
Tiny Tapeout IHP 25b Datasheet
Project Repository

https://github.com/TinyTapeout/tinytapeout-ihp-25b

September 2, 2025

Contents

1

https://github.com/TinyTapeout/tinytapeout-ihp-25b

Chip map 5

Projects 8
Chip ROM [0] . 8
Tiny Tapeout Factory Test [1] . 10
and gate [32] . 12
Oscillating Bones [34] . 13
ENSEIRB-MATMECA RISC-V processor [42] 15
IZH Neuron [73] . 16
PWM_SPI [75] . 17
SIC-1 8-bit SUBLEQ Single Instruction Computer [102] 19
VGA Screensaver with Tiny Tapeout Logo [104] 23
LIF Neuron [106] . 25
RNG [128] . 29
PQN Model with Verilog [130] . 31
VGA Screensaver with the IHP Logo [132] 34
4-Bit Adder [134] . 36
OCDCpro TT key lock test design IHP [136] 37
8-bit DDS sine wave generator [138] . 38
Tapeout Test1 [160] . 40
Barans erster Template Design [162] . 41
demo-tiny [164] . 42
Random [166] . 43
noclue [168] . 44
GG [170] . 45
Tiny Tapeout Template Copy_Orion [224] 46
CRP - Custom Risc Processor [225] . 47
Simple classification perceptron [226] . 52
Tiny Tapeout [228] . 54
example-verilog [230] . 55
brostarscard [232] . 56
Simon Says memory game [234] . 57
Timo 1 [256] . 60
Delta Sigma Comparator Based ADC [257] 61
Tiny Tapeout Template Copy [258] . 64
AdExp DPI Neuron [259] . 65
dummy [260] . 70
Tapeout try [262] . 71
Chip design from Wokwi [264] . 72
Encoder [266] . 73
Nils Tinytapeout Proj [289] . 74
Projekt [291] . 75

2

4 bit incrementer [293] . 76
Tiny Tapeout Workshop Project by Nick Figner [295] 77
Tiny Tapeout Chip [297] . 78
Atari 2600 [298] . 79
And Gate [299] . 80
LGN hand-written digit classifier (MNIST, 16x16 pixels) [326] 81
DUMBRV [330] . 82
Simple LIF Neuron [417] . 84
test_design [419] . 88
RISC-V Mini IHP [421] . 89
LIF Neuron [423] . 92
Morse Code Trainer [425] . 96
Gamepad Pmod Demo [427] . 99
tinytapeoutchip [449] . 101
tiny tapeout chip [451] . 102
ToDo [453] . 103
in progress [455] . 104
numbers [457] . 105
number display [459] . 106
VGA Screensaver with Zero to ASIC Logo [480] 107
weaving in silicon #1 [481] . 109
weaving in silicon #2 [483] . 110
weaving in silicon #3 [485] . 111
weaving in silicon #4 [487] . 112
Verilog OR-Gate [489] . 113
TinyQV - Crowdsourced Risc-V SoC [490] 114
SAR ADC Controller [491] . 118
MC first Wokwi [513] . 120
2048 sliding tile puzzle game (VGA) [514] 121
TinyTapeout 2025 [515] . 123
LIF neuron [517] . 125
3-bit up-down counter [519] . 126
Prism [521] . 128
KianV uLinux SoC [522] . 129
E-ink display driver [523] . 132
Yet Another Diffraction Grating Experiment [576] 134
’’ [577] . 135
WowkiProject [579] . 136
Mini Calculator v1 [581] . 137
and [583] . 138
DigOTA [585] . 139
TinyTapeoutWorkshop [587] . 140

3

Pinout 141

The Tiny Tapeout Multiplexer 142
Overview . 142
Operation . 142
Pinout . 146

Funding 150

Team 150

4

Chip map

Full chip map

5

GDS render

6

Logic density (local interconnect layer)

7

Projects

Chip ROM [0]

• Author: Uri Shaked
• Description: ROM with information about the chip
• GitHub repository
• HDL project
• Mux address: 0
• Extra docs
• Clock: 0 Hz

How it works

ROM memory that contains information about the Tiny Tapeout chip. The ROM is
8-bit wide and 256 bytes long.

The ROM layout The ROM layout is as follows:

Address Length Encoding Description
0 8 7-segment Shuttle name (e.g. “tt07”), null-padded
8 8 7-segment Git commit hash
32 96 ASCII Chip descriptor (see below)
248 4 binary Magic value: "TT\xFA\xBB"
252 4 binary CRC32 of the ROM contents, little-endian

The chip descriptor The chip descriptor is a simple null-terminated string that
describes the chip. Each line is a key-value pair, separated by an equals sign. It
contains the following keys:

Key Description Example value
shuttle The identifier of the shuttle tt07
repo The name of the repository TinyTapeout/tinytapeout-07
commit The commit hash * a1b2c3d4

• The commit hash is only included for Tiny Tapeout 5 and later.

Here is a complete example of a chip descriptor:

8

https://github.com/TinyTapeout/tt-chip-rom

shuttle=tt07
repo=TinyTapeout/tinytapeout-07
commit=a1b2c3d4

How the ROM is generated The ROM is automatically generated by tt-support-
tools while building the final GDS file of the chip. Look at the rom.py file in the
repository for more details.

Reading the ROM There are two ways to address ROM, depending on the value
of the rst_n pin:

1. When rst_n is high: Set the ui_in pins to the desired address.
2. When rst_n is low: Toggle the clk pin to read the ROM contents sequentially,

starting from address 0.

In both cases, the ROM data for the selected address will be available on the uo_out
pins, one byte at a time.

How to test

The first 16 bytes of the ROM are 7-segment encoded and contain the shuttle name
and commit hash. You can dump them by holding rst_n low and toggling the clk
pin, and observing the on-board 7-segment display.
Alternatively, you can keep rst_n high and set the ui_in pins to the desired address
using the first four on-board DIP switches, while observing the on-board 7-segment
display.

Pinout

Input Output Bidirectional
0 addr[0] data[0]
1 addr[1] data[1]
2 addr[2] data[2]
3 addr[3] data[3]
4 addr[4] data[4]
5 addr[5] data[5]
6 addr[6] data[6]
7 addr[7] data[7]

9

https://github.com/TinyTapeout/tt-support-tools
https://github.com/TinyTapeout/tt-support-tools

Tiny Tapeout Factory Test [1]

• Author: Tiny Tapeout
• Description: Factory test module
• GitHub repository
• HDL project
• Mux address: 1
• Extra docs
• Clock: 0 Hz

How it works

The factory test module is a simple module that can be used to test all the I/O pins
of the ASIC.
It has three modes of operation:

1. Mirroring the input pins to the output pins (when rst_n is low).
2. Mirroring the bidirectional pins to the output pins (when rst_n is high sel is

low).
3. Outputing a counter on the output pins and the bidirectional pins (when rst_n

is high and sel is high).

