
tons:

509

https://github.com/htfab/tt09-caterpillar
https://github.com/gromozeka1980/kivy_contest_2014/tree/master/caterpillars
https://github.com/urish/tt-simon-pmod/

• long-press red: clear buffer
• long-press yellow: erase last color from buffer (“backspace”)
• long-press blue: show buffer contents (as a series of led flashes)
• long-press green: activate challenge mode
• short-press green & yellow: show a random valid sequence (and load into buffer)
• short-press red & blue: show a random invalid sequence (and load into buffer)
• short-press blue & yellow: switch to next level
• short-press red & green: switch to previous level
• short-press green & blue: toggle sound

Challenge mode A sequence of up to 6 colors is shown as a series of led flashes.
Press the green or red button to mark it as valid or invalid respectively.
Each correct answer adds a notch (turns on a new segment on the 7-segment display).
After the 15th one the next level is loaded. An incorrect answer switches back to
exploration mode.
Other keys and combinations:

• short-press or long-press blue: repeat the current question
• short-press red & yellow: switch back to exploration mode
• short-press blue & yellow: add a notch
• short-press red & green: remove a notch
• short-press green & blue: toggle sound

External hardware

Simon Says PMOD

Pinout

Input Output Bidirectional
0 red button red led segment A
1 green button green led segment B
2 blue button yellow led segment C
3 yellow button blue led segment D
4 display polarity speaker segment E
5 digit 1 segment F
6 digit 2 segment G
7

510

Stochastic Integrator [654]

• Author: Ciecen Lestari, Chih-Kuan Ho, David Parent
• Description: Use stochastic computing to implement integration
• GitHub repository
• HDL project
• Mux address: 654
• Extra docs
• Clock: 50000000 Hz

How it works

The stochastic integrator uses Euler’s definition of integration to make it happen in
the stochastic domain. This integrator follows unipolar probability.
REFERENCES USED
General Stochastic Integrator Design:
1 S. Liu and J. Han, “Hardware ODE solvers using stochastic circuits,” 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 2017,
pp. 1-6, doi: 10.1145/3061639.3062258. keywords: {Radiation detectors;Stochastic
processes;Hardware;Generators;Clocks;Energy consumption;Throughput;stochastic in-
tegrator;ordinary differential equation;stochastic computing},
LFSR Design in Stochastic Computing:
2 Jason H. Anderson, Yuko Hara-Azumi, and Shigeru Yamashita. 2016. Effect of
LFSR seeding, scrambling and feedback polynomial on stochastic computing accuracy.
In Proceedings of the 2016 Conference on Design, Automation & Test in Europe (DATE
’16). EDA Consortium, San Jose, CA, USA, 1550–1555. https://dl.acm.org/doi/abs
/10.5555/2971808.2972171

How to test

Set ui_in[0] with a constant high and ui_in1 with constant low to see the equations
described.

External hardware

ADALM2000

511

https://github.com/CL-123-abc/tt_um_stochastic_integrator_tt9_CL123abc
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://dl.acm.org/doi/abs/10.5555/2971808.2972171
https://dl.acm.org/doi/abs/10.5555/2971808.2972171
https://en.wikipedia.org/wiki/Collatz_conjecture

Pinout

Input Output Bidirectional
0 serial_input_1 serial_output_seq_integrator_a
1 serial_input_2 serial_output_seq_integrator_b
2 serial_output_seq_integrator_c
3 serial_output_system_integrator_a
4 serial_output_system_integrator_b
5 serial_output_test_integrator_a
6 serial_output_test_integrator_b
7 output_sn_bit_seq_integrator_c

512

E2M0 x INT8 Systolic Array [656]

• Author: ReJ aka Renaldas Zioma
• Description: Systolic array for testing (Septenary and Quinary) 2.6 bits/param

packed weights
• GitHub repository
• HDL project
• Mux address: 656
• Extra docs
• Clock: 48000000 Hz

How it works

Reduced precision matrix multiplication base on systolic array architecture. Left side
matrix is compressed to 2.6 bits per element.

How to test

Every cycle feed packed weight data to Input pins and input data to Bidirectional pins.
Strobe Enable pin to start receiving results of the matrix multiplication on the Output
pins.

External hardware

External hardware

External processor (RP2040 for example) is necessary to feed weights and input data
into the accelerator and fetch the results.

Pinout

Input Output Bidirectional
0 packed weights LSB result LSB (in) activations LSB
1 packed weights result (in) activations
2 packed weights result (in) activations
3 packed weights result (in) activations
4 packed weights result (in) activations
5 packed weights result (in) activations

513

https://github.com/rejunity/tt09-septenary-matrix-mul

Input Output Bidirectional
6 packed weights result (in) activations
7 packed weights MSB result MSB (in) activations MSB

514

VGA Nyan Cat [658]

• Author: Andy Sloane
• Description: Displays the classic nyan.cat animation
• GitHub repository
• HDL project
• Mux address: 658
• Extra docs
• Clock: 25175000 Hz

VGA nyan cat

How it works Outputs nyancat on VGA with music!
Colors and animation are all from the original nyan.cat site, using a 2x2 Bayer dithering
matrix which inverts on alternate frames for better color rendition on the Tiny VGA
Pmod.

515

https://github.com/a1k0n/tt08-nyan

Sound is generated from a MIDI file, split into melody and bass parts. Melody and
bass are each square waves mixed with a simple exponential decay envelope, which is
then fed to a low-pass filter and then a sigma-delta DAC.
This was designed to fit into 1 tile, and it almost did – the cells take up about 93% of
1 tile, but detailed routing doesn’t finish. With the deadline approaching I was forced
to grow it to 1x2, so I threw in a little easter egg.

How to test Set clock to 25.175MHz or thereabouts, give reset pulse, and enjoy

External hardware TinyVGA Pmod for video on o[7:0].
1-bit sound on io[7], compatible with Tiny Tapeout Audio Pmod, or any basic ~20kHz
RC filter on io7 to an amplifier will work.

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VSync
4 R0
5 G0
6 B0
7 HSync AudioPWM

516

https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod

Collatz conjecture brute-forcer [673]

• Author: Vytautas Šaltenis
• Description: Runs a Collatz sequence calculation for a given number
• GitHub repository
• HDL project
• Mux address: 673
• Extra docs
• Clock: 0 Hz

How it works

The module takes a (large) integer number N as an input and computes the Collatz
sequence until it reaches 1. When it does, it allows reading back two numbers:

1) The orbit length (i.e. the number of steps it took to reach 1)
2) The highest recorded value of the upper 16 bits of the 144-bit internal iterator

The latter number is an indicator for good candidates for computing path records. The
non-zero upper bits indicate that the highest iterator value Mx(N) is in the range of
the previous path records and should be recomputed in the full offline. (Holding on to
the entire 144 bits of Mx(N) number would be more obvious, but this almost doubles
the footprint of the design, hence, this optimisation).

How to test

The module can be in 2 states: IO and COMPUTE. After reset, the chip will be in IO
mode. Since the input is intended to be much larger than the available pins, the input
number is uploaded one byte at a time, increasing the address of where in the internal
144-bit-wide register that byte should be stored.
Same for reading the output, except that the output numbers are limited to 16-bits
each, so it takes much fewer operations to read them.
The full loop of computations works like this:

1) Set input (see below)
2) Pull start compute pin to high. The chip will start computations and will pull

compute busy indicator pin to high
3) Keep reading compute busy indicator pin until it gets low again
4) Read the output (see below)

Writing input:

517

https://github.com/rtfb/tt09-collatz-rev1
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

1) Set write enable pin to low
2) Wait at least one cycle
3) Expose your input byte to input0-7
4) Expose the target address for that byte to address0-4
5) Wait at least one cycle
6) Set write enable pin to high

Reading output:

1) Set orbit/max select pin to low
2) Set address0-4 to 0
3) Read low byte of orbit length from output0-7
4) Set address0-4 to 1
5) Read high byte of orbit length from output0-7
6) Set orbit/max select pin to high
7) Repeat steps 2-5 to read the upper Mx(N) bits

Pinout

Input Output Bidirectional
0 input0 output0 address0
1 input1 output1 address1
2 input2 output2 address2
3 input3 output3 address3
4 input4 output4 address4
5 input5 output5 orbit/max select
6 input6 output6 start compute
7 input7 output7 write enable or compute busy indicator

518

APA102 to WS2812 Translator [675]

• Author: Squidgeefish
• Description: Convert a 7-LED APA102 stream to a WS2812-compatible one
• GitHub repository
• HDL project
• Mux address: 675
• Extra docs
• Clock: 25000000 Hz

How it works

This is a converter from the SPI-style APA102 LED protocol to the single-line WS2812
protocol.
It’s hard-coded to seven LEDs because I needed to set a limit, and this is clearly the
simplest possible way to replace the Arduino Micro performing the same task on my
5n4ck3y-7r clone.
It clocks the SPI data on input bit 0 (clock) and bit 1 (data) and waits until it sees
a string of 32 low bits to signal a valid start condition. At this point, it starts saving
data into an internal shift register, handing that register’s contents over to the WS2812
output data feed once all seven LEDs’ values have been received. It continues clocking
along until recognizing a stop condition (unconditionally 32 bits after the last LED
value), at which point it goes back to waiting for a valid start condition. In order to
address area concerns, I wound up cutting this down a bit - the internal mirror register
was removed entirely, and the SPI reader now also handles discarding the first 8 bits of
each 32-bit pixel value. Further tweaks that traded wiring complexity for combinatorics
did not make it any better, unfortunately.
I wrote the SPI-parsing and bit-shuffling code from scratch, but the WS2812 output
module is lifted from this TT05 submission. I did modify it to read the data stream
MSB-first rather than LSB-first since that made my life a lot easier in bit-twiddler
land.
Note that the first byte of each APA102 packet encodes an intensity, which I am
ignoring since WS2812s do not support such a feature.

How to test

The way I will be testing this is by attaching ui_in[0] to SCK and ui_in[1] to SDO
on a DEFCON badge that used APA102 LEDs. Attach uo_out[0] to drive a string of

519

https://github.com/squidgeefish/TT09
https://squidgeefish.com/projects/cloning-5n4ck3y-7r/
https://github.com/Gatsch/jku-tt06-ledcontroller/blob/main/src/led.v

at least seven WS2812s. I suspect that level shifters will be needed since TinyTapeout
ICs run at around 1.8V?
Alternatively, you could probably stream something over in MicroPython.
If you’re hand-crafting your packets, a few notes:

• A packet stream must start with a 32-bit start packet (0x00000000)
• APA102s reserve the first byte for intensity: 0b11100000 | &lt;5-bit

intensity&gt;. We’re ignoring this completely.
• APA102 color order for the remaining three bytes is Blue, Green, Red.

There is also a random feature added in to fill space - there should be a continuous
UART output of “Arglius Barglius” on uo_out[1] at approximately 115200 baud; this
can be read out with a serial bridge or sufficiently advanced logic analyzer.

External hardware

Some sort of SPI driver is necessary, as is a string of at least seven WS2812 LEDs (or
I suppose a logic analyzer can verify it if you’re allergic to blinkies).

Pinout

Input Output Bidirectional
0 APA102_CK WS2812_OUT
1 APA102_SD UART_OUT
2
3
4
5
6
7

520

pio-ram-emulator example: Julia fractal [677]

• Author: Toivo Henningsson
• Description: Example of using pio-ram-emulator to draw a Julia fractal
• GitHub repository
• HDL project
• Mux address: 677
• Extra docs
• Clock: 50400000 Hz

How it works

This is an example of the using the https://github.com/toivoh/pio-ram-emulator
RAM emulator for Tiny Tapeout. The RAM is used to store a frame buffer, 320x480
at 2 bits/pixel. The frame buffer is continuously read to output a 640x480 @60 Hz
VGA signal. At the same time, the logic computes a Julia fractal, writing 16 bits to
the frame buffer for every 8 pixels computed. After about a second, the whole frame
buffer is filled in.
For more info about the RAM emulator, see https://github.com/toivoh/pio-ram-
emulator/blob/main/docs/pio-ram-emulator.md.
The project contains some helper code for working with with the RAM emulator:

• pio_ram_emulator.v and pio_ram_emulator.vh (sb_io.v is also need)
contain the modules pio_ram_emu_transmitter and pio_ram_emu_receiver

– These are used to transmit and receive messages using the RAM emulator’s
message format

– The design still has to follow the rules in https://github.com/toivoh/
pio-ram-emulator/blob/main/docs/pio-ram-emulator.md about which
messages can be sent when

– See julia_top.v for an example of how to use these modules

• test/pio_ram_emulator_model.v contains a simulation model of the RAM
emulator

– See test/tb.v for an example of how to use the simulation model in a
test

– See verilator/vtop.v for an example of how to use the simulation
model in a verilator setup

521

https://github.com/toivoh/tt09-pio-ram-emulator-example
https://github.com/toivoh/pio-ram-emulator
https://github.com/toivoh/pio-ram-emulator/blob/main/docs/pio-ram-emulator.md
https://github.com/toivoh/pio-ram-emulator/blob/main/docs/pio-ram-emulator.md
https://github.com/toivoh/pio-ram-emulator/blob/main/docs/pio-ram-emulator.md
https://github.com/toivoh/pio-ram-emulator/blob/main/docs/pio-ram-emulator.md

– The model will try to detect behavior that violates the rules in https:
//github.com/toivoh/pio-ram-emulator/blob/main/docs/pio-ram-
emulator.md, in which case it will set an error flag and stop responding
(see the ERROR_RESPONSE parameter)

– The simulation model is helpful, but might not capture the ful behavior of
the RAM emulator. Please try to run your design on an FPGA against the
actual RAM emulator as well.

How to test

Plug in a TinyVGA VGA Pmod to the output Pmod. The https://github.com/toi
voh/pio-ram-emulator RAM emulator must be running on the RP2040. TODO:
Instructions for how to set up. Start the project.

Controls The appearance of the Julia fractal is controlled by the C parameter, which
can be seen as a complex value or 2d vector. The C paramter can be changed using
the ui_in port:

• button_up / button_down / button_left / button_right move the C
value.

• button_incstep doubles the step length.
• button_decstep halves the step length.

A new ui_in[5:0] value must be stable for 2^19 cycles, or approximately 10 ms (at
a 50.4 MHz clock rate), before it is accepted. The use_both_button_dirs input
changes how the input is interpreted:

• When use_both_button_dirs = 0, an input is triggered when one of the
button_ signals goes from high to low (and is stable for 10 ms). Recommended
if the inputs are connected to buttons.

• When use_both_button_dirs = 1, an input is triggered when one of the
button_ signals goes from high to low or low to high (and is stable for 10 ms).
Recommended if the inputs are connected to toggle switches.

External hardware

This project needs a TinyVGA VGA Pmod.

Pinout

522

https://github.com/toivoh/pio-ram-emulator/blob/main/docs/pio-ram-emulator.md
https://github.com/toivoh/pio-ram-emulator/blob/main/docs/pio-ram-emulator.md
https://github.com/toivoh/pio-ram-emulator/blob/main/docs/pio-ram-emulator.md
https://github.com/mole99/tiny-vga
https://github.com/toivoh/pio-ram-emulator
https://github.com/toivoh/pio-ram-emulator
https://github.com/mole99/tiny-vga

Input Output Bidirectional
0 button_up R1
1 button_down G1
2 button_right B1
3 button_left vsync
4 button_incstep R0 tx_out[0]
5 button_decstep G0 tx_out1
6 B0 rx_in[0]
7 use_both_button_dirs hsync rx_in1

523

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Tiny Neural Network Accelerator [678]

• Author: Greg Chadwick
• Description: A toy neural network accelerator targetting CNNs
• GitHub repository
• HDL project
• Mux address: 678
• Extra docs
• Clock: 50000000 Hz

How it works

This project is a neural network accelerator designed for use with convolutional neural
networks. The verilog is generated from system verilog source which lives in a separate
repository: https://github.com/GregAC/tiny-nn which also contains the full DV
environment, model, documentation and related utilities and software.
Internally it contains a number of 16-bit floating point add and multiply units (using
something approximating the BF16 floating point encoding) that can be configured to
work in different ways for different operations. Operations available are

• Convolve - Computes a 4x2 convolution kernel across an image. The parameters
are loaded in and held in flops then the image is streamed in one pixel at a
time. The most recent 4x2 image pixels are also held in flops so every 2 new
pixels giving a new image column computes a new convolution (internally the
last image column is dropped and the new column shifted in).

• Accumulate - Sum groups of N input numbers with a fixed bias added and
an optional RELU operation (0 if accumulation less than 0 otherwise leaves
accumulation untouched). N is provided by the operation word and the bias is
only loaded in once. E.g. if you set N = 4 an bias of 1.0 for each 4 numbers
input it would sum them together then add the bias and do the optional RELU.
Numbers keep streaming in until the operation is terminated

The interface is a fixed 16 bits in and 8 bits out synchronous to the clock. Each
operation has a special operand code that starts it that needs to be sent on the 16
input bits. Once started the 16 input bits provide the numbers used for the operation.
The 16-bit numbers output are split over 2 clock cycles for the 8 bit output. With the
lower byte output first. The user needs to know when the output is relevant (some
cycles the output should be ignored and some it should be captured).

• ui_in, uio_in - 16-bit input, ui_in is top byte
• uo_out - 8-bit output

524

https://github.com/GregAC/tt10-tiny-nn
https://github.com/GregAC/tiny-nn

https://github.com/GregAC/tiny-nn should contain full documentation with the
details and software to use the accelerator (both a work in progress at tapeout time!).

How to test

There are 3 test modes to test basic input output.

ASCII test Place 16’hFFFF on the input {ui_in, uio_in} and hold it and on the
output you will observe a repeating pattern:

• 8’h54
• 8’h2d
• 8’h4e
• 8’h4e

This is ‘T-NN’ in ASCII

Pulse Test Place 16’hF000 on the input {ui_in, uio_in} and hold it and on the
output you will observe a repeating pattern:

• 8’haa
• 8’h55

Count Test Place 16’hF1XX on the input {ui_in, uio_in} where XX is any 8-bit
number and on the output you will observe a count down from that number.

Accumulate Operation The simplest operation is the accumulate one. We’ll con-
figure it to add two numbers at a time with a -3.5 bias and RELU. Then we’ll add 1.0
+ 2.0 and 3.0 + 4.0. Put the following on the input over successive clocks

• 16’h2101 # Command word for accumulate operation
• 16’hc060 # -3.5 bias
• 16’h3f80 # 1.0
• 16’h4000 # 2.0
• 16’h4040 # 3.0
• 16’h4080 # 4.0
• 16’hffff # NaN - terminates operation

On the output you should observe:

525

https://github.com/GregAC/tiny-nn

• 16’hX
• 16’hX
• 16’hX
• 16’hX
• 16’hX
• 16’hX
• 16’hX
• 16’h00
• 16’h00
• 16’h60
• 16’h40

The 16’hX outputs could be anything and should be ignored, the first number output
is 0000 representing 0.0 RELU(1.0 + 2.0 - 3.5) = 0.0, the second number output is
4060 representing 3.5 RELU(3.0 + 4.0 - 3.5) = 3.5.

External hardware

No specific external hardware required but it does need some external part to drive the
desired sequences, this can be handled by the RP2040 on the demo board.

Pinout

Input Output Bidirectional
0 ui[0] uo[0] uio[0]
1 ui1 uo1 uio1
2 ui2 uo2 uio2
3 ui[3] uo[3] uio[3]
4 ui[4] uo[4] uio[4]
5 ui[5] uo[5] uio[5]
6 ui[6] uo[6] uio[6]
7 ui[7] uo[7] uio[7]

526

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Fuzzy Search Engine [679]

• Author: Peter Nørlund
• Description: A levenshtein based fuzzy search engine
• GitHub repository
• HDL project
• Mux address: 679
• Extra docs
• Clock: 50000000 Hz

How it works

tt09-levenshtein is a fuzzy search engine which can find the best matching word in a
dictionary based on levenshtein distance.
Fundamentally its an implementation of the bit-vector levenshtein algorithm from
Heikki Hyyrö’s 2003 paper with the title A Bit-Vector Algorithm for Computing Lev-
enshtein and Damerau Edit Distances.

Architecture The overall architecture is a Wishbone Classic system with two mas-
ters (The levenshtein engine and an SPI controlled master) and two slaves (The leven-
shtein engine and a QSPI SRAM controller).
Using the SPI interface, you store a dictionary and some bitvectors representing a
search word in SRAM and then configures and activates the engine. The engine will
then read the dictionary and bitvectors from the SRAM and, ultimately store the index
and distance of the word in the dictionary with the lowest levenshtein distance in
registers which can be read by the user.

527

https://github.com/peter-noerlund/tt09-levenshtein

SPI The device is organized as a wishbone bus which is accessed through commands
on an SPI bus.
The maximum SPI frequency is 25% of the master clock (12.5MHz when the chip is
running at 50MHz).
The bus uses SPI mode 3 (CPOL=1, CPHA=1)
Input bytes:

Byte Bit Description
0 7 READ=0 WRITE=1
0 6-0 Address bit 22-16
1 7-0 Address bit 15-8
2 7-0 Address bit 7-0
3 7-0 Byte to write if WRITE, otherwise ignored

528

Output bytes:

Byte Bit Description
0 7-0 Byte read if READ, otherwise just 0x00

Since the SPI bridges to a wishbone bus which is shared by another master and because
register and SRAM have different latencies, the response time is variable.
While the bus is working, the output bits will be zero. The final output byte will be
preceeded by a one-bit.
Note that this means that the value 0x5A can appear 8 different ways on the SPI
bus:

01 5A 0000000 1 01011010
02 B4 000000 1 01011010 0
05 68 00000 1 01011010 00
0A D0 0000 1 01011010 000
15 A0 000 1 01011010 0000
2B 40 00 1 01011010 00000
56 80 0 1 01011010 000000
AD 00 1 01011010 00000000

Memory Layout As indicated by the SPI protocol, the address space is 23 bits.
The address space is basically as follows:

Address Size Access Identifier
0x000000 1 R/W CTRL
0x000001 1 R/W SRAM_CTRL
0x000002 1 R/W LENGTH
0x000003 1 R/O MAX_LENGTH
0x000004 2 R/O INDEX
0x000006 1 R/O DISTANCE
0x000200 512 R/W VECTORMAP
0x000400 8M R/W DICT

CTRL
The control register is used to start the engine and see when it has completed.
The layout is as follows:

529

Bits Size Access Description
0 1 R/W Enable flag
1-7 7 R/O Not used

Set the enable flag to start the engine. When the engine is finished, the enable flag is
changed to 0

SRAM_CTRL
Controls the SRAM

Bits Size Access Description
0-1 2 R/W Chip select
2-7 6 R/O Not used

The chip select flag controls which chip select is used on the PMOD when accessing
SRAM

Value Pin Notes
0 None Default value
1 CS Uses the default CS on the PMOD (Pin 1). Compatible with Machdyne’s QQSPI PSRAM
2 CS2 Uses CS2 on the PMOD (pin 6). Compatible with mole99’s QSPI Flash/(P)SRAM
3 CS3 Uses CS3 on the PMOD (pin 7). Compatible with mole99’s QSPI Flash/(P)SRAM

LENGTH

Bits Size Access Description
0-7 8 R/W Word length minus 1

Used to indicate the length of the search word. Note that the word cannot be empty
and it cannot exceed 16 characters.
MAX_LENGTH

Bits Size Access Description
0-7 8 R/O Max word length supported minus 1

This field allows for applications to dynamically detect the size of the bit vector.

530

DISTANCE
When the engine has finished executing, this address contains the levenshtein distance
of the best match.
INDEX
When the engine has finished executing, this address contains the index of the best
word from the dictionary in big endian byte order.
VECTORMAP
The vector map must contain the corresponding bitvector for each input byte in the
alphabet.
If the search word is application, the bit vectors will look as follows:

Letter Index Bit vector
a 0x61 16'b00000000_01000001 (a_____a____)
p 0x70 16'b00000000_00000110 (_pp________)
l 0x6C 16'b00000000_00001000 (___l_______)
i 0x69 16'b00000001_00010000 (____i___i__)
c 0x63 16'b00000000_00100000 (_____c_____)
t 0x74 16'b00000000_10000000 (_______t___)
o 0x6F 16'b00000010_00000000 (_________o_)
n 0x6E 16'b00000100_00000000 (__________n)
* * 16'b00000000_00000000 (___________)

Each vector is 16 bits in bit endian byte order.
The vectormap is stored in SRAM so the values are indetermined at power up and
must be cleared.
DICT
The word list.
The word list is stored of a sequence of words, each encoded as a sequence of 8-bit
characters and terminated by the byte value 0x00. The list itself is terminated with
the byte value 0x01.
Note that the algorithm doesn’t care about the particular characters. It only cares if
they are identical or not, so even though the algorithm doesn’t support UTF-8 and is
limited to a character set of 254 characters, ignoring Asian alphabets, a list of words
usually don’t contain more than 254 distinct characters, so you can practially just map
lettters to a value between 2 and 255.

531

How to test

You can compile the client as follows:

mkdir -p build
cmake -G Ninja -B build .
cmake --build build

Next, you can run the test tool:

Machdyne QQSPI PSRAM
./build/client/client --interface tt --test --verify-dictionary --verify-search

mole99 PSRAM
./build/client/client --interface tt --cs cs2 --test --verify-dictionary --verify-search

This will load 1024 words of random length and characters into the SRAM and then
perform a bunch of searches, verifying that the returned result is correct.

External hardware

To operate, the device needs a QSPI PSRAM PMOD. The design is tested with the
QQSPI PSRAM PMOD from Machdyne, but any memory PMOD will work as long as
it supports:

• WRITE QUAD with the command 0x38 in 1S-4S-4S mode and no latency
• FAST READ QUAD with the command 0xE8 in 1S-4S-4S mode and 6 wait

cycles
• 24-bit addresses
• Uses pin 0, 6, or 7 for SS#.
• Must be able to run at half the clock speed of the TT chip.

Note that this makes it incompatible with the spi-ram-emu project for the RP2040.

Pinout

Input Output Bidirectional
0 SRAM QSPI CS
1 SRAM QSPI SIO0/MOSI
2 SRAM QSPI SIO1/MISO
3 SRAM QSPI SCK

532

Input Output Bidirectional
4 SPI SS# SRAM QSPI SIO2
5 SPI SCK SRAM QSPI SIO3
6 SPI MOSI SRAM QSPI CS2
7 SPI MISO SRAM QSPI CS3

533

VGA Pride [681]

• Author: Rebecca G. Bettencourt
• Description: A VGA demo for showing pride flags
• GitHub repository
• HDL project
• Mux address: 681
• Extra docs
• Clock: 0 Hz

How it works

Displays pride flags on the screen.
To add another flag, create a flag.v file and add it to src/flag_index.v,
test/Makefile, and info.yaml, using the existing flags as examples.

How to test

Connect to a VGA monitor. Set the following inputs to change the displayed flag:

• ui_in[7] to display the first flag
• ui_in[6] to display the next flag
• ui_in[5] to display the previous flag
• ui_in[4] to display the flag whose index is on uio_in

Index Flag
0 Rainbow flag, 6 stripes
1 Rainbow flag, 7 stripes
2 Rainbow flag, 8 stripes
3 Rainbow flag, 9 stripes
4 Philadelphia rainbow flag
5 Progress rainbow flag
6 Progress rainbow flag 2021 version
7 Trans pride flag
8 Abrosexual pride flag
9 Aceflux pride flag
10 Aegosexual pride flag
11 Agender pride flag
12 Androgyne pride flag
13 Androsexual pride flag

534

https://github.com/RebeccaRGB/tt-vga-pride

Index Flag
14 Aporagender pride flag
15 Aroace pride flag
16 Aroflux pride flag
17 Aromantic pride flag
18 Asexual pride flag
19 Aspec pride flag
20 Bigender pride flag (pink purple white purple blue)
21 Bigender pride flag (blue white purple white pink)
22 Bigender pride flag (pink yellow white purple blue)
23 Bisexual pride flag
24 Ceterosexual pride flag
25 Demiandrogyne pride flag (pink purple blue)
26 Demiandrogyne pride flag (green white green)
27 Demiboy pride flag
28 Demifluid pride flag
29 Demiflux pride flag
30 Demigender pride flag
31 Demigirl pride flag
32 Demiromantic pride flag
33 Demisexual pride flag
34 Disability rights flag (gold silver bronze tricolor)
35 Disability rainbow flag
36 Gender-neutral pride flag
37 Genderfluid pride flag
38 Genderflux pride flag
39 Genderqueer pride flag
40 Greygender pride flag
41 Greysexual pride flag
42 Gynosexual pride flag
43 Intersex pride flag (purple circle)
44 Intersex pride flag (blue/pink gradient)
45 Thislesbianlife lesbian pride flag (pink and red)
46 Sadlesbeandisaster lesbian pride flag, 7 stripes (orange and pink)
47 Sadlesbeandisaster lesbian pride flag, 5 stripes (orange and pink)
48 Lydiandragon lesbian pride flag (violet crocus dill rose)
49 Maya Kern lesbian pride flag (violet rose crocus dill)
50 RebeccaRGB femme lesbian pride flag (violet lavender pink rose)
51 Littleender pride flag
52 Maverique pride flag
53 Leonis Ignis MLM pride flag (brown and blue)

535

Index Flag
54 Vincian MLM pride flag, 7 stripes (green and blue)
55 Vincian MLM pride flag, 5 stripes (green and blue)
56 Vincian MLM pride flag (light blue and light green)
57 Multigender pride flag
58 Multisexual pride flag
59 Neptunic pride flag
60 Neutrois pride flag
61 Nonbinary pride flag
62 Objectum pride flag
63 Omnisexual pride flag
64 Pangender pride flag
65 Pansexual pride flag
66 Polyamory pride flag (blue, red, black with yellow pi)
67 Polyamory pride flag (blue, magenta, purple with yellow heart)
68 Polygender pride flag
69 Polysexual pride flag
70 Pomosexual pride flag
71 Proculsexual pride flag
72 IBM PS/2 pride flag
73 Queer pride flag
74 Trains pride flag (Train Landscape, Ellsworth Kelly, 1953)
75 Transfeminine pride flag
76 Transmasculine pride flag
77 Transneutral pride flag
78 Trigender pride flag
79 Unlabeled pride flag
80 Uranic pride flag
81 Voidpunk pride flag

External hardware

TinyVGA PMOD

Pinout

Input Output Bidirectional
0 address mode R1 A0
1 G1 A1

536

https://github.com/mole99/tiny-vga

Input Output Bidirectional
2 B1 A2
3 VSync A3
4 set R0 A4
5 prev G0 A5
6 next B0 A6
7 reset HSync A7

537

donut [683]

• Author: Daniel Endraws
• Description: Showing a Donut
• GitHub repository
• HDL project
• Mux address: 683
• Extra docs
• Clock: 50350000 Hz

How it works

Each ellipse is hand crafted to create a donut.

How to test

Connect the PMOD VGA.

External hardware

TinyVGA PMOD

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 vsync
4 R[0]
5 G[0]
6 B[0]
7 hsync

538

https://github.com/daniel-endraws/tt08-donut
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

UART [685]

• Author: Darryl Miles
• Description: UART
• GitHub repository
• HDL project
• Mux address: 685
• Extra docs
• Clock: 0 Hz

How it works

Docs to follow.

How to test

Docs to follow.

External hardware

Standard Tiny Tapeout PCB. The IC is a UART DTE.
Trying for:

• TxD on UO_OUT[4] for OUT4 on GPIO13 with RP2040 UART0 (main set)
• RxD on UO_IN[3] for IN3 on GPIO12 with RP2040 UART0 (main set)
• RTS on UO_OUT[5] for OUT5 on GPIO14 with RP2040 UART0 (main set)
• CTS on UO_IN[6] for IN6 on GPIO19 with RP2040 UART0 (adjacent set)

Pinout

Input Output Bidirectional
0 altclk busData0
1 busMode0 busData1
2 busMode1 busData2
3 rxd dtr busData3
4 dsr txd busData4
5 dcd rts busData5
6 cts intTx busData6

539

https://github.com/dlmiles/tt08-poc-uart

Input Output Bidirectional
7 ri intRx busData7

540

Why not? [687]

• Author: sylefeb
• Description: One tile something
• GitHub repository
• HDL project
• Mux address: 687
• Extra docs
• Clock: 25000000 Hz

How it works

This is a single tile ‘demo’ hacked on the very last day, basically during coffee breaks.
It’s using an old rotozoom trick, and is otherwise pretty simple.
Music is … well it is an attempt ;)

How to test

Plug VGA pmod, power up, enjoy.