The following table summarizes the modes:

rst_n sel Mode uo_out value uio pins
0 X Input mirror ui_in High-Z
1 0 Bidirectional mirror uio_in High-Z
1 1 Counter counter counter

The counter is an 8-bit counter that increments on every clock cycle, and resets when
rst_n is low.

How to test

1. Set rst_n low and observe that the input pins (ui_in) are output on the output
pins (uo_out).

2. Set rst_n high and sel low and observe that the bidirectional pins (uio_in)
are output on the output pins (uo_out).

3. Set sel high and observe that the counter is output on both the output pins
(uo_out) and the bidirectional pins (uio).

10

https://github.com/TinyTapeout/ttihp25b-factory-test

Pinout

Input Output Bidirectional
0 sel / in_a[0] output[0] / counter[0] in_b[0] / counter[0]
1 in_a[1] output[1] / counter[1] in_b[1] / counter[1]
2 in_a[2] output[2] / counter[2] in_b[2] / counter[2]
3 in_a[3] output[3] / counter[3] in_b[3] / counter[3]
4 in_a[4] output[4] / counter[4] in_b[4] / counter[4]
5 in_a[5] output[5] / counter[5] in_b[5] / counter[5]
6 in_a[6] output[6] / counter[6] in_b[6] / counter[6]
7 in_a[7] output[7] / counter[7] in_b[7] / counter[7]

11

and gate [32]

• Author: mirosuv
• Description: a simple and gate
• GitHub repository
• Wokwi project
• Mux address: 32
• Extra docs
• Clock: 0 Hz

How it works

This design is a simple and gate to test how chip design works.

How to test

The design can be tested whit the first two switches of the test board. The output is
visible on the 7-segment display.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 and gate input pin a and gate output
1 and gate input pin b
2
3
4
5
6
7

12

https://github.com/piussieber2/tiny_tapeout_mirosuv
https://wokwi.com/projects/434921821909078017

Oscillating Bones [34]

• Author: Uri Shaked
• Description: A stylish ring oscillator built from SkullFET transistors
• GitHub repository
• HDL project
• Mux address: 34
• Extra docs
• Clock: 0 Hz

How it works

A simple yet stylish ring oscillator that uses a chain of 21 SkullFET inverters to generate
a square wave output. Based on simulation, the oscillator should have a frequency of
around 148.6 MHz.

Pin Expected frequency
osc_out 148.6 MHz
osc_div_2 74.3 MHz
osc_div_4 37.1 MHz
osc_div_8 18.6 MHz

How to test

Connect an oscilloscope to one of the output pins (eg. osc_div_8 / uo_out[3]) and
enjoy the show.

Simulation results

The following graph shows the output of the oscillator and the divided outputs. It was
generated by running make -C docs/layout_sim.png:

13

https://github.com/urish/ttihp-oscillating-bones

The outputs are shifted by 2 volts to make them easier to see in the graph. “uo_out[0]”
is the main output of the oscillator and “uo_out[1]”/“uo_out[2]”/“uo_out[3]” are the
divided outputs.
Please note that the simulation results do not account for all parasitics, only the primary
ones. Consequently, the actual frequency of the oscillator is likely to be lower than the
simulated value.

Pinout

Input Output Bidirectional
0 osc_out
1 osc_div_2
2 osc_div_4
3 osc_div_8
4
5
6
7

14

ENSEIRB-MATMECA RISC-V processor [42]

• Author: Mathieu Escouteloup
• Description: RISC-V core implementation (32-bit with 8 GPRs)
• GitHub repository
• HDL project
• Mux address: 42
• Extra docs
• Clock: 50000000 Hz

How it works

It is a simple RISC-V 32-bit implementation.

How to test

There is no implemented test yet.

External hardware

1 input to select boot loader, 1 input for UART Rx, 1 output for Uart Tx, 8 in-
put/outputs for GPIOs

Pinout

Input Output Bidirectional
0 BOOT OUT0_FREE GPIO0
1 IN1_FREE OUT1_FREE GPIO1
2 IN2_FREE OUT2_FREE GPIO2
3 UART_RX OUT3_FREE GPIO3
4 IN4_FREE UART_TX GPIO4
5 IN5_FREE OUT5_FREE GPIO5
6 IN6_FREE OUT6_FREE GPIO6
7 IN7_FREE OUT7_FREE GPIO7

15

https://github.com/mescoutelou/TTIHP25b_emmk_riscv

IZH Neuron [73]

• Author: Anwesha Panda
• Description: izh neuron implementation from Sohil Khan
• GitHub repository
• HDL project
• Mux address: 73
• Extra docs
• Clock: 0 Hz

How it works

bla bla lbla

How to test

bla bli bol oblr

External hardware

clfor fokr lpgrgl gt g5g g5

Pinout

Input Output Bidirectional
0 Input current bit [0] State variable bit [0]
1 Input current bit [1] State variable bit [1]
2 Input current bit [2] State variable bit [2]
3 Input current bit [3] State variable bit [3]
4 Input current bit [4] State variable bit [4]
5 Input current bit [5] State variable bit [5]
6 Input current bit [6] State variable bit [6]
7 Input current bit [7] State variable bit [7]

16

https://github.com/anwesha2402/tt_izh_neuron

PWM_SPI [75]

• Author: HES SO
• Description: A PWM module controllable from an spi interface.
• GitHub repository
• HDL project
• Mux address: 75
• Extra docs
• Clock: 50000000 Hz

How it works

PWM is a technique used to output analog results with digital means.
A digital control is used to generate digital signals that can have variable duty cycle.
The goal is to adjust the output pulse width in order to regulate the average output
voltage. Our chip is a pwm module that is controlled over an SPI interface.

SPI Command Set These command values are sent over SPI to control the PWM
peripheral:

Command (8-bit) Operation
8'd1 Write Compare Value (CV)
8'd2 Write Prescaler value
8'd3 Write Duty Cycle 1
8'd4 Write Duty Cycle 2
8'd5 Write Duty Cycle 3
8'd6 Disable PWM output
8'd7 Enable PWM output

For operations other than ENABLE_PWM and DISABLE_PWM, the SPI command must
be followed by four data bytes. These bytes represent the value to be written into
the selected register (e.g., Compare Value, Prescaler, or Duty Cycle). The data is
transmitted least significant byte (LSB) first, so the first byte on the SPI bus
corresponds to bits [7:0] of the value, the second byte to bits [15:8], and so on,
up to the most significant byte.
The SPI slave has a clock polarity of zero and clock phase of zero, CPOL=0 and
CPHA=0.
Override pins are present to test the functionality of the PWM module without having
to use the SPI. When driven high, the pins set the counter value, prescaler, duty cycles,

17

https://github.com/AGS-L/AGS-C1

and enable signal of the PWM directly to a preset value. When all override pins are
driven the output signal should be 10kHz 50% duty cycle on all 3 PWM output pins
when ran at 25MHz.
There are two input pins that set the output of a uio output pin to 0, 1, and Z. This
is just to test functionality of tristating in tinytapeout.

How to test

Program counter value, and duty cycle registers over SPI by sending the proper com-
mand byte followed by 4 bytes to set the value of the register. Then send the enable
pwm command byte to start the SPI. Outputs 3 to 7 indicate that the registers value
is non zero. Bidirectional output 0 shows if the enable register is non zero. Or use the
override pins present on the ui_in to test just the PWM.

External hardware

SPI master device and something to view the PWM signal with.

Pinout

Input Output Bidirectional
0 Sets Value of uio_out0 pwm_0 EN_nonZero
1 High Z on uio_out0 - 1 for Z pwm_1
2 CV_override pwm_2
3 PS_override CV_nonZero High Z test Pin
4 DC1_override PS_nonZero spi_clk
5 DC2_override DC1_nonZero miso
6 DC3_override DC2_nonZero mosi
7 EN_override DC3_nonZero cs_n

18

SIC-1 8-bit SUBLEQ Single Instruction Computer [102]

• Author: Uri Shaked
• Description: Hardware implementation of the 8-bit Single Instruction Computer
• GitHub repository
• HDL project
• Mux address: 102
• Extra docs
• Clock: 0 Hz

How it works

SIC-1 is an 8-bit Single Instruction computer. The only instruction it supports is
SUBLEQ: Subtract and Branch if Less than or Equal to Zero. The instruction has
three operands: A, B, and C. The instruction subtracts the value at address B from
the value at address A and stores the result at address A. If the result is less than or
equal to zero, the instruction jumps to address C. Otherwise, it proceeds to the next
instruction.

Memory map The SIC-1 computer has an address space of 256 bytes, and and
8-bit program counter. The first 253 bytes are used for the program memory, and the
last 3 bytes are used for input, output, and for halting the computer:

Address Label Read Write
253 @IN ui pins Ignored
254 @OUT Returns 0 uo pins
255 @HALT Returns 0 Ignored

Setting the program counter to 253, 254, or 255 will halt the computer.
Each instruction is 3 bytes long, and the program counter is incremented by 3 after
each instruction, except when a branch is taken.
For more information, check out the SIC-1 Assembly Language Reference.

Execution cycle Each instruction takes 6 cycles to execute, regardless of whether
a branch is taken or not. The execution of an instruction is divided into the following
stages:

1. Fetch A: Read the value at address PC

19

https://github.com/urish/tt-subleq-sic1
https://github.com/jaredkrinke/sic1/blob/master/sic1-assembly.md

2. Fetch B: Read the value at address PC+1
3. Fetch C: Read the value at address PC+2
4. Read valA: Read the value at address A
5. Read valB: Read the value at address B
6. Store: Subtract valB from valA, store the result at A, and branch if the result

is less than or equal to zero.

The pseudocode for the execution cycle is as follows:

(1) A <= memory[PC]
(2) B <= memory[PC+1]
(3) C <= memory[PC+2]
(4) valA <= memory[A]
(5) valB <= memory[B]
(6) result <= valA - valB

memory[A] <= result
if result <= 0:
PC = C

else:
PC = PC + 3

Control signals The uio pins are used to load a program into the computer, and
to control the computer:

uio pin Name Type Description
0 run input Start the computer
1 halted output Computer has halted
2 set_pc input Set the program counter to the value on ui pins
3 load_data input Load the value from the ui pins into the memory at the PC
4 out_strobe output Pulsed for one clock cycle when the computer writes to @OUT (uo pins)
5 dbg[0] input Debug select bit 0
6 dbg[1] input Debug select bit 1
7 dbg[2] input Debug select bit 2

Debug interface The dbg pins are used to expose internal signals for debugging
on the uo pins. When the dbg pins are set to 0, the uo pins will output the @OUT
value. For other values of dbg, the uo pins will output the following signals:

20

dbg[2:0] Signal
0 None
1 PC
2 A
3 B
4 C
5 valA
6 result (valA - valB)
7 state (3 bits)

The state signal is a 3-bit value that represents the current state of the computer,
corresponding to the execution cycle stages described above (1-6), and a 3-bit value
of 0 when the computer is halted.

Programming the SIC-1

You can use the online SIC-1 app to compile and simulate your SIC-1 programs. Click
on “Run game” and then “Apply for the job”, close the “Electronic mail” popup. Paste
the code and click on “Compile” (on the bottom left). You’ll see the compiled code
in the “Memory” window on the right, and will be able to step through the code.
To load a program and run a program, follow this sequence:

1. Set the ui pins to 0 (target address)
2. Pulse the the load_pc pin
3. Set the ui pins to the value you want to load
4. Pulse the load_data pin
5. Repeat steps 3-4 until you have loaded the entire program
6. Set the ui pins to the address you want to start at (usually 0)
7. Pulse the set_pc pin
8. Set the run pin to 1. The computer will start running the program, and the

halted pin will go high when the program is done.

If you want to step through the program, you can pulse the run pin to advance one
instruction at a time.

Pinout

21

https://jaredkrinke.itch.io/sic-1

Input Output Bidirectional
0 in[0] out[0] run
1 in[1] out[1] halted
2 in[2] out[2] set_pc
3 in[3] out[3] load_data
4 in[4] out[4] out_strobe
5 in[5] out[5] dbg[0]
6 in[6] out[6] dbg[1]
7 in[7] out[7] dbg[2]

22

VGA Screensaver with Tiny Tapeout Logo [104]

• Author: Uri Shaked
• Description: Tiny Tapeout Logo bouncing around the screen (640x480, TinyVGA

Pmod)
• GitHub repository
• HDL project
• Mux address: 104
• Extra docs
• Clock: 25175000 Hz

How it works

Displays a bouncing Tiny Tapeout logo on the screen, with animated color gradient.

How to test

Connect to a VGA monitor. Set the following inputs to configure the design:

• tile (ui_in[0]) to repeat the logo and tile it across the screen,
• solid_color (ui_in[1]) to use a solid color instead of an animated gradient.