External hardware

VGA PMOD, Audio PMOD

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VS
4 R0
5 G0
6 B0
7 HS Audio (output)

541

https://github.com/sylefeb/tt08-fun

FSK Modem +HDLC +UART (PoC) [689]

• Author: Darryl Miles
• Description: FSK Modem w/ HDLC transciever + UART (PoC digital side)
• GitHub repository
• HDL project
• Mux address: 689
• Extra docs
• Clock: 0 Hz

How it works

This is a proof-of-concept design to sketch out the TT_UM digital interface for a later
project design that will attempt to incorporate both analogue and digital aspects of
the basic skeleton shown in this project.
The design is based on the classic circa 1988 model design used in Amateur Radio
Packet systems by G3RUH. The initial specification is looking to achieve data rates of
between 4800 and 64000 baud, but the design maybe able to service audio 1200 baud
packet radio as well.
The design is 1-data-bit per symbol.
The original TNC (Terminal Node Controller) was a Z80 CPU and 8530 Serial Com-
munications Controller. So inline with this I expect to provide an 8-bit CPU (as a
future TT project) as a companion to this so the two items taken together should be
able to form a complete communications solution of a capable TNC. This is an area I
spent a significant amount of my teenage youth understanding and experimenting with
that gave me a good grounding in all the digital electonic, radio and computer/CPU
theory/practice that is still in use today.
The original PCB board design used:

• a x16 master TX CLOCK line of the data rate.
• was based on 12v audio interface/opamps, and 74HC TTL logic
• was capable of the range of baud rates with minor modifications, the most used

speed in my experience is 9600 baud
• the TX DAC was 4 x 8-bit samples per bit, with the waveform lookup using a

12bit address that can see previous bit information sent
• EPROM were used directly to provide waveforms, these have a number of jumper

set modes to allow compensation for non-linear responses at the TX-AUDIO and
RX-AUDIO

542

https://github.com/dlmiles/tt06-poc-fskmodem-hdlctrx

Due to the need to perform ROM lookups, this is operating in 4 phases sharing 6-bit
output from module, and 4-bit input to module. The 4 phases cover a sequence of:

• TX nibble low (6bit address)
• TX nibble high (6bit address)
• RX nibble low (6bit address)
• RX nibble high (6bit address) It is not clear if this arrangement a good choice.

There is also a programmable latency on the reply, of zero-cycles or one-cycle,
the shifts the expectation of the result.

I also need to validate the DAC 8bit loading scheme prevents any chirping (visibily to
DAC of partially loaded data, due to multiplex timing differences) of the data because
it is loaded in 2 halves.
The master clock (CLK pin) due all the above, it is ncessary to run the clock pin at
x4 the x16 of the original design.

data rate baud master clock (CLK) tx clock tx sample clock
4,800 307,200 76,800 19,200
9,600 614,400 153,600 38,400

19,200 1,228,800 307,200 76,800
38,400 2,457,600 614,400 153,600
64,000 4,096,000 1,024,000 256,000
76,800 4,915,200 1,228,800 307,200

Table is in Hz or Baud
The master clock (pin CLK) is driven at x64 the synchrnous data rate. The tx clock
rate is derrived from this ‘CLK divide-by-4’
The UART clocking is also derived from CLK, and each side (uart RX and uart tx) can
be individually configured to be 1:1 or 2:1 the synchronous data rate:

• Uart TX x1 = data rate x1
• Uart TX x2 = data rate x2
• Uart RX x1 = data rate x8 (due to majority voter, 8 sample buffer)
• Uart RX x2 = data rate x16 (due to majority voter, 8 sample buffer)

As you can see maybe there is some headroom for faster transmission speeds within a
TT project, before needing to increase DAC resolution and explore 4FSK/6FSK/QAM
etc…
There are 3 main functional areas with the design:
The type of FSK modem is 2FSK (dual tone) outputting continious wave.

543

Upper Digital (included here) This incorpotates a full-duplex HDLC frame pro-
cessor attached to a UART (ttl interface), the UART process encodes the frame in
format similar to KISS format used by TNCs, with a few modifications.

Lower Digital (included here) This manages the receiver clock recovery PLL
circuit and interface, the original designs used EPROM lookup tables with 12bit address
(which has visibility on at least the previous encoded bit) and provides an 8bit data
output.
The data outputs are then fed into a respective 8bit DAC
The receiver has a PLL lock detector which is used to provide DCD (Data Carrier
Detect) signal. While the hardware design is capable of full-duplex operation it is often
used in Amateur Radio situations in a half-duplex situation with a carrier sense channel
sharing algorithym.

Lower Analogue (not includes in this PoC design, see next iteration) The
parts that are missing from the design:

• 8bit DAC for transmit waveform shaping, using 4 samples per bit
• opamp for transmit audio anti-aliasing (low-pass filter?) circuit to remove har-

monic noise from the output audio
• 8bit DAC for receiver clock recovery feedback, using 16 samples per bit.
• opamp for receive audio signal interface, this maybe moved to an external board

due to needing to protect the TT IC from over voltage from being attached
to usuall 12v equipment or maybe 36v when using some ex-commerial radio
trancievers. This may have been a comparator circuit (unsure at this time), fed
into a DFF to synchronise the incoming data to the x16 (of datarate) clock
recovery timing

• 2 x opamp to provide PLL lock detection (unsure how this works atm), I would
guess it can detect when the signal is being centered and has been centered
for some number of samples, maybe via slow capacitance charge up when the
UP/DOWN line is managing to meet an approximate 50%/50% duty cycle per
x16 clock recovery tick.

• 2 x opamp to provide zero-crossing detection, this is used to provide the PLL
its feedback mechanism (the UP/DOWN line) to advance or retard the edge
alightment.

It is hoped all items can be incorporated into the same design using the analogue GDS
facility with TT and connected to the respective lower digital signal.
At this time we bring out the interconnection points (between analogue and lower
digital) to the external interface of TT and we provide a configuration mechnism to

544

be externally or internally driven/internally sourced. This should allow for a significant
level of simulation and experimentation by users of the project to understand and
explore FSK/PLL theory by picking a testing configuration combintation, being full-
duplex it should be able to loop-back at various levels to understand each part better.
While also providing those with a Ham Radio license to try out on air communicating
with their local users or AMSAT.
Have fun… 73s de G7LED

How to test

When the final design is completed, there should be a number of visible and testable
aspects available to observe the working of various functions.
I am not expecting this PoV project to yeild good result due to the limited time spent
on it just before submission deadlines for TT06.
Check back with the repo for a testing regime.

External hardware

At this PoC stage, testing with RP2040 and FPGA external boards to validate the
electrical interface acrhetecture makes sense and provided the most options.

Pinout

Input Output Bidirectional
0 Rx Data UART TX Rx Clock (bidi)
1 Tx Data UART CTS Up/Down (bidi)
2 UART RTS UART DCD TableAddr[0]
3 TableData[0] Rx Error TableAddr1
4 TableData1 Tx Error TableAddr2
5 TableData2 Sending TableAddr[3]
6 TableData[3] TableAddr[4]
7 UART RX Tx Clock Stobe TableAddr[5]

545

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Spectrogram extractor, 2 channels [690]

• Author: Coline Chehense, Dinko Oletic
• Description: Digital part of a time-frequency feature extraction sensor interface,

two-channel real-time signal amplitude tracker. 7 input lines per channel repre-
sent thermometer code output of a flash ADC. Two-channel serial output.

• GitHub repository
• HDL project
• Mux address: 690
• Extra docs
• Clock: 1000000 Hz

How it works

This is an early work-in progress test implementation of a digital readout, part of a
low-power mixed-signal multichannel sensor interface for acoustic emission detection.
The sensor interface is developed to support a passive, micromechanically-implemented
ultrasonic signal frequency decomposition MEMS device, based on an array of piezo-
electric micro-resonators: https://ieeexplore.ieee.org/document/9139151.

The digital part implemented here, performs real-time tracking of time-frequency spec-
trograms of individual acoustic emissions. It is assumed that each input-channel rep-
resents a signal amplitude envelope of the associated frequency-component over time,
digitized using a flash ADC. The analog part of the ADC is not implemented here.
Each input channel is represented by 7 input lines per channel representing the ther-
mometer code output of a flash ADC. This test design implements only two-channels.
The amplitude of an signal envelope at each channel is decoded into 3-bit BCD code.
Presence of an input signal at any channel (detector of acoustic emission start) initi-
ates event-based 1 MHz sampling of the time-frequency amplitude spectrogram. The
sampling lasts for 200 us. Once finished, the state machine controls reads-out the data
stored. A double buffer composed of D-bistables is used to manage the storage and

546

https://github.com/DinkoOletic/tt09-HDL_unizgfer_2ch_AE_tf_spectrogram
https://ieeexplore.ieee.org/document/9139151

readout simultaneously. The stored data is sent serially for each channel. An RTC
module is used to retrieve the time of the acoustic emission start.

This design is part of research activities https://www.fer.unizg.hr/liss/aemems. The
design is generally applicable as a generic multi-channel time-series feature extraction
block, and serve for subsequent clustering or classification, as part of an low-power
MEMS-based sensor system-on-chip for acoustic event detection, or non-destructive
testing. This is the first TinyTapeout submission of the design.

How to test

Please contact authors for detailed instructions on how to set-up the design.

External hardware

Logics analyzer will be useful for debugging.

Pinout

Input Output Bidirectional
0 ch1(0) serial_out(0) ch2(0)
1 ch1(1) serial_out(1) ch2(1)
2 ch1(2) SL_time ch2(2)
3 ch1(3) SL_ch ch2(3)
4 ch1(4) signal_detected ch2(4)

547

https://www.fer.unizg.hr/liss/aemems

Input Output Bidirectional
5 ch1(5) memorization_completed ch2(5)
6 ch1(6) serial_readout ch2(6)
7 RTC_clk(1kHz) sending_data serial_readout_clk(4Mhz)

548

Bouncy Capsule [691]

• Author: htfab
• Description: Demoscene project featuring… well, a bouncy capsule
• GitHub repository
• HDL project
• Mux address: 691
• Extra docs
• Clock: 25000000 Hz

How it works

This is an entry to the Tiny Tapeout demoscene competition

How to test

• Attach the standard PMODs
• Run the clock at 25 (or 25.175) MHz
• Reset the design
• Sit back and enjoy
• Optionally change the input switches

External hardware

• Tiny VGA PMOD
• TT Audio PMOD (or MuseLab’s Audio PMOD)

Pinout

Input Output Bidirectional
0 Pause kinematics Tiny VGA R1 PDM audio out
1 Reset kinematics Tiny VGA G1 PDM audio out
2 Mute sound Tiny VGA B1 PDM audio out
3 Kill sound Tiny VGA VSync PDM audio out
4 Hide background Ting VGA R0 PDM audio out
5 Hide text Tiny VGA G0 PDM audio out
6 Lock colors Tiny VGA B0 PDM audio out
7 No re-orientation Tiny VGA HSync PDM audio out

549

https://github.com/htfab/bouncy-capsule
https://tinytapeout.com/competitions/demoscene/
https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod
https://www.tindie.com/products/johnnywu/pmod-audio-expansion-board/

TinyTapeout Minimal Branch Predictor [704]

• Author: Tristan Robitaille
• Description: A minimal perceptron-based branch predictor
• GitHub repository
• HDL project
• Mux address: 704
• Extra docs
• Clock: 1000000 Hz

How it works

This project implements a very minimal perceptron-based branch predictor. Using basic
SPI, it reads in the lower part of the address of a branch instruction and its ground truth
branch direction (taken or not taken). Due to constraints on the memory architecture
(namely, 1 byte read per cycle), the prediciton is not single-cycle.
The branch predictor is based on this paper: Dynamic Branch Prediction with Percep-
trons.
This project uses latch-based memory from Michael Dell, available at: tt06-memory
It’s best to run this project in its Docker container.
The func_sim directory contains a C++ functional simulation of the infrastructure. It
parses a log file of a simulated execution of a RISC-V reference program and predicts the
branch direction on each branch instruction. From the func_sim directory: -Compile
the reference: riscv32-unknown-elf-gcc -O0 start.S reference.c -o
reference -march=rv32i_zicsr_zifencei -T link.ld -nostartfiles
-nostdlib -Disassemble reference: riscv32-unknown-elf-objdump -d
reference &gt; reference_dis.txt (for info only) -Run Spike on reference:
spike --log=spike_log.txt --log-commits --isa=rv32i_zicsr_zifencei
--priv=m -m128 reference (to generate execution log) -Make Makefile: cmake
CMakeLists.txt -Compile functional simulation: make -Run: ./build/func_sim
./spike_log.txt

The tests directory includes all CocoTB test for this design. Run them with make.
The documentation waveform is generated by Wavedrom.

550

https://github.com/TristanRobitaille/tt_branch_pred
https://www.cs.utexas.edu/~lin/papers/hpca01.pdf
https://www.cs.utexas.edu/~lin/papers/hpca01.pdf
https://github.com/MichaelBell/tt06-memory
https://github.com/wavedrom/wavedrom

How to test

The branch predictor reads the lowest 8b of a 32b RISC-V address on pins inst_addr,
the branch direction on pin uio1 and a pulse notifying that new data is available
on pin new_data_avail. Once the prediction is ready, it pulses pin pred_ready,
pushes the prediction on pin prediction. Once training is complete, it pulses
pin training_done. You can also request the history buffer by pulsing pin
history_buffer_request. On the next cycle, the branch history will be sent to
pin DEBUG_history_buffer_output, one cycle at a time, starting from the most
recent.
Notes:

• After rst_n goes back high, you must wait for mem_reset_done to pulse. This
is because the branch predictor resets its own memory. If new data comes in
while it is resetting its memory, an inference will not be started.

• If no training is required this round, training_done pulses at the same time
as pred_ready.

• If new data is sent while the predictor is training, it will be ignored and a new
inference will not be started.

Prediction waveform:

Reset waveform:
To generate the instructions to use, you can either:

551

https://en.wikipedia.org/wiki/Collatz_conjecture

1) Parse func_sim/spike_log.txt with is a log of all instructions ran for the
program func_sim/reference.c simulated on RISC-V rv32i_zicsr_zifencei.
See func_sim/src/func_sim.cpp to see how that’s done.

2) Generate a new log for a program of your choice. For this, you’ll need to build
the Docker. Word of caution: The Dockert takes >30 min top build and weighs
>24GB.

1) From root, run: docker build -t tt_brand_predictor .
2) Once complete, run: docker run -it -v pwd:/tmp tt_brand_predictor
3) Move to func_sim: cd func_sim
4) Compile reference.c: riscv32-unknown-elf-gcc -O0 start.S

reference.c -o reference -march=rv32i_zicsr_zifencei -T
link.ld -nostartfiles -nostdlib

5) Optionally, view the disassembly with: riscv32-unknown-elf-objdump
-d reference &gt; reference_dis.txt

6) Generate execution log with Spike: spike --log=spike_log.txt
--log-commits --isa=rv32i_zicsr_zifencei --priv=m -m128
reference

3) Running func_sim outputs a list of all branch instruction and the state of
important registers in the branch predictor. You can use that to check if the
predicted branch outcome is correct: ./build/func_sim ./spike_log.txt

External hardware

• Some way to drive 10b (Arduino, FPGA, etc.)
• Some way to read 5b (Arduino, FPGA, oscilloscope, etc.)

Pinout

Input Output Bidirectional
0 inst_addr[0] pred_ready new_data_avail
1 inst_addr1 prediction direction_ground_truth
2 inst_addr2 training_done DEBUG_perceptron_index[0]
3 inst_addr[3] mem_reset_done DEBUG_perceptron_index1
4 inst_addr[4] DEBUG_new_data_avail_posedge DEBUG_perceptron_index2
5 inst_addr[5] DEBUG_state_pred[0] DEBUG_wr_en
6 inst_addr[6] DEBUG_state_pred1 DEBUG_history_buffer_output
7 inst_addr[7] DEBUG_state_rst_mem history_buffer_request

552

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture

Moody-mimosa [706]

• Author: D. Levante-Schmidiger
• Description: Moody ASIC reacting to external stimuli
• GitHub repository
• HDL project
• Mux address: 706
• Extra docs
• Clock: 1000000 Hz

How it works

The original idea was quite simple: I wanted to design my first custom digital ASIC and
implement a fun concept. Instead of developing something like an adder or encoder, I
wanted to push the boundaries of what’s possible. A Tamagotchi-like, living creature—
that’s the vision. A creature with an inner life, capable of interacting with the outside
world, and something you can simply have fun with.
This original idea turned out to be a rabbit hole. What if the internal model closely
follows biological processes and takes neurotransmitters and hormones into account,
for example? Which neurotransmitters and hormons are relevantand what kind of
emotions could emerge? How could sleep and hunger be modeled? What does the
creature do? What is observable from the outside? How could illness be incorporated?
How does something like this fit on the limited space of the chip? How could it be
simulated or emulated on an FPGA? How could one still gain a complete view of the
inner workings for debugging and testing? What might the hardware look like?
In the meantime, this project has evolved into several subprojects:

Folder Description
src The digital design of the Mimosa model, including the Verilog source code and the additional information required for hardening.
test Testing of the overall design, based on python and cocotb
module_test Testing of specific verilog submodules, based on python and cocotb
fpga Additional files (tcl, xdc) for creating the FPGA design for an Artix-7 Alchitry board. For this part, I use the vivado command line utilities and the alchitry loader.
simulation A simulation based on Pyverilator and PyQt6 with a graphical interface for optimizing the model (fine-tuning, feedback loops) and debugging the ASIC. Pyverilator uses the actual verilog sources, compiles them into a C/C++ application and allows to access it from within python.
misc/mimosa_logger An STM32 application for an STM32G474 microcontroller to debug the ASIC. This logs all inputs and outputs, returns them via UART/FTDI, and allows for reconstructing the complete history using the simulation. I also added a CppUTest unit test for illustration.

More details are described in the respective sections below. Whenever possible, I
tried to install the required dependencies in the Dockerfile or with an additional batch
script or added third-party repositories as git submodules, in order to comply with
licensing regulations. However, the FPGA utilities (Vivado Suite from AMD) can only

553

https://github.com/schda1/tt10-moody-mimosa

be installed with a personal account and therefore, you have to install it yourself. I
also added makefiles or batch scripts in order to simplify building or running designs or
applications.

Moody mimosa

Overview The moody mimosa model depends on several layers of abstraction.

1. Actions: Sleeping, eating, playing, smiling, babbling, kicking legs, doing nothing,
crying

2. Emotions: Happiness, excitement, stress, nervousness, boredom, anger, calm-
ness, apathy

3. Stimuli: Input from the outer world, either from the environment (cold, hot,
loud, bright) or from an interacting indivduum (tickle, play with, calm down,
talk to, feed).

4. Basic resources:

• Neurotransmitters: Dopamine, Serotonin, Gamma-aminobutyric acid
(Gaba), Norepinephrine

• Hormons: Cortisol
• Vital-energy, controlling sleepiness
• Nourishment, controlling hunger
• Illness, controlling whether the mimosa is ill or not

From the outher world, only one layer can be influenced directly (stimuli) and only
one layer can be observed directly (actions). However, there are various indirect ways
of how the stimuli influence the basic resources, emotions and actions and how the
actions are influenced by emotions, basic resources and stimuli. The mimosa might cry
because it is tired, ill, stressed, starving or angry because it cannot stand that it gets
tickled all the time. You just don’t know the reason. However, after some time, you
develop an understanding of the creature and begin to realize what it might need.

Architecture

Implementation details Each resource consists of a saturating counter (counting
up or down) and a regulator, regulating whether it should count up or down, slow or
fast, or remain unchanged. The main feedback behaviour is encoded in the regulators.
I tried to mimick the biology of the neurotransmitters involved. The first-level, rapid
stress response is mediated by norepinephrine (NE). If stress persists, the slower second-
level response mediated by the hormone cortisol sets in and leads to long-term stress

554

effects. The competing triple of serotonin, gaba and dopamine controls the mood and
allows emotions such as happiness, excitement, boredom, anxiousness. During elevated
periods of stress, all of them start to decrease, basically leading to a depressive state
with negative emotions and without motivation. Hunger and tiredness also affects
the neurotransmitters and even actions may lead to feedback effects, allowing both
bottom-up and top-down emotion regulation (“smiling makes you feel better” vs. “if
you feel good, you start smiling”). Although resources are themselv counters with 6-9
bits, only the upper two bits are used for emotion encoding and actions in order to
limit gates needed.
Emotions are basically a combinational encoding of the resource levels (0=very low,
1=moderately low, 2=moderately high, 3=very high) and stimuli. In rare cases, several
emotions can be present at once. Strictly speaking, emotions would not be necessary
for the model. However, it turned out to be much more intuitive and simpler, to decide
the resulting action based on emotions rather than on resource levels.
Actions are modelled as a state-machine. State transitions are mediated by stimuli
and/or emotions. In rare cases, neurotransmitter levels may even target actions directly.
At times, there are several routes how states may change. For example, the mimosa
starts to sleep if it is moderately tired and not too stressed. If it is, however, stressed or
starving or if you can’t stop irritating it or if there are environmental influences (noise,
heat), it just can not sleep. It surely will get angry, stressed, nervous and probably
starts to cry but it can not sleep. After some time, it will get way too tired (zero vital
energy) and start sleeping superficially.

Pinout For the tiny tapeout ASIC, the pins are assigned as described in the following
tables:

Pin Name Function
clk clk Base clock
rst_n rst_n Reset, active low
ui_in[0] stimulus_0 Interaction: Tickle
ui_in1 stimulus_1 Interaction: Play with
ui_in2 stimulus_2 Interaction: Talk to
ui_in[3] stimulus_3 Interaction: Calm down
ui_in[4] stimulus_4 Interaction: Feed
ui_in[5] stimulus_5 Environment: Cool
ui_in[6] stimulus_6 Environment: Hot
ui_in[7] stimulus_7 Environment: Quiet

555

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Pin Dir Name Function
uio_in[0] 0 stimulus_8 Environment: Loud
uio_in1 0 stimulus_9 Environment: Dark
uio_in2 0 stimulus_10 Environment: Bright
uio_out[3] - - -
uio_out[4] - - -
uio_out[5] - - -
uio_out[6] - - -
uio_out[7] - - -

Pin Name Function
uo_out[0] action_0 Action: Sleeping
uo_out1 action_1 Action: Eating
uo_out2 action_2 Action: Playing
uo_out[3] action_3 Action: Smiling
uo_out[4] action_4 Action: Babbling
uo_out[5] action_5 Action: Kicking legs
uo_out[6] action_6 Action: Doing nothing
uo_out[7] action_7 Action: Crying

How to test

Several ways

External hardware

Simulation No hardware required. Just run python simulation/mimosa_simulation.py.
Make sure that you have run the scripts/set_up_dependencies.sh script and
that you run a X-Server (e.g. VcXsrv) if you are working with Docker and Windows.

FPGA Following external hardware is required:

• Alchitry Au FPGA board
• Alchitry Br Adapter board
• Custom mimosa PCB [tbd] and USB-C cable

556

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

ASIC Apart from the actual ASIC, the following external hardware is required:

• Custom mimosa PCB [tbd] and USB-C cable

Pinout

Input Output Bidirectional
0 TICKLE SLEEPING LOUD
1 PLAY_WITH EATING BRIGHT
2 TALK_TO PLAYING SPI_MISO
3 CALM_DOWN SMILING SPI_SCK
4 FEED BABBLING SPI_CS
5 COOL KICKING_LEGS SPI_MOSI
6 HOT DOING_NOTHING UART_TX
7 QUIET CRYING CLK_MODEL

557

Classic 8-bit era Programmable Sound Generator AY-3-8913
[708]

• Author: Eric Farrow - ReJ aka Renaldas Zioma
• Description: The AY-3-8913 is a 3-voice programmable sound generator (PSG)

chip from General Instruments. The AY-3-8913 is a smaller variant of AY-3-8910
or its analog YM2149.

• GitHub repository
• HDL project
• Mux address: 708
• Extra docs
• Clock: 2000000 Hz

How it works

This Verilog implementation is a replica of the classical AY-3-8913 programmable
sound generator. With roughly a 1500 logic gates this design fits on a single tile of
the TinyTapeout.
The goals of this project

1. closely replicate the behavior and eventually the complete design of the orig-
inal AY-3-891x with builtin DACs

2. provide a readable and well documented code for educational and hardware
preservation purposes

3. leverage the modern fabrication process

A significant effort was put into a thorough test suite for regression testing and
validation against the original chip behavior.
Chip technical capabilities

• 3 square wave tone generators
• A single white noise generator
• A single envelope generator able to produce 10 different shapes
• Chip is capable to produce a range of waves from a 30 Hz to 125 kHz, defined

by 12-bit registers.
• 16 different volume levels

Registers The behavior of the AY-3-891x is defined by 14 registers.

558

https://github.com/devmonkZA/devmonk-tto-ay8913
https://en.wikipedia.org/wiki/General_Instrument_AY-3-8910

Register Bits used Function Description
0 xxxxxxxx Channel A Tone 8-bit fine frequency
1xxxx —//— 4-bit coarse frequency
2 xxxxxxxx Channel B Tone 8-bit fine frequency
3xxxx —//— 4-bit coarse frequency
4 xxxxxxxx Channel C Tone 8-bit fine frequency
5xxxx —//— 4-bit coarse frequency
6 ...xxxxx Noise 5-bit noise frequency
7 ..CBACBA Mixer Tone and/or Noise per channel
8 ...xxxxx Channel A Volume Envelope enable or 4-bit amplitude
9 ...xxxxx Channel B Volume Envelope enable or 4-bit amplitude
10 ...xxxxx Channel C Volume Envelope enable or 4-bit amplitude
11 xxxxxxxx Envelope 8-bit fine frequency
12 xxxxxxxx —//— 8-bit coarse frequency
13xxxx Envelope Shape 4-bit shape control

Square wave tone generators Square waves are produced by counting down the
12-bit counters. Counter counts up from 0. Once the corresponsding register value is
reached, counter is reset and the output bit of the channel is flipped producing square
waves.
Noise generator Noise is produced with 17-bit Linear-feedback Shift Register (LFSR)
that flips the output bit pseudo randomly. The shift rate of the LFSR register is
controller by the 5-bit counter.
Envelope The envelope shape is controlled with 4-bit register, but can take only 10
distinct patterns. The speed of the envelope is controlled with 16-bit counter. Only a
single envelope is produced that can be shared by any combination of the channels.
Volume Each of the three AY-3-891x channels have dedicated DAC that converts 16
levels of volume to analog output. Volume levels are 3 dB apart in AY-3-891x.
Historical use of the AY-3-891x
The AY-3-891x family of programmable sound generators was introduced by General
Instrument in 1978. Soon Yamaha Corporation licensed and released a very similar
chip under YM2149 name.
Both variants of the AY-3-891x and YM2149 were broadly used in home computers,
game consoles and arcade machines in the early 80ies.

• home computers: Apple II Mockingboard sound card, Amstrad CPC, Atari ST,
Oric-1, Sharp X1, MSX, ZX Spectrum 128/+2/+3

• game consoles: Intellivision, Vectrex, Amstrad GX4000

559

https://en.wikipedia.org/wiki/Linear-feedback_shift_register
https://en.wikipedia.org/wiki/Mockingboard
https://en.wikipedia.org/wiki/Amstrad_CPC
https://en.wikipedia.org/wiki/Atari_ST
https://en.wikipedia.org/wiki/Oric
https://en.wikipedia.org/wiki/Sharp_X1
https://en.wikipedia.org/wiki/MSX
https://en.wikipedia.org/wiki/ZX_Spectrum
https://en.wikipedia.org/wiki/Intellivision
https://en.wikipedia.org/wiki/Vectrex
https://en.wikipedia.org/wiki/Amstrad_GX4000

• arcade machines: Frogger, 1942, Spy Hunter and etc.

The AY-3-891x chip family competed with the similar Texas Instruments SN76489.
The original pinout of the AY-3-8913
The AY-3-8913 was a 24-pin package release of the AY-3-8910 with a number of
internal pins left simply unconnected. The goal of AY-3-8913 was to reduce complexity
for the designer and reduce the foot print on the PCB. Otherwise the functionality of
the chip is identical to AY-3-8910 and AY-3-8912.

,--._.--.
GND ---|1 24|<-- /cs*
BDIR -->|2 23|<-- a8*
BC1 -->|3 22|<-- /a9*
DA7 <->|4 21|<-- /RESET
DA6 <->|5 20|<-- CLOCK
DA5 <->|6 19|--- GND
DA4 <->|7 18|--> CHANNEL C OUT
DA3 <->|8 17|--> CHANNEL A OUT
DA2 <->|9 16| not connected
DA1 <->|10 15|--> CHANNEL B OUT
DA0 <->|11 14|<-- test*

test* <--|12 13|<-- VCC
`-------'

* -- omitted from this Verilog implementation

Difference from the original hardware
This Verilog implementation is a completely digital and synchronous design that dif-
fers from the original AY-3-8913 design which incorporated internal DACs and analog
outputs.
Audio signal output While the original chip had no summation The module provides
two alternative outputs for the generated audio signal:

1. digital 8-bit audio output suitable for external Digital to Analog Converter (DAC)
2. pseudo analog output through Pulse Width Modulation (PWM)

Master output channel In contrast to the original chip which had only separate
channel outputs, this implementation also provides an optional summation of the chan-
nels into a single master output.
No DC offset This implementation produces output 0/1 waveforms without DC
offset.

560

https://www.vgmpf.com/Wiki/index.php/AY-3-8910#Games
https://en.wikipedia.org/wiki/Texas_Instruments_SN76489

No /A8, A9 and /CS pins The combination of /A8, A9 and /CS pins orginially
were intended to select a specific sound chip out the larger array of devices connected
to the same bus. In this implementation this mechanism is omitted for simplicity, /A8,
A9 and /CS are considered to be tied low and chip behaves as always enabled.
Synchronous reset and single phase clock The original design employed 2 phases
of the clock and asynchronous reset mechanism for operation of the registers.
To make it easier to synthesize and test on FPGAs this implementation uses single
clock phase and synchronous reset for registers.
The reverse engineered AY-3-891x
This implementation would not be possible without the reverse engineered schematics
and analysis based on decapped AY-3-8910 and AY-3-8914 chips.
Explain how your project works

How to test

Summary of commands to communicate with the chip
The AY-3-8913 is programmed by updating its internal registers via the data bus. Below
is a short summary of the communication protocol of AY-3-891x. Please consult AY-
3-891x Technical Manual for more information.

BDIR BC1 Bus state description
0 0 Bus is inactive
0 1 (Not implemented)
1 0 Write bus value to the previously latched register #
1 1 Latch bus value as the destination register #

Latch register address First, put the destination register adress on the bus of the
chip and latch it by pulling both BDIR and BC1 pins high.
Write data to register Put the desired value on the bus of the chip. Pull BC1 pin
low while keeping BDIR pin high to write the value of the bus to the latched register
address.
Inactivate bus by pulling both BDIR and BC1 pins low.

Register Format Description Parameters
0,2,4 ffffffff A/B/C tone period f - low bits
1,3,5 0000FFFF —//— F - high bits

561

https://github.com/lvd2/ay-3-8910_reverse_engineered
https://github.com/lvd2/ay-3-8910_reverse_engineered
https://siliconpr0n.org/map/gi/ay-3-8910
https://siliconpr0n.org/map/gi/ay-3-8914
https://github.com/rejunity/tt05-psg-ay8913/blob/main/docs/AY-3-8910_Manual.pdf
https://github.com/rejunity/tt05-psg-ay8913/blob/main/docs/AY-3-8910_Manual.pdf

Register Format Description Parameters
6 000fffff Noise period f - noise period
7 00CBAcba Noise / tone per channel CBA - noise off,

cba - tone off
8,9,10 000Evvvv A/B/C volume E - envelope on,

v - volume level
11 ffffffff Envelope period f - low bits
12 FFFFFFFF —//— F - high bits
13 0000caAh Envelope Shape c - continue, a - attack, A - alternate, h - hold

Note frequency
Use the following formula to calculate the 12-bit period value for a particular note:

𝑡𝑜𝑛𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑐𝑦𝑐𝑙𝑒𝑠 = 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(16𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

For example 12-bit period that plays 440 Hz note on a chip clocked at 2 MHz would
be:

𝑡𝑜𝑛𝑒𝑝𝑒𝑟𝑖𝑜𝑑𝑐𝑦𝑐𝑙𝑒𝑠 = 2000000𝐻𝑧/(16𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 440𝐻𝑧) = 284 = 11𝐶ℎ𝑒𝑥

An example to play a note at a maximum volume

BDIR BC1 DA7..DA0 Explanation
1 1 xxxx0000 Latch tone A coarse register address 0 = 0000𝑏𝑖𝑛
1 0 xxxx0001 Write high 4-bits of the 440 Hz note 1 = 0001𝑏𝑖𝑛
1 1 xxxx0001 Latch tone A fine register address 1𝑑𝑒𝑐 = 0001𝑏𝑖𝑛
1 0 00011100 Write low 8-bits of the note 1𝐶ℎ𝑒𝑥 = 00011100𝑏𝑖𝑛
1 1 xxxx1000 Latch channel A volume register address 8 = 1000𝑏𝑖𝑛
1 0 xxx01111 Write maximum volume level 15𝑑𝑒𝑐 = 1111𝑏𝑖𝑛 with the envelope disabled

Timing diagram

CLK ____ ____ ____ ____ ____ ____
__/ `____/ `____/ `____/ `____/ `____/ `____ ...
| | | | | |
| | | | | |

BDIR ______ ______ ______ ______ ______ ______

562

_/ `__/ `__/ `__/ `__/ `__/ `__

BC1 _______ _______ ________
_/ `___________/ `__________/ `___________

DA7..DA0_____ ________ ________ ________ ________ ________
_/ 0000 `/xxxx0001`/ 0001 `/00011100`/ 1000 `/xxx01111`

latch write latch write latch

Externally configurable clock divider

SEL1 SEL0 Description Clock frequency
0 0 Standard mode, clock divided by 8 1.7 .. 2.0 MHz
1 1 —–//—– 1.7 .. 2.0 MHz
0 1 New mode for TT05, no clock divider 250 .. 500 kHZ
1 0 New mode for TT05, clock div. 128 25 .. 50 MHz

SEL1 SEL0 Formula to calculate the 12-bit tone period value for a note
0 0 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(16𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
1 1 —–//—–
0 1 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(2𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)
1 0 𝑐𝑙𝑜𝑐𝑘𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/(128𝑐𝑦𝑐𝑙𝑒𝑠 ∗ 𝑛𝑜𝑡𝑒𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

External hardware

The data bus of the AY-3-8913 chip has to be connected to microcontroller and receive
a regular stream of commands. The AY-3-8913 produces audio output and has to be
connected to a speaker. There are several ways how the overall schematics can be
established.
8-bit parallel output via DAC One option is to connect off the shelf data parallel
Digital to Analog Converter (DAC) for example Digilent R2R Pmod to the output pins
and route the resulting analog audio to piezo speaker or amplifier.

uController AY-3-8913
,---------. ,---._.---.
| | 2 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|BC1 SEL1|<-- 0
| GPIOx|----------->|BDI | ,----------.