If you have a Gamepad Pmod connected, you can also use the following controls:

• Start button: start/pause bouncing

23

https://github.com/TinyTapeout/tt10-logo-screensaver

• Left/right/up/down: change the bouncing direction (if bouncing) or move the
logo around the screen (if paused)

External hardware

• Tiny VGA Pmod
• Optional: Gamepad Pmod

Pinout

Input Output Bidirectional
0 tile R1
1 solid_color G1
2 B1
3 VSync
4 gamepad_latch R0
5 gamepad_clk G0
6 gamepad_data B0
7 HSync

24

https://github.com/mole99/tiny-vga
https://github.com/psychogenic/gamepad-pmod

LIF Neuron [106]

• Author: Sohil Khan
• Description: LIF Neuron implementation with editable configuration
• GitHub repository
• HDL project
• Mux address: 106
• Extra docs
• Clock: 0 Hz

How it works

This project implements a hardware-optimized LIF (Leaky Integrate-and-Fire)
neuron in Verilog, designed for area efficiency while maintaining biological realism.
The system consists of four main components:

Core LIF Neuron Engine The heart of the system implements authentic LIF dy-
namics:

• Integration: V_mem = V_mem + weighted_input - leak_rate
• Spike Generation: When V_mem � threshold, generate spike and reset

V_mem = 0
• Refractory Period: 4-cycle no-spike period after each action potential
• Variable Leak Rates: 4 different membrane leak speeds (1-4 units/cycle)

The implementation uses 8-bit arithmetic for hardware efficiency while maintaining
biological accuracy across a 0-255 membrane potential range.

Enhanced Input Processing
• 3-bit Channel Precision: Each synaptic input (Channel A, Channel B) accepts

0-7 stimulus levels
• Weighted Integration: weighted_input = (chan_a × weight_a) +

(chan_b × weight_b)
• Synaptic Depression: Temporary weight reduction after spike generation for

realistic synaptic fatigue
• 64 Input Combinations: Full 8×8 stimulus space for fine-grained neural

control

25

https://github.com/NatSavoia/lif_neuron_Nathan

Serial Parameter Loader A dedicated state machine loads five key parameters via
single-bit serial interface:

• Weight A/B (3 bits each): Synaptic strength for channels A and B
• Leak Config (2 bits): Membrane leak rate selection (1-4 units/cycle)
• Threshold Min/Max (8 bits each): Adaptive threshold bounds
• 40-bit Total: Complete parameter set loaded serially for different neuron per-

sonalities

Advanced Biological Features
• Adaptive Thresholds: Increase by 4 units after spikes, decrease by 1 unit

during silence
• Synaptic Depression: Weights temporarily reduced by 3 units after spiking
• Multiple Neuron Types: Configurable personalities (high/low sensitivity, bal-

anced, custom)
• Realistic Dynamics: Proper integration, leak, refractory periods matching

biological neurons

I/O Interface
• 6-bit stimulus input: 3-bit Channel A + 3-bit Channel B with 2 pins reserved

for expansion
• 8-bit neural output: 7-bit membrane potential + 1-bit spike detection
• Serial configuration: Single-bit parameter loading with status monitoring
• Debug outputs: Parameter ready, spike monitor, activity indicators

How to test

Basic Operation Test
1. System Reset: Assert rst_n low, then release while keeping ena high
2. Apply Stimulus: Set ui_in[2:0] (Channel A) and ui_in[5:3] (Channel

B) to desired values (0-7 each)
3. Monitor Output: Watch uo_out for spikes, uo_out[6:0] for real-time mem-

brane potential
4. Expected Behavior: With default parameters, combined stimulus � 4 should

eventually generate spikes

26

Parameter Loading Test
1. Enter Load Mode: Set uio_in (load_mode) = 1
2. Send Parameters: Use uio_in (serial_data) to clock in 40 bits (5×8 bit

parameters):

• Weight A: 8 bits (try 0x04 for moderate synaptic strength)
• Weight B: 8 bits (try 0x03 for balanced dual-channel response)
• Leak Config: 8 bits (try 0x01 for slow leak, 0x03 for fast leak)
• Threshold Min: 8 bits (try 0x20=32 for low sensitivity, 0x40=64 for

high)
• Threshold Max: 8 bits (try 0x60=96 for moderate, 0x80=128 for wide

range)

3. Monitor Status: Watch uio_out (params_ready) transition from 1→0→1
4. Exit Load Mode: Set uio_in = 0
5. Test New Behavior: Apply stimuli and verify different firing patterns

Neuron Configuration Testing Load these parameter sets to test different neuron
behaviors:

Configuration Weight A Weight B Leak Thr Min Thr Max Expected Behavior
High Sensitivity 0x06 0x05 0x01 0x19 0x50 Spikes with low inputs
Low Sensitivity 0x01 0x01 0x03 0x3C 0x78 Requires high inputs
Balanced 0x04 0x04 0x02 0x1E 0x5A Moderate responses
Fast Dynamics 0x03 0x03 0x03 0x28 0x5A Rapid leak, brief integration

Stimulus Response Testing
• Chan A=0, Chan B=0: Should remain at rest (membrane potential ~0-10)
• Chan A=1, Chan B=1: Subthreshold integration, gradual membrane rise
• Chan A=2, Chan B=2: Threshold region, occasional spikes depending on

configuration
• Chan A=3, Chan B=3: Suprathreshold, regular spike generation
• Chan A=7, Chan B=7: Maximum input, high-frequency firing or rapid adap-

tation

Advanced Feature Testing
• Adaptive Thresholds: Apply repeated stimuli, observe increasing inter-spike

intervals

27

• Synaptic Depression: High-frequency stimulation should show reduced re-
sponse over time

• Leak Rate Effects: Compare integration speed with different leak configura-
tions

• Dual Channel: Test various A/B combinations to verify independent channel
processing

Debug Monitoring
• uio_out: Parameter loading status (1=ready, 0=loading)
• uio_out: Duplicate spike output for external monitoring
• uio_out: Membrane activity indicator (1=active, 0=quiet)
• uio_out[5:7]: Echo signals for load mode, serial data, and enable verification

External hardware

No external hardware required for basic operation:

• Stimulus Input: Connect DIP switches or digital signals to ui_in[5:0] for
manual channel control

• Spike Output: Connect LED to uo_out for visual spike indication
• Membrane Monitor: Connect 7-segment display or LED bar to uo_out[6:0]

for membrane voltage visualization

Pinout

Input Output Bidirectional
0 CHAN_A_BIT0 V_MEM_BIT0 LOAD_MODE
1 CHAN_A_BIT1 V_MEM_BIT1 SERIAL_DATA
2 CHAN_A_BIT2 V_MEM_BIT2 PARAMS_READY
3 CHAN_B_BIT0 V_MEM_BIT3 SPIKE_MONITOR
4 CHAN_B_BIT1 V_MEM_BIT4 MEM_ACTIVITY
5 CHAN_B_BIT2 V_MEM_BIT5 LOAD_MODE_ECHO
6 RESERVED_0 V_MEM_BIT6 SERIAL_DATA_ECHO
7 RESERVED_1 SPIKE_OUT ENABLE_STATUS

28

RNG [128]

• Author: Felix N
• Description: Ring oscillator based random number generator
• GitHub repository
• HDL project
• Mux address: 128
• Extra docs
• Clock: 500000 Hz

How it works

This project is a true random number generator.
The core of the TRNG is a set of three ring oscillators of different lengths (6, 12,
and 24 inverters). These oscillators produce unstable, jittery signals. The outputs are
combined using an XOR gate to create a chaotic bit stream. Here is the ring oscillator
frequency estimates:

Ring Oscillator Frequency Estimate Period Estimate
6 ~231 MHz 4.32 ns
12 ~117 MHz 8.52 ns
24 ~59 MHz 16.91 ns

The raw random bitstream may have a bias (more 1s than 0s). To correct this, a Von
Neumann corrector is used. It takes pairs of bits from the stream:

• If the bits are 01, it outputs a 0.
• If the bits are 10, it outputs a 1.

If the bits are the same (00 or 11), it outputs nothing.
The debiased bits are collected one by one and shifted into a 32-bit register. Once a
32 bit number has been collected, it is output through the UART.

How to test

To test the design, you will need to monitor the UART output. Connect a UART-to-
USB adapter to the uo_out[0] pin (which is the UART TX pin), the ground pin, and
the power pin of your board.

29

https://github.com/Xelef2000/tinytapeout-verilog

Configure the serial terminal to match the UART settings: Baud Rate: 9600 Data
Bits: 8 Parity: None Stop Bits: 1
Once connected, you should see a continuous stream of raw binary data appearing in
your terminal. This is the 32-bit random numbers being sent from the chip.
The raw ring oscillator outputs can also be monitored on the uo_out[1], uo_out[2],
and uo_out[3] pins, which correspond to the 6, 12, and 24 inverter ring oscillators
respectively.

External hardware

A UART-to-USB adapter is required to connect the chip’s output to a computer and
view the generated random numbers.

Pinout

Input Output Bidirectional
0 Uart TX
1 ring oscillator 6
2 ring oscillator 12
3 ring oscillator 24
4
5
6
7

30

PQN Model with Verilog [130]

• Author: kinako71-2
• Description: ASIC implementation of a PQN model with two variations that can

generate class 1 and class 2 firing patterns.
• GitHub repository
• HDL project
• Mux address: 130
• Extra docs
• Clock: 5000000 Hz

How it Works

This project is based on the PQN model [1], which is designed for the digital imple-
mentation of neuron circuits.
In particular, this work adopts a two-variation PQN model.
The parameters are configured to reproduce Class 1 and Class 2 neurons according to
Hodgkin’s classification [2].

Governing Equations Following [1], The neuron dynamics are defined as:

\frac{dv}{dt} = \frac{\phi}{\tau} \left(f(v) - n + I_0 + k I_{\text{stim}} \right)

\frac{dn}{dt} = \frac{1}{\tau} \left(g(v) - n \right)

f(v) =
\begin{cases}
a_{fn}(v - b_{fn})^2 + c_{fn} & (v < 0) \\
a_{fp}(v - b_{fp})^2 + c_{fp} & (v \ge 0)
\end{cases}

g(v) =
\begin{cases}
a_{gn}(v - b_{gn})^2 + c_{gn} & (v < r_g) \\
a_{gp}(v - b_{gp})^2 + c_{gp} & (v \ge r_g)
\end{cases}

b_{fp} = \frac{a_{fn} b_{fn}}{a_{fp}}

c_{fp} = a_{fn} b_{fn}^2 + c_{fn} - a_{fp} b_{fp}^2

b_{gp} = r_g - \frac{a_{gn} (r_g - b_{gn})}{a_{gp}}

31

https://github.com/kinako71-2/TTIHP25b

c_{gp} = a_{gn}(r_g - b_{gn})^2 + c_{gn} - a_{gp}(r_g - b_{gp})^2

To reduce the computational cost, each coefficient is expanded in the implementation.
Here equations are expressed as follows:

\frac{dv}{dt} =
\begin{cases}
f_{vv_n} v^2 + f_{vv_n} v + f_{\text{const}_n} - f_{\text{coef}} n + I_{\text{coef}} I_{\text{stim}} & (v < 0) \\
f_{vv_p} v^2 + f_{vv_p} p + f_{\text{const}_p} - f_{\text{coef}} n + I_{\text{coef}} I_{\text{stim}} & (v \ge 0)
\end{cases}

\frac{dn}{dt} =
\begin{cases}
g_{vv_n} v^2 + g_{vv_n} v + g_{\text{const}_n} - g_{\text{coef}} n & (v < r_g) \\
g_{vv_p} v^2 + g_{vv_p} p + g_{\text{const}_p} - g_{\text{coef}} n & (v \ge r_g)
\end{cases}

Parameter Configuration Below are the detailed values of the parameters.
For the expanded coefficients used in implementation, please refer to the module script
for detailed values.

Parameter class1 class2
𝑑𝑡 0.0001 0.0001
𝑎𝑓𝑝 -3.5 -4
𝑎𝑓𝑛 3.5 4
𝑏𝑓𝑛 -2 -2
𝑐𝑓𝑛 0.5 5.25
𝑎𝑔𝑛 -0.5 -3
𝑎𝑔𝑝 2.5 3
𝑏𝑔𝑛 -3 -2
𝑐𝑔𝑛 -16 -16
𝜏 0.0064 0.0064
𝐼0 -16 -16
𝑘 8 8
𝜙 0.125 0.125
𝑟𝑔 -2.5 -2.5

Module Interface The ports usage of the top module is as follows: | Pins | Bits |
Direction | Description | | ————————— | –– | ——— | —————————
——— | | clk | 1 | Input | Clock signal | | rst_n | 1 | Input | Active-low reset signal | |
uio_oe[7:0] | 8 | Input | Set to 1 to enable outputs at all times | | ui_in[7:1] | 7 |

32

Input | Input current, converted to 16 bits | | ui_in[0] | 1 | Input | Mode select input
| | uo_out[7:0], uio_out[7:0] | 16 | Output | Signed 16-bit membrane voltage
|
[1] Nanami, T., & Kohno, T. (2023). Piecewise quadratic neuron model: A tool for
close-to-biology spiking neuronal network simulation on dedicated hardware. Frontiers
in Neuroscience, 16, 1069133.c
[2] Hodgkin, A. L. (1948). The local electric changes associated with repetitive action
in a non-medullated axon. The Journal of physiology, 107(2), 165.