563

https://digilent.com/reference/pmod/pmodr2r/start

| GPIOx|----------->|DA0 OUT0|-------->|LSB |
| GPIOx|----------->|DA1 OUT1|-------->| |
| GPIOx|----------->|DA2 OUT2|-------->| pDAC | Headphones
| GPIOx|----------->|DA3 OUT3|-------->| or | or
| GPIOx|----------->|DA4 OUT4|-------->| RESISTOR | Buzzer
GPIOx	----------->	DA5 OUT5	-------->	ladder	/	
GPIOx	----------->	DA6 OUT6	-------->		.--/	
GPIOx	----------->	DA7 OUT7	-------->	MSB	-----	
`---------' `---------' `----------' `--` |

| `|
|

GND ---

AUDIO OUT through RC filter Another option is to use the Pulse Width Modu-
lated (PWM) AUDIO OUT pin that combines 4 channels with the Resistor-Capacitor
based low-pass filter or better the Operation Amplifier (Op-amp) & Capacitor based
integrator:

uController AY-3-8913
,---------. ,---._.---.
| | 2 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|BC1 SEL1|<-- 0
GPIOx	----------->	BDIR
GPIOx	----------->	DA0
GPIOx	----------->	DA1
GPIOx	----------->	DA2
GPIOx	----------->	DA3
GPIOx	----------->	DA4
GPIOx	----------->	DA5
GPIOx	----------->	DA6 AUDIO
GPIOx	----------->	DA7 OUT
`---------' `---------' | }---+---||---| |

,--|+/ `--` |
| |/ | `|
| |

GND --- GND ---

Separate channels through the Op-amp The third option is to externally combine
4 channels with the Operational Amplifier and low-pass filter:

564

uController AY-3-8913
,---------. ,---._.---.
| | 2 Mhz ->|CLK SEL0|<-- 0
| GPIOx|----------->|BC1 SEL1|<-- 0
GPIOx	----------->	BDIR
GPIOx	----------->	DA0
GPIOx	----------->	DA1
GPIOx	----------->	DA2
GPIOx	----------->	DA3
GPIOx	----------->	DA4
GPIOx	----------->	DA5 A
GPIOx	----------->	DA6 B
GPIOx	----------->	DA7 C
`---------' `---------' | }---+---||---| |

,--|+/ `--` |
| |/ | `|
| |

GND --- GND ---

Pinout

Input Output Bidirectional
0 DA0 - multiplexed data/address bus LSB audio out (PWM) (in) BC1 bus control
1 DA1 - multiplexed data/address bus digita audio LSB (in) BDIR bus direction
2 DA2 - multiplexed data/address bus digita audio (in) SEL0 clock divider
3 DA3 - multiplexed data/address bus digita audio (in) SEL1 clock divider
4 DA4 - multiplexed data/address bus digita audio (out) channel A (PWM)
5 DA5 - multiplexed data/address bus digita audio (out) channel B (PWM)
6 DA6 - multiplexed data/address bus digita audio (out) channel C (PWM)
7 DA7 - multiplexed data/address bus MSB digita audio MSB (out) AUDIO OUT master (PWM)

565

Orion Iron Ion [TT10 demo competition] [710]

• Author: Toivo Henningsson
• Description: My contribution to the TT10 demo competition
• GitHub repository
• HDL project
• Mux address: 710
• Extra docs
• Clock: 50400000 Hz

Intro

Curly / Medieval presents

my contribution to the Tiny Tapeout 10 demo competition (which unfortunately got
cancelled due the Efabless shutdown). Code, graphics, and music by Curly (Toivo
Henningsson) of Medieval.
The demo was originally written for the Sky130 process (see the sky130 branch), but
was updated to the IHP process before submission.
The demo can be seen at https://youtu.be/VCQJCVPyYjU (captured from a Verilator
simulation).

How it works

The demo code contains a few different parts, mainly:

• Logo
• Star field
• Floating point unit; used for the twister and spiralling balls
• Synthesizer and sequencer

The video output is produced in VGA mode 640x480 @60 Hz. The logic is clocked at
50.4 MHz, giving two clock cycles per pixel.

566

https://github.com/toivoh/tt10-demo
https://youtu.be/VCQJCVPyYjU

Logo Just like in https://github.com/toivoh/tt08-demo, the logo is made of big
pixels (32x32 this time vs 16x16 before), where each big pixel is split along the diagonal
into two triangles. The title is chosen so that the logo should hopefully compress well
(and also alludes to the space theme and the echo feeling in the music). The dimensions
of the characters are chosen so that patterns should repeat at a scale of 4 pixels, to
try to make them more visible to the tool’s logic minimizer.

Star field The star field keeps track of the current x and y coordinates with two
extra subpixel bits of precision, increasing x or y by up to 4 units in each step. This
is to allow the antialiasing effect where stars can move a fraction of a pixel per frame;
since the output is RGB222, 2 subpixel position bits are enough. The size of the step
to take to the next x or y value is taken from a coarse table that is made so that the
resulting x and y curve should be similar to turning in space. The table entries have
higher precision, so that they can cause a dithering between e g increments of 2 and 3
or 3 and 4.
The distribution of stars is computed using a pseudorandom function that depends on
the current x and y value. This is inspired by the pseudorandom function used in the
synth (see below). The algorithm can be described as

{r0, dr} = bitshuffle({jx, jy}, pattern1)
r = r0
for i=1:2

r = bitshuffle(r, pattern2) + dr
r = bitshuffle(r, pattern3)

intensity = r[5:4]
if intensity == 0: intensity = 1
if r[3:0] != 0: intensity = 0

where ix, iy are input bits for the current position where we should determine if
there is a star, and its brightness. bitshuffle(x, pattern) permutes the bits of x
using the fixed pattern. This can be done with only wires, so should be cheap. The
combination of addition and bit shuffling means that the effects of input bits propagate
in a quite unpredictable way to affect the output bits, creating a pseudorandom behavior.
To find good star patterns, I simulated random bit shuffles with a script until I found
a pattern that I liked.
The input to the random algorithm is not the full pixel positions ix and iy, but jx
= ix&gt;&gt;2 and jy = iy&gt;&gt;1. Only every fourth

567

https://github.com/toivoh/tt08-demo

x pixel position and every second y pixel position can hold a star, with black in be-
tween. This allows the random algorithm time to converge before the star’s intensity
is needed.
A typical way to do the antialiasing of the stars would be to calculate numbers px and
py that described how well the star aligns with the current x and y position, and use
px*py to modulate the intensity. To save on logic, min(px, py) is used instead. A
small lookup table is then used to calculate the 2 bit pixel value from min(px, py)
and the star’s intensity.

Floating point unit - twister and spiralling balls effects The demo contains
a small floating point unit for approximate floating point calculations, with 5 expo-
nent bits and 11 mantissa bits. The FPU implements addition and subtraction in
a similar way to most FPUs. It also supports approximate operations for multiplica-
tion and square root (approximate division could be supported as well, but wasn’t
needed). The approximate operations assume that the concatenation of exponent and
mantissa bits are a logarithmic representation of the floating point number: multiply
adds {exponent, mantissa}, while square root shifts it right by one. The result
is quite inaccurate, but good enough for the computations needed, and contributes
some interesting jaggedness to the twister. These cheap approximations of multiply
and square root were the motivation to use an FPU in the first place.
Conversion from fixed point to floating point is done by creating a floating point
number with a fixed exponent and placing the fixed point number (with its sign bit
inverted) in the mantissa, which produces a floating point number representation of
fixed_point_number+bias. The bias is then subtracted. To convert in the other
direction, the bias is added to a floating point number, and the fixed point result is
read out from the mantissa.
The FPU code uses the approximation cos(0.5*pi*t) = 1 - t^2, abs(t)
&lt;= 1. There didn’t seem to be a point in making a more accurate
representation given the inaccuracy of the multiplication.
The ALU has a single accumulator register and 5 general purpose registers. One of the
inputs to the ALU is always the accumulator, while the other can come from a register,
constant, or time varying fixed point value from the outside. The result is always
written to the accumulator, and the value in the accumulator can then be written to
one of the other registers.

Twister and spiral of balls effects These are implemented by running a short
FPU program during horizontal blanking before each scan line starts (different programs
for different effects). The program computes up to five x positions for the scan line,
which are used to draw horizontal spans of light and dark blue. The x positions share

568

space with the mantissas in the FPU registers. The programs are written in such a
way that they use fewer and fewer FPU registers as they are being overwritten with x
positions.

Breaking down FPU instructions into cycles To save area, each FPU instruc-
tion is broken into up to 3 single-cycle micro-operations:

• Add/sub:

– Determine which argument has the largest magnitude
– Add/Subtract
– Normalize, calculating the correct exponent and shifting the mantissa to

the right position

• Multiply:

– Calculate carry out from mantissa sum
– Add {exponent, mantissa}

• Single cycle instructions:

– Load
– Square root

The FPU code is stored as instructions rather than micro-operations, which should
save some area. One instruction is executed every 4 cycles, which lets the program
code be indexed by a running timer.
The logic that represents the program ROM for the FPU has quite high latency. A
multicycle timing constraint is used to allow data paths that go through the program
ROM to take two cycles. This means that no micro-operation is executed until the
second cycle of running each instruction. (The multicycle constraint turned out not to
be needed for the IHP version, and was removed.)

Synthesizer The synthesizer produces output samples at 63 kHz, 10 bit resolution.
This gives it 800 cycles (half a scan line) per sample, and the usable ouput range of
PWM values is 0 - 800. One voice sample is calculated in 64 cycles, which gives time
to calculate 12 voices at the same time, plus a little time to update for the next sample.
On average, the voices need to have a peak amplitude <= 64 steps to fit into the
output range; one step per cycle.
The voices are used as follows:

• 4x2 melody/harmony voices: 4 channels with 2 voices per channel with detuning
to get a fatter sound

569

– The frequency is slightly higher for one of the voices in each pair than the
other

• Prenoise: the pedal tone with rhythmically changing timbre that runs throughout
most of the demo

• Bass drum
• Hihat
• Visualization voice - not heard, used to produce the visible waveforms on screen

– Can calculate two waveforms per scan line

Aliasing considerations The waveforms are designed to keep aliasing artifacts rel-
atively low:

• The melody/harmony waveforms use piecewise linear sections without a too
steep slope, and avoid slopes of less than one unit per sample, which keeps
aliasing down.

• The bass drum has a similar approach, using a clipped triangle wave that grad-
ually sinks in frequency.

• The prenoise waveform is kept at a power of 2 frequency, since it would be hard
to antialias. The music has been written around this limitation, with the prenoise
as a pedal tone/ostinato.

– Initially, the pedal tone is the tonic note.
– After the music modulates down by a fifth towards the end, the pedal tone

is now the fifth instead.
• The hihat is pure noise and doesn’t need any antialiasing considerations.

To gradually reduce the volume of each voice, it is clamped to a decreasing maximum
amplitude. This simple method changes the waveform as the volume reduces, but keeps
the slopes in their original range. If the volume had been reduced by multiplication,
increasing aliasing artifacts would results as the effective range gets reduced.

ALU The synthesizer is based around a small ALU, with a small set of registers

• 11 bit accumulator
• 10 bit output accumulator
• 10 bit output register
• 23 bit oscillator divided into low and high 11 bit parts plus top bit
• two flag bits (predicates)

The oscillator is used to calculate the phase of the waveforms, keep track of time in
the demo, index the notes for the music and to know which frame to display.

570

Calculating voice phases from the shared oscillator There are no registers to
keep track of the phases of different synth voices. Instead, for each sample of a voice
that needs to be computed, the first 30 cycles are used to compute phase = (freq
* osc) &gt;&gt; n to produce an 11 bit phase in the accumulator. The
bits above 11 are truncateed, since the waveform repeats after one phase. freq varies
between 256 and 511 to choose a note, while n selects the octave.
The product phase = (freq * osc) &gt;&gt; n is calculated using
shifts and adds (at most one of each per cycle), discarding low order bits when they
are not needed anymore, and high order bits that will not be needed. To illustrate the
method, say that we want to calculate bits 10:3 of the product of an 8 bit and an 11
bit number. The calculation can be visualized as follows:

?*******|

??****** |
???***** |
????**** |

?????*** |
??????** |

+ ???????*
= ????????********???

We have 11 product terms to add up, each with 8 bits.

• We proceed from the smallest term, adding up terms.
• In the first phase, the bottom bit in the current sum is not needed in the final

output, so it can be dropped since no later term will change it (they are all
shifted further to the left).

• In the second phase, we are out of bottom bits to ignore, and we can instead
start to ignore top bits in the terms, since they are above the range of bits
needed in the result.

• By changing the number of steps in the first phase, we can change the shift
amount n.

This way, we can use the same number of bits to store each intermediate result as is
needed to store the final result. The implementation proceeds by shifting the interme-
diate result right by one for each step, switching to rotate right when coming to the

571

second phase (to preserve the bits that are rotated out). When all relevant terms have
been added, the result will have been rotated back to the correct position.

Evaluating waveforms using a single accumulator as intermediate storage
The synth ALU has only a single intermediate register to work with, the accumulator
(to save area). To evaluate a piecewise linear function (which the melodic/harmonic
waveforms are made of), it first evaluates one or several conditions on the current
accumulator value to know which piece of the piecewise linear function that it should
evaluate, storing the results in the predicates. Then, it can use the predicate values to
choose how to transform the accumulator.

Melody/harmony voices There are two waveforms used for the melody/harmony
voices: saw like and pulse like. An ideal sawtooth wave includes a sudden jump every
period, and an ideal pulse wave contains two. To simulate a gradually closing lowpass
filter, these jumps have been changed to ramps. The slope of the ramps is gradually
decreased as a note ages.
The pulse like waveform is also uses pulse width modulation by a triangle wave, which
is added to the intermediate phase after it itself has been made into a triangle wave
as a step in the waveform computation.

Bass drum The bass drum approximates a clamped triangle wave with exponentially
decreasing frequency. This was a bit challenging to implement, since there is no register
to store the bass drum’s phase between samples, instead it has to be recalculated at
each sample from the linearly increasing oscillator.
The bass drum uses a variation on the multiplication algorithm, takeing the lower bits
of the oscillator and calculating an approximate square. Let x be the relevant oscillator
bits in fixed point. As x goes from 0 to one, the function

y = (2-x)^2 mod 1

wraps around 3 times, with the slope at the end being half of the slope at the begin-
ning. Several such quadratic sections are shifted into decreasing octaves to give an
approximation of an exponentially decaying frequency. The square approximation is
calculated using a variation of the multiplication algorithm described above. It uses
only 8 slopes per octave, which seems to be barely enough to give the impression of a
continuously descending pitch, but allows the algorithm to use the top 11 bits of the
oscillator as one of its inputs.
The bass drum phase is used to evaluate a triangle wave, which is clamped to gradually
reduce its volume.

572

Hihat The hihat is created by noise clamped to a decreasing amplitude. This kind
of noise is traditionally created with a Linear Feedback Shift Register (LFSR), but that
would have required space for registers to hold the LFSR state. Instead, a new noise
value is calculated for each sample based on the oscillator, using the algorithm

acc = osc_low
for i=0:3

acc = bitshuffle(acc, pattern) + osc_high
acc = acc + (acc >> 1)

The pattern used for shuffling is fixed, all it needs is an 11-bit wide multiplexer. After
four iterations, the result sounds like noise.

Prenoise pedal tone The prenoise waveform used as a pedal tone is computed
using a simplification of the noise algorithm above, with only one iteration:

acc = <selected bits from osc>
acc = bitshuffle(acc, pattern)
acc = acc + rotate_right(acc, 1) # could use acc *= 3 instead

The permutation used in the bitshuffle step is the same as in the noise case above,
and has been chosen for the sonic results it produces in the prenoise case. The result
is a waveform with a power of 2 period that changes timbre in a rhythmic manner.

Visualization voice The visualization voice can evaluate the waveform from any
of the other voices, using the current scanline’s y position instead of the oscillator, to
keep the waveform steady from frame to frame. Two waveforms can be evaluated per
scan line, one to be shown on the left side of the screen and one on the right side.
The synth is synchronized with the display output so that a new visualization waveform
sample is computed in the middle of each scan line and one in hblank. There are 3
registers to store the evaluated waveforms, to keep track of two waveforms and have
access to the value from the previous scanline when a waveform is displayed.

573

Sequencer The notes to play are taken from logic that represents a note ROM, and
it has quite high latency. Out of the 64 cycles used to compute each voice sample,
the first cycle is used to wait for the output from the note ROM to stabilize, and the
synthesizer doesn’t do anything with the note data until the second cycle. This is
accomplished with a multicycle timing constraint. (The multicycle constraint turned
out not to be needed for the IHP version, and was removed.)
The note ROM contains data for 4 channels. For each channel and time position pos,
it outputs an enable flag, a note value (note and octave), and an age value t0. The
actual age is computed as t = t0 + pos (with wraparound). This allows t0 to be
piecewise constant in the note ROM. The age t is filled out with low order bits from
the oscillator, and used to modulate the waveform and volume of notes as they age.
Weaker notes can be achieved by starting them at a higher age.

How to test

Plug in a TinyVGA compatible Pmod on the TT08 demo board’s out Pmod. Plug in a
Pmod compatible with Mike’s audio Pmod on the TT08 demo board’s bidir Pmod. Set
all inputs to zero to get the default behavior. The demo starts directly after reset.

External hardware

This project needs

• a TinyVGA VGA Pmod.
• Mike’s audio Pmod.

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 vsync
4 R0
5 G0
6 advance[0] B0
7 advance1 hsync audio_out

574

https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod
https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod
https://en.wikipedia.org/wiki/Collatz_conjecture

My Project [712]

• Author: Asger Wenneberg
• Description: This is a tiny tapeout design
• GitHub repository
• HDL project
• Mux address: 712
• Extra docs
• Clock: 0 Hz

How it works

This is how it works

How to test

This is how to test

External hardware

Nothing yet

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0] uio_in[0]
1 ui_in1 uo_out1 uio_in1
2 ui_in2 uo_out2 uio_in2
3 ui_in[3] uo_out[3] uio_in[3]
4 ui_in[4] uo_out[4] uio_in[4]
5 ui_in[5] uo_out[5] uio_in[5]
6 ui_in[6] uo_out[6] uio_in[6]
7 ui_in[7] uo_out[7] uio_in[7]

575

https://github.com/AsgerWenneb/trt10-verilog
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

simple-viii [714]

• Author: strau
• Description: A simple 8-bit CPU Architecture
• GitHub repository
• HDL project
• Mux address: 714
• Extra docs
• Clock: 10000 Hz

How it works

How to test

External hardware

Pinout

Input Output Bidirectional
0 cs flash
1 SD0
2 SD1
3 SCK
4 SD2
5 SD3
6 cs ram
7

576

https://github.com/strau0106/tt-simple-viii

ttUART [716]

• Author: Bogdan Tanasa
• Description: UART
• GitHub repository
• HDL project
• Mux address: 716
• Extra docs
• Clock: 50000000 Hz

How it works

This is a UART repetear. It mirrors the Rx on Tx.

How to test

It can be used as a regular UART.

External hardware

No external hardware is needed.

Pinout

Input Output Bidirectional
0 rx_data_in rx_data_ready
1 rx_sample_clk
2 tx_data_out
3 tx_data_done
4
5
6
7

577

https://github.com/bgdtanasa/ttUART

Bitty [718]

• Author: Moldir
• Description: 16-bit simple processor
• GitHub repository
• HDL project
• Mux address: 718
• Extra docs
• Clock: 10 Hz

Bitty System: RTL Design and Verification Framework

This project implements a custom 16-bit processing system, including hardware modules
for program counter (PC), instruction fetch, branch logic, UART communication, and
integration with the BittyEmulator for co-simulation. The provided system allows
robust testing of a Verilog-based design using a Python-based cocotb testbench. The
testbench orchestrates data transfer via UART, interacts with shared memory, and
verifies execution against the emulator.

System Overview

578

https://github.com/Molidier/bitty-tt10

Core Components

1. Program Counter (PC):

• Handles sequential and branch-based instruction execution.
• Interfaces directly with the branch logic for control flow changes.

2. Instruction Fetch Unit:

• Reads and decodes instructions from memory.
• Supplies data to the rest of the system.

3. Branch Logic:

• Evaluates branch conditions and modifies the PC as needed.

4. UART Module:

• Supports data exchange between the testbench and the DUT.
• Operates with customizable baud rates and clock frequencies.

5. Bitty Emulator:

• Acts as a functional reference model.
• Validates the outputs and internal states of the hardware implementation.

579

• Includes: Control Unit, registers, ALU, mux

Memory Map
• Shared Memory:

– Synchronizes data between the testbench, the hardware design (DUT), and
the emulator.

– Supports up to 256 entries.

• Instruction Set:

– Defined in instructions_for_em.txt, loaded by the testbench for ex-
ecution. Here’s the revised version written as a description of a fully im-
plemented system:

580

Instruction Set Architecture: Fully Implemented 16-bit Processor

Overview This document outlines the complete instruction set architecture (ISA)
for a 16-bit processor, detailing its capabilities, operations, and encoding formats. The
ISA is designed to deliver robust functionality for arithmetic, logical, control flow, and
memory operations while maintaining a simple, efficient structure.
The processor’s instruction set enables dynamic memory interactions, conditional
branching, and a wide range of data manipulation tasks, providing the foundation for
executing complex algorithms and software applications.

Instruction Set

Arithmetic and Logical Operations The processor supports both register-to-
register and immediate operations, enabling developers to perform computations ef-
ficiently.
Register-to-Register Instructions:

1. add rx, ry: Adds the value in ry to rx.

• Operation: rx = rx + ry

2. sub rx, ry: Subtracts the value in ry from rx.

• Operation: rx = rx - ry

3. and rx, ry: Performs a bitwise AND between rx and ry.

• Operation: rx = rx &amp; ry

4. or rx, ry: Performs a bitwise OR between rx and ry.

581

• Operation: rx = rx | ry

5. xor rx, ry: Performs a bitwise XOR between rx and ry.

• Operation: rx = rx ^ ry

6. shl rx, ry: Shifts the bits in rx left by the number of positions specified in ry.

• Operation: rx = rx &lt;&lt; ry

7. shr rx, ry: Shifts the bits in rx right by the number of positions specified in
ry.

• Operation: rx = rx &gt;&gt; ry

8. cmp rx, ry: Compares the values in rx and ry.

• Operation:
– rx = 0 if rx == ry
– rx = 1 if rx &gt; ry
– rx = 2 if rx &lt; ry

Immediate Instructions:

1. addi rx, #i: Adds the immediate value #i to rx.

• Operation: rx = rx + #i

2. subi rx, #i: Subtracts the immediate value #i from rx.

• Operation: rx = rx - #i

3. andi rx, #i: Performs a bitwise AND between rx and #i.

• Operation: rx = rx &amp; #i

4. ori rx, #i: Performs a bitwise OR between rx and #i.

• Operation: rx = rx | #i

5. xori rx, #i: Performs a bitwise XOR between rx and #i.

• Operation: rx = rx ^ #i

582

6. shli rx, #i: Shifts rx left by #i positions.

• Operation: rx = rx &lt;&lt; #i

7. shri rx, #i: Shifts rx right by #i positions.

• Operation: rx = rx &gt;&gt; #i

8. cmpi rx, #i: Compares the value in rx with the immediate value #i.

• Operation:
– rx = 0 if rx == #i
– rx = 1 if rx &gt; #i
– rx = 2 if rx &lt; #i

Memory Operations

Load and Store Instructions:

1. ld rx, (ry): Loads the value from the memory address stored in ry into register
rx.

• Operation: rx = mem[ry]

2. st rx, (ry): Stores the value in register rx into the memory address stored in
ry.

• Operation: mem[ry] = rx

Encoding Format:
• Bits 15-13 (Rx): Destination register for ld or source register for st.
• Bits 12-10 (Ry): Register holding the memory address.
• Bits 9-3 (Reserved): Reserved for future extensions, currently set to zero.
• Bit 2 (L/S): Load/Store flag (0 for ld, 1 for st).
• Bits 1-0: Instruction format identifier (11 for memory operations).

583

Conditional Branching The processor supports conditional branching with a dedi-
cated encoding format for efficient control flow.

Conditional Branch Instructions:

1. bie addr: Branch if equal (condition flag EQ is set).
2. big addr: Branch if greater (condition flag GT is set).
3. bil addr: Branch if less (condition flag LT is set).

Encoding Format:
• Bits 15-4 (Immediate): Encodes the branch target address.
• Bits 3-2 (Condition):

– 00: Equal
– 01: Greater than
– 10: Less than

• Bits 1-0 (Format): Instruction format identifier (10 for conditional branch-
ing).

Here’s a detailed step-by-step guide for users to set up and test their system with the
assembler and testbench:

How to Use the System Before running the testbench, you must first prepare the
assembly instructions or machine code. Here’s how:

584

Step 1: Prepare Instructions
1. Option 1: Generate machine code automatically

Run the CIG_run.py script to generate output.txt automatically with pre-
defined assembly instructions.

python3 CIG_run.py

This will create output.txt containing machine code.
2. Option 2: Write custom assembly instructions

If you prefer to write your own instructions, directly create or modify the
output.txt file. These instructions will later be disassembled for further
testing.

Step 2: Disassemble Machine Code Disassemble the output.txt file (machine
code) to generate instructions_for_em.txt (assembly code):

./er_tool -d -i output.txt -o instructions_for_em.txt

This step ensures that the instructions in instructions_for_em.txt are ready for
use in the testbench.

Running the Testbench Once you have the instructions_for_em.txt file
ready, navigate to the bitty-tt10/test directory and execute the testbench using
make:

cd ~/bitty-tt10/test
make

The testbench will:

1. Load the instructions from instructions_for_em.txt.
2. Simulate UART communication for instruction execution.
3. Compare the outputs of the DUT (Device Under Test) with expected results.
4. Log the results, including any discrepancies, into uart_emulator_log.txt.

585

Testbench Overview Assembling Code
To convert instructions_for_em.txt into machine code (if needed for testing):

./er_tool -a -i instructions_for_em.txt -o output.txt

Disassembling Code
To convert machine code (output.txt) back into assembly:

./er_tool -d -i output.txt -o instructions_for_em.txt

Practical Workflow Example
1. Generate Machine Code:

Run CIG_run.py to create machine code:

python3 CIG_run.py

2. Disassemble Code:
Use the er_tool to create instructions_for_em.txt:

./er_tool -d -i output.txt -o instructions_for_em.txt

3. Run Testbench:
Navigate to the test directory and run the testbench:

cd ~/bitty-tt10/test
make

586

Key Features of the Testbench
• Simulated UART Communication: Generates UART signals and captures

DUT transmissions.
• Instruction Execution: Fetches and executes instructions in real-time.
• State Validation: Logs and compares DUT outputs with expected results.
• Error Reporting: Logs any mismatches in uart_emulator_log.txt.

Following these steps ensures smooth operation from writing or generating instruc-
tions to verifying the system’s functionality. If you encounter issues, double-check the
prepared files or logs for guidance. Let me know if you need further clarification!

How to Use

Setup
1. Prerequisites:

• Install Python and cocotb.
• Ensure Verilog simulation tools (Verilator, Iverilog) are installed.
• Use the following command to install the dependencies:

pip install -r requirements.txt

2. Input Files:

• Place the instruction file (instructions_for_em.txt) in the working
directory.

• Modify the file as needed to test specific scenarios.

3. Shared Libraries:

• Ensure BittyEmulator.py and shared_memory.py are in the project
directory.

587

Running the Test
1. Execute the cocotb testbench:

make

2. Observe the test results in the terminal and logs:

• Successes and failures are detailed in uart_emulator_log.txt.

External Hardware This system does not require external hardware. UART com-
munication is emulated within the testbench.

Files Overview

Verilog Files
• &lt;module_name&gt;.v: Contains the RTL design files for the

system.
• tb_&lt;module_name&gt;.v: Top-level Verilog testbench wrap-

per.

Python Files
• test_bitty.py: The cocotb testbench described above.
• BittyEmulator.py: Emulator for reference model validation.
• shared_memory.py: Utility for creating shared memory structures.

588

Limitations and Future Work
1. Hardware Expansion:

• Current implementation is limited to basic arithmetic and control opera-
tions.

• Future iterations could incorporate advanced features like pipelining or
caching.

2. Error Handling:

• Expand error reporting for unresolved signals during simulation.

3. Scalability:

• Extend memory and instruction sets for larger programs.

This project demonstrates a robust framework for RTL verification, combining software
co-simulation with hardware modeling for high-fidelity testing and validation.

Pinout

Input Output Bidirectional
0 rx_data_bit tx_data_bit
1 sel_baude_rate[0]
2 sel_baude_rate1
3
4
5
6
7

589

https://en.wikipedia.org/wiki/Collatz_conjecture

IHP VGA demo [720]

• Author: algofoogle (Anton Maurovic)
• Description: Simple VGA demo for IHP tapeout (inc. Matt Venn’s VGA clock)
• GitHub repository
• HDL project
• Mux address: 720
• Extra docs
• Clock: 25000000 Hz

How it works

Typical Verilog design that generates VGA timing and RGB222 colour outputs compat-
ible with the Tiny VGA PMOD.
It produces a bouncing ball animation over the top of an adaptation of Matt Venn’s
VGA clock, from here: https://github.com/mattvenn/tt08-vga-clock

590

https://github.com/algofoogle/ttihp25a-tt10-vga
https://github.com/mattvenn/tt08-vga-clock

How to test

• Plug in a VGA monitor via Tiny VGA PMOD.
• Set mode input to 0, i.e. specifying 640x480 60Hz from a 25MHz clock.
• Set show_clock input to 1.
• Set pmod_select input to 0 for Tiny VGA PMOD. Otherwise, 1=Matt’s VGA

Clock PMOD.
• Supply a 25MHz clock (clock’s actual seconds timer assumes exactly

25.000MHz).
• Assert reset.
• Pulse or hold the adj_* inputs to adjust hours, minutes, or seconds.

External hardware

Tiny VGA PMOD and VGA monitor is all you should need externally.

Pinout

Input Output Bidirectional
0 adj_hrs r1 hmax
1 adj_min g1 vmax
2 adj_sec b1 hblank
3 vsync vblank
4 r0 visible
5 g0
6 b0
7 mode hsync

591

UW ASIC - Optimized Dino [722]

• Author: University of Waterloo ASIC Design Team
• Description: Dino game, but only 2 tiles!
• GitHub repository
• HDL project
• Mux address: 722
• Extra docs
• Clock: 25175000 Hz

How it works

Placeholder

How to test

Placeholder

External hardware

Placeholder

Pinout

Input Output Bidirectional
0 ui0 uo0 uio0
1 ui1 uo1 uio1
2 ui2 uo2 uio2
3 ui3 uo3 uio3
4 ui4 uo4 uio4
5 ui5 uo5 uio5
6 ui6 uo6 uio6
7 ui7 uo7 uio7

592

https://github.com/UW-ASIC/Dino

PID Controller [737]

• Author: Kilian Bender
• Description: Hardware implementation of a naive PID Controller
• GitHub repository
• HDL project
• Mux address: 737
• Extra docs
• Clock: 1000000 Hz

How it works

The PID controller module works by continuously adjusting its output based on the
difference between the desired value (setpoint) and the measured value (feedback). It
does this using three components:
Proportional Term (P): This term corrects the error in proportion to the current dif-
ference between the setpoint and the feedback. It applies an immediate response to
reduce the error.
Integral Term (I): This term accumulates the past error over time, helping to eliminate
any steady-state error that may persist after the proportional correction.
Derivative Term (D): This term predicts future error by observing the rate of change
of the current error, thus providing a damping effect to reduce overshooting.
The controller outputs a signal only in the positive direction. That means that we
expect a system that naturally tends towards one point. Regarding a application in
heating that means that we are not aiming to cool down the system when overshooting
or if the setpoint is higher then our feedback but we just output 0 for control.

How to test

Set different values for setpoint and feedback and observe the output in response to it.
Change the setpoint to play around.