How to Test

Simulation was originally conducted using Julia.
The given inputs and the corresponding ideal outputs are provided as text files (ans_*
and input_*, where * = class1 or class2).
The test bench checks whether the circuit reproduces these results.
Please note that each output point is generated every 18 × 10 clock cycles.

External Hardware

A PCB board is sufficient.

Pinout

Input Output Bidirectional
0 Mode Select (0: Class 1, 1: Class 2) Membrane Potential [0] Membrane Potential [8]
1 Input Current [5] Membrane Potential [1] Membrane Potential [9]
2 Input Current [6] Membrane Potential [2] Membrane Potential [10]
3 Input Current [7] Membrane Potential [3] Membrane Potential [11]
4 Input Current [8] Membrane Potential [4] Membrane Potential [12]
5 Input Current [9] Membrane Potential [5] Membrane Potential [13]
6 Input Current [10] Membrane Potential [6] Membrane Potential [14]
7 Input Current [11] Membrane Potential [7] Membrane Potential [15]

33

VGA Screensaver with the IHP Logo [132]

• Author: Uri Shaked
• Description: IHP Logo bouncing around the screen (640x480, TinyVGA Pmod)
• GitHub repository
• HDL project
• Mux address: 132
• Extra docs
• Clock: 25175000 Hz

How it works

Displays a bouncing IHP logo on the screen, with animated color gradient.

How to test

Connect to a VGA monitor. Set the following inputs to configure the design:

• tile (ui_in[0]) to repeat the logo and tile it across the screen,
• solid_color (ui_in[1]) to use a solid color instead of an animated gradient.
• white_background (ui_in[2]) to use a white background instead of a black

one.

If you have a Gamepad Pmod connected, you can also use the following controls:

• Start button: start/pause bouncing
• Left/right/up/down: change the bouncing direction (if bouncing) or move the

logo around the screen (if paused)

34

https://github.com/urish/ttihp0p3-ihp-logo-screensaver

External hardware

• Tiny VGA Pmod
• Optional: Gamepad Pmod

Pinout

Input Output Bidirectional
0 tile R1
1 solid_color G1
2 white_bg B1
3 VSync
4 gamepad_latch R0
5 gamepad_clk G0
6 gamepad_data B0
7 HSync

35

https://github.com/mole99/tiny-vga
https://github.com/psychogenic/gamepad-pmod

4-Bit Adder [134]

• Author: Felix
• Description: 4-Bit Adder
• GitHub repository
• Wokwi project
• Mux address: 134
• Extra docs
• Clock: 0 Hz

How it works

This is a simple 4 Bit Adder.

How to test

Connect Buttons (or Dip Switches) to the inputs. 0 to 3 are for the first number, and
4 to 7 for the second number. Connect LEDs to the outputs.

External hardware

8 buttons and 8 leds

Pinout

Input Output Bidirectional
0 A0 LED0
1 A1 LED1
2 A2 LED2
3 A3 LED3
4 B0 LED4
5 B1
6 B2
7 B3

36

https://github.com/Xelef2000/tinytapeout
https://wokwi.com/projects/434391222509479937

OCDCpro TT key lock test design IHP [136]

• Author: Johanna T. Wallenborn
• Description: key lock test chip ocdcpro
• GitHub repository
• Wokwi project
• Mux address: 136
• Extra docs
• Clock: 0 Hz

How it works

4-Input Digital Key Lock Circuit: This project implements a simple digital key lock
using a combinational logic circuit with 4 input pins and 1 output pin. Only a specific
combination of these inputs will unlock the circuit (output = 1). Any other combination
keeps the output locked (output = 0).

How to test

The correct input number is 1001. Only this specific combination the output is set to
high.

External hardware

Input: switches, output: LED

Pinout

Input Output Bidirectional
0 Pin B1 Pin A1
1 Pin B2
2 Pin B3
3 Pin B4
4
5
6
7

37

https://github.com/johimiyata/TT_IHP_OCDCpro_key
https://wokwi.com/projects/436554456427191297

8-bit DDS sine wave generator [138]

• Author: Abhinav Prasad, Steven O’Shea
• Description: A simple direct digital synthesizer with 8-bit frequency control and

external R-2R output
• GitHub repository
• HDL project
• Mux address: 138
• Extra docs
• Clock: 66000000 Hz

How it works

This project implements a basic 8-bit Direct Digital Synthesizer (DDS) that outputs a
digitized sine wave with a user-defined frequency.

• The user provides an 8-bit phase increment (phase_inc) via the ui_in[7:0]
pins

• A rising edge on uio_in[0] (load_freq) loads this value into DDS
• If no load_freq trigger is applied, the DDS runs at a default low frequency

(corresponding to phase_inc = 8'd1)

Internally, a phase accumulator adds phase_inc to a phase register on each clock
cycle. The 8-bit output of the accumulator directly indexes a sine look-up table (LUT)
with 256 entries. Each LUT value corresponds to a digtized amplitude sample of a sine
wave. These values are sent to uo_out[7:0], which can be converted to an analog
waveform using an external R-2R DAC.
The output frequency is given by the standard DDS formula:
f_out = (phase_inc / 2^N) * f_clk,
where,

• phase_inc is the user-defined tuning word (8 bits)
• N = 8 is the size of the phase accumulator (for this simplified implementation)
• f_clk = 66 MHz is the system clock

This design is based on principles described in Analog Devices’ application note:

“Fundamentals of Direct Digital Synthesis (DDS)” — Analog Devices http
s://www.analog.com/media/en/training-seminars/tutorials/MT-085.pdf

38

https://github.com/abhinav8prasad/ttihp-verilog-dds
https://www.analog.com/media/en/training-seminars/tutorials/MT-085.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-085.pdf

How to test

1. Connect an 8-bit DIP switch or microcontroller output to ui_in[7:0] to set
the frequency

2. Pulse uio_in[0] high momentarily to load the new value
3. Connect uo_out[7;0] to an R-2R DAC to view the generated sine wave
4. You can low pass filter the DAC output to generate a smooth wave

Example:

• Phase increment = 8'b00000001 produces a wave of ~258 kHz
• Phase increment = 8'b10000000 produces a wave of ~33 MHz (Nyquist limit)

External hardware

• DIP switches or a microcontroller can be used to control the frequency (ui_in)
and trigger (uio_in[0])

• An 8-bit R-2R resistor ladder DAC is required to convert uo_out[7:0]
into an analog sine waveform