593

https://github.com/Zufallsgenerat0r/PIDcontroller

External hardware

No specific external hardware is required to test the module in a simulation environment.
However, for practical deployment, you may need:
Sensor: A sensor to provide the feedback signal, representing the process variable you
wish to control.
Actuator: An actuator driven by the control_out signal to affect the process, such as
a motor or a heating element.

Pinout

Input Output Bidirectional
0 setpoint 0 control_signal 0“ feedback 0
1 setpoint 1 control_signal 1 feedback 1
2 setpoint 2 control_signal 2 feedback 2
3 setpoint 3 control_signal 3 feedback 3
4 setpoint 4 control_signal 4 feedback 4
5 setpoint 5 control_signal 5 feedback 5
6 setpoint 6 control_signal 6 feedback 6
7 setpoint 7 control_signal 7 feedback 7

594

Frequency Counter SSD1306 OLED [739]

• Author: Pawel Sitarz (embelon)
• Description: Simple Frequency Counter displaying result on SSD1306 SPI OLED
• GitHub repository
• HDL project
• Mux address: 739
• Extra docs
• Clock: 1000000 Hz

How it works

Project measures frequency on ui[0] input by counting pulses during 100ms periods.
Measured frequency is then displayed on graphical 128x32 pixels OLED display in form
of emulated 7-segment display.

How to test

Internal logic needs 1MHz clock (to be generated by RPi Pico)

• Connect PMOD OLED display to see measurement
• Connect unknown frequency signal to be measured to ui[0]

External hardware

Freqquency is displayed on 128x32 OLED display with SSD1306 controller: PMOD
OLED

Pinout

Input Output Bidirectional
0 clk_x - measured frequency input OLED nRST
1 OLED nVBAT
2 OLED nVDC
3 OLED nCS
4 OLED Data/Command
5 OLED CLK
6 OLED Data Out

595

https://github.com/embelon/tt08-frequency-counter-oled
https://digilent.com/reference/pmod/pmodoled/start?srsltid=AfmBOorLYfaDc8BpQC9A5OXZzMUAsCeca8Y7uBRi8CIp-gxW1e7fsLZP
https://digilent.com/reference/pmod/pmodoled/start?srsltid=AfmBOorLYfaDc8BpQC9A5OXZzMUAsCeca8Y7uBRi8CIp-gxW1e7fsLZP

Input Output Bidirectional
7

596

Tiny 1-bit AM Radio [741]

• Author: James Ross Sharp
• Description: Syntehsizable 1-bit AM radio core
• GitHub repository
• HDL project
• Mux address: 741
• Extra docs
• Clock: 50000000 Hz

How it works

This project is a Software Defined Radio pipeline for AM radio reception written in
verilog. It works using an external comparator as a 1-bit ADC frontend. Demodulation
is by the digital equivalent of a how a crystal radio works, i.e. bandpass filter followed
by envelope detector. It is based on this Hackaday Project: https://hackaday.io/proj
ect/170916-fpga-3-r-1-c-mw-and-sw-sdr-receiver by Alberto Garlassi.
Although this is a fully digital core, but there are plans to make an analog frontend
circuit as an analog design in future Tiny Tapeouts, so both designs would be hooked
up together to create a radio with few external components.
This project is different from a previously submitted 3x2 tile tiny tapeout core, which
used more conventional SDR techniques. This layout reduces area to 1x2 tiles, with a
tradeoff in selectivity.

How to test

You need to connect an external comparator and RC network. You will probably need
a simple RF amplifier as well. See below for more information.
The core has a SPI interface for setting the demodulation frequency and gain. It
consists of a single 24-bit shift register. It has the following format:-

Bit 23 Bits 22 - 20 Bits 19 - 0
Unused Gain NCO Phase incr.

The gain can take on the following values:

597

https://github.com/jamesrosssharp/tt09-smaller-am-sdr
https://hackaday.io/project/170916-fpga-3-r-1-c-mw-and-sw-sdr-receiver
https://hackaday.io/project/170916-fpga-3-r-1-c-mw-and-sw-sdr-receiver

“Gain” value Actual Gain
0 x1
1 x2
2 x4
3 x8
4 x16
5 - 7 x32

If the gain is set too high, the demodulated signal will wrap and sound distorted, so
adjust the gain down to the minimum needed to hear the station clearly.
The “NCO Phase increment” is the value that is added to the NCO phase every clock
cycle. Use the following python code to calculate the value to write, based on the
desired carrier frequency:

hex(int((1<<20) * <carrier frequency - (455000/<clock_frequency>*50e6)> / <chip clock frequency>))

E.g., for 936kHz (ABC Radio national Hobart) at 50MHz clock frequency, it would
be:

> hex(int((1<<20) * 936000 / 50000000))
'0x2767'

External hardware

598

• External comparator
• Resistor bias network
• RC network
• External SPI microcontroller to set station
• RF amplifier

Pinout

Input Output Bidirectional
0 COMP_IN COMP_OUT
1 SPI_MOSI PWM
2 SPI_SCK
3 SPI_CSb
4
5
6
7

599

FIREngine [743]

• Author: Hao Wang, Andrew Malnicof
• Description: FIR Filter for Audio PMOD
• GitHub repository
• HDL project
• Mux address: 743
• Extra docs
• Clock: 50000000 Hz

How it works

FIREngine is a Digital FIR filter that filters inputs from an I2S2 PMOD ADC and
DAC module. The purpose of this design is to filter audio from an I2S2 PMOD device
found here: https://digilent.com/shop/pmod-i2s2-stereo-audio-input-and-output/.
Although the number of taps the filter is not adjustable and must be determined before
synthesis, the coefficients of each tap are programmable. This allows for different low,
band, and high pass filters to be constructed for multiple audio filtering configurations.
If is a parametrizable filter with symmetric or antisymmetric coefficients, odd number
of taps. Uses 2s complement and fixed-point data. Coefficients are set via an SDI
Interface.

How to test

Use TinyTapeout Demo board to connect PMOD to Tiny Tapeout project, program
filter coefficients serially, and experience the results!

External hardware

• I2S2 PMOD device: https://digilent.com/shop/pmod-i2s2-stereo-audio-input-
and-output/

• Serial programmer

Pinout

Input Output Bidirectional
0 SPI CS DAC MCLK
1 SPI MOSI DAC LRCK

600

https://github.com/amalnicof/tt09-firEngine
https://digilent.com/shop/pmod-i2s2-stereo-audio-input-and-output/
https://digilent.com/shop/pmod-i2s2-stereo-audio-input-and-output/
https://digilent.com/shop/pmod-i2s2-stereo-audio-input-and-output/

Input Output Bidirectional
2 DAC SCLK
3 SPI SCLK DAC Data
4 ADC MCLK
5 ADC LRCK
6 ADC SCLK
7 ADC Data

601

znah_vga_ca [745]

• Author: Alexander Mordvintsev
• Description: Simple VGA 1D cellular automata generator
• GitHub repository
• HDL project
• Mux address: 745
• Extra docs
• Clock: 25175000 Hz

How it works

VGA signal generator iterates through a number of 1D elementary cellular automata

How to test

Plug and play

External hardware

VGA PMOD

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VSync
4 R0
5 G0
6 B0
7 HSync

602

https://github.com/znah/tt09-vga-ca

TRNG [746]

• Author: Muhammad Bilal
• Description: Generate Raw and Hashed Random Numbers
• GitHub repository
• HDL project
• Mux address: 746
• Extra docs
• Clock: 50000000 Hz

How it works

This True Random Number Generator (TRNG) operates by leveraging a noise source
sampled by a digital circuit. The sampled data conditioning using SHA-256 to ensure
cryptographic-quality randomness. A state machine controls data collection, process-
ing, and output transmission via UART. The TRNG supports two modes: raw entropy
output for analysis and hashed output for secure applications. Built-in health tests,
such as the Repetition Count Test, verify entropy quality.

How to test

1. Connect a UART terminal to receive random number outputs.
2. Select between raw entropy mode or hashed output mode via control signal.

(default is 0 for Hashed output)
3. Monitor the output stream for randomness analysis or cryptographic use.
4. Run statistical tests to validate entropy quality. (Visit github @ sp 800-90b)

External hardware

• ZCU102 FPGA Board
• UART-to-USB Adapter (for serial communication)
• Oscilloscope (for debugging noise source if needed)

Pinout

Input Output Bidirectional
0 TRNG_Enable failure
1 ctrl_mode hash_rdy

603

https://github.com/engrbilal992/tt10-TRNG

Input Output Bidirectional
2 UART_Tx
3
4
5
6
7

604

CORA-16 [747]

• Author: Andrew Dona-Couch
• Description: Simply 16-bit CPU
• GitHub repository
• HDL project
• Mux address: 747
• Extra docs
• Clock: 0 Hz

Couch’s One-Register Accumulator machine, 16-bit width.

How it works

One register should be enough for anybody. Well, there’s also the program counter,
status flags, stack pointer, data pointer, but who’s counting?
External SPI memory is used for a simple instruction fetch/execute cycle. High-
bandwidth I/O is provided through a full byte-width input and output bus. The machine
allows single-stepping through execution to aid debugging.
Pin | Function ––+——— step | Set high for a clock cycle to step, hold high to run.
busy | When high, the machine is currently working on an instruction. halt | When
high, the machine has halted execution. trap | When halt is low and trap is high,
the machine has trapped. Step once to attempt recovery (success depends significantly
on context). | Note: when both halt and trap are high, the machine has experienced
an irrecoverable fault, please reset. in[7:0] | General-purpose byte input. Use as data
source IN for any one-argument instruction. out[7:0] | General-purpose byte output.
Set with the OUT instruction.

How to test

1. Load the program to run into the external SPI RAM.
2. Reset the CPU.
3. Raise step high for a clock for each instruction to step.
4. Hold step high to run free (you are advised to handle trap).
5. Observe busy, halt and trap for the module status.

605

https://github.com/couchand/tt09-cora16

External hardware

The module expects an SPI RAM attached to the relevant SPI pins. The onboard
Raspberry Pi emulation should work just fine.

Instruction set

Status byte | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 ————+—+—+—+—+—+—+—+– | x
| x | Else | x | x | Carry | Neg | Zero
Impact on the status flags is documented as:

• -: No effect
• 0: The flag is cleared to zero
• 1: The flag is set to one
• #: The flag is affected by the operation

One-byte instructions Name | Bit Pattern | Description | Status —–+———––
+———––+—–– Nop | 0000 0000 | No operation | ---- ---- Halt | 0000 0001
| Halt machine | ---- ---- Trap | 0000 0010 | Trap execution | ---- ---- Drop
| 0000 0011 | Drop a word from the stack | ---- ---- Push | 0000 0100 | Push a
word to the stack | ---- ---- Pop | 0000 0101 | Pop a word from the stack to the
accumulator | ---- ---- Return | 0000 0110 | Return to the address on top of the
stack | ---- ---- Not | 0000 0111 | One’s complement of the accumulator | ----
-1## Out Lo | 0000 1000 | Output the low byte of the accumulator | ---- ----
Out Hi | 0000 1001 | Output the high byte of the accumulator | ---- ---- Set
DP | 0000 1010 | Set the data pointer value to the accumulator value | ---- ----
Test | 0000 1011 | Set the status flags based on the accumulator value | ---- --##
Branch Indirect | 0000 1100 | Add the accumulator to the program counter | ----
---- Call Indirect | 0000 1101 | Call the subroutine address in the accumulator |
---- ---- Status | 0001 0000 | Load the status flags into the accumulator | ----
---- Load Indirect | 0100 01mm | Load a word from the address in the accumulator,
using addressing mode m (bug: modes not supported) | ---- ----

Two-byte instructions Name | Bit Pattern | Description | Status —–+———––
+———––+—–– Load | 1000 0sss vvvv vvvv | Load a value into the accumulator
| ---- ---- Store | 1001 0sss vvvv vvvv | Store a value to memory | ---- ----
Add | 1000 1sss vvvv vvvv | Add a value to the accumulator | ---- -### Sub |
1001 1sss vvvv vvvv | Subtract a value from the accumulator | ---- -### And
| 1010 0sss vvvv vvvv | Bitwise and a value with the accumulator | ---- --##
Or | 1010 1sss vvvv vvvv | Bitwise or a value with the accumulator | ---- --##

606

Xor | 1011 0sss vvvv vvvv | Bitwise exclusive or a value with the accumulator |
---- --## Shift | 1011 1sss vvvv vvvv | Shift the accumulator (see note below
on direction) | ---- -### Branch | 1100 0pp pppp pppp | Add the offset p to the
program counter | ---- ---- Call | 1101 0pp pppp pppp | Call the subroutine at
address p | ---- ---- If | 1111 000 0000 cccc | Skip the following instruction if
the condition doesn’t hold | ---- ----

Many of these instructions specify a source type s and value v. These are the options:
Source Type | Bit Pattern | Interpretation ————+———––+————— Const
Lo | 000 | Take the value v as the low byte of a constant Const Hi | 001 | Take the
value v as the high byte of a constant Input Lo | 010 | Input the low byte, ignore the
value v Input Hi | 011 | Input the high byte, ignore the value v Data Direct | 100
| Read a value from the address v (relative to the data pointer) Data Indirect | 101
| Read a pointer from the address v (relative to the data pointer), and load a value
from that address Stack Direct | 110 | Read a value from the address v (relative to
the stack pointer) Stack Indirect | 111 | Read a pointer from the address v (relative
to the stack pointer), and load a value from that address
Note: the SHIFT instruction stashes the shift direction within this source field.
Source Type | Shift Bit | Source Limitation ————+———–+—————— Con-
stant | Lo/Hi | Only 8-bit constants supported Input | Lo/Hi | Only 8-bit inputs sup-
ported Memory | Addr[0] | Only aligned addresses supported (TODO: maybe require
that everywhere??)
The following table lists the condition codes for the IF instruction.
Condition | Bit Pattern | Description –––––+———––+———— Zero | 0000 | Skip
the next instruction if the Z bit is cleared Not Zero | 0001 | Skip the next instruction
if the Z bit is set Else | 0010 | Skip the next instruction if the E bit is cleared Not
Else | 0011 | Skip the next instruction if the E bit is set Neg | 0100 | Skip the next
instruction if the N bit is cleared Not Neg | 0101 | Skip the next instruction if the N
bit is set Carry | 0110 | Skip the next instruction if the C bit is cleared Not Carry |
0111 | Skip the next instruction if the C bit is set

Three-byte instructions Name | Bit Pattern | Description | Status —–+——
—––+———––+—–– Call Word | 0011 1110 wwww wwww wwww wwww | Call the
subroutine at address w | ---- ---- Load Immediate Word | 0011 1111 wwww wwww
wwww wwww | Set the accumulator to w | ---- ----

Pinout

607

Input Output Bidirectional
0 Data In 0 Data Out 0 SPI MOSI
1 Data In 1 Data Out 1 SPI CS
2 Data In 2 Data Out 2 SPI CLK
3 Data In 3 Data Out 3 SPI MISO
4 Data In 4 Data Out 4 Step
5 Data In 5 Data Out 5 Busy
6 Data In 6 Data Out 6 Halt
7 Data In 7 Data Out 7 Trap

608

T3 (Tiny Ternary Tapeout) CSA [749]

• Author: Arnav Sacheti & Jack Adiletta
• Description: Ternary Matmul Processor using CSA
• GitHub repository
• HDL project
• Mux address: 749
• Extra docs
• Clock: 50000000 Hz

Tiny Ternary Tapeout Project Documentation

Inspiration The inspiration for this Tiny Tapeout project comes from the “Scalable
MatMul-free Language Modeling” paper, which explores a novel approach to language
modeling that bypasses traditional matrix multiplication (MatMul) operations. Stan-
dard neural network models, especially those used for language processing, rely heavily
on matrix multiplications to handle complex data transformations. However, these
operations can be computationally expensive and power-intensive, especially at large
scales.
The key insight of this research is to leverage alternative mathematical structures and
sparse representations, reducing the need for resource-heavy MatMul operations while
still enabling efficient language processing. By reimagining the model architecture
to avoid these multiplications, it opens up possibilities for more energy-efficient, scal-
able models, particularly in hardware-constrained environments like microchips. This
Tiny Tapeout project aims to implement and experiment with these principles on a
small scale, designing circuitry that emulates the core ideas of this MatMul-free ap-
proach. This can pave the way for more efficient and compact language models in
embedded systems, potentially transforming real-time, on-device language processing
applications.

How it works The tt_um_tiny_ternary_tapeout_csa.v module is designed
to perform matrix multiplication using a pipelined architecture. Here’s a step-by-step
explanation of how it works:
Loading the Weights (tt_um_load.v):

The module starts by loading the weights for the matrix. These weights
are stored in an internal register array and are used for the matrix multi-
plication operations.

Matrix Multiplication (tt_um_mult.v):

609

https://github.com/arnavsacheti/tt09-tiny-ternary-tapeout-csa

The module performs matrix multiplication by iterating over the columns
of the weight matrix and calculating the temporary output values based on
the weights and input vectors. For each column, the module multiplies the
input vector elements by the corresponding weights and sums the results
to produce the output values.

Pipelined Architecture:

The module is pipelined, meaning that it can continuously accept new
input vectors while performing computations on the previous inputs. As
new inputs are driven into the module, the current computations are com-
pleted, and the results are stored in a pipeline register. During the next
clock cycle, the outputs are produced as 8-bit integers, allowing for con-
tinuous data processing without interruption.

Outputting Results:

After driving all the inputs, the outputs are produced as 8-bit integers.
These outputs represent the result of the matrix multiplication operation.
By leveraging a pipelined architecture, the tt_um_mult.v module ensures
efficient and continuous data processing, allowing for high-throughput ma-
trix multiplication operations.

Example: Using a Ternary Array for Efficient Computation In this example,
we’ll create a 4x2 ternary array and demonstrate how it can be used to process a 1x4
input vector.
Step 1: Define a Ternary Array
A ternary array is one where each element can take on one of three possible values,
commonly -1, 0, or +1. These values simplify calculations because instead of perform-
ing complex multiplications, you can use additions, subtractions, or ignore the zero
entries altogether.
Let’s create a sample 4x2 ternary array:

Array = [+1 0 − 1 +1 0 −1 + 1 +1]

Step 2: Define the Input Vector
Let’s assume we have a 1x4 input vector:

Input = [2 −1 3 0]

610

Step 3: Compute the Output without Matrix Multiplication
Instead of performing a matrix multiplication, we’ll calculate the output using simpler
operations based on the ternary values.
For each column in the ternary array:

• Multiply +1 entries by the corresponding input values.
• Subtract the values for -1 entries.
• Ignore the 0 entries.

Step 4: Calculate Each Column’s Output
Let’s compute each column separately:

• Column 1 Calculation:

– Row 1: (+1 \times 2 = 2)
– Row 2: (-1 \times -1 = +1)
– Row 3: (0 \times 3 = 0)
– Row 4: (+1 \times 0 = 0)

Sum of Column 1: (2 + 1 + 0 + 0 = 3)
• Column 2 Calculation:

– Row 1: (0 \times 2 = 0)
– Row 2: (+1 \times -1 = -1)
– Row 3: (-1 \times 3 = -3)
– Row 4: (+1 \times 0 = 0)

Sum of Column 2: (0 - 1 - 3 + 0 = -4)

Final Output Vector
Combining the results from each column, we get the final output vector:

Output = [3 −4]

611

How to test To test the Matrix Multiplier with an external MCU like a Raspberry
Pi, follow these steps:

1. Setup:

• Connect the Raspberry Pi to the Matrix Multiplier hardware using appropriate
GPIO pins.

• Ensure that the Raspberry Pi has the necessary libraries installed for GPIO ma-
nipulation.

Pinout

Input Output Bidirectional
0 A1 Q1 B1
1 A2 Q2 B2
2 A3 Q3 B3
3 A4 Q4 B4
4 A5 Q5 B5
5 A6 Q6 B6
6 A7 Q7 B7
7 A8 Q8 B8

612

Basic Oszilloscope and Signal Generator [751]

• Author: Pascal Gesell
• Description: Basic oscilloscope & signal generator on an ASIC
• GitHub repository
• HDL project
• Mux address: 751
• Extra docs
• Clock: 25000000 Hz

Authors: Pascal Gesell, Dr. Torsten Maehne, Dr. Theo Kluter

How it works

This is a basic oscilloscope design using the experimental VHDL template. It samples
the input signal from channel 1 of an ADC Pmod (Digilent PmodAD1) and buffers the
samples on an external FRAM. The captured signal is output on screen via a BlackMesa
HDMI Pmod. Test signals are generated using Direct Digital Synthesis and are output
on channel 1 of the DAC Pmod (Digilent PmodDA2). Four buttons and two switches
allow to control the oscilloscope and choose the test signal to generate.
When the trigger button is pressed, a single-shot measurement is taken when the
trigger criteria is met. The trigger criteria can be the vertical and horizontal position
as well as the trigger level (positive edge or negative edge). The data is buffered onto
the external FRAM, with the goal to contain 32k samples before the trigger event and
32k samples after the trigger event. After the data is collected, the data is displayed
on the HDMI screen.
Since an external FRAM memory is used with no buffers on the chip, the displayed
oscilloscope screen is actually rotated by 90° to the right. Thus only one sample needs
to be read from the FRAM per output video line. A Python script is provided for
convenience to read the video frames captured by an USB HDMI video grabber, rotate
them by 90° to the left and display them on the screen.
The signal generator supports a few basic waveforms: sine, square, triangle and saw-
tooth. The frequency and amplitude can be adjusted using the buttons and switches.
The signal generator is also used to test the trigger functionality and the display of the
oscilloscope.
The scope settings are continuously output via UART at 9600 baud (8N1) on
uo_out(3).

613

https://github.com/gfcwfzkm/tt09-scope-bfh-mht1_3
https://github.com/gfcwfzkm
https://www.bfh.ch/en/torsten-maehne
https://www.bfh.ch/en/theo-kluter
show_scope.py

How to test

Connect the various Pmods to the TinyTapeout 4+ demo board or FPGA board accord-
ing to the pinout description in the info.yaml file. Connect the output of the DAC to
the input of the ADC and connect the HDMI Pmod to a screen or HDMI capture card.
Run the trigger to capture a single-shot measurement and display the data on the
screen.

External hardware

To test and use this project, you will need the following hardware:

• 1 � BlackMesaLabs 3-bit HDMI Pmod : A 3-bit HDMI Pmod
• 1 � Digilent PmodAD1 : A 12-bit ADC Pmod
• 1 � Digilent PmodDA2 : A 12-bit DAC Pmod
• 1 � FM25W256G : 32k x 8 FRAM Pmod
• 1 � Digilent PmodBTN : A 4 Buttons Pmod
• 1 � Digilent PmodSWT : A 4 Switches Pmod, of which only 2 are used

614

../info.yaml
https://blackmesalabs.wordpress.com/2017/12/15/bml-hdmi-video-for-fpgas-over-pmod/
https://digilent.com/reference/pmod/pmodad1/start
https://digilent.com/reference/pmod/pmodda2/start
https://datasheet.octopart.com/FM25W256-G-Cypress-Semiconductor-datasheet-86779777.pdf
https://digilent.com/reference/pmod/pmodbtn/start
https://digilent.com/reference/pmod/pmodswt/start

• Optionally, an HDMI capture card to display the HDMI output on a computer
screen

Attention: The above Pmods cannot be directly connected to the TinyTapeout 4+
demo board! The Pmods’ pins need to be individually connected to the right Pmod
pins of the TinyTapeout 4+ demo board, as documented in the IO section.

FPGA Implementation

The design has been implemented and tested on a Sipeed Tang Nano 9k FPGA board
using my own base PCB to have enough available Pmods to test the design.

Acknowledgements

This work was realized under the supervision of Dr. Torsten Maehne and Dr. Theo
Kluter as part of my project work in the 5th term of my Bachelor studies of electrical en-
gineering and information technology at Berner Fachhochschule (BFH), Biel/Bienne,
Switzerland.

Pinout

Input Output Bidirectional
0 FRAM MISO ADC CS HDMI Pmod Green
1 Button 1 DAC MOSI HDMI Pmod Clock
2 Button 3 ADC SCLK HDMI Pmod HSYNC
3 Switch 1 FRAM SCLK UART_TX Settings Info (9600bps, 8N1)
4 ADC MISO DAC CS HDMI Pmod Red
5 Button 2 DAC SCLK HDMI Pmod Blue
6 Button 4 FRAM CS HDMI Pmod DE
7 Switch 2 FRAM MOSI HDMI Pmod VSYNC

615

https://github.com/TinyTapeout/tt-demo-pcb
https://github.com/TinyTapeout/tt-demo-pcb
https://github.com/gfcwfzkm/t9k-baseboard
https://bfh.ch/electrical
https://bfh.ch/electrical
https://www.bfh.ch/ti/en

1bit_am_sdr [752]

• Author: James Sharp
• Description: 1bit AM software defined radio
• GitHub repository
• HDL project
• Mux address: 752
• Extra docs
• Clock: 50000000 Hz

How it works

This project is a Software Defined Radio pipeline for AM radio reception written in
verilog. It works using an external comparator as a 1-bit ADC frontend which is
oversampled and decimated 4096 times to give an extra 6 bits of precision. It is based
on this Hackaday Project: https://hackaday.io/project/170916-fpga-3-r-1-c-mw-and-
sw-sdr-receiver by Alberto Garlassi.
Although this is a fully digital core, but there are plans to make an analog frontend
circuit as an analog design in future Tiny Tapeouts, so both designs would be hooked
up together to create a radio with few external components.
Also, this core is very big - 3x2 Tiny Tapeout tiles (@ 64% utilisation). An area of future
development could be to simplify the demodulation pipeline to reduce gate count.

How to test

You need to connect an external comparator and RC network. You will probably need
a simple RF amplifier as well. See below for more information.
The core has a SPI interface for setting the demodulation frequency and gain. It
consists of a single 32-bit shift register. It has the following format:-

Bits 31 - 30 Bits 29 - 26 Bits 25 - 0
Unused Gain NCO Phase incr.

The gain can take on the following values:

“Gain” value Actual Gain
0 x1

616

https://github.com/jamesrosssharp/tt09-am-sdr
https://hackaday.io/project/170916-fpga-3-r-1-c-mw-and-sw-sdr-receiver
https://hackaday.io/project/170916-fpga-3-r-1-c-mw-and-sw-sdr-receiver

“Gain” value Actual Gain
1 x2
2 x4
3 x8
4 x16
5 - 7 x32

If the gain is set too high, the demodulated signal will wrap and sound distorted, so
adjust the gain down to the minimum needed to hear the station clearly.
The “NCO Phase increment” is the value that is added to the NCO phase every clock
cycle. Use the following python code to calculate the value to write, based on the
desired carrier frequency:

hex(int((1<<26) * <carrier frequency> / <chip clock frequency>))

E.g., for 936kHz (ABC Radio national Hobart) at 50MHz clock frequency, it would
be:

> hex(int((1<<26) * 936000 / 50000000))
'0x132b55'

External hardware

617

• External comparator
• Resistor bias network
• RC network
• External SPI microcontroller to set station
• RF amplifier

Pinout

Input Output Bidirectional
0 COMP_IN COMP_OUT
1 SPI_MOSI PWM
2 SPI_SCK
3 SPI_CSb
4
5
6
7

618

15 channels emission counter [753]

• Author: Coline Chehense, Dinko Oletic
• Description: Counts the number of pulses received on each of 15 input channel

and returns periodically a serial output of these values.
• GitHub repository
• HDL project
• Mux address: 753
• Extra docs
• Clock: 12000000 Hz

How it works

This is an early work-in progress test implementation of a digital readout, part of a
low-power mixed-signal multichannel sensor interface for acoustic emission detection.
The sensor interface is developed to support a passive, micromechanically-implemented
ultrasonic signal frequency decomposition MEMS device, based on an array of piezo-
electric micro-resonators: https://ieeexplore.ieee.org/document/9139151.

The digital readout part implemented here, tracks cumulative number of ultrasonic
acoustic events/emissions occurences at each channel i.e. at the specific ultrasonic
frequency, over a longer time interval. It is assumed that each acoustic emission event
is represented by a short single digital input pulse. An analog conditioning circuit for
pulse-shaping of input signals is not implemented here. The digital design consists
of fifteen 12-bit channel-counters with overflow detection, a mm:ss real-time clock
(RTC), a parallel-input-serial output (PISO) readout register, controlled by a readout
state-machine. The counters store number of intermittently-occuring short digital
input pulses, accumulated within the RTC’s time-measurement interval 00:00 - 59:59,
at each of the four input channels. Periodically, after every RTC overflow (1 h with
assumed 1 Hz RTC input clock signal), the state-machine performs sequential serial
readout of the RTC time and all channels, and resets all channel counters. Additionally,

619

https://github.com/DinkoOletic/tt09-HDL_unizgfer_15ch_AE_evt_counter
https://ieeexplore.ieee.org/document/9139151

readout and individual channel reset is initiated by overflow at any of individual input
channel counter.

This design is part of research activities https://www.fer.unizg.hr/liss/aemems. The
design is generally applicable for low-power wake-up sensor interfaces, acoustic event
detection, non-destructive testing, particle-counters, or as a generic pulse-counting
digital building block. This is the second TinyTapeout submission of the design. The
first version was submitted to TT04, it featured 4 channels, and had timing issues
during serial readout.

How to test

Input signals are short rising-edge digital pulses, connected to input pins “channel 1”
to “channel 15” . Output data becomes ready for serial readout at the output pin
“serial_out” when overflow is signalled via the output “ready” pin ovf_global. Output
bits are serially clocked-out using the input pin “clk”. Specifically, RTC overflow is
signalled via output pin “ovf_RTC_out”, and overflow at an individual channel via
the pin “ovf_ch_out”. The rest of output pins are used for debugging of the state-
machine’s internal states.

620

https://www.fer.unizg.hr/liss/aemems

External hardware

Logics analyzer will come handy.

Pinout

Input Output Bidirectional
0 RTC serial_out Channel 8
1 Channel 1 ovf_global Channel 9
2 Channel 2 ovf_RTC Channel 10
3 Channel 3 a0 Channel 11
4 Channel 4 a1 Channel 12
5 Channel 5 a2 Channel 13
6 Channel 6 a3 Channel 14
7 Channel 7 SL_out Channel 15

621

VGA Pong with NES Controllers [754]

• Author: Brandon S. Ramos
• Description: Pong using 2 NES Controllers with a VGA display
• GitHub repository
• HDL project
• Mux address: 754
• Extra docs
• Clock: 25175000 Hz

How it works

This project is designed to play Pong with two players using NES controllers which
output to a VGA compatible monitor.

How to test

You will need two NES controllers which will take in 3 wires (not including power and
ground). Hook up the connections as shown in the bidirectional I/O.
Bidirectional:

1. NES_Controller_Left[0] data
2. NES_Controller_Left1 clock
3. NES_Controller_Left2 latch
4. NES_Controller_Right[0] data
5. NES_Controller_Right1 clock
6. NES_Controller_Right2 latch
7. NC
8. NC You will also need the hook up the output to a VGA breakout board. I created

my own using a perfboard and some resistors but you can use the TinyTapeout
VGA PMOD, just ensure that you hook up r0,r1 on the VGA PMOD both to r
from the output as my design only uses 1 bit for each signal.

Output:

1. h_sync
2. v_sync
3. r
4. g

622

https://github.com/J0NTrollston/tt08-VGA-Pong-with-NES-Controllers
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

5. b
6.
7.
8.

External hardware

• VGA PMOD or your own VGA breakout board
• 2 NES controllers
• VGA compatible monitor

Pinout

Input Output Bidirectional
0 h_sync NES_Controller_Left[0]
1 v_sync NES_Controller_Left1
2 r NES_Controller_Left2
3 g NES_Controller_Right[0]
4 b NES_Controller_Right1
5 NES_Controller_Right2
6
7

623

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Tiny RAM DFF 2r1w [755]

• Author: Darryl Miles
• Description: RAM made from DFF 2r1w (32x8)
• GitHub repository
• HDL project
• Mux address: 755
• Extra docs
• Clock: 10000000 Hz

How it works

This is a really bad implementation of RAM that uses standard verilog to implement a
dual-port-read single-port-write RAM using D-type flipflops.

• DO_A Data Out Port-A
• DI_A Data In Port-A
• DO_B Data Out Port-B
• AD_A Address Port-A
• AD_B Address Port-B
• LOHI_A Nibble (4bit) select Port-A
• LOHI_B Nibble (4bit) select Port-B
• W_EN Write Enable (Port-A implied)

2 pages of 16 bytes (8-bits) is the total storage. The high 1-bit of address are set via
RST_N configuration, see below. the low 4-bits of address are supplied on the signal
lines.

How to test

The external ports are as you would expect for a RAM module, similar to other ram
modules based on the pin descriptions.
Memory reads occur all the time, there is no read-enable. Only port-A can be used to
write into. The RST_N does not change the contents of the RAM storage area.
The RST_N release (posedge) is used to latch some additional configuration bits, so
the following values are significant and can only be changed by clocking RST_N with
a posedge which causes capture:

624

https://github.com/dlmiles/tt09-dffram-2r1w

• uio_in[0] ADDRHI 1-bit to change the RAM page that can be accessed. This is
a way to fill out the TT 1x1 tile space a little and allow the upper storage area
to be accessible.