Pinout

Input Output Bidirectional
0 phase bit 0 sine amplitude bit 0 load_freq trigger (active high)
1 phase bit 1 sine amplitude bit 1
2 phase bit 2 sine amplitude bit 2
3 phase bit 3 sine amplitude bit 3
4 phase bit 4 sine amplitude bit 4
5 phase bit 5 sine amplitude bit 5
6 phase bit 6 sine amplitude bit 6
7 phase bit 7 sine amplitude bit 7

39

Tapeout Test1 [160]

• Author: Marek
• Description:
• GitHub repository
• Wokwi project
• Mux address: 160
• Extra docs
• Clock: 0 Hz

How it works

Don’t know

How to test

For decoration

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 in0 out0
1 in1 out1
2 in2 out2
3 in3 out3
4 in4 out4
5 in5 out5
6 in6 out6
7 in7 out7

40

https://github.com/3DG-CH/Chip-Tapeout
https://wokwi.com/projects/434917419779963905

Barans erster Template Design [162]

• Author: Baran Kabakcioglu
• Description: ein schwieriges Projekt mit der ich nicht so viel erfahrung habe
• GitHub repository
• Wokwi project
• Mux address: 162
• Extra docs
• Clock: 0 Hz

How it works

Es gibt Input und Output

How to test

Dafuer braucht man Skills

External hardware

Verwende einfach so zu sagen Elemente verbinde sie wie in Informatik aber 100-mal
schwerer und hoffe das alle Hardwares miteinander in Harmonie funktionieren

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

41

https://github.com/Cobanjunior08/Baran-Tapeout
https://wokwi.com/projects/434917760986646529

demo-tiny [164]

• Author: Nikhil Garg
• Description: test
• GitHub repository
• HDL project
• Mux address: 164
• Extra docs
• Clock: 0 Hz

How it works

Digital LIF neuron

How to test

Connecting to memristor

External hardware

TIA and DAC

Pinout

Input Output Bidirectional
0 IN Dummy MEM
1 OUT
2
3
4
5
6
7

42

https://github.com/nikhil-garg/tiny_tapeout_NG

Random [166]

• Author: vans24
• Description: I have no idea.
• GitHub repository
• Wokwi project
• Mux address: 166
• Extra docs
• Clock: 0 Hz

How it works

It’s very interesting how it works.

How to test

By testing.

External hardware

We shall see.

Pinout

Input Output Bidirectional
0 IN1 OUT0
1 IN2 OUT1
2 IN3 OUT2
3 IN4 OUT3
4 OUT4
5 OUT5
6 OUT6
7 OUT7

43

https://github.com/vans24/Random
https://wokwi.com/projects/434917682511205377

noclue [168]

• Author: me_julian
• Description: boo
• GitHub repository
• Wokwi project
• Mux address: 168
• Extra docs
• Clock: 0 Hz

How it works

TBD

How to test

TBD

External hardware

TBD

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

44

https://github.com/NeverJulius/test
https://wokwi.com/projects/434917362908337153

GG [170]

• Author: Vincent
• Description: not much
• GitHub repository
• Wokwi project
• Mux address: 170
• Extra docs
• Clock: 0 Hz

How it works

i DONT NOW

How to test

KLICK THE BOTTOM

External hardware

7 DIGTIS TEIL

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

45

https://github.com/vinczh1/tinytap
https://wokwi.com/projects/434918311072808961

Tiny Tapeout Template Copy_Orion [224]

• Author: Caspar.Jakobi
• Description: Zählen, Rechnen, etc.
• GitHub repository
• Wokwi project
• Mux address: 224
• Extra docs
• Clock: 0 Hz

How it works

I cant explain

How to test

Klick on the Input board and the output we the result of the two numbers. The
maximum is eight ond if you only click on inout on this nuber should be written.

External hardware

None

Pinout

Input Output Bidirectional
0 IN0_Orion OUT0_Orion
1 IN1_Orion OUT1_Orion
2 IN2_Orion OUT2_Orion
3 IN3_Orion OUT3_Orion
4 IN4_Orion OUT4_Orion
5 IN5_Orion OUT5_Orion
6 IN6_Orion OUT6_Orion
7 IN7_Orion OUT7_Orion

46

https://github.com/OrionKing5807/Design_1
https://wokwi.com/projects/434917684709021697

CRP - Custom Risc Processor [225]

• Author: David Polt
• Description: An 8-bit processor implementing a custom RISC architecture
• GitHub repository
• HDL project
• Mux address: 225
• Extra docs
• Clock: 50000000 Hz

How it works

The 8-Bit CRP CPU is a simple, custom-designed processor implemented in Verilog.
It follows a classic Von Neumann architecture, where instructions and data share
the same memory space. The CPU is based on a multicycle design, meaning that
each instruction takes a variable number of clock cycles to complete.
The main components of the CPU include:

• ALU (Arithmetic Logic Unit): Performs arithmetic operations like addition
and subtraction, as well as logical operations such as AND, OR, XOR, shifts
(LSR, LSL/ASL, ASR), and comparison operations.

• Registers: 16 general-purpose 8-bit registers, with registers 14 and 15 reserved
for memory addressing in LD and ST instructions (R14 = lower 8 bits, R15
= upper 7 bits). A dedicated stack pointer starts at 0x7FFF and counts
downward. The program counter / instruction pointer (PC/IP) starts
at 0x0000 and increments according to the instruction.

• Controller: Decodes instructions and generates control signals to orchestrate
data movement, ALU operations, memory access, and branching.

• Datapath: Connects all components and manages the flow of data between
registers, ALU, and memory.

• Multiplexers: Select ALU and register file inputs depending on the current
instruction.

• State Counter: Manages the instruction execution cycle, controlling fetch,
decode, execute, and writeback stages.

The CPU supports 16-bit instruction width. Instructions are categorized as R-type,
I-type, and J-type:

• R-type: Register instructions (e.g., ADD, SUB, AND, OR). Includes a function
field for the exact operation.

• I-type: Immediate operations, using an 8-bit immediate value (e.g., ADDI,
SUBI, ANDI).

47

https://github.com/Rodald/ttihp25b-8bit-cpu-crp

• J-type: Jump instructions, which are relative and may be signed or unsigned
depending on the opcode.

The CPU communicates with external memory via:

• 8-bit data bus: DI0–DI7 for memory input, DO0–DO7 for memory output.
• 15-bit address bus: A0–A14 for memory addressing.
• Write Enable: WE Signals a memory write request.