• uio_in[3:1] unused
• uio_in[4] READ_BUFFERED_A enable this will enable a synchronous output

buffer register on the PORT-A to be enable, so the read value becomes available
at the next cycle (pipelined) and held between cycles. If this works as expected
this makes the port output asynchronous or synchronous.

• uio_in[5] READ_BUFFERED_B enable, same as above but for PORT-B.
• uio_in[6] WRITE_THROUGH this will activate a MUX bypass that has the

effect of implementing a READ_AFTER_WRITE policy, so the currently written
value is also the value found at the output port. When inactive (set logic 0) a
READ_BEFORE_WRITE policy should be in effect. TODO check this works
as expected when READ_BUFFERED_A is active.

• uio_in[7] unused, due to it also being the WRITE-ENABLE bit when in normal
operations so allowing the CLK to run freely across reset and an unwanted write
occurring.

External hardware

The standard PCB and RP2040 can be used to access. I expect a Micro Python
interface to follow in an update.

Future areas to explore

Write a custom placement and wiring router to perform better placement and conges-
tion architecture so that RAM size and WORD WIDTH. This would perform placement
into the standard cell track layout so it can be run as a first pass to pack a solution
into a design. Ideally leaving the external signals accessible at the edges of the area.
This might allow packing of any width, any depth, single/dual port (as options into
the placement process) allowing for consistent size estimations to be made.
It seems when standard placement is left to solve this problem you don’t get a result
that scales with increased area usage. TODO some research into exactly what occurs
in those scenarios, it is expected this maybe due to wiring congestion problem of cells
just being in the wrong place / locality and requiring a lot of wiring to get a solution.
I pick dual-port-read support as that should provide a harder problem to solve as a
single-port-read needs less wiring.

625

NOTES

PL_TARGET_DENSITY_PCT=95%
PL_RESIZER_HOLD_SLACK_MARGIN=0.08
GRT_RESIZER_HOLD_SLACK_MARGIN=0.03
CLOCK_PERIOD=100 (10MHz)

• 32x8 3 slew, 26 fanout vio, +106 buffers, resized 646, +16 tie,
+238 hold buffers, No room for 156 instances.

• 28x8 1 slew, 36 fanout vio, +124 buffers, resized 763, +16 tie,
+201 hold buffers, No room for 23 instances.

• 26x8 1 slew, 28 fanout vio, +105 buffers, resized 646, +16 tie,
+191 hold buffers,
10091 vio, 6289 vio after 6th, did not get much better, 6H to 4025 (incomplete
pass)

• 24x8 0 slew, 26 fanout vio, +97 buffers, resized 632, +16 tie,
+176 hold buffers,
9084 vio, 5305 vio after 6th, best 2134 vio after 24th

• 22x8 0 slew, 20 fanout vio, +82 buffers, resized 555, +16 tie,
+171 hold buffers,
7079 vio, 3583 vio after 6th, best 428 vio after 29th, 6H to 427

• 20x8 4 slew, +101 buffers, +101 buffers, resized 649, +16 tie,
+151 hold buffers,
6622 vio, 3390 vio after 6th, best 991 vio after 24th

• 18x8 2 slew, 23 fanout vio, +72 buffers, resized 496, +16 tie,
+138 hold buffers,
4379 vio, 1299 vio after 6th, 0 vio after 43rd,
SUCCESS

• 16x8 0 slew, 24 fanout vio, +76 buffers, resized 506, +16 tie,
+120 hold buffers,
4802 vio, 1631 vio after 6th, 1 vio after 56th, 6H to 64th

Pinout

Input Output Bidirectional
0 DI_A[0] DO_A[0] AD_B[0] (in)
1 DI_A1 DO_A1 AD_B1 (in)
2 DI_A2 DO_A2 AD_B2 (in)
3 DI_A[3] DO_A[3] AD_B[3] (in)
4 AD_A[0] DO_B[0] LOHI_A (in)
5 AD_A1 DO_B1 LOHI_B (in)

626

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Input Output Bidirectional
6 AD_A2 DO_B2
7 AD_A[3] DO_B[3] W_EN (in)

627

http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Sprite Bouncer with Looping Background Options [768]

• Author: Jacob Mack
• Description: Sprite bouncer hardware that supports multiple background options

and sprites.
• GitHub repository
• HDL project
• Mux address: 768
• Extra docs
• Clock: 25000000 Hz

How it works

Sprite ROM, background control registers, and audio ROM are configured using SPI

How to test

Configure background, sprite image, and sfx on bounce using SPI

External hardware

Audio Pmod and Tiny VGA Pmod

Pinout

Input Output Bidirectional
0 vga_control[0] R1
1 vga_control1 G1
2 vga_control2 B1
3 vga_control[3] VSYNC
4 vga_control[4] R0
5 vga_control[5] G0
6 vga_control[6] B0
7 vga_control[7] HSYNC

628

https://github.com/jmack2201/tt08-jmack2201-demoscene
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Glyph Mode [769]

• Author: James Ross
• Description: Submission for VGA Demoscene
• GitHub repository
• HDL project
• Mux address: 769
• Extra docs
• Clock: 25175000 Hz

How it works

This is a standalone VGA demo that runs with or without input. It will accept two
pins ui_io[0] and ui_io[1] for palette color selection:

ui_io[1:0] Palette
0 Green (default)
1 Red
2 Blue
3 Pride

How to test

Plug into a VGA monitor and select this circuit to test

External hardware

Requires the TinyVGA PMOD

Pinout

Input Output Bidirectional
0 Palette 0 R1
1 Palette 1 G1
2 B1
3 VSync
4 R0

629

https://github.com/jar/tt08_vga_glyph_mode
https://github.com/mole99/tiny-vga

Input Output Bidirectional
5 G0
6 B0
7 HSync

630

VGA Scroller [771]

• Author: FavoritoHJS
• Description: Scrolls across a very pixelated cityscape
• GitHub repository
• HDL project
• Mux address: 771
• Extra docs
• Clock: 25000000 Hz

How it works

The terrain is based on an LFSR, using the deterministic randomness of one to generate
each layer of the city.

How to test

Set Clock to 25.18MHz, and use a Tiny VGA carrier board for video.

External hardware

This project requires a Tiny VGA carrier board to display video.

Pinout

Input Output Bidirectional
0 Rh
1 Gh
2 Bh
3 vsync
4 Rl
5 Gl
6 Bl
7 hsync

631

https://github.com/FavoritoHJS/tt08-favoritohjs-scroller

DDR throughput and flop aperature test [773]

• Author: Eric Smith
• Description: Grab data on every edge of clock with varying pos pulse width
• GitHub repository
• HDL project
• Mux address: 773
• Extra docs
• Clock: 0 Hz

How it works

Badly probably.
Use a positive edge detector on the clock and its compliment. Or together those
dectors to get 2 positive pulses per period or a 2x clock. Vary clk 2x pos pulse width
by varying number of inv per detect.

How to test

Carefully.

632

https://github.com/ericsmi/tt08-ddr-throughput-test

External hardware

Analog Discovery 3

Pinout

Input Output Bidirectional
0 pulse = 1 inv q for pulse = 1 inv
1 pulse = 3 inv q for pulse = 3 inv
2 pulse = 5 inv q for pulse = 5 inv
3 pulse = 7 inv q for pulse = 7 inv
4 q for normal flop
5 1
6 1
7 clk

633

Wildcat RISC-V [774]

• Author: Martin Schoeberl
• Description: Wildcat: a 3-stage RISC-V implementation
• GitHub repository
• HDL project
• Mux address: 774
• Extra docs
• Clock: 50000000 Hz

How it works

It is a RISC-V CPU

How to test

TBD

External hardware

Flash and RAM PMOD (not really)

Pinout

Input Output Bidirectional
0 in0 out0 inout0
1 in1 out1 inout1
2 in2 out2 inout2
3 in3 out3 inout3
4 in4 out4 inout4
5 in5 out5 inout5
6 in6 out6 inout6
7 in7 out7 inout7

634

https://github.com/schoeberl/tt10-wildcat

Calculator [775]

• Author: JING Shuangyu
• Description: A calculator do basic calculation
• GitHub repository
• HDL project
• Mux address: 775
• Extra docs
• Clock: 10000000 Hz

How it works

the calculator can support addition, subtraction, multiplication and division on positive
integer number.

How to test

The project can be tested by entern input through the keypad and then check whether
the display shows the desire output.

External hardware

The calculator need a 4x4 matrix keypad for input and a 3-digit seven segment display
to show the calculated result.

Pinout

Input Output Bidirectional
0 ROW_1 sseg_A 0
1 ROW_2 sseg_B E_1
2 ROW_3 sseg_C E_2
3 ROW_4 sseg_D E_3
4 sseg_E COL_1
5 sseg_F COL_2
6 sseg_G COL_3
7 sseg_dp COL_4

635

https://github.com/Cooooobra/tt08_calculator

Crispy VGA [777]

• Author: James Meech
• Description: The scrolling VGA example from the vga playground but as you set

more inputs high it gets successively more crispy
• GitHub repository
• HDL project
• Mux address: 777
• Extra docs
• Clock: 0 Hz

How it works

This project “Crispy VGA” takes as input the output of a standard tiny tapeout VGA
project. Crispy VGA then adds a programmable amount of random noise to the VGA
signal and passes it through to the output. The uio_in[0] input sets the noise on the
hsync signal. The uio_in1 input sets the noise on the B signal. The uio_in2 input
sets the noise on the G signal. The uio_in[3] input sets the noise on the R signal.
The uio_in[4] input sets the noise on the vsync. The uio_in[5] signal sets the noise
level applied to the R, G, and B wires to high or low. The uio_in[0:5] inputs set the
succesively increasing noise levels on the audio signal.

How to test

Plug an existing tiny tapeout VGA project into the input of this design. Plug the
output of this design into a standard VGA input monitor. Power up both tiny tapeout
boards and select the appropriate control bits for the level of noise that you want to
see on the output VGA signal.

External hardware

You will need a VGA input monitor and a computer that can output a VGA signal or a
second tiny tapeout ASIC with a working VGA design that follows the standard pinout.
You will also need two tiny tapeout VGA adapters and two VGA cables.

Pinout

636

https://github.com/JamesTimothyMeech/James-Meech-TT08-Demoscene
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
0 R1 vga input R1 vga input Crispy input bit 0 that toggles the noise on the hsync signal on or off. Also adds one bit of noise to audio.
1 G1 vga input G1 vga input Crispy input bit 1 toggles the noise on the B signal on or off. Also adds one bit of noise to audio.
2 B1 vga input B1 vga input Crispy input bit 2 toggles the noise on the G signal on or off. Also adds one bit of noise to audio.
3 vsync vga input vsync vga input Crispy input bit 3 toggles the noise on the R signal on or off. Also adds one bit of noise to audio.
4 R[0] vga input R[0] vga input Crispy input bit 4 that toggles the noise on the vsync signal on or off. Also adds one bit of noise to audio.
5 G[0] vga input G[0] vga input Crispy input bit 5 that sets the noise level applied to the R, G, and B wires to high or low. Also adds one bit of noise to audio.
6 B[0] vga input B[0] vga input Audio input bit
7 hsync vga input hsync vga input Audio output bit

637

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

asic design is my passion [779]

• Author: Nicholas Junker
• Description: baby’s first asic - cheeky little text meme
• GitHub repository
• HDL project
• Mux address: 779
• Extra docs
• Clock: 25175000 Hz

How it works

Real, real bad graphic design & fun shapes bouncing around on the screen.

How to test

Hook up to VGA monitor using the TinyTapeout VGA module.

External hardware

Tiny VGA Pmod peripheral!

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VSync
4 R0
5 G0
6 B0
7 HSync

638

https://github.com/Quarren42/tt08_Quarren42_demoscene

TinyQV Risc-V SoC [780]

• Author: Michael Bell
• Description: A Risc-V SoC for Tiny Tapeout
• GitHub repository
• HDL project
• Mux address: 780
• Extra docs
• Clock: 64000000 Hz

How it works

TinyQV is a small Risc-V SoC, implementing the RV32EC instruction set plus the Zcb
and Zicond extensions, with a couple of caveats:

• Addresses are 28-bits
• Program addresses are 24-bits
• gp is hardcoded to 0x1000400, tp is hardcoded to 0x8000000.

Instructions are read using QSPI from Flash, and a QSPI PSRAM is used for memory.
The QSPI clock and data lines are shared between the flash and the RAM, so only one
can be accessed simultaneously.
Code can only be executed from flash. Data can be read from flash and RAM, and
written to RAM.
The SoC includes a UART and an SPI controller.

Address map

Address range Device
0x0000000 - 0x0FFFFFF Flash
0x1000000 - 0x17FFFFF RAM A
0x1800000 - 0x1FFFFFF RAM B
0x7FFFF00 - 0x7FFFFFF Internal RAM (32 bytes, wrapped)
0x8000000 - 0x8000007 GPIO
0x8000010 - 0x800001F UART
0x8000020 - 0x8000027 SPI
0x8000028 - 0x800002B PWM
0x8000030 - 0x8000033 DEBUG
0x8000034 - 0x800003B TIME
0x8000040 - 0x8000047 GAME

639

https://github.com/MichaelBell/tt10-tinyQV

Address range Device

GPIO

Register Address Description
OUT 0x8000000 (W) Control out0-7, if the corresponding bit in SEL is high
OUT 0x8000000 (R) Reads the current state of out0-7
IN 0x8000004 (R) Reads the current state of in0-7
SEL 0x800000C (R/W) Bits 0-7 enable general purpose output on the corresponding bit on out0-7. Bit 8 enables PWM output on out7, bit 9 enables PWM output on io7.

UART

Register Address Description
DATA 0x8000010 (W) Transmits the byte
DATA 0x8000010 (R) Reads any received byte
STATUS 0x8000014 (R) Bit 0 indicates whether the UART TX is busy, bytes should not be written to the data register while this bit is set. Bit 1 indicates whether a received byte is available to be read.

Debug UART (Transmit only)

Register Address Description
DATA 0x8000018 (W) Transmits the byte
STATUS 0x800001C (R) Bit 0 indicates whether the UART TX is busy, bytes should not be written to the data register while this bit is set.

SPI

Register Address Description
DATA 0x8000020 (W) Transmits the byte in bits 7-0, bit 8 is set if this is the last byte of the transaction, bit 9 controls Data/Command on out3
DATA 0x8000020 (R) Reads the last received byte
CONFIG 0x8000024 (W) The low 4 bits set the clock divisor for the SPI clock to 2*(value + 1), bit 8 adds half a cycle to the read latency when set
STATUS 0x8000024 (R) Bit 0 indicates whether the SPI is busy, bytes should not be written or read from the data register while this bit is set.

PWM

640

Register Address Description
LEVEL 0x8000028 (W) Set the PWM output level (0-255)

DEBUG See debug docs

TIME

Register Address Description
MTIME 0x8000034 (RW) Get/set the 1MHz time count
MTIMECMP 0x8000038 (RW) Get/set the time to trigger the timer interrupt

GAME

Register Address Description
Controller 1 0x80000040 (R) Controller 1 state
Controller 2 0x80000044 (R) Controller 2 state

Controller state is in the low 12 bits of the register, in order (MSB to LSB): b, y, select,
start, up, down, left, right, a, x, l, r

How to test

Load an image into flash and then select the design.
Reset the design as follows:

• Set rst_n high and then low to ensure the design sees a falling edge of rst_n.
The bidirectional IOs are all set to inputs while rst_n is low.

• Program the flash and leave flash in continuous read mode, and the PSRAMs
in QPI mode

• Drive all the QSPI CS high and set SD1:SD0 to the read latency of the QSPI
flash and PSRAM in cycles.

• Clock at least 8 times and stop with clock high
• Release all the QSPI lines
• Set rst_n high
• Set clock low
• Start clocking normally

641

debug.md

Based on the observed latencies from tt3p5 testing, at the target 64MHz clock a read
latency of 2 or 3 is likely required. The maximum supported latency is currently 3, but
should get up to 5 to have a chance at running at faster clock speeds.
The above should all be handled by some MicroPython scripts for the RP2040 on the
TT demo PC.
Build programs using the riscv32-unknown-elf toolchain and the tinyQV-sdk, some
examples are here.

External hardware

The design is intended to be used with this QSPI PMOD on the bidirectional PMOD.
This has a 16MB flash and 2 8MB RAMs.
The UART is on the correct pins to be used with the hardware UART on the RP2040
on the demo board.
The SPI controller is intended to make it easy to drive an ST7789 LCD display (more
details to be added).
It may be useful to have buttons to use on the GPIO inputs.

Pinout

Input Output Bidirectional
0 Interrupt 0 UART TX Flash CS
1 Interrupt 1 UART RTS SD0
2 SPI MISO SPI DC SD1
3 1 MHz clock for time SPI MOSI SCK
4 Game controller latch SPI CS SD2
5 Game controller clock SPI SCK SD3
6 Game controller data Debug UART TX RAM A CS
7 UART RX Debug signal / PWM RAM B CS / PWM

642

https://github.com/MichaelBell/tinyQV-sdk
https://github.com/MichaelBell/tinyQV-projects
https://github.com/mole99/qspi-pmod

Dice [781]

• Author: ZHU QUANHAO
• Description: after you press the button� the system will generate a random

number from 0-F
• GitHub repository
• HDL project
• Mux address: 781
• Extra docs
• Clock: 50000000 Hz

How it works

It genreate number by inverter ring

How to test

press the button to capture number

External hardware

2 LED display

Pinout

Input Output Bidirectional
0 1 1 1
1 1 1 1
2 1 1 1
3 1 1 1
4 1 1
5 1 1
6 1 1
7 1 1

643

https://github.com/DanielZhu123/tt08-verilog-Ztemplate

4-bit minicomputer ALU [783]

• Author: Mike McCann
• Description: this design provides basic arithmetic and logic functions
• GitHub repository
• HDL project
• Mux address: 783
• Extra docs
• Clock: 0 Hz

How it works

The project is a 4-bit ALU section that is usfull in mini and micro computer CPUs.

How to test

This device can be tested by inputting data on the two input ports (A/B), a function
code (F0, F1, F2) and observing the output on pins d0, d1, d2, d3.

External hardware

This project was tested uising an Altera FPGA (EP2C20F484C7).

Pinout

Input Output Bidirectional
0 da0 d0 NEG_ZERO
1 da1 d1 ci_left
2 da2 d2 ci_right
3 da3 d3 COM
4 db0 co_left F0
5 db1 co_right F1
6 db2 EQU F2
7 db3 ZERO

644

https://github.com/kb2ghz/tt_um_kb2ghz_xalu

RGB Mixer demo5 [785]

• Author: Matt Venn
• Description: Zero to ASIC demo project
• GitHub repository
• HDL project
• Mux address: 785
• Extra docs
• Clock: 10000000 Hz

How it works

Debounce the inputs, drive an encoder module, and output a PWM signal for each
encoder.

How to test

Twist each encoder and the LEDs attached to the outputs should change in bright-
ness.

External hardware

Use 3 digital encoders attached to the first 6 inputs.

Pinout

Input Output Bidirectional
0 enc0 a pwm0
1 enc0 b pwm1
2 enc1 a pwm2
3 enc1 b
4 enc2 a
5 enc2 b
6 debug bit 0
7 debug bit 1

645

https://github.com/rubenet6/ruben

AlphaOneSoC [786]

• Author: Abhiram Gopal Dasika
• Description: A 32-bit RISC-V SoC, based on TinyQV by Michael Bell
• GitHub repository
• HDL project
• Mux address: 786
• Extra docs
• Clock: 64000000 Hz

How it works

A simple 32-bit RISC-V SoC on the RV32EC ISA, the project works by flashing the
instruction code into the memory and observing the outputs over your desired method,
via GPIO, UART or SPI The TT10-IHP submission is based entirely on MichaelBell’s
TinyQV from TT-06.

How to test

Flash the PMOD with instructions (somehow) and boot up the processor. The proces-
sor will start executing the instructions

External hardware

• QSPI + Flash PMOD

Pinout

Input Output Bidirectional
0 Interrupt 0 UART TX Flash CS
1 Interrupt 1 UART RTS SD0
2 SPI MISO SPI DC SD1
3 GPI3 SPI MOSI SCK
4 GPI4 SPI CS SD2
5 GPI5 SPI SCK SD3
6 GPI6 Debug UART TX RAM A CS
7 UART RX Debug Signal RAM B CS

646

https://github.com/alfadelta10010/tt10-AlphaOneSoC
https://github.com/mole99/qspi-pmod

Asynchronous Multiplier [787]

• Author: Tommy Thorn
• Description: An asynchronous multiplier
• GitHub repository
• HDL project
• Mux address: 787
• Extra docs
• Clock: 50000000 Hz

How it works

This design emits a sequence of r = x^2+x, for x=0,1,2,… on the outputs using the
handshake protocol (tie ack to req to get free running sequence). Well, in truth, we use
26-bits of internal precision, but we only have 15-bits for outputs, we what is actually
emitted is r ^ (r &gt;&gt; 15).
The very naive algorithm (with the body unrolled once) is

x = 0
loop:
x = x + 1
a = b = c = x
while b != 0:

if (b & 1) == 1:
c += a

a *= 2
b /= 2
if (b & 1) == 1:
c += a

a *= 2
b /= 2

output (c)

which was hand translated (roughly following Introduction to Asynchronous Circuit
Design) into a token flow graph:

647

https://github.com/tommythorn/tt08-maxbw
https://orbit.dtu.dk/files/215895041/JSPA_async_book_2020_PDF.pdf
https://orbit.dtu.dk/files/215895041/JSPA_async_book_2020_PDF.pdf

add1

BUFI1

BUFI2

BUFI3_valid_0

FORK

JOIN

replicate thrice

MERGE

BUF11_valid

BUF2

BUF55

(x != 0, x)

BDEMUX

BUF5 FORK9

mulstep6 BUF10out

BUF7

mulstep54

648

Note, I use a simpler, less expensive, construction for the conditional iteration as having
independent control-flow for the trivial condition is overkill.
The graph was realized using four-phase bundled data. Alas, I’m still working on the
timing analysis, so the inserted delays are (hopefully) way oversized.

How to test

The data is presented using the standard 4-phase (RTZ) protocol (idle, Req, Req+Ack,
Ack, idle, …). To get a continuous stream, simply tie ack to req. The values expected
are 0, 2, 6, …, x(x+1)

External hardware

A logic analyzer is convenient to pick up the values on the outputs, but default RP2040
works fine.

Pinout

Input Output Bidirectional
0 ack req result_7
1 result_0 result_8
2 result_1 result_9
3 result_2 result_10
4 result_3 result_11
5 result_4 result_12
6 result_5 result_13
7 result_6 result_14

649

Hamming Code (7,4) [801]

• Author: Sebastien Paradis
• Description: (7,4) Hamming Encoder/Decoder
• GitHub repository
• HDL project
• Mux address: 801
• Extra docs
• Clock: 0 Hz

How it works

This implementation of the (7,4) Hamming Code allows for the same input to be used
for encoding and decoding, with dynamic selection of the mode using the MSB of the
input.

Hamming Encoder (7,4) Overview The Hamming (7,4) encoder is a linear error-
correcting code that encodes 4 data bits into 7 bits by adding 3 parity bits, which can
detect and correct a single-bit error.
Parity Format
{p1 p2 p3}
Data Format
{d1 d2 d3 d4}

Input An 8-bit input “ui” with the following format (note the form is {7 6 5 4 3 2
1 0})
Input Pins

• ui[0] - Bit 0 for 4-bit data input, d4
• ui1 - Bit 1 for 4-bit data input, d3
• ui2 - Bit 2 for 4-bit data input, d2
• ui[3] - Bit 3 for 4-bit data input, d1
• ui[4] - X
• ui[5] - X
• ui[6] - X
• ui[7] - Mode Selector (0 => Encode, uses ui[3:0]; 1 => Decode, uses ui[6:0])

650

https://github.com/sebastienparadis/tt09-hamming-code-7-4
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Output An 8-bit output “uo” with the following format (note the form is {7 6 5 4
3 2 1 0})
Output Pins

• uo[0] - Bit 0 for 7-bit encoded output, d4
• uo1 - Bit 1 for 7-bit encoded output, d3
• uo2 - Bit 2 for 7-bit encoded output, d2
• uo[3] - Bit 3 for 7-bit encoded output, p3
• uo[4] - Bit 4 for 7-bit encoded output, d1
• uo[5] - Bit 5 for 7-bit encoded output, p2
• uo[6] - Bit 6 for 7-bit encoded output, p1
• uo[7] - X

Encode Mode
• Encode Mode is selected by setting the MSB of the input (bit 7) LOW (0).
• If encode mode is chosen, the encoder will use bits 3:0 as the four data bits to

be encoded, and produce a 7-bit encoded output.
• Bit 6:4 are not involved in any encoding.

Encode Mode Input Format
{selector, X, X, X, d1, d2, d3, d4}
Encode Mode Output Format
{p1, p2, d1, p3, d2, d3, d4}

Parity Bit Calculations
1. p1 covers bits d1, d2, and d4.

• p1 = d1 XOR d2 XOR d4

2. p2 covers bits d1, d3, and d4.

• p2 = d1 XOR d3 XOR d4

3. p3 covers bits d2, d3, and d4.

• p3 = d2 XOR d3 XOR d4

651

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Expected Outputs of Encode Mode
• 0XXXd1d2d3d4 -> 0p1p2d1p3d2d3d4
• 00000000 -> 00000000
• 00000010 -> 00101010
• 00000001 -> 01101001
• 00000011 -> 01000011
• 00000100 -> 01001100
• 00000101 -> 00100101
• 00000110 -> 01100110
• 00000111 -> 00001111
• 00001000 -> 01110000
• 00001001 -> 00011001
• 00001010 -> 01011010
• 00001011 -> 00110011
• 00001100 -> 00111100
• 00001101 -> 01010101
• 00001110 -> 00010110
• 00001111 -> 01111111

Hamming Decoder (7,4) Overview The decoder checks the received 7-bit word
for errors and corrects a single-bit error if detected. The process involves recalculating
the parity bits and comparing them with the received parity.

Decode Mode
• Decode Mode is selected by setting the MSB of the input (bit 7) HIGH (1).
• If decode mode is chosen, the decoder will use bits 7:0, both the data and parity

bits, and produce a 7-bit decoded output. The decoded output will be the
originally encoded input as long as there were less than 2 flipped bits between
encoder output and decoder input.

Decode Mode Input Format
{p1, p2, d1, p3, d2, d3, d4}
Decode Mode Output Format
{p1, p2, d1, p3, d2, d3, d4}

• a maximum of 1 bit could be flipped at position {S2, S1, S0}.

652

Syndrome Calculation The syndrome indicates the position of an error (if any):

1. S0 is recalculated using the same bits used to calculate p1 during encoding:

• S0 = p1’ XOR d1 XOR d2 XOR d4

2. S1 recalculates p2:

• S1 = p2’ XOR d1 XOR d3 XOR d4

3. S2 recalculates p3:

• S2 = p3’ XOR d2 XOR d3 XOR d4

Error Correction The syndrome {S2, S1, S0} gives the error location:

• If the syndrome is 000, no error is detected.
• If the syndrome is non-zero, the position of the error corresponds to the syndrome

value (1 for the least significant bit, 7 for the most significant bit).
• E.g. if syndrome is 010, then. Our error bit is at bit 4
• If an error is detected, flip the bit at the position indicated by the syndrome.

How to test

Testing can be done by applying known data inputs with LOW as the value of the 7th
bit (encode mode), and ensuring that the output is the expected encoding value (see
table of expected outputs in encode mode).
Similarly, known encoded values can by used as input, with the 7th bit as HIGH (decode
mode), and we can ensure that the output is the exact same as the original encoded
value, even if we flip 1 bit. This should be done for each of the 7 bits for all encoded
values

External hardware

TBD based on implementation.

653

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 LSB/Bit 0 for 4-bit Encoder Input OR LSB/Bit 0 for 7-bit Decoder Input LSB/Bit 0 for 7-bit Encoder OR Decoder Output
1 Bit 1 for 4-bit Encoder Input OR Bit 1 for 7-bit Decoder Input Bit 1 for 7-bit Encoder OR Decoder Output
2 Bit 2 for 4-bit Encoder Input OR Bit 2 for 7-bit Decoder Input Bit 2 for 7-bit Encoder OR Decoder Output
3 MSB/Bit 3 for 4-bit Encoder Input OR Bit 3 for 7-bit Decoder Input Bit 3 for 7-bit Encoder OR Decoder Output
4 Bit 4 for 7-bit Decoder Input Bit 4 for 7-bit Encoder OR Decoder Output
5 Bit 5 for 7-bit Decoder Input Bit 5 for 7-bit Encoder OR Decoder Output
6 MSB/Bit 6 for 7-bit Decoder Input MSB/Bit 6 for 7-bit Encoder OR Decoder Output
7 Mode Selector (0 => Encode, uses ui[3:0]; 1 => Decode, uses ui[6:0]) Mode Selector (0 => Encode; 1 => Decode)

654

Space Detective Maze Explorer [803]

• Author: Esteban Oman Mendoza
• Description: A maze explorer game, output uses qty5 7segment displays or LED

equivalent
• GitHub repository
• HDL project
• Mux address: 803
• Extra docs
• Clock: 50000 Hz

How it works

This is a maze running on hardware. 3 user inputs are used. user_input[0] is used to
walk forward on low, and user_input[2:1] is used as direction select where 2’b00 = N,
2’b01= East, 2’b10 = South, and 2’b11 = West“ bit 2 is the most significant bit

How to test

You will need to wire up qty 5 7-segment displays or led equivalent. seg 0 is the right
most or least significant segment, and seg4 being the left most of Most significant
segment. Hook up all the common pins. for example pin 1 from seg0 connects to
all other pin1 on the other 4 segments, they are then connected to the corresponding
output pins uo[7:0]

Outputs

uo[0]: “ a uo[0] = a “ uo1: “ — uo1 = b “ uo2: “ f | g | b uo2 = c “
uo[3]: “ | | uo[3] = d “ uo[4]: “ — uo[4] = e “ uo[5]: “ | | uo[5] = f “ uo[6]: “ e | d |
c uo[6] = g “ uo[7]: “ | | uo[7] = dp“ — dp uo([7:0] is the decoded segment signals
to display the game output.
using 5 pnp transitors with Vcc (I used. 3.3V) at the emmiter, and the common anode
(I used http://www.xlitx.com/datasheet/5161AS.pdf) connected to the collector,
make a connection to uio[4:0] to represent seg4-seg0. example uio 5’b011111 would
turn on seg 4 (low = on) each segment is mapped to uio[0]: “state LSB” uio1: “state
MSB” uio2: “Direction LSB” uio[3]: “Direction MSB” uio[4]: “Top half of segment
used for wall representation. 0-0, 1-1,…,5-5.

655

https://github.com/Esteban-Oman-Mendoza/maze_game
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.xlitx.com/datasheet/5161AS.pdf
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

External hardware

qty 5 7-segment display or LED equivalent to visualize the game qty 5 current limitting
resistors for the 7 segments qty 5 current limitting resistors to manage current through
the output pins. these are connected to the base breadboard and enough wiring to
make all the connections

Pinout

Input Output Bidirectional
0 user_input[0] Move forward (move one step in selected direction a segments[0] = a state LSB
1 user_input1 (considered least significant bit used in selection direction) Used to select facing direction where 2’b00 = N, 2’b01= East, 2’b10 = South, and 2’b11 = West — segments1 = b state MSB
2 user_input2 (considered least most significant bit used in selection direction) Used to select facing direction where 2’b00 = N, 2’b01= East, 2’b10 = South, and 2’b11 = West f g
3 not used
4 not used — segments[4] = e Top half of segment used to display the walls of the room as seen from above (birds eye view). The top most segment(a) represents the wall directly in front of you in the chosen direction N,E,S, or West.
5 not used
6 not used e d
7 not used

656

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Senol Gulgonul tt09 [805]

• Author: Senol Gulgonul
• Description: Display the letters of SEnOLGULGONUL on 7-Seg using internal

oscillator
• GitHub repository
• HDL project
• Mux address: 805
• Extra docs
• Clock: 0 Hz

How it works

Displays letters of SEnOLGULGONUL on 7-Seg display by using internal three gate
oscillator

How to test

Connect external R1, R2 and C for three gate oscillator and clk input and watch letters
on 7-seg

External hardware

output pins a,b,c,d,e,f,g,dp are connected to a 7-Seg display, two inout and two bioutput
for oscillator

Pinout

Input Output Bidirectional
0 inv3_in a inv3_out
1 inv1_in b inv2_out
2 c
3 d
4 e
5 f
6 g
7 dp

657

https://github.com/senolgulgonul/tt09-senolgulgonul

4 bit ALU [807]

• Author: Gabriela Alfaro
• Description: A simple design of an Arithmetic Logic Unit capable of basic opera-

tions: addition, substraction , multiplication, division and some logic operations.
• GitHub repository
• HDL project
• Mux address: 807
• Extra docs
• Clock: 0 Hz

How it works?

The 4-bit ALU (Arithmetic Logic Unit) is designed to perform a range of arithmetic
and logical operations on two 4-bit inputs, A and B. The operation is determined by a
3-bit control signal, Opcode, which specifies the function to execute, such as addition,
subtraction, multiplication, division, and bitwise operations (AND, OR, NOT, XOR).
When an arithmetic operation like addition is selected, the ALU outputs an 8-bit result,
ALU_Result, to accommodate larger sums or products, and it sets a Carry flag if
there’s an overflow. For logical operations like AND or OR, the ALU applies the
operation bit-by-bit between A and B. The Zero flag is activated when the result is
zero, providing a useful condition for further logic. This flexibility allows the ALU to
handle various computational tasks, making it a crucial part of digital systems that
require multi-functional data processing.

How to test?

To test the design, the operation codes are:

• Addition (000)
• Substraction (001)
• Multiplication (010)
• Division (011)
• Logic AND (100)
• Logic OR (101)
• Logic NOT (110)
• Logic XOR (111)

658

https://github.com/alf19185/TT09-ALU

Pinout

Input Output Bidirectional
0 A[0] ALU_Out[0] ZeroFlag
1 A1 ALU_Out1 CarryOut
2 A2 ALU_Out2
3 A[3] ALU_Out[3]
4 B[0] ALU_Out[4]
5 B1 ALU_Out[5]
6 B2 ALU_Out[6]
7 B[3] ALU_Out[7]

659

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Elevator Design [809]

• Author: Jocelyn Zhu
• Description: Simulation of an elevator design on a digital clock display.
• GitHub repository
• HDL project
• Mux address: 809
• Extra docs
• Clock: 0 Hz

How it works

The project implements an elevator interface on a digital clock based on user floor
selection. The user selects a floor using the board switches, and the display incre-
ments/decrements floor numbers according to the elevator’s state (moving up, moving
down, or idle). Once the elevator reaches the selected floor, the display shows the
user-selected floor number until a different floor is chosen or the switches are reset.
When the switches are reset, the display decrements back to the default floor.

How to test

Use board switches 0-7 to select the desired floor.

External hardware

A LED display is used to show elevator operation and the selected floor number.

Pinout

Input Output Bidirectional
0 Switch 0 Segment A
1 Switch 1 Segment B
2 Switch 2 Segment C
3 Switch 3 Segment D
4 Switch 4 Segment E
5 Switch 5 Segment F
6 Switch 6 Segment G
7 Switch 7 A dot that appears during the IDLE state

660

https://github.com/jxcelynzhu/Elevator_verilog

LED Bitserial Cipher [811]

• Author: simon cipher
• Description: A bitserial implementation of the LED cipher
• GitHub repository
• HDL project
• Mux address: 811
• Extra docs
• Clock: 0 Hz

How it works

tt09-led-serial is a nibble-serial implementation of the LED block cipher, proposed in
2012 and defined in The LED Block Cipher by J. Guo et. al. The cipher encrypts
a 64-bit block of plaintext with a 128-bit key into a 64-bit block of ciphertext. The
nibble-serial implementation enables a very compact implementation as most of the
datapath logic can be reused over each nibble. The downside is that such nibble-serial
implementations have a much larger latency. The nibble-serial architecture shown
below was presented and analyzed earlier in Differential Fault Intensity Analysis on
PRESENT and LED Block Ciphers by N. F. Galathy et. al.

To further reduce the I/O pinout constraints, this design also serializes the data-input
(64 bit plaintext and 128 bit key) as well as the data-output (64 bit ciphertext).

661

https://github.com/Secure-Embedded-Systems/tt09-led-serial
https://eprint.iacr.org/2012/600.pdf
https://link.springer.com/chapter/10.1007/978-3-319-21476-4_12
https://link.springer.com/chapter/10.1007/978-3-319-21476-4_12

Activity Cycles
Load Plaintext 64
Load Key 128
Read Ciphertext 64
Encrypt 2045

The module is controlled through the bits of the input word ui_in. The serial data
format is MSB to LSB. That is, given a block of plaintext 0x0123..., the bits would
be shift in as in the bitstring 0b0000000100100011....

Bit Name Function
7-6 unused NA
5 start Assert to start encryption
4 getct Assert to shift out ciphertext bit
3 loadkey Assert to shift in key bit
2 loadpt Assert to shift in plaintext bit
1 keyi Key input bit
0 datai Plaintext input bit

The results are generation on the output word uo_out.

Bit Name Function
7-2 unused NA
1 done 1 indicates encryption complete
0 dataq Ciphertext output bit

LIMITATIONS

This design forces the key bits to 0 upon loading, so that the effective key value of
the cipher is always hardcoded to 00000000_00000000_00000000_00000000. This
disables the use of the design as a cipher, yet it still demonstrates how a nibble-serial
architecture can be designed.

How to test

This block could be tested with some integration on a Raspberry PI to control ui_in
and uo_out. The typical sequence of operation is as follows.

662

1. Wait until done == 1, which indicates that the cipher is idle
2. Assert loadkey, and shift in key bits. Repeat 128 times. De-assert loadkey.
3. Assert loadpt, and shift in plaintext bits. Repeat 64 times. De-assert loadpt.
4. Assert start for one clock cycle.
5. Wait until done == 1.
6. Assert getct and shift out ciphertext bits. Repeat 64 times. De-assert getct.

Here are twotthree sample test vectors. Consult the testbench for additional test
vectors.

Plaintext Key Ciphertext
0000000000000000 00000000000000000000000000000000 3decb2a0850cdba1
0123456789abcdef 00000000000000000000000000000000 da261393c73be9ce
12153524c0895e81 00000000000000000000000000000000 29db5fe262572f4e

External hardware

You will need external hardware to use the block cipher.

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0]
1 ui_in1 uo_out1
2 ui_in2 uo_out2
3 ui_in[3] uo_out[3]
4 ui_in[4] uo_out[4]
5 ui_in[5] uo_out[5]
6 ui_in[6] uo_out[6]
7 ui_in[7] uo_out[7]

663

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

freqSweep [813]

• Author: Jesus Minguillon
• Description: Frequency sweeper
• GitHub repository
• HDL project
• Mux address: 813
• Extra docs
• Clock: 5000000 Hz

How it works

The project (src/project.v) implements a clock frequency sweeper in Verilog. It uses
the Tiny Tapeout clock as input to generate a clock signal at the output uo[0] whose
frequency is divided by 2 every 15 clock cycles. It goes from 1/2 to 1/16 of the input
clock frequency and starts again. Input ui[0] is used as internal enable (active high).

How to test

For simulation, use the test bench (test/tb.v), which includes a module
(src/periodCount.v) for measuring the frequency (or period) ratio between in-
put and output clocks. Use the Python script (test/test.py) if you want to perform
unit tests using cocotb. For hardware testing, make sure the internal enable (input
ui[0]) is high and check the output clock at output uo[0] using an oscilloscope.

Gate level simulation (5 MHz input clock) The frequency (or period) ratio
between the input clock (clk) and the output clock (uo_out[0]) is given by clk_factor
register of periodCount module:

Zoom in:

664

https://github.com/JesusMinguillon/tt09-verilog-freqSweep

Unit tests:

(venv) jesus@ws131571:~/tt09-verilog-freqSweep/test$ make -B GATES=yes
rm -f results.xml
"make" -f Makefile results.xml
make[1]: Entering directory '/home/jesus/tt09-verilog-freqSweep/test'
mkdir -p sim_build/gl
/usr/bin/iverilog -o sim_build/gl/sim.vvp -D COCOTB_SIM=1 -s tb -g2012 -DGL_TEST -DFUNCTIONAL -DUSE_POWER_PINS -DSIM -DUNIT_DELAY=#1 -f sim_build/gl/cmds.f /home/jesus/ttsetup/pdk/sky130A/libs.ref/sky130_fd_sc_hd/verilog/primitives.v /home/jesus/ttsetup/pdk/sky130A/libs.ref/sky130_fd_sc_hd/verilog/sky130_fd_sc_hd.v /home/jesus/tt09-verilog-freqSweep/test/gate_level_netlist.v /home/jesus/tt09-verilog-freqSweep/test/periodCount.v /home/jesus/tt09-verilog-freqSweep/test/tb.v
rm -f results.xml
MODULE=test TESTCASE= TOPLEVEL=tb TOPLEVEL_LANG=verilog \

/usr/bin/vvp -M /home/jesus/ttsetup/venv/lib/python3.12/site-packages/cocotb/libs -m libcocotbvpi_icarus sim_build/gl/sim.vvp
-.--ns INFO gpi ..mbed/gpi_embed.cpp:108 in set_program_name_in_venv Using Python virtual environment interpreter at /home/jesus/ttsetup/venv/bin/python
-.--ns INFO gpi ../gpi/GpiCommon.cpp:101 in gpi_print_registered_impl VPI registered
0.00ns INFO cocotb Running on Icarus Verilog version 12.0 (stable)
0.00ns INFO cocotb Running tests with cocotb v1.9.1 from /home/jesus/ttsetup/venv/lib/python3.12/site-packages/cocotb
0.00ns INFO cocotb Seeding Python random module with 1729775152
0.00ns INFO cocotb.regression Found test test.test_startup
0.00ns INFO cocotb.regression Found test test.test_reset
0.00ns INFO cocotb.regression Found test test.test_internal_enable
0.00ns INFO cocotb.regression Found test test.test_period_count
0.00ns INFO cocotb.regression running test_startup (1/4)
0.00ns INFO cocotb.tb Startup test with reset and internal enable
0.00ns INFO cocotb.tb rst_n = 0, ui_in[0] = 0

VCD info: dumpfile tb.vcd opened for output.
2.00ns INFO cocotb.tb uo_out[0] = 0

2000.00ns INFO cocotb.tb rst_n = 1, ui_in[0] = 0
2202.00ns INFO cocotb.tb uo_out[0] = 0
4000.00ns INFO cocotb.tb rst_n = 1, ui_in[0] = 1
4202.00ns INFO cocotb.tb uo_out[0] = 1
4402.00ns INFO cocotb.tb uo_out[0] = 0
4402.00ns INFO cocotb.tb Wait until 6 us
6000.00ns INFO cocotb.tb End of startup test
6000.00ns INFO cocotb.regression test_startup passed
6000.00ns INFO cocotb.regression running test_reset (2/4)
6000.00ns INFO cocotb.tb Reset test

665

6000.00ns INFO cocotb.tb rst_n = 0, ui_in[0] = 1
6002.00ns INFO cocotb.tb uo_out[0] = 0
6002.00ns INFO cocotb.tb clk_factor = 1
6202.00ns INFO cocotb.tb uo_out[0] = 0
6202.00ns INFO cocotb.tb clk_factor = 1
8000.00ns INFO cocotb.tb uo_out[0] = 0
8000.00ns INFO cocotb.tb clk_factor = 1
8000.00ns INFO cocotb.tb rst_n = 1, ui_in[0] = 1
8202.00ns INFO cocotb.tb uo_out[0] = 1
8202.00ns INFO cocotb.tb clk_factor = 1
8402.00ns INFO cocotb.tb uo_out[0] = 0
8402.00ns INFO cocotb.tb clk_factor = 1
8402.00ns INFO cocotb.tb Wait until 10 us

10000.00ns INFO cocotb.tb End of reset test
10000.00ns INFO cocotb.regression test_reset passed
10000.00ns INFO cocotb.regression running test_internal_enable (3/4)
10000.00ns INFO cocotb.tb Internal enable test
10000.00ns INFO cocotb.tb rst_n = 1, ui_in[0] = 0
11600.00ns INFO cocotb.tb rst_n = 1, ui_in[0] = 1
11802.00ns INFO cocotb.tb uo_out[0] = 1
11802.00ns INFO cocotb.tb clk_factor = 2
11802.00ns INFO cocotb.tb Wait until 13 us
13000.00ns INFO cocotb.tb Reset for 800 ns and wait 200 ns
14000.00ns INFO cocotb.tb End of internal enable test
14000.00ns INFO cocotb.regression test_internal_enable passed
14000.00ns INFO cocotb.regression running test_period_count (4/4)
14000.00ns INFO cocotb.tb Period count test
14402.00ns INFO cocotb.tb clk_factor = 2
20802.00ns INFO cocotb.tb clk_factor = 4
33602.00ns INFO cocotb.tb clk_factor = 8
59202.00ns INFO cocotb.tb clk_factor = 16
59202.00ns INFO cocotb.tb Wait until 200 us
200000.00ns INFO cocotb.tb End of period count test
200000.00ns INFO cocotb.regression test_period_count passed
200000.00ns INFO cocotb.regression **

** TEST STATUS SIM TIME (ns) REAL TIME (s) RATIO (ns/s) **
**
** test.test_startup PASS 6000.00 0.02 362907.61 **
** test.test_reset PASS 4000.00 0.00 985504.01 **
** test.test_internal_enable PASS 4000.00 0.00 1009763.48 **
** test.test_period_count PASS 186000.00 0.11 1763647.26 **
**

666

** TESTS=4 PASS=4 FAIL=0 SKIP=0 200000.00 0.22 918687.40 **
**

make[1]: Leaving directory '/home/jesus/tt09-verilog-freqSweep/test'

Test using Tang Nano 9K FPGA (4.5 MHz input clock) Input clock signal
(yellow) and ouput clock signal (blue) acquired with an oscilloscope (analog inputs and
passive probes):

Zoom in:

667

External hardware

No external hardware is needed.

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0]
1
2
3
4
5
6
7

668

Simple PWM Module [815]

• Author: Tobi McKellar
• Description: PWM for LED control.
• GitHub repository
• HDL project
• Mux address: 815
• Extra docs
• Clock: 0 Hz

How it works

A basic PWM controller. ui[5:0] control the reference. When ui[6] is low, this reference
is used to set the PWM duty cycle. when ui[6] is high, functionality changes from
manual reference to a triangular reference generated internally. In this mode, ui[5:0]
control the frequency of the triangular reference. ui[7] enables pwm output when high.
PWM is output on uo[7].

How to test

Set ui[7] to high. Measure the output on uo[7]. FLip the other input switches and see
what happens!

External hardware

None, but an LED and resistor would be nice.

Pinout

Input Output Bidirectional
0 Manual mode PWM reference control PWM output
1 Manual mode PWM reference control
2 Manual mode PWM reference control
3 Manual mode PWM reference control
4 Manual mode PWM reference control
5 Manual mode PWM reference control
6 Toggle PWM breathe or manual mode
7 Enable PWM output

669

https://github.com/Tobi-McKellar/tt09-led-driver

INTERCAL ALU [817]

• Author: Rebecca G. Bettencourt
• Description: An ALU for the five operators of the INTERCAL programming

language.
• GitHub repository
• HDL project
• Mux address: 817
• Extra docs
• Clock: 0 Hz

How it works

As an educational project, it is inevitable that Tiny Tapeout would attract various ped-
agogical examples of common logic circuits, such as ALUs. While ALUs for common
operations such as addition, subtraction, and binary bitwise logic are surprisingly com-
mon, it is much rarer to encounter one that can calculate the five operations of the
INTERCAL programming language. Due to either the cost-prohibitive nature of War-
menhovian logic gates or general lack of interest, such a feat has never been performed
until now. With chip production finally within reach of the average person, all it takes
is one person who has more dollars than sense to design the fabled INTERCAL ALU
(Arrhythmic Logic Unit).
The pin assignments for this design are roughly as follows. The /OE (output enable)
and /WE (write enable) signals are active low, so should be set HIGH by default.

Dedicated Input Dedicated Output Bidirectional I/O
0 A0 (address) D0 (output only) D0 (input and output only)
1 A1 (address) D1 (output only) D1 (input and output only)
2 S0 (selector) D2 (output only) D2 (input and output only)
3 S1 (selector) D3 (output only) D3 (input and output only)
4 S2 (selector) D4 (output only) D4 (input and output only)
5 S3 (selector) D5 (output only) D5 (input and output only)
6 /OE (output enable) D6 (output only) D6 (input and output only)
7 /WE (write enable) D7 (output only) D7 (input and output only)

This ALU has two 32-bit registers, B and A (in no particular order). (These may also
be thought of as four 16-bit registers, AL, AH, BL, and BH.) To write a byte to a
register, set A0 and A1 to the byte address, set S0 LOW for the A register or HIGH
for the B register, set S1 through S3 LOW, set the bidirectional I/O pins to the byte

670

https://github.com/RebeccaRGB/intercal-alu

value, set /WE LOW, then set /WE HIGH again. (Do not set S1 through S3 HIGH
when writing, or else something unpredictable will happen, most likely nothing.)
To read a register or result, set A0 and A1 to the byte address, set S0 through S3 to
the desired operation, set /OE LOW, read the byte value from the bidirectional I/O
pins, then set /OE HIGH. Results can also be read from the dedicated outputs; the
dedicated outputs are not affected by the /OE signal, as they do not need to care
about your feelings.
The operations supported are listed below. An attempt was made to make it under-
standable.

Address

A 3 2 1 0

A1 1 1 0 0Selector

S S3 S2 S1 S0 Operation A0 1 0 1 0

0 0 0 0 0 A AH AL

1 0 0 0 1 B BH BL

2 0 0 1 0 AND16 & AH & AL

3 0 0 1 1 AND32 & A

4 0 1 0 0 OR16 V AH V AL

5 0 1 0 1 OR32 V A

6 0 1 1 0 XOR16 ? AH ? AL

7 0 1 1 1 XOR32 ? A

8 1 0 0 0 MINGLE16L AL $ BL

9 1 0 0 1 MINGLE16H AH $ BH

10 1 0 1 0 SELECT16 AH~BH AL~BL

11 1 0 1 1 SELECT32 A ~ B

Operations 0 and 1 simply return the current value of the A or B register, respectively.
This corresponds with the values of S0 through S3 used in write mode. This is not
unintentional. This might also explain why S1 through S3 must be LOW in write
mode.

671

Operations 2 through 7 correspond to INTERCAL’s unary AND, unary OR, and unary
XOR operators, represented by ampersand (&), book (V), and what (?), respectively.
From the INTERCAL manual:
Operations 2, 4, and 6 work on the 16-bit halves of the A register independently, while
operations 3, 5, and 7 work on the 32-bit whole of the A register.
Operations 8 and 9 correspond to INTERCAL’s interleave (also called mingle) operator,
represented by big money ($). From the INTERCAL manual:
Operation 8 returns the interleave of the lower halves of A and B, while operation 9
returns the interleave of the upper halves of A and B. (Should the chip fabrication
process allow for it, operation 8½ will, of course, return the interleave of the middle
halves of A and B.)
Operations 10 and 11 correspond to INTERCAL’s select operator, represented by sqig-
gle (~). From the INTERCAL manual:
To help understand the select operator, the INTERCAL manual also provides a helpful
circuitous diagram.
Use of operations 12 and above is not recommended, unless undefined behavior is
required.

How to test

The following example calculations found in the INTERCAL manual should be partic-
ularly illuminating.

S A B F
MINGLE16L (8) 0 256 65536
MINGLE16L (8) 65535 0 2863311530
MINGLE16L (8) 0 65535 1431655765
MINGLE16L (8) 255 255 65535
SELECT16 (10) 51 21 5 *
SELECT16 (10) 179 201 9
SELECT16 (10) 201 179 17
SELECT16 (10) 179 179 31
SELECT16 (10) 201 201 15
AND16 (2) 77 4
OR16 (4) 77 32879
XOR16 (6) 77 32875

672

https://www.muppetlabs.com/~breadbox/intercal-man/figure1.html

These test cases are included in the (unfortunately Python and not INTERCAL)
test.py file. As these are likely more INTERCAL operations than any sensible
person will ever perform, they should be sufficient for testing purposes. However, for
curiosity’s sake, an extensive set of additional test cases have also been included.

• Not found in the INTERCAL manual.

External hardware

The ALU may be used without external hardware, although seeing the output values
may present a challenge. Instead, it is recommended to use a microcontroller of some
sort to drive the inputs and read the outputs, as microcontrollers are designed to do.
The implementation of the rest of the INTERCAL language is left as an exercise for
the reader.

Further reading

The INTERCAL Programming Language Revised Reference Manual by Donald R.
Woods and James M. Lyon with revisions by Louis Howell and Eric S. Raymond (can
recommend highly enough)

Pinout

Input Output Bidirectional
0 A0 (address) D0 D0
1 A1 (address) D1 D1
2 S0 (selector) D2 D2
3 S1 (selector) D3 D3
4 S2 (selector) D4 D4
5 S3 (selector) D5 D5
6 /OE (output enable) D6 D6
7 /WE (write enable) D7 D7

673

https://www.muppetlabs.com/~breadbox/intercal-man/home.html

Universal Binary to Segment Decoder [819]

• Author: Rebecca G. Bettencourt
• Description: Decodes various binary codes to various segmented displays.
• GitHub repository
• HDL project
• Mux address: 819
• Extra docs
• Clock: 0 Hz

How it works

This project is composed of four modules:

• A BCD to seven segment decoder with a wide variety of options for customizing
the appearance of digits

• An ASCII to seven segment decoder with two different “fonts”
• A dual BCD to Cistercian numeral decoder
• A BCV (binary-coded vigesimal) to Kaktovik numeral decoder

BCD to seven segment decoder

This mode converts a decimal digit in BCD to its representation on a standard seven
segment display. There are inputs that affect the display of the digits 6, 7, and 9,
and eight different options for handling out-of-range values. These inputs allow this
decoder to match the behavior of just about any other BCD to seven segment decoder,
making it universal.

674

https://github.com/RebeccaRGB/ubcd
https://en.wikipedia.org/wiki/Cistercian_numerals
https://en.wikipedia.org/wiki/Kaktovik_numerals

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

1010 1011 1100 1101 1110 1111 1010 1011 1100 1101 1110 1111

V0=0
V1=0
V2=0

V0=1
V1=0
V2=0

V0=0
V1=1
V2=0

V0=1
V1=1
V2=0

V0=0
V1=0
V2=1

V0=1
V1=0
V2=1

V0=0
V1=1
V2=1

V0=1
V1=1
V2=1

The signals used in this mode are:

• /AL - Active low. If HIGH, outputs will be HIGH when lit. If LOW, outputs
will be LOW when lit.

• /BI - Blanking input. If LOW, all segments will be blank regardless of other
inputs, including /LT.

• /LT - Lamp test. When /BI is HIGH and /LT is LOW, all segments will be lit.
• /RBI - Ripple blanking input. If the BCD value is zero and /RBI is LOW, all

segments will be blank.
• V0, V1, V2 - Selects the output when the BCD value is out of range.
• X6 - When HIGH, the extra segment a will be lit on the digit 6.
• X7 - When HIGH, the extra segment f will be lit on the digit 7.
• X9 - When HIGH, the extra segment d will be lit on the digit 9.
• A, B, C, D - BCD input from least significant bit A to most significant bit D.
• a, b, c, d, e, f, g - Outputs for a seven segment display.
• /RBO - Ripple blanking output. HIGH when BCD value is nonzero or /RBI is

HIGH.

The pin assignments in this mode are:

Dedicated Input Dedicated Output Bidirectional
0 A Segment a Input - X6

675

Dedicated Input Dedicated Output Bidirectional
1 B Segment b Input - X7
2 C Segment c Input - X9
3 D Segment d Input - /LT
4 V0 Segment e Input - /BI
5 V1 Segment f Input - /AL
6 V2 Segment g Input - LOW
7 /RBI /RBO Input - LOW

ASCII to seven segment decoder

This mode converts an ASCII character to a representation on a standard seven segment
display. Like with the BCD decoder, there are inputs that affect the display of the digits
6, 7, and 9. There are also two choices of “font” and the option to display lowercase
letters as uppercase or as lowercase.

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

D6=0
D5=1
D4=0

D6=0
D5=1
D4=1

D6=1
D5=0
D4=0

D6=1
D5=0
D4=1

D6=1
D5=1
D4=0

D6=1
D5=1
D4=1

FS=0:

676

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

D6=0
D5=1
D4=0

D6=0
D5=1
D4=1

D6=1
D5=0
D4=0

D6=1
D5=0
D4=1

D6=1
D5=1
D4=0

D6=1
D5=1
D4=1

FS=1:

The signals used in this mode are:

• /AL - Active low. If HIGH, outputs will be HIGH when lit. If LOW, outputs
will be LOW when lit.

• /BI - Blanking input. If LOW, all segments will be blank regardless of other
inputs.

• FS - Font select. Selects one of two “fonts.”
• LC - Lower case. If LOW, lowercase letters will appear as uppercase.
• X6 - When HIGH, the extra segment a will be lit on the digit 6.
• X7 - When HIGH, the extra segment f will be lit on the digit 7.
• X9 - When HIGH, the extra segment d will be lit on the digit 9.
• D0…D6 - ASCII input from least significant bit D0 to most significant bit D6.
• a, b, c, d, e, f, g - Outputs for a seven segment display.
• /LTR - Letter. LOW when the input is a letter (A…Z or a…z).

The pin assignments in this mode are:

Dedicated Input Dedicated Output Bidirectional
0 D0 Segment a Input - X6
1 D1 Segment b Input - X7
2 D2 Segment c Input - X9
3 D3 Segment d Input - FS
4 D4 Segment e Input - /BI

677

Dedicated Input Dedicated Output Bidirectional
5 D5 Segment f Input - /AL
6 D6 Segment g Input - HIGH
7 LC /LTR Input - LOW

Dual BCD to Cistercian numeral decoder

This mode converts two decimal digits in BCD to their representations on the seg-
mented display for Cistercian numerals shown below.

UU

UU

VV
VV

W

W
X

XX

X
W

W

X

X
W

W
W

W
X

X

Y

Y

Y

Y

Z

Z

Z

The patterns produced for each input value are shown below.

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

U

V

W

W
X

X

YZ

0 1 2 3 4

1+4=5 6 1+6=7 2+6=8 1+2+6=9

1+2+3+4=10 5+6=11 3+9=12 4+9=13 3+4+7=14 3+4+8=15

Patterns as seen in top right (units) position:

The signals used in this mode are:

678

https://en.wikipedia.org/wiki/Cistercian_numerals

• /AL - Active low. If HIGH, outputs will be HIGH when lit. If LOW, outputs
will be LOW when lit.

• /BI - Blanking input. If LOW, all segments will be blank regardless of other
inputs, including /LT1 and /LT2.

• /LT1 - Lamp test for digit 1. When /BI is HIGH and /LT1 is LOW, all
segments for digit 1 will be lit.

• /LT2 - Lamp test for digit 2. When /BI is HIGH and /LT2 is LOW, all
segments for digit 2 will be lit.

• A1, B1, C1, D1 - BCD input for digit 1 from least significant bit A1 to most
significant bit D1.

• A2, B2, C2, D2 - BCD input for digit 2 from least significant bit A2 to most
significant bit D2.

• U1, V1, W1, X1, Y1 - Outputs for digit 1 on a Cistercian segmented display.
• U2, V2, W2, X2, Y2 - Outputs for digit 2 on a Cistercian segmented display.

The pin assignments in this mode are:

Dedicated Input Dedicated Output Bidirectional
0 A1 Segment U1 Output - Y1
1 B1 Segment U2 Output - Y2
2 C1 Segment V1 Input - /LT1
3 D1 Segment V2 Input - /LT2
4 A2 Segment W1 Input - /BI
5 B2 Segment W2 Input - /AL
6 C2 Segment X1 Input - LOW
7 D2 Segment X2 Input - HIGH

BCV to Kaktovik numeral decoder

This mode converts a vigesimal (base 20) digit in BCV (binary-coded vigesimal) to its
representation on the segmented display for Kaktovik numerals shown below.

a b
c
d e

f
g

h

dp

The patterns produced for each input value are shown below.

679

https://en.wikipedia.org/wiki/Kaktovik_numerals

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

In
-R
a
n
g
e

O
v
e
rf
lo
w

The signals used in this mode are:

• /AL - Active low. If HIGH, outputs will be HIGH when lit. If LOW, outputs
will be LOW when lit.

• /BI - Blanking input. If LOW, all segments will be blank regardless of other
inputs, including /LT.

• /LT - Lamp test. When /BI is HIGH and /LT is LOW, all segments will be lit.
• /RBI - Ripple blanking input. If the BCV value is zero and /RBI is LOW, all

segments will be blank.
• /VBI - Overflow blanking input. If the BCV value is out of range and /VBI is

LOW, all segments will be blank.
• A, B, C, D, E - BCV input from least significant bit A to most significant bit

E.
• a, b, c, d, e, f, g, h - Outputs for a Kaktovik segmented display.
• /RBO - Ripple blanking output. HIGH when BCV value is nonzero or /RBI is

HIGH.
• V - Overflow. HIGH when BCV value is out of range (greater than or equal to

20).

The pin assignments in this mode are:

Dedicated Input Dedicated Output Bidirectional
0 A Segment a Output - h
1 B Segment b Output - V
2 C Segment c

680

Dedicated Input Dedicated Output Bidirectional
3 D Segment d Input - /LT
4 E Segment e Input - /BI
5 Segment f Input - /AL
6 /VBI Segment g Input - HIGH
7 /RBI /RBO Input - HIGH

How to test

The test directory includes extensive tests for each of the four modules.

External hardware

For the BCD and ASCII modes, a standard seven-segment display is used.
For the Cistercian mode, a segmented display like the one below is used. There are
design files for such a display here.

UU

UU

VV
VV

W

W
X

XX

X
W

W

X

X
W

W
W

W
X

X

Y

Y

Y

Y

Z

Z

Z

For the Kaktovik mode, a segmented display like the one below is used. There are
design files for such a display here.

a b
c
d e

f
g

h

dp

681

https://github.com/RebeccaRGB/buck/tree/main/cistercian-display
https://github.com/RebeccaRGB/buck/tree/main/kaktovik-display

Pinout

Input Output Bidirectional
0 A; D0; A1; A Segment a; U1; a X6; X6; Y1; h
1 B; D1; B1; B Segment b; U2; b X7; X7; Y2; V
2 C; D2; C1; C Segment c; V1; c X9; X9; /LT1; -
3 D; D3; D1; D Segment d; V2; d /LT; FS; /LT2; /LT
4 V0; D4; A2; E Segment e; W1; e /BI (blanking input)
5 V1; D5; B2; - Segment f; W2; f /AL (active low)
6 V2; D6; C2; /VBI Segment g; X1; g M0 (mode select)
7 /RBI; LC; D2; /RBI /RBO; /LTR; X2; /RBO M1 (mode select)

682

RO [833]

• Author: Arna Roy
• Description: Implementation of simple RO
• GitHub repository
• HDL project
• Mux address: 833
• Extra docs
• Clock: 20000000 Hz

How it works

The tt_um_roy1707018 module integrates two essential components:
Ring Oscillator-Based Buffer System which essentially a True Random Number Genera-
tor or TRNG (ro_buffer_counter) S-Box Cryptographic Component (ascon_sbox) Ring
Oscillator-Based Buffer System (ro_buffer_counter) This module contains a buffer
driven by two control signals: ro_activate_1: Controls the first set of ring oscillators
(bit 0 of ui_in). ro_activate_2: Controls the second set of ring oscillators (bit 1 of
ui_in). It also includes a 3-bit signal (bits 2 to 4 of ui_in) that selects a specific
output from the buffer. The module comprises a total of 16 ring oscillators, split into
two sets of 8. A 64-bit shift register within the submodule stores the last 64 bits of
these oscillators’ outputs. The selection bits determine which specific set of 8 values
from the shift register is presented as the 8-bit output, which is then processed and
connected to uo_out.
S-Box Cryptographic Component (ascon_sbox) The second submodule implements
an S-Box, a crucial non-linear substitution step used in cryptographic algorithms like
ASCON. This S-Box is activated by bit 7 of ui_in and receives bits 2 to 6 of ui_in as
input, producing a 5-bit output.
Final Output The final output, uo_out, is the result of a bitwise XOR operation between
TRNG and the S-Box. This combination effectively merges the functionalities of both
components into a single output signal.

How to test

In the simulation level, from the testbench we sent different values to the input to see
if the ring oscillators or SBOX are working correctly or not.

683

https://github.com/Secure-Embedded-Systems/tt08-trng

External hardware

No external hardware is needed for this design.

Pinout

Input Output Bidirectional
0 ui_in[0] uo_out[0]
1 ui_in1 uo_out1
2 ui_in2 uo_out2
3 ui_in[3] uo_out[3]
4 ui_in[4] uo_out[4]
5 ui_in[5] uo_out[5]
6 ui_in[6] uo_out[6]
7 ui_in[7] uo_out[7]

684

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

CMOS design of 4-bit Signed Adder Subtractor [835]

• Author: Vivek Chiranjit
• Description: The project is a signed binary 4-bit adder-subtractor module.
• GitHub repository
• HDL project
• Mux address: 835
• Extra docs
• Clock: 0 Hz

How it works

The project is a signed binary 4-bit adder-subtractor module. The module is constructed
using muxes, half adders and full adders.
Depending on the sign[1:0] bits, the circuit can perform the following operations:

sign[1:0] Operation
00 A + B
01 -A + B
10 A - B
11 -A - B

685

https://github.com/ChiranjitPatel/tt08_SignedAddSub_HDL

How to test

The signed_addsub_tb testbench includes extensive test cases for the 4-bit Signed
adder-subtractor circuit. The desing has been tested using QuestaSim.

External hardware

None

Pinout

Input Output Bidirectional
0 a0 s0 sign0
1 a1 s1 sign1
2 a2 s2
3 a3 s3
4 b0
5 b1
6 b2
7 b3

686

LaRVa CPU [836]

• Author: J. Arias
• Description: RISC-V CPU design
• GitHub repository
• HDL project
• Mux address: 836
• Extra docs
• Clock: 24000000 Hz

How it works

This project includes a RISC-V CPU (LaRVa) with a serial port and a few more pe-
ripherals. Memory has to be provided externally. An included bootloader allows the
execution of programs loaded through the serial port. (See TinyTlaRVa.pdf file) As a
last addition a JTAG interface is also included. (See jtag_laRVaTT.pdf file)

How to test

Connect a serial port 8-bit, no parity, 115200 bps, and send an ‘L’. The bootloader code
should reply with another ‘L’. For more complete tests an external board with SRAM
memory and address latches has to be attached to the PMOD ports of the prototype
board. Also, some testing could be carried out using the JTAG port.

External hardware

A memory board has to be attached to user PMOD connectors.

More docs

https://www.ele.uva.es/~jesus/larva.pdf
https://www.ele.uva.es/~jesus/larva_perif.pdf

687

https://github.com/jesari-git/tt10_larva-jarias
https://www.ele.uva.es/~jesus/larva.pdf
https://www.ele.uva.es/~jesus/larva_perif.pdf

Input Output Bidirectional

Pinout

Input Output Bidirectional
0 tck xbh xd[0]
1 tms xlal xd1
2 tdi xlal xd2
3 rxd pwmout_tdo xd[3]
4 gpi[0] txd xd[4]
5 gpi1 xhh xd[5]
6 gpi2 xoeb xd[6]
7 gpi[3] xweb xd[7]

688

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Patater Demo Kit Waggling Rainbow on a Chip [837]

• Author: Jaeden Amero
• Description: A 6-bit Waggling Rainbow demo
• GitHub repository
• HDL project
• Mux address: 837
• Extra docs
• Clock: 25175000 Hz

How it works

This design outputs a waggling 6-bit rainbow demo on VGA.
The demo will change effect based on inputs on ui_in.

Pin Pin Name Setting Effect
ui_in[0] DUAL_EN Dual mode Horizontally flips the image each scan line
ui_in[1] HWAVE_EN H wave Enables use of horizontal waves
ui_in[4:2] P0_OFF_{2,1,0} P0 offset Controls the speed of the H wave
ui_in[7:5] P1_OFF_{2,1,0} P1 offset Controls the speed of the V wave

689

https://github.com/Patater/tt08-demokit

Screenshots
Default

690

Dual Mode

691

H Wave

Video A video of a different (software rather than hardware) implementation, of the
waggling rainbow effect can be found at https://www.youtube.com/watch?v=AxT4
5_7WZUQ.

How to test

If wanting to test without hardware, use the VGA playground. Copy and paste
the contents of the entire src/project.v file into the playground’s text edi-
tor, replacing all previous content. Then, change the name of the module from
tt_um_patater_demokit to tt_um_vga_example and the simulator will start
running in your browser.
If testing with hardware, use a TinyVGA PMOD. Clock the design with 25.175 MHz as
described in info.yaml (25.157 MHz is standard for 60 Hz 640x480 VGA video).
If testing with lower level simulation tools, an incomplete cocotb test bench
(test/test.py) is provided. Passing the tests in the cocotb bench is no guarantee
that the design will work.

692

https://www.youtube.com/watch?v=AxT45_7WZUQ
https://www.youtube.com/watch?v=AxT45_7WZUQ
https://tinytapeout.github.io/vga-playground/
https://github.com/mole99/tiny-vga

External hardware

External hardware required:

• TinyVGA PMOD

Pinout

Input Output Bidirectional
0 DUAL_EN R1
1 HWAVE_EN G1
2 P0_OFF_0 B1
3 P0_OFF_1 VSync
4 P0_OFF_2 R0
5 P1_OFF_0 G0
6 P1_OFF_1 B0
7 P1_OFF_2 HSync

693

https://github.com/mole99/tiny-vga

DemoSiine [839]

• Author: SagarDevAchar
• Description: A Wavy and Rainbowy TT08 Demoscene Submission
• GitHub repository
• HDL project
• Mux address: 839
• Extra docs
• Clock: 25000000 Hz

How it works

The project structure is as shown below:

The Graphics Engine (driven by the VGA Controller, 640x480 @ 60Hz) is an on-
demand RGB display pixel generator whose output can be altered using a few input
pins. Previews of the different possible display outputs are provided in the last section
of this documentation.
The Audio Engine drives the Frequency Synth to produce a ~28 second looping
sound track @ 140 BPM at the output.

External hardware

• Leo’s TinyVGA Pmod connected to OUTPUT terminal (uo_out)
• Mike’s TT Audio Pmod connected to BIDIR terminal (uio_out)
• Some switches to the INPUT terminal (ui_in)

694

https://github.com/SagarDevAchar/tt08-demosiine
https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod

How to test

• Connect the necessary peripherals
• Provide a 25MHz clock to the top module tt_um_demosiine_sda
• Reset the design (if necessary)
• Enjoy the show :)
• Tweak the inputs to customize your show!

Input Configurations

The design takes in 8 digital inputs from the INPUT terminal to modify the on-screen
graphics (and audio) to create funky visual effects. All inputs are expected to be LOW
to render the output as shown in the default preview as shown below.
The effect of each input pin is presented in the table below:

Input Pin Parameter When LOW When HIGH
ui_in[7] Audio State Play Pause
ui_in[6] Animation State Run Stop
ui_in[5] Background Style Black Rolling RGB
ui_in[4] Overlay Style Cycle RGB Rolling RGB
ui_in[3] Overlay State Enabled Disabled
ui_in[2] Big Sine State Enabled Disabled
ui_in[1] Little Sine State Enabled Disabled
ui_in[0] Colour Inversion Normal Negative

Previews

Provided below are a some of my favourite previews generated from DemoSiine along
with the INPUT configuration which generated them:

695

696

697

698

699

700

Pinout

Input Output Bidirectional
0 Frame Positive / Negative Video Red MSB
1 Enable / Disable Little Sine Layer Video Green MSB
2 Enable / Disable Big Sine Layer Video Blue MSB
3 Enable / Disable Overlay Video V-Sync
4 Toggle Overlay Style Video Red LSB
5 Toggle Background Style Video Green LSB
6 Run / Stop Animation Video Blue LSB
7 Play / Pause Audio Video H-Sync Audio Output

701

”SQUARE-1”: VGA/audio demo [840]

• Author: Zachary Catlin
• Description: On video: munching squares. On audio: the logistic map.
• GitHub repository
• HDL project
• Mux address: 840
• Extra docs
• Clock: 25200000 Hz

How to test

Assuming the ASIC is connected to the TT demo board and suitable interface electron-
ics have been connected (see “External hardware”), select the tt_um_zec_square1
project to get started. If rst_n is not automatically set to logic high upon selection,
you’ll need to manually disable the reset. Enable the reset again when you’re done.
If not using the demo board, you’ll need to supply the ASIC with a 25.175 MHz or
25.200 MHz clock, do the appropriate interactions with the project-selection logic to
select tt_um_zec_square1, and use the pinout to connect to video and audio output
devices. Note: y1 and y0 are the high-order and low-order bits (respectively) of color
component y.
The video part of the demo repeats with a cycle time of ~8.5 seconds, while the audio
part repeats with a cycle time of just under 2 minutes.

External hardware

Assuming the ASIC is connected to the TT demo board, VGA output is obtained by
connecting a Tiny VGA Pmod or compatible module to the OUTPUT Pmod connector,
and audio output is obtained by connecting a Tiny Tapeout Audio Pmod to the BIDIR
Pmod connector.

How it works

SQUARE-1 contains a VGA-compatible video demo and an independent audio demo,
described separately below.

702

https://github.com/zec/tt08-square1
https://tinytapeout.com/specs/pcb/
https://tinytapeout.com/specs/pcb/
https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod

Video While the demoscene dates to the mid-1980s, people have been making
aesthetically-interesting graphics with a tiny amount of code for much longer. One
of the earliest “display hacks” is munching squares, first implemented c. 1962 on
MIT’s PDP-1 (hence this demo’s name). The original version has feedback and user-
configurability (see Norbert Landsteiner’s write-up for more details and a PDP-1 emu-
lator), but a simple variant requires only two 𝑁 -bit variables—t, a frame counter, and
y, a row counter, used thus:

t ← 0
loop
wait for end of frame
t ← (t + 1) mod 2^N
for y ← 0 to 2^N-1
plot (t XOR y, y)

As the algorithm has so little state and involves simple operations, a “racing the beam”
implementation requires little silicon area. SQUARE-1 uses 𝑁 = 9 and accepts that
the bottom bit of the square gets lost off the 640×480 screen.
However, a simple implementation of the algorithm would not look much like the
original version! PDP-1 munching squares uses a Type 30 point display, which was
built around a radar-scope CRT using P7 phosphor. P7 is actually a combination of
two substances—a bright, short-persistence (decay constant ~20 microseconds) far-
blue phosphor excited by the electron beam, and a dimmer, long-persistence (main
decay constant ~100 milliseconds, but with a long tail lasting several seconds) yellow
phosphor excited by the light from the blue phosphor. As a result, the plotted points
have a white or blue-white appearance, then become yellow and visibly fade away.
Fortunately, since each frame only has one point in each line, and said point is different
in each frame, it’s easy to parallelize an emulation of persistence, which is done in
src/project.v, which conceptually works like this:

Apart from the VSync/HSync/coordinate-generating module, it’s almost entirely com-
binational logic. SQUARE-1 simulates 14 frames (~1/4 second) of persistence prior to

703

https://en.wikipedia.org/wiki/Munching_square
https://en.wikipedia.org/wiki/PDP-1
https://www.masswerk.at/minskytron/
https://en.wikipedia.org/wiki/Racing_the_Beam#Content

the current frame—not quite a Type 30, but enough to get the feel of the thing on
modern displays.

Audio The audio demo is a sonification of the logistic map. To give a quick overview,
the following iteration:

𝑥𝑖+1 ← 𝑟𝑥𝑖(1 − 𝑥𝑖)

maps values of 𝑥 ∈ (0, 1) to values in (0, 1) when 𝑟 ∈ (1, 4). When 𝑟 ∈ (1, 3],
the sequence of 𝑥𝑖 values converges to a single value (the attractor), but much more
interesting behavior happens when 𝑟 ∈ (3, 4):

Credit: Ap on en.wikipedia.org
First, the attractor becomes a period-2 cycle, then period-4, -8, -16… and then it
exhibits chaotic behavior. That iteratively applying a quadratic polynomial would result
in such behavior came as quite a surprise back in the 1960s, and to this day the logistic
map is a popular demonstration of mathematical chaos in a simple system.
So, what does it mean to turn the logistic map into a sound? The way SQUARE-1 does
it, values of 𝑥𝑖 at a given 𝑟 are scaled from (0, 1) to approximately (200, 1200) Hz,
which are then used as the frequencies of an ensemble of 8 square-wave generators.
The square waves are then added together and used as the input to a PWM generator,
the last providing the sound output. 𝑟 is varied to cover the range [17

16 , 4) over a period
of ~2 minutes, varying faster over 𝑟 < 3 to get to the good stuff sooner.
Finally, over a few small portions of the chaotic region, we change the number of square-
wave generators that get frequency updates and get mixed together. The reason is
that within the chaotic region, there are islands of periodicity, the largest of which have
attractors of period 3, 5, and 6. Tweaking the number of active generators to be a
multiple of the period leads to better-sounding results within the islands.

704

https://en.wikipedia.org/wiki/Logistic_map

Greetz

Eh, I’m not that social…
…Hi, Mom! Hi, Dad!
Well, also, thanks to the organizers of the TT08 demoscene competition for finally
inspiring me to get off my rear and go sculpt some silicon. Thanks as well to the open
source EDA and silicon communities for making all this feasible.

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VSYNC
4 R0
5 G0
6 B0
7 HSYNC PWM audio out

705

Munch [841]

• Author: bytex64
• Description: Displays munching squares through VGA PMOD
• GitHub repository
• HDL project
• Mux address: 841
• Extra docs
• Clock: 25175000 Hz

How it works

This generates VGA output for a munching squares animation plus some other stuff,
and some simple music. It uses the VGA and audio PMODs listed below.

Clock generation A clock generator module divides the main clock clk and vsync
into two derived clocks - a 393kHz PWM clock for audio output, and a 10Hz “audio
tick” clock that drives the pattern sequencer. The clock generator also provides coun-
ters for PWM, volume modulation, and audio pattern sequencing.

LFSR An 11-bit LFSR provides a noise source. It is an XNOR type, shifting down
towards the LSB and inserting the new bit at MSB. XNOR taps are on bits 0 and 2.
Bits 0-5 of the LFSR register are used to provide a noise channel and randomized video
noise dithering.

Video The video output is the standard 640x480 @ 60Hz, using a 25.175MHz pixel
clock and negative polarity HSYNC/VSYNC. Timing is implemented with a simple
two-counter design shamelessly stolen from the Tiny Tapeout VGA playground.
A fixed palette of eight colors is used, and eight brightness levels are created by mixing
random bits with the 2-bit per channel brightness levels. Video is output on three
layers - the background and layers 0 and 1. A non-black pixel overrides a pixel on any
lower layer.

706

https://github.com/bytex64/tt-munch

Audio Audio comes from a basic PSG inspired by the SN76489. There are four
channels of sound based on 12-bit timers - three pulse channels and one noise channel.
The only real difference between a pulse channel and a noise channel is that the pulse
channel flips state when the timer counts down, and the noise channel takes a random
state from the LFSR. Each channel also has a two-bit volume level.
The 25.175MHz clock is divided by a 6-bit counter to create a 393KHz PWM output.
6-bits gives 64 possible levels. The PWM high period is a simple sum of the four
channels’ volumes at any given instant (multiplied by two with the low bit dithered
from the LFSR). This does mean the PWM will glitch if volume levels change in
the middle of a PWM cycle, but that’s fine in practice since it’s all low-pass filtered
anyway.
The four channels are programmed through a sequencer that provides note and volume
data to the PSG. The sequencer is clocked by dividing VSYNC by 6, so the sequencer
moves through pattern rows at 10Hz, or 600 ticks per minute. Each pattern of 16 ticks
represents one measure, four beats, which means the music proceeds at 150 BPM.
The sequencer cycles through pre-programmed patterns of notes. Note timer data
is read from an indirected list of notes, then connected directly to the PSG reload
values. This does mean the oscillators are not synchronized at note start. Volumes are
modulated through a single repeating pattern per channel, indexed from the top two
bits of the sequencer div-by-6 clock divider. This means the volume is a three-step
pattern cycling at the start of each pattern tick.

Text Generator On-screen text uses a segmented approach, where each segment
is defined by a mathematical description of a line segment. Each character is then
defined by which segments are off or on, like a multi-segment LED display. So text is
generated at full resolution despite its large size; each character is 50x100 pixels.
The text generator is just a sequencer over an input bit stream, indexed by the horizonal
and vertical position. In this implementation the input is at most six characters long.
The text can be positioned arbitrarily, but for this demo it is fixed.

Stage Sequencer A slower stage clock is derived from the pattern clock. It ticks
once every pattern cycle, and drives an overarching “stage sequencer”. Each stage
counts down for a pre-programmed number of patterns, then switches to the next.
The stage number is used in various logic to change the text and colors over time.

707

Extra outputs In addition to the audio and video, the three highest bits of the
internal pattern counter are output on uio_out[6:4]. The two highest bits count
out the four beats in a pattern, and bit 1 has a negative edge at the beginning of each
beat. This could be used for beat synchronization with external systems - I just used
it for debugging.

How to test

Set the input clock for 25.175MHz. The Pico/RP2040 can output 25.177MHz on
GPOUT0 with a 125MHz main clock and a divider of 4 [integer part] and 247 [fractional
part]. This worked on my TV.
Reset, and enjoy. :)

External hardware

• Leo’s VGA PMOD
• Tiny Tapeout Audio Pmod

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VSYNC
4 R0 beat clock bit 1 (output)
5 G0 beat clock bit 2 (output)
6 B0 beat clock bit 3 (output)
7 HSYNC audio (output)

708

https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod

cfib Demoscene Entry [843]

• Author: Christian Fibich
• Description: Generates VGA video and PWM audio
• GitHub repository
• HDL project
• Mux address: 843
• Extra docs
• Clock: 50000000 Hz

How it works

My entry to the Tinytapeout Demoscene Competition.
It (pseudo-randomly) generates a soundtrack via PWM and displays a waveform via
VGA.

How to test

Connect VGA and PWM Pmod.
Then just apply clock and (asynchronous) reset.

External hardware

The project uses:

• Tiny VGA Pmod via uo_out[7:0] (https://github.com/mole99/tiny-vga)
• Mike’s audio Pmod via uio_out[7] (https://github.com/MichaelBell/tt-

audio-pmod)

Pinout

Input Output Bidirectional
0 r1
1 g1
2 b1
3 vsync
4 r[0]

709

https://github.com/cfib/tt08-cfib-demo
https://github.com/mole99/tiny-vga
https://github.com/MichaelBell/tt-audio-pmod
https://github.com/MichaelBell/tt-audio-pmod
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Input Output Bidirectional
5 g[0]
6 b[0]
7 hsync pwm

710

VGA donut [844]

• Author: Andy Sloane
• Description: Renders a 3D torus on a VGA display
• GitHub repository
• HDL project
• Mux address: 844
• Extra docs
• Clock: 48000000 Hz

VGA Donut

711

https://github.com/a1k0n/tt08-vga-donut

How it works Renders a faceted donut to a VGA monitor.
Like my other demo on tt08, this runs in a weird VGA resolution: 1220x480, but still
4:3 aspect ratio like 640x480.
Interestingly, it is not actually rendering any polygons; this is sphere traced (AKA
raymarched), using a CORDIC unit to calculate the distance between a point and the
surface of the torus. But, because we don’t have much time (we’re racing the VGA
beam!), we do just two or three CORDIC iterations, which causes the donut surface
to actually become polyhedral. This trick was accidentally discovered by Bruno Levy
while playing with a C version of my original donut code and I had to try it out in
Verilog – so here we are.
The reason it has such low horizontal resolution is because it’s doing 16 ray marching
steps per “pixel”, with five CORDIC iterations unrolled into one clock cycle (three
iterations for the major axis, and two for the minor axis).
In order to fit this into 2x2 TinyTapeout tiles, a lot of sacrifices were made; for one,
it doesn’t have a multiplier so the ray steps are by approximate orders of magnitude.
New donut “pixels” are rendered every 16 clock cycles, so the demo makes heavy use
of dithering in both space and time – the video looks much better than the screenshot
above.

How to test Connect VGA Pmod to output, set clock to 48MHz, and give it a
reset pulse.

External hardware TinyVGA Pmod for video on o[7:0].

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VSync
4 R0
5 G0
6 B0
7 HSync

712

https://x.com/BrunoLevy01/status/1718674786954399798
https://github.com/mole99/tiny-vga

4-bit ALU [845]

• Author: Richard Xu, Louis Barbosa, Hallie Ho, Emmy Xu, Gia Bhatia, Emily
Chen

• Description: The 4-bit ALU is designed to perform basic arithmetic and logical
operations on 4-bit binary numbers

• GitHub repository
• HDL project
• Mux address: 845
• Extra docs
• Clock: 0 Hz

Project Datasheet: 4-Bit ALU

Overview The 4-Bit ALU module is a digital system designed to perform various
arithmetic and logical operations on 4-bit binary numbers. It supports operations
such as addition, subtraction, multiplication, division, and several logical operations.
Additionally, it includes an encryption function that can be used to encrypt 4-bit inputs
using an 8-bit key.

How it Works The module accepts two 4-bit binary numbers, a and b, and a 4-bit
operation code (opcode) that determines the operation to be performed. The results
are then output through the uo_out wire, while additional status information, such
as carry out and overflow, is output through the uio_out wire. The uio_oe wire
controls the enable or disable functionality for the uio_in and uio_out wires.

Operations
• ADD: Adds a and b, producing a 4-bit result and a carry out.
• SUB: Subtracts b from a, producing a 4-bit result and a borrow indication.
• MUL: Multiplies a and b, producing an 8-bit result.
• DIV: Divides a by b, producing a 4-bit quotient and remainder. Division by zero

is handled by returning a zero result.
• AND: Performs a logical AND operation on a and b.
• OR: Performs a logical OR operation on a and b.
• XOR: Performs a logical XOR operation on a and b.
• NOT: Performs a logical NOT operation on a, with b being ignored.

713

https://github.com/Richard28277/4bit_alu

Encryption Function
• ENC: Encrypts the inputs a and b using an 8-bit key derived from concatenating

a and b (treated as an 8-bit value). The encryption function applies an XOR
operation between this 8-bit concatenated value and a fixed 8-bit key (KEY). The
result is an 8-bit encrypted value.
Encryption Details:

– Key Generation: The key for the encryption function is a fixed 8-bit
value.

– Encryption Operation: The concatenated value of a and b (forming an
8-bit value) is XORed with the fixed 8-bit key.

How to Test To test the 4-Bit ALU module, follow these steps:

1. Connect Inputs:

• Connect the ui_in wire to the 4-bit inputs a and b.
• Connect the uio_in wire to the 4-bit opcode.

2. Connect Outputs:

• Connect the uo_out wire to an 8-bit output display or register to observe
the operation result.

• Connect the uio_out wire to observe the carry out and overflow status.

3. Signal Management:

• Ensure the ena signal is active (high).
• Provide a clock signal to the clk input.
• Optionally, use the rst_n signal to reset the module by pulling it low.

4. Operation Testing:

• Cycle through various opcode values and corresponding a and b inputs to
verify the correct operation of the module.

• For encryption, ensure a and b are combined and XORed with the fixed
key. Verify that the result matches expected encrypted values.

Pinout

714

Input Output Bidirectional
0 a[0] result[0] opcode[0]
1 a1 result1 opcode1
2 a2 result2 opcode2
3 a[3] result[3] opcode[3]
4 b[0] result[4]
5 b1 result[5]
6 b2 result[6] carry_out
7 b[3] result[7] overflow

715

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Morse Code Keyer [847]

• Author: Brady Etz
• Description: Convert a keyed CW input to morse tones and 7-segment character

output
• GitHub repository
• HDL project
• Mux address: 847
• Extra docs
• Clock: 12000000 Hz

How it works

Morse Keyer takes a paddle-type dit/dah signal (io[0:1]) and converts it to an auxilliary
Morse code output (io[4]) and a buzzer tone (io[5]). The design outputs auxilliary
dit/dah signals (io[2:3]) to send to other gear, like a radio. Additionally, it outputs
to the demonstration board’s seven-segment display (out[7:0]) to reveal the character
you just completed as you key.
To use a straight-key input (or press a single button to key Morse code) set in[0] HIGH.
For Iambic paddles, set in[0] LOW. To use Iambic keying type A, set in1 LOW. For
Iambic-B, set in1 HIGH. (https://ag6qr.net/index.php/2017/01/06/iambic-a-or-b-or-
does-it-matter/) WPM control is set between 7 WPM and ~100 WPM with in[7:4] via
the demo board dip switches. The timing element in this system divides the system
clock first with a 512x prescaler, then feeds it into the variable delay below:

Control [7:4] WPM Clocks Timer Preset
4’b0000 110.3 255 12’b000011111111
4’b0001 55.0 511 12’b000111111111
4’b0010 36.7 767 12’b001011111111
4’b0011 27.5 1023 12’b001111111111
4’b0100 22.0 1279 12’b010011111111
4’b0101 18.3 1535 12’b010111111111
4’b0110 15.7 1791 12’b011011111111
4’b0111 13.7 2047 12’b011111111111
4’b1000 12.2 2303 12’b100011111111
4’b1001 11.0 2559 12’b100111111111
4’b1010 10.0 2815 12’b101011111111
4’b1011 9.2 3071 12’b101111111111
4’b1100 8.5 3327 12’b110011111111
4’b1101 7.9 3583 12’b110111111111

716

https://github.com/b-etz/tt08-morse-keyer
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://ag6qr.net/index.php/2017/01/06/iambic-a-or-b-or-does-it-matter/
https://ag6qr.net/index.php/2017/01/06/iambic-a-or-b-or-does-it-matter/

Control [7:4] WPM Clocks Timer Preset
4’b1110 7.3 3839 12’b111011111111
4’b1111 6.9 4095 12’b111111111111

WARNING: The auxilliary Morse output MUST NOT be used as a raw radio TX
control for a homemade radio. This is because the keying interface must control the
transmitted wave shape to maintain acceptable RF bandwidth. Be a good RF neighbor.
Always use the provided keyer inputs for your radio. These are typically provided with
a 3.5mm TRS jack, with Sleeve = GND, Ring = Dah, and Tip = Dit/Straight.
Most radio systems use active-low / open-collector signaling to protect systems oper-
ating at various supply voltages. Please see the External Hardware section for recom-
mendations.

How to test

Set the input clock frequency to 12 MHz. Set the dip switches (in[7:0]) on the dev
board to the desired paddle setup and WPM rate. Attach hardware like that shown in
the External Hardware section to use.

External hardware

For the best experience, and to use custom radio hardware and paddles, I recommend
assembling a companion PCB affixed the bidirectional PMOD.
A /pcb/ directory accompanies the standard Tiny Tapeout directories with the KiCad
files.
Please see the schematic below for a screenshot of the recommended application
schematic:

717

Pinout

Input Output Bidirectional
0 Paddle Selection (1 = Iambic) 7-Seg. Display A External Dit / Straight In (active-high)
1 Iambic-A/B Type Selection (1 = B) 7-Seg. Display B External Dah In (active-high)
2 7-Seg. Display C Aux. Dit Paddle Out (active-high)
3 7-Seg. Display D Aux. Dah Paddle Out (active-high)
4 WPM Select [0] (LSB) 7-Seg. Display E Aux. Morse Out (active-high)
5 WPM Select 1 7-Seg. Display F Buzzer Tone Out
6 WPM Select 2 7-Seg. Display G
7 WPM Select [3] (MSB) 7-Seg. Display .

718

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

VGA Mandelbrot [848]

• Author: Mike Bell
• Description: Mandelbrot on VGA, racing the beam
• GitHub repository
• HDL project
• Mux address: 848
• Extra docs
• Clock: 100000000 Hz

How it works

The Mandelbrot fractal is computed “racing the beam” and displayed through the
TinyVGA Pmod.
One iteration of the computation is done over two clock cycles, and a maximum
iteration depth of 14 iterations is used. The design is clocked at 100MHz, allowing
four clock cycles per 25MHz pixel clock. This means one value is computed every 7
pixels, giving a result like this:

719

https://github.com/MichaelBell/tt08-mandelbrot
https://github.com/mole99/tiny-vga

The computation uses 16-bit fixed point arithmetic. The multiplications are approxi-
mated to save area, giving a possible error in the least significant bit. This gives at
least 14-bit accuracy on each iteration.
The output image is at a 720x480 resolution (~103x480 Mandelbrot pixels).

How to test

Provide a 100MHz clock.
The image position and zoom can be configured using the input and bidir pins.
in[2:0] control the configuration to set, and {io[7:0], in[7:3]} specify a signed value
when setting a register.
These values should only be updated during vsync.

Ctrl Value
0 Enable demo mode (Zooms in and out repeatedly)
1 Set X coordinate for top-left of screen to value / 2^10
2 Set Y coordinate for top-left of screen to value / 2^11
3 No action
4 Set X increment per column to value[9:0] / 2^13
5 Set Y increment per column to value[9:0] / 2^13
6 Set X increment per row to value[7:0] / 2^13
7 Set Y increment per row to value[7:0] / 2^13

Note there are 103 columns and 480 rows displayed.

External hardware

Tiny VGA Pmod in the output socket.

Pinout

Input Output Bidirectional
0 Ctrl 0 R1 Input 5
1 Ctrl 1 G1 Input 6
2 Ctrl 2 B1 Input 7
3 Input 0 vsync Input 8

720

https://github.com/mole99/tiny-vga
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture

Input Output Bidirectional
4 Input 1 R[0] Input 9
5 Input 2 G[0] Input 10
6 Input 3 B[0] Input 11
7 Input 4 hsync Input 12

721

nVious Graphics [849]

• Author: James Ross
• Description: Submission for VGA Demoscene
• GitHub repository
• HDL project
• Mux address: 849
• Extra docs
• Clock: 25175000 Hz

How it works

This is a VGA demo that runs without input, but also accepts 8-bit input on the
ui_io[7:0] pins to display a virtual 7-segment LED display (with decimal).

How to test

Basic Functionality Plug into a VGA monitor, select this circuit to test, and re-
set.

External Input To test the user input functionality, connect the ui_io[7:0] pins.
The idea is that this would be a possibly useful graphical extension to the dozens of
existing projects that utilize the 7-segment LED display to show results.

External hardware

Requires the TinyVGA PMOD

Pinout

Input Output Bidirectional
0 Segment A R1
1 Segment B G1
2 Segment C B1
3 Segment D VSync
4 Segment E R0
5 Segment F G0
6 Segment G B0

722

https://github.com/jar/tt08_nvious_graphics
https://github.com/mole99/tiny-vga

Input Output Bidirectional
7 Segment H HSync

723

TinyMandelbrot [850]

• Author: Gerrit Grutzeck
• Description: A mandelbrot generator
• GitHub repository
• HDL project
• Mux address: 850
• Extra docs
• Clock: 0 Hz

How it works

The project has two parts, first a module to generate a Mandelbrot. Second, a VGA
driver, which fetches the data from a framebuffer, which is eamulated by the RP2040.

How to test

RP2040 Mode For this the mode pin has to be selected. Then the configuration
should be shifted into the project. Finally the render can be started and the data
received via a logic analyzer or the RP2040.

VGA Mode For this the RP2040 has to be programmed with a special firmware to
emulate the framebuffer. The the VGA mode has to be selected. Then the configu-
ration should be shifted into the project. Finally the render can be started. After the
rendering is finished, the Mandelbrot should be displayed via VGA.

External hardware

To the output Pmod connector the TinyVGA Pmod should be connected, if the VGA
mode is used.

Pinout

Input Output Bidirectional
0 serial enable R1 or ctr[0] write data[0]
1 serial data G1 or ctr[0] write data1
2 serial clock B1 or ctr[0] write data2
3 output select vsync or ctr[0] write data[3]

724

https://github.com/gfg-development/tt08-tiny-mandelbrot
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Input Output Bidirectional
4 frame data[0] R[0] or new counter reset write pointer
5 frame data1 G[0] write data
6 frame data2 B[0] reset read pointer
7 frame data[3] hsync read

725

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

8-Bit Calculator [851]

• Author: Randy Zhu
• Description: ChipCraft Page 157 Lab ID: C-EQUALS
• GitHub repository
• HDL project
• Mux address: 851
• Extra docs
• Clock: 0 Hz

How it works

8-Bit Calculator from ChipCraft Lab ID: C-EQUALS

How to test

Tested with Makerchip simulation.

External hardware

None.

Pinout

Input Output Bidirectional
0 Unused Unused Unused
1 Unused Unused Unused
2 Unused Unused Unused
3 Unused Unused Unused
4 Unused Unused Unused
5 Unused Unused Unused
6 Unused Unused Unused
7 Unused Unused Unused

726

https://github.com/ezchips/tt08-my-calc

tiny-tapeout-8bit-GPTPrefixCircuit [865]

• Author: Weihua Xiao
• Description: In this project, we use large language model to automatically create

a totally-new prefix network-based high speed adder, for getting a good trade-off
between PPA (power performance and area).

• GitHub repository
• HDL project
• Mux address: 865
• Extra docs
• Clock: 0 Hz

727

https://github.com/FCHXWH823/tt09-GPTPrefixCircuit

How it works

LLM-aided design of a totally-new 8-bit prefix network-based high speed adder:

In this figure, the squares represent the Square module in project.v, the circles represent
the BigCircle module in project.v, the small circles represent the SmallCircle in project.v,
and the triangles represent the Triangle module in project.v. Each carry signal (c[i]) is
generated by circles and each sum signal (sum[i]) is generated by triangles.

728

How to test

This test systematically applies all combinations of 8-bit values to dut.a and dut.b,
verifies the resulting sum dut.sum against the expected 8-bit result ((dut.a + dut.b)
& 0xFF), and asserts that the dut behaves correctly.

External hardware

No external hardware

Pinout

Input Output Bidirectional
0 a[0] sum[0] b[0]
1 a1 sum1 b1
2 a2 sum2 b2
3 a[3] sum[3] b[3]
4 a[4] sum[4] b[4]
5 a[5] sum[5] b[5]
6 a[6] sum[6] b[6]
7 a[7] sum[7] b[7]

729

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

LIF on a Ring Topology [867]

• Author: Taylor Kergan
• Description: LIF neurons connected in a ring that displays different firing pat-

terns.
• GitHub repository
• HDL project
• Mux address: 867
• Extra docs
• Clock: 0 Hz

How it works

This project implements eight leaky integrate-and-fire (LIF) neurons that are connected
in a ring topology. Each neuron:

1. Integrates input current over time
2. Leaks voltage according to a decay constant
3. Fires when voltage reaches threshold
4. Influences its neighbors through coupling currents

The system supports multiple firing patterns:

• Independent: Neurons fire based only on their input current
• Wave: Activity propagates around the ring
• Synchronous: All neurons tend to fire together
• Clustered: Neurons form synchronized pairs
• Burst: Strong neighbor coupling creates burst patterns

How to test

The system can be tested through several inputs:

1. Base current (ui_in[7:3]): Controls the fundamental firing rate
2. Pattern select (ui_in[2:0]): Chooses the firing pattern
3. Coupling strength (uio_in[7:0]): Sets the strength of inter-neuron connections

To observe behavior:

1. Monitor spike outputs (uo_out[7:0]): Each bit represents one neuron’s spikes
2. Watch voltage state (uio_out[7:0]): Shows membrane potential of first neuron
3. Run different patterns to see:

730

https://github.com/kergsy/tt09-ece-210-tk

• Wave propagation
• Synchronization
• Burst patterns
• Clustering effects

Test sequence:

1. Apply reset (rst_n)
2. Enable system (ena)
3. Set desired pattern and current
4. Monitor outputs for expected behavior

External hardware

N/A.

Pinout

Input Output Bidirectional
0 Pattern select bit 0 (LSB) Spike output from neuron 0 Coupling strength bit 0 (LSB)
1 Pattern select bit 1 Spike output from neuron 1 Coupling strength bit 1
2 Pattern select bit 2 (MSB) Spike output from neuron 2 Coupling strength bit 2
3 Base current scaling bit 0 (LSB) Spike output from neuron 3 Coupling strength bit 3
4 Base current scaling bit 1 Spike output from neuron 4 Coupling strength bit 4
5 Base current scaling bit 2 Spike output from neuron 5 Coupling strength bit 5
6 Base current scaling bit 3 Spike output from neuron 6 Coupling strength bit 6
7 Base current scaling bit 4 (MSB) Spike output from neuron 7 Coupling strength bit 7 (MSB)

731

Delta-Sigma ADC Decimation Filter [869]

• Author: Alexander Sheldon
• Description: Decimation filter for output of a delta-sigma ADC.
• GitHub repository
• HDL project
• Mux address: 869
• Extra docs
• Clock: 50000000 Hz

How it works

Digital low pass and decimation filter for use at the output of a delta-sigma ADC.
Analog will hopefully be included on the next shuttle.

How to test

Input 1 bit data on ui_in[0] at 50MHz representing the output of a delta-sigma mod-
ulator Will generate 16 bit data on the GPIOs at 50MHz/64=781.25kHz

External hardware

TBD

Pinout

Input Output Bidirectional
0 dec_in mux_out[0] div_clk8x
1 mux_out1
2 mux_out2 div_clk
3 mux_out[3]
4 mux_out[4]
5 mux_out[5]
6 mux_out[6]
7 mux_out[7]

732

https://github.com/asheldon44/tt09-delta-sigma-decimation-filter
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

an lfsr with synaptic neurons (excitatory or inhibitatory)
[871]

• Author: kai juarez-jimenez
• Description: each bit edge in the LFSR will mimic synaptic input that either

excites / inhibits the next “neuron” , shwoing behaviors similar to how synapses
manage signal in nns.

• GitHub repository
• HDL project
• Mux address: 871
• Extra docs
• Clock: 0 Hz

How it works

this project implements a neuromorphic-inspired Linear Feedback Shift Register (LFSR)
with “synaptic neurons” that simulate excitatory/inhibitory responses. each bit in the
LFSR behaves like a neuron, where transitions (rising/falling edges) from 0 to 1 or
1 to 0 generate excitatory or inhibitory signals, simulating synaptic inputs in neural
networks. these signals modify the LFSR’s feedback path, resulting in pseudo-random
output sequences that mimic synaptic interactions by either enhancing (excitatory) or
suppressing (inhibitory) activity.
additionally, this design allows for customizable seed inputs, set through external input
pins, enabling users to initialize the LFSR with a specific seed to observe varying
sequence outputs. this feature provides added flexibility and control over the pseudo-
random behavior.

How to test

1. clock initialization: Run a clock signal to provide timing for the LFSR operation.
2. reset: hold the reset pin active (low) to initialize the LFSR state with the selected

seed.
3. seed testing: configure the seed by setting the ui_in input pins, then observe

the LFSR output sequence through uo_out.
4. cycle observation: monitor the output sequence over multiple clock cycles to

verify pseudo-random behavior, and repeat for different seed values for varied
sequences.

733

https://github.com/kjuarezj/tt09-ece110-juarez-jimenez

External hardware

N/A

Pinout

Input Output Bidirectional
0 LFSR Seed Bit 0 LFSR Output Bit 0
1 LFSR Seed Bit 1 LFSR Output Bit 1
2 LFSR Seed Bit 2 LFSR Output Bit 2
3 LFSR Seed Bit 3 LFSR Output Bit 3
4 LFSR Seed Bit 4 LFSR Output Bit 4
5 LFSR Seed Bit 5 LFSR Output Bit 5
6 LFSR Seed Bit 6 LFSR Output Bit 6
7 LFSR Seed Bit 7 LFSR Output Bit 7

734

Perceptron [873]

• Author: Clarence Chan
• Description: Hardware implementation of a single layer perceptron
• GitHub repository
• HDL project
• Mux address: 873
• Extra docs
• Clock: 0 Hz

How it works

Given 8 bits of inputs and 8 bits of weights, the single layer perceptron will classify the
inputs as class 0 or 1.

How to test

Initialize inputs and expected output in test.py, then run make in the test subdirec-
tory.

External hardware

N/A

Pinout

Input Output Bidirectional
0 Input bit 1 Perceptron class output Weight bit 1
1 Input bit 2 Weight bit 2
2 Input bit 3 Weight bit 3
3 Input bit 4 Weight bit 4
4 Input bit 5 Weight bit 5
5 Input bit 6 Weight bit 6
6 Input bit 7 Weight bit 7
7 Input bit 8 Weight bit 8

735

https://github.com/clarencechan28/tt09-perceptron

Matmul System [875]

• Author: Abarajithan
• Description: Matmul System
• GitHub repository
• HDL project
• Mux address: 875
• Extra docs
• Clock: 0 Hz

How it works

This is a simple system that performs matrix-vector multiplication. The matrix K[R,C]
and vector X[R] is sent from outside through UART. They are decoded by a UART
RX module, and sent into the matrix-vector multiplication core as AXI-Stream. The
core performs the multiplication and outputs the result as AXI-Stream. The result is
then packed into UART format by the UART TX module and sent outside.

How to test

iverilog -g2012 -o compiled src/mvm_uart_system.v src/uart_rx.v src/uart_tx.v src/axis_matvec_mul.v src/matvec_mul.v src/skid_buffer.v test/mvm_uart_system_tb.sv test/simple_axis_tb.sv src/project.v && ./compiled

External hardware

None

Pinout

Input Output Bidirectional
0 RX TX
1
2
3
4
5
6
7

736

https://github.com/SkillSurf/tinytapout-matmul-system

Verilog ring oscillator [877]

• Author: algofoogle (Anton Maurovic)
• Description: Simple ring oscillator by instantiating a sky130 inv_2 inverter ring
• GitHub repository
• HDL project
• Mux address: 877
• Extra docs
• Clock: 0 Hz

What is this?

Everyone has done a ring oscillator using inverter cells. Now it’s my turn!
This simple example uses Verilog to instantiate a ring of (an odd number of)
sky130_fd_sc_hd__inv_2 cells – UPDATE: Actually, since this is targeting IHP
instead, there is a polyfill that somebody else wrote to map sky130 cells to generic
cells (that OpenLane will then map to IHP cells).
It produces its output on uo_out[0].
Assuming each inverter introduces a delay of ~70ps, and there are 1001 of them, then
hopefully this will oscillate at ~14MHz?

Pinout

Input Output Bidirectional
0 osc_out
1
2
3
4
5
6
7

737

https://github.com/algofoogle/tt09-ring-osc

Delta RNN and Leaky Integrate-and-Fire Nueron Circuit
[879]

• Author: Katherine Rogacheva
• Description: A physical representation of a delta recurrent neural network (Delta

RNN) and a leaky integrate-and-fire (LIF) neuron, that creates an artificial spike
when the difference in the previous and current state is greater than a set delta
threshold.

• GitHub repository
• HDL project
• Mux address: 879
• Extra docs
• Clock: 0 Hz

How it works

Takes inputput voltages and treats that as the input current injection into the LIF
neuron

How to test

N/A

External hardware

N/A

Pinout

Input Output Bidirectional
0 Input current bit [0] State variable bit [0] Difference in states bit 1
1 Input current bit 1 State variable bit 1 Difference in states bit 2
2 Input current bit 2 State variable bit 2 Difference in states bit [3]
3 Input current bit [3] State variable bit [3] Difference in states bit [4]
4 Input current bit [4] State variable bit [4] Difference in states bit [5]
5 Input current bit [5] State variable bit [5] Difference in states bit [6]
6 Input current bit [6] State variable bit [6] Difference in states bit [7]
7 Input current bit [7] State variable bit [7] Difference in states bit [8]

738

https://github.com/katrogacheva/tt09-LIAFN-chip-design
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html
http://www.ericr.nl/wondrous/pathrecs.html

Generador PWM multiproposito con frecuencia y ciclo de
trabajo modulable [881]

• Author: Marco Vázquez, Paúl González, Abimael Jimenez, UACJ
• Description: A PWM generator with a 6-bit input that allows the user to enter

a denominator that divides the frequency. Using a pair of control inputs, we can
increase or decrease the duty cycle of the modulated output by 10%.

• GitHub repository
• HDL project
• Mux address: 881
• Extra docs
• Clock: 5000 Hz

How it works

Overall, the module converts a high-speed clock signal into a PWM signal with ad-
justable frequency and duty cycle. The user receives a high-frequency clock signal and,
through a frequency divider, generates a lower-frequency clock. Then, they control
the high duration of the PWM signal using buttons that increase or decrease the duty
cycle value.
A 5kHz signal is received; the 6-bit divider only accepts numbers from 2 to 63 (decimal).
The possible output frequencies for the PWM range from 2500Hz (5kHz/2) to 79Hz
(5kHz/63), which can be used in different electronic components such as RGB LEDs,
servomotors, stepper motors, sensors, and other circuits.

How to test

• Connect the clock signal: Assign a high-frequency clock.
• Apply the reset signal: Initially set the reset to high to restart the module. This

will reset all counters and the duty cycle to their initial values.
• Set the frequency divider: Define the frequency divider value to adjust the speed

of the clock used. This value controls the PWM signal frequency. A higher
divider value will result in a lower PWM frequency, and vice versa.

• Duty cycle adjustment buttons: When activating the increment button, the
duty cycle will increase by 10%. When activating the decrement button, the
duty cycle will decrease by 10%.

Recommendation: Use the PWM signal only as a control signal; the power supply for
the devices it is applied to should come from an external power source.

739

https://github.com/MarcoV09/ModularPWM_UACJ

External hardware

The PWM output should go to a PMOD to have that control signal available on a
device.

Pinout

Input Output Bidirectional
0 increase_duty pwm_out0
1 decrease_duty pwm_out1
2 divisor[0] pwm_out2
3 divisor1 pwm_out3
4 divisor2 pwm_out4
5 divisor[3] pwm_out5
6 divisor[4] pwm_out6
7 divisor[5] pwm_out7

740

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Linear Feedback Shift Register [883]

• Author: Steve Jenson <stevej@gmail.com>
• Description: An implementation of a Linear Feedback Shift Register for TT09
• GitHub repository
• HDL project
• Mux address: 883
• Extra docs
• Clock: 0 Hz

How it works

Read the ui_out pins, each read should be different than the last. To reset the shift
register, reset the chip, or set the ‘write_enable’ pin high after offering a value on
ui_in as a seed.

How to test

Read several bytes from ui_in, they should each be different.

External hardware

No external hardware needed other than to read the pins.

Pinout

Input Output Bidirectional
0 Seed Bit 1 LFSR Bit 1 Write Enable
1 Seed Bit 2 LFSR Bit 2
2 Seed Bit 3 LFSR Bit 3
3 Seed Bit 4 LFSR Bit 4
4 Seed Bit 5 LFSR Bit 5
5 Seed Bit 6 LFSR Bit 6
6 Seed Bit 7 LFSR Bit 7
7 Seed Bit 8 LFSR Bit 8

741

mailto:stevej@gmail.com
https://github.com/stevej/tt09-lfsr-stevej

Pinout

The chip is packaged in a 64-pin QFN package. The pinout is shown below.

Pin 1

1 16

uio[1]
uio[2]

uio[3]
uio[4]
uio[5]
uio[6]
uio[7]

8 17

3233

ctrl_ena

11

ctrl_sel_inc
ctrl_sel_rst_n

48

clk

37

rst_n

41

ui_in[0]
ui_in[1]

u
i_

in
[2

]
u
i_

in
[3

]
u
i_

in
[4

]
u
i_

in
[5

]
u
i_

in
[6

]

49

a
n
a
lo

g
[0

]

53

uo_out[0]

u
o
_o

u
t[

1
]

64

u
o
_o

u
t[

2
]

57

u
o
_o

u
t[

3
]

u
o
_o

u
t[

4
]

u
o
_o

u
t[

5
]

u
o
_o

u
t[

6
]

u
o
_o

u
t[

7
]

uio[0]

62

Bottom View

u
i_

in
[7

]

a
n
a
lo

g
[1

]
a
n
a
lo

g
[2

]
a
n
a
lo

g
[3

]
a
n
a
lo

g
[4

]
a
n
a
lo

g
[5

]

a
n
a
lo

g
[6

]

a
n
a
lo

g
[8

]
a
n
a
lo

g
[7

]

a
n
a
lo

g
[9

]
a
n
a
lo

g
[1

0
]

a
n
a
lo

g
[1

1
]

22

Note: you will receive the chip mounted on a breakout board. The pinout is provided
for advanced users, as most users will not need to solder the chip directly.

742

https://github.com/TinyTapeout/caravel-breakout-pcb/tree/main/breakout-qfn

The Tiny Tapeout Multiplexer

Overview

The Tiny Tapeout Multiplexer distributes a single set of user IOs to multiple user
designs. It is the backbone of the Tiny Tapeout chip.
It has the following features:

• 10 dedicated inputs
• 8 dedicated outputs
• 8 bidirectional IOs
• Supports up to 512 user designs (32 mux units, each with up to 16 designs)
• Designs can have different sizes. The basic unit is a called a tile, and each design

can occupy up to 16 tiles.

Operation

The multiplexer consists of three main units:

1. The controller - used to set the address of the active design
2. The spine - a bus that connects the controller with all the mux units
3. Mux units - connect the spine to individual user designs

743

744

The Controller

The mux controller has 3 inputs lines:

Input Description
ena Sent as-is (buffered) to the downstream mux units
sel_rst_n Resets the internal address counter to 0 (active low)
sel_inc Increments the internal address counter by 1

It outputs the address of the currently selected design on the si_sel port of the spine
(see below).
For instance, to select the design at address 12, you need to pulse sel_rst_n low,
and then pulse sel_inc 12 times:

Internally, the controller is just a chain of 10 D flip-flops. The sel_inc signal is
connected to the clock of the first flip-flop, and the output of each flip-flop is connected
to the clock of the next flip-flop. The sel_rst_n signal is connected to the reset of
all flip-flops.
The following Wokwi projects demonstrates this setup: https://wokwi.com/projects/3
64347807664031745. It contains an Arduino Nano that decodes the currently selected
mux address and displays it on a 7-segment display. Click on the button labeled RST_N
to reset the counter, and click on the button labeled INC to increment the counter.

745

https://wokwi.com/projects/364347807664031745
https://wokwi.com/projects/364347807664031745

The Spine

The controller and all the muxes are connected together through the spine. The spine
has the following signals going on it:
From controller to mux:

• si_ena - the ena input
• si_sel - selected design address (10 bits)
• ui_in - user clock, user rst_n, user inputs (10 bits)
• uio_in - bidirectional I/O inputs (8 bits)

From mux to controller:

• uo_out - User outputs (8 bits)
• uio_oe - Bidirectional I/O output enable (8 bits)
• uio_out - Bidirectional I/O outputs (8 bits)

The only signal which is actually generated by the controller is si_sel (using
sel_rst_n and sel_inc, as explained above). The other signals are just going
through from/to the chip IO pads.

The Multiplexer (The Mux)

Each mux branch is connected to up to 16 designs. It also has 5 bits of hard-coded
address (each unit gets assigned a different address, based on its position on the die).
The mux implements the following logic:
If si_ena is 1, and si_sel matches the mux address, we know the mux is active.
Then, it activates the specific user design port that matches the remaining bits of
si_sel.
For the active design:

• clk, rst_n, ui_in, uio_in are connected to the respective pins coming from
the spine (through a buffer)

• uo_out, uio_oe, uio_out are connected to the respective pins going out to
the spine (through a tristate buffer)

For all others, inactive designs (including all designs in inactive muxes):

• clk, rst_n, ui_in, uio_in are all tied to zero
• uo_out, uio_oe, uio_out are disconnected from the spine (the tristate buffer

output enable is disabled)

746

Pinout

QFN64 pin Function Signal
1 Mux Control ctrl_ena
2 Mux Control ctrl_sel_inc
3 Mux Control ctrl_sel_rst_n
4 Reserved (none)
5 Reserved (none)
6 Reserved (none)
7 Reserved (none)
8 Reserved (none)
9 Output uo_out[0]
10 Output uo_out1
11 Output uo_out2
12 Output uo_out[3]
13 Output uo_out[4]
14 Output uo_out[5]
15 Output uo_out[6]
16 Output uo_out[7]
17 Power VDD IO
18 Ground GND IO
19 Analog analog[0]
20 Analog analog1
21 Analog analog2
22 Analog analog[3]
23 Power VAA Analog
24 Ground GND Analog
25 Analog analog[4]
26 Analog analog[5]
27 Analog analog[6]
28 Analog analog[7]
29 Ground GND Core
30 Power VDD Core
31 Ground GND IO
32 Power VDD IO
33 Bidirectional uio[0]
34 Bidirectional uio1
35 Bidirectional uio2
36 Bidirectional uio[3]
37 Bidirectional uio[4]
38 Bidirectional uio[5]

747

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html
https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

QFN64 pin Function Signal
39 Bidirectional uio[6]
40 Bidirectional uio[7]
41 Input ui_in[0]
42 Input ui_in1
43 Input ui_in2
44 Input ui_in[3]
45 Input ui_in[4]
46 Input ui_in[5]
47 Input ui_in[6]
48 Input ui_in[7]
49 Input rst_n †
50 Input clk †
51 Ground GND IO
52 Power VDD IO
53 Analog analog[8]
54 Analog analog[9]
55 Analog analog[10]
56 Analog analog[11]
57 Ground GND Analog
58 Power VDD Analog
59 Analog analog[12]
60 Analog analog[13]
61 Analog analog[14]
62 Analog analog[15]
63 Ground GND Core
64 Power VDD Core

† Internally, there’s no difference between clk, rst_n, and ui_in pins. They are all
just bits in the pad_ui_in bus. However, we use different names to make it easier to
understand the purpose of each signal.

748

https://en.wikipedia.org/wiki/Collatz_conjecture
http://www.ericr.nl/wondrous/pathrecs.html

Funding

IHP PDK support for Tiny Tapeout was funded by The SwissChips Initiative.
The manufacturing of Tiny Tapeout IHP 0p2 silicon was funded by the German BMBF
project FMD-QNC (16ME0831).

Team

Tiny Tapeout would not be possible without a lot of people helping. We would espe-
cially like to thank:

• Uri Shaked for wokwi development and lots more
• Patrick Deegan for PCBs, software, documentation and lots more
• Sylvain Munaut for help with scan chain improvements
• Mike Thompson and Mitch Bailey for verification expertise
• Tim Edwards and Harald Pretl for ASIC expertise
• Jix for formal verification support
• Proppy for help with GitHub actions
• Maximo Balestrini for all the amazing renders and the interactive GDS viewer
• James Rosenthal for coming up with digital design examples
• All the people who took part in TinyTapeout 01 and volunteered time to improve

docs and test the flow
• The team at YosysHQ and all the other open source EDA tool makers
• Jeff and the Efabless Team for running the shuttles and providing OpenLane and

sponsorship
• Tim Ansell and Google for supporting the open source silicon movement
• Zero to ASIC course community for all your support
• Jeremy Birch for help with STA

749

https://wokwi.com/
https://psychogenic.com/
https://twitter.com/tnt
https://www.linkedin.com/in/michael-thompson-0a581a/
https://www.linkedin.com/in/mitch-bailey-8ba0b45/
https://www.linkedin.com/in/tim-edwards-4376a18/
https://www.linkedin.com/in/harald-pretl-4911ba10/
https://twitter.com/jix_
https://twitter.com/proppy
https://twitter.com/maxiborga
https://www.yosyshq.com/
https://efabless.com/
https://www.youtube.com/watch?v=EczW2IWdnOM
https://zerotoasiccourse.com/

	Chip renders
	Full chip render
	Top Metal 1/2
	Logic density view

	Projects
	Chip ROM [0]
	Tiny Tapeout Factory Test 1
	Verilog ring oscillator V3 2
	Matmul System [3]
	4-Bit Toy CPU [4]
	Hybrid_Adder_8bit [5]
	Dynamic Threshold Leaky Integrate-and-Fire [6]
	8-bit Carry Look-Ahead Adder [7]
	ternary, E1M0, E2M0 decoders [8]
	RISC-V Mini [9]
	eksdee [10]
	8-bit carry-skip [11]
	Cgates [12]
	T3 (Tiny Ternary Tapeout) [13]
	Classic 8-bit era Programmable Sound Generator SN76489 [14]
	3 Neuron ALIF [15]
	Giant Ring Oscillator (3853 inverters) [16]
	STDP Circuit [17]
	TwoChannelSquareWaveGenerator [18]
	instrumented_ring_oscillator [19]
	Linear Timecode (LTC) generator [32]
	Tiny Shader [34]
	Sine Synth [36]
	DRUM [38]
	Tiny Hash Table [40]
	Asynchronous FIFO [42]
	Synchronous FIFO [44]
	Pulse Width Modulation [46]
	DaDDS [48]
	Simple shift Reg [50]
	2-bit 2x2 Matrix Multiplier [64]
	8b10b decoder and multiplier [65]
	VGA Tiny Logo (1 tile) [66]
	Test Design 1 [67]
	A simple leaky integrate and fire neuron [68]
	Decimation Filter for Incremental and Regular Delta-Sigma Modulators [69]
	Leaky Neuron Network [70]
	adder-accumulator [71]
	Neuromorphic Hardware for SNN LSTM [72]
	ECE 298A 8-Bit CPU Control Block [73]
	RISCV Processor Design [74]
	LFSR Encrypter [75]
	RISCV Processor Design [76]
	SkyKing Demo [77]
	tiny cipher 4 bit key [78]
	Two LIF Neurons with STDP Learning [79]
	Tutorial: Simple LIF Neuron [80]
	7-Segment Byte Display [81]
	RGB Mixer demo [82]
	Forward Pass Network for Simple ANN [83]
	Priority-encoder [96]
	UltraTiny-CPU [98]
	Priority-Encoded Arbiter [100]
	ALU in verilog [102]
	Overengineered Checkers [104]
	toni_clk_gen [106]
	spi_pwm [108]
	BINCounterAndGates [110]
	tt09-pettit-wokproc-trainer [112]
	Duffy [114]
	pulse_add [128]
	nyan [130]
	Brailliance [132]
	Adder with Flow Control [134]
	i2c peripherals: leading zero count and fnv-1a hash [136]
	Rotary Encoder WS2812B Control [138]
	Alarm Clock [140]
	TSAL_TT [142]
	Divided Ring Oscillator [144]
	HACK CPU [146]
	simon_cipher [161]
	Wirecube [163]
	TT08 Pachelbel’s Canon demo [165]
	Neural Net ASIC [166]
	Sequential Shadows [TT08 demo competition] [167]
	CYCLIPSONIC [171]
	TDC with SPI [175]
	Atari 2600 [178]
	SPI FPU [179]
	MAC [192]
	DPMU [194]
	7 Segment Decode [196]
	PS2 Decoder [198]
	Super Mario Tune on A Piezo Speaker [200]
	AES Inverse S-box [202]
	TT08 - experiments with latch-based shift registers [204]
	Obstacle Detection [206]
	resfuzzy [208]
	CEJMU Beers and Adders [210]
	RGBW Color Processor [225]
	Stochastic Multiplier, Adder and Self-Multiplier [227]
	DL float MAC [229]
	schoolRISCV CPU with Fibonacci program [231]
	Rounding error [233]
	SIC-1 8-bit SUBLEQ Single Instruction Computer [234]
	Sea Battle [235]
	Comm_IC [237]
	16 Mic Beamformer [239]
	PDM Pitch Filter [241]
	Zoom Zoom [242]
	PDM Correlator [243]
	SPI Logic Analyzer with Charlieplexed Display [258]
	Find The Damn Issue [259]
	Sequential Shadows Deluxe [TT08 demo competition] [262]
	DDC [266]
	mulmul [270]
	Warp [274]
	Supermic [275]
	DPM_Unit [289]
	Generate VGA output for Color Blindness Test [291]
	4-bit CLA [293]
	SkyKing Demo [295]
	Flame demo [297]
	Metaballs [299]
	Simple Stopwatch [301]
	PWM generator [303]
	DMTD [305]
	I2S to PWM [307]
	Basys 3 Over UART Link [322]
	ITS-RISCV [326]
	Zilog Z80 [330]
	2048 sliding tile puzzle game (VGA) [334]
	ChatGPT-generated Spiking Neural Network with Delays [335]
	Space Invaders ASIC [338]
	Demo by a1k0n [339]
	Clock Divider [353]
	TinyFPGA resubmit for TT08 [355]
	Dummy Counter [357]
	RGB Mixer [359]
	32x8 LED Matrix Animation [361]
	TT09Ball VGA Screensaver [363]
	Color Bars [365]
	Hardware UTF Encoder/Decoder [367]
	Styler [369]
	VGA Timing Experiments [371]
	JTAG TAP [385]
	7-segment with LFSR [387]
	TT10 HPDL 1414 Uart [389]
	KCH CD101 Saw Synth [391]
	tt10_zhouzhouthezhou_adder [393]
	Asynchronous Locking Unit [395]
	XOR Cipher [397]
	Verilog based clock to 7-segment counter [399]
	TT10_Luke_Clock [401]
	SSMCl [403]
	Configurable Logic Block [416]
	Gamepad Pmod Demo [417]
	4-bit up/down binary counter [418]
	6Digit7SegClock [419]
	Team 17’s 8 bit DAC [420]
	MAC Operation [421]
	Tiny Registers [422]
	Xor-Logic [423]
	Leaky Integrate Fire Neuron [424]
	Simon Says memory game [425]
	Tiny Tapeout Group 7 Lab D [426]
	SPI 7-segment display [427]
	8-bit-CARRY_SKIP [428]
	AtomNPU [429]
	Semana UCU Verilog [430]
	Enigma - 52-bit Key Length [431]
	Frequency Encoder and Decoder [432]
	synth_simple [433]
	carry skip adder [434]
	VGA clock [435]
	Crossyroad [449]
	zc-sushi-demo [451]
	kch cd101 [453]
	SimpleSPIdev [455]
	RNG_test [457]
	15bit GCD [459]
	XY Spacewar [461]
	16-bit Logarithmic Approximate Floating Point Multiplier [463]
	TT_spiralPattern [465]
	ledtest [467]
	I2C and SPI [480]
	VGA Screensaver with Tiny Tapeout Logo [481]
	Perceptron Neuron [482]
	SPI test [483]
	Histogramming [484]
	Huffmann_Coder [485]
	RLE Video Player [486]
	Vedic multiplier [487]
	8-Bit CPU [488]
	Tiny piano [489]
	carry_select [490]
	Asynchronous I2C Registerfile Interface [491]
	test_friday2 [492]
	Tappu [493]
	Perceptron [494]
	mp_LIF_neuron [495]
	Hopfield Network with Izhikevich-type RS and FS Neurons [496]
	digital LIF Neuron [497]
	Tinysynth [498]
	Hero on Tape [499]
	16 Bit Izhikevich Neuron [512]
	dff_mem [514]
	Verilog ring oscillator V2 [516]
	Basic model for Systollic array implementation of LIF [518]
	Leaky integrate and fire spiking neural network [520]
	tinydsp-lol [522]
	Shifter [524]
	LRC - Longitudinal Redundancy Check generator [526]
	Workshop demo [528]
	A Tale of Two NCOs [530]
	Wokwi Group #7 [544]
	Wokwi Group #6 [546]
	Wokwi Group #5 [548]
	Wokwi Group #4 [550]
	Wokwi Group #3 [552]
	Wokwi Group #2 [554]
	Wokwi Group #1 [556]
	Will It NAND? [558]
	sphereinabox hello [560]
	L display [562]
	7-Segment Digital Desk Clock [576]
	Basic Perceptron + ReLU [578]
	Basic Matrix-Vector Multiplication [580]
	8 bit MAC Unit [582]
	Programmable PWM Generator [584]
	Verilog test project [586]
	Basic LIF Neuron [588]
	Integrate-and-Fire Neuron Circuit [590]
	Michaels Tiny Tapeout ALU [592]
	8-bit CBILBO [594]
	Wokwi Group #8 [608]
	Wokwi Group #9 [610]
	Wokwi Group #10 [612]
	Wokwi Group #11 [614]
	Wokwi Group #12 [616]
	triggerer [618]
	Wokwi Group #13 [620]
	Multiplier Group #1 [622]
	Multiplier Group #2 [624]
	Multiplier Group #3 [626]
	Ternary 128-element Dot Product [640]
	GUS16 CPU [642]
	Warp [644]
	VGA Drop (audio/visual demo) [646]
	Classic 8-bit era Programmable Sound Generator AY-3-8913 [648]
	SoCET UART with FIFO buffers [650]
	Simon’s Caterpillar [652]
	Stochastic Integrator [654]
	E2M0 x INT8 Systolic Array [656]
	VGA Nyan Cat [658]
	Collatz conjecture brute-forcer [673]
	APA102 to WS2812 Translator [675]
	pio-ram-emulator example: Julia fractal [677]
	Tiny Neural Network Accelerator [678]
	Fuzzy Search Engine [679]
	VGA Pride [681]
	donut [683]
	UART [685]
	Why not? [687]
	FSK Modem +HDLC +UART (PoC) [689]
	Spectrogram extractor, 2 channels [690]
	Bouncy Capsule [691]
	TinyTapeout Minimal Branch Predictor [704]
	Moody-mimosa [706]
	Classic 8-bit era Programmable Sound Generator AY-3-8913 [708]
	Orion Iron Ion [TT10 demo competition] [710]
	My Project [712]
	simple-viii [714]
	ttUART [716]
	Bitty [718]
	IHP VGA demo [720]
	UW ASIC - Optimized Dino [722]
	PID Controller [737]
	Frequency Counter SSD1306 OLED [739]
	Tiny 1-bit AM Radio [741]
	FIREngine [743]
	znah_vga_ca [745]
	TRNG [746]
	CORA-16 [747]
	T3 (Tiny Ternary Tapeout) CSA [749]
	Basic Oszilloscope and Signal Generator [751]
	1bit_am_sdr [752]
	15 channels emission counter [753]
	VGA Pong with NES Controllers [754]
	Tiny RAM DFF 2r1w [755]
	Sprite Bouncer with Looping Background Options [768]
	Glyph Mode [769]
	VGA Scroller [771]
	DDR throughput and flop aperature test [773]
	Wildcat RISC-V [774]
	Calculator [775]
	Crispy VGA [777]
	asic design is my passion [779]
	TinyQV Risc-V SoC [780]
	Dice [781]
	4-bit minicomputer ALU [783]
	RGB Mixer demo5 [785]
	AlphaOneSoC [786]
	Asynchronous Multiplier [787]
	Hamming Code (7,4) [801]
	Space Detective Maze Explorer [803]
	Senol Gulgonul tt09 [805]
	4 bit ALU [807]
	Elevator Design [809]
	LED Bitserial Cipher [811]
	freqSweep [813]
	Simple PWM Module [815]
	INTERCAL ALU [817]
	Universal Binary to Segment Decoder [819]
	RO [833]
	CMOS design of 4-bit Signed Adder Subtractor [835]
	LaRVa CPU [836]
	Patater Demo Kit Waggling Rainbow on a Chip [837]
	DemoSiine [839]
	"SQUARE-1": VGA/audio demo [840]
	Munch [841]
	cfib Demoscene Entry [843]
	VGA donut [844]
	4-bit ALU [845]
	Morse Code Keyer [847]
	VGA Mandelbrot [848]
	nVious Graphics [849]
	TinyMandelbrot [850]
	8-Bit Calculator [851]
	tiny-tapeout-8bit-GPTPrefixCircuit [865]
	LIF on a Ring Topology [867]
	Delta-Sigma ADC Decimation Filter [869]
	an lfsr with synaptic neurons (excitatory or inhibitatory) [871]
	Perceptron [873]
	Matmul System [875]
	Verilog ring oscillator [877]
	Delta RNN and Leaky Integrate-and-Fire Nueron Circuit [879]
	Generador PWM multiproposito con frecuencia y ciclo de trabajo modulable [881]
	Linear Feedback Shift Register [883]

	Pinout
	The Tiny Tapeout Multiplexer
	Overview
	Operation
	Pinout

	Funding
	Team