Memory write protocol:

1. Clock cycle 1: Place the 8-bit data to write on DO0–DO7 and set WE high.
The data is temporarily stored externally.

2. Clock cycle 2: Provide the 15-bit target address on A0–A14. Memory writes
the previously buffered data to this address.

Instruction storage in memory:

• Each 16-bit instruction occupies two consecutive addresses:

– Even addresses: lower 8 bits of the instruction
– Odd addresses: upper 8 bits of the instruction

How to test

1. Set up external memory

• Use a memory module with read/write capability and 15-bit address lines.
• Connect CPU data input pins (DI0–DI7) to memory output pins.
• Connect CPU data output pins (DO0–DO7) to memory input pins.
• Connect CPU address pins (A0–A14) to memory address pins.
• Connect CPU write enable pin (WE) to memory WE input via an external

buffer.

2. Load a program

• The complete instruction set for binary translation can be found in Ap-
pendix A.

• Instructions are 16 bits wide and occupy two consecutive memory ad-
dresses:

– Even addresses: lower 8 bits
– Odd addresses: upper 8 bits

48

3. Reset the CPU state

• Set rst_n low briefly while toggling the clock:
1. rst_n = 0, clk = 1
2. clk = 0
3. rst_n = 1

4. Provide a clock signal

• The CPU is multi-cycle; instructions take multiple clock cycles.
• After reset, the program counter (PC/IP) begins at 0x000.

External hardware

• Memory module: 8-bit data, 15-bit address, supports read/write operations.
• Buffer register: Controlled by WE, it captures the 8-bit data bus (DO0–DO7)

for use in the next clock cycle.
• Clock source: Provides the clock signal for multicycle operation.

Appendix A: Instruction Set Overview

Mnemonic Opcode Operands Description Clock
MOV 0000 Rd, Rr, 0000 Copy from Rr to Rd 3
ADD 0000 Rd, Rr, 0001 Add Rr to Rd 3
SUB 0000 Rd, Rr, 0010 Subtract Rr from Rd 3
AND 0000 Rd, Rr, 0011 Bitwise AND 3
OR 0000 Rd, Rr, 0100 Bitwise OR 3
XOR 0000 Rd, Rr, 0101 Bitwise XOR 3
LD 0000 Rd, xxxx, 0110 Load from memory to Rd 4
ST 0000 Rd, xxxx, 0111 Store Rd to memory 4
PUSH 0000 Rd, xxxx, 1000 Push Register on Stack 4
POP 0000 Rd, xxxx, 1001 Pop Register from Stack 5
PUSHF 0000 xxxx, xxxx, 1010 Push Flags on Stack 4
POPF 0000 xxxx, xxxx, 1011 Pop Flags from Stack 4
LSR 0000 Rd, Rr, 1100 Logical Shift Right 3
LSL 0000 Rd, Rr, 1101 Logical Shift Left 3
ASR 0000 Rd, Rr, 1110 Arithmetic Shift Right 3
CMP 0000 Rd, Rr, 1111 Compare Rd with Rr 3

49

Mnemonic Opcode Operands Description Clock
CMPI 0001 Rd, immediate Compare Rd with Immediate 3
ADDI 0010 Rd, immediate Add Immediate to Rd 3
SUBI 0011 Rd, immediate Subtract Immediate from Rd 3
ANDI 0100 Rd, immediate Bitwise AND with Immediate 3
ORI 0101 Rd, immediate Bitwise OR with Immediate 3
XORI 0110 Rd, immediate Bitwise XOR with Immediate 3
MOV 0111 Rd, immediate Load Immediate into Rd 3
RJMP 1000 address Relative Jump 3
RET 1001 1101, 1101, xxxx Subroutine Return¹ 7
RCALL 1010 address Relative Subroutine Call 6
JE 1011 address Jump If Equal 3
JNE 1100 address Jump If Not Equal 3
JB 1101 address Jump If Below, Unsigned 3
JAE 1110 address Jump If Above Or Equal, Unsigned 3
JL 1111 address Jump If Less, Signed 3

Legend
• Rd – Destination register (4-bit)
• Rr – Source register (4-bit)
• Immediate – 8-bit constant embedded in instruction
• Address – 12-bit relative address; MSB is sign-extended for overflow
• x – Ignored bit/operand
• ¹RET – Uses an internal temporary register for storing return address from stack.

Here: 1101

Pinout

Input Output Bidirectional
0 DI0 A0/DO0 A8
1 DI1 A1/DO1 A9
2 DI2 A2/DO2 A10
3 DI3 A3/DO3 A11
4 DI4 A4/DO4 A12
5 DI5 A5/DO5 A13
6 DI6 A6/DO6 A14

50

Input Output Bidirectional
7 DI7 A7/DO7 WE

51

Simple classification perceptron [226]

• Author: ChinZhe
• Description: simulation perceptron and display the result with 1 or 0
• GitHub repository
• Wokwi project
• Mux address: 226
• Extra docs
• Clock: 10000000 Hz

Perceptron with Tiny MAC

This project implements a perceptron that computes y = sign(3x0 - 2x1 + 1), where
x0 and x1 are 4-bit signed inputs, which is ui_in[7:0]. The output is uo_out[7:0], and
when the output is greater than 0, uo_out[0] is 1; otherwise, it is 0. It is given the
name y_reg. The values will be saved to sum_reg which is uo_out[7:1] The design
uses a sequential 4x4-bit MAC, which implements a simple FSM concept.

How it works
• Inputs are x0 (ui_in[3:0]) and x1 (ui_in[7:4]), which are multiplied by weights

(3 and -2) and summed with a bias (1). Note that the weights are hard-coded,
unlike a real “tunable” NN.

• The result is passed through a sign function to produce y_reg.
• The MAC operates in three cycles when ena=1, controlled by a finite state

machine.

How to test
• Set ena=1 (ENA pin) –> It is automatically set to 1 when powering the chip
• Apply a reset pulse (RST_N=0 then 1). –> which we are unable to do as we

don’t have access to those control ports; it should be automatically set to 1.
• Set ui_in[7:0] using DIP switches (e.g., x0=1, x1=1 as 8’b00010001).
• Observe uo_out[0] (y_reg) for the result (1 if sum � 0, else 0).
• Monitor uo_out[7:1] for the upper sum bits.

Pinout

52

https://github.com/cztee/GDS_tutorial
https://wokwi.com/projects/434918956220790785

Input Output Bidirectional
0 x0[0] y_reg
1 x0[1] sum[1]
2 x0[2] sum[2]
3 x0[3] sum[3]
4 x1[0] sum[4]
5 x1[1] sum[5]
6 x1[2] sum[6]
7 x1[3] sum[7]

53

Tiny Tapeout [228]

• Author: Lana
• Description: lol
• GitHub repository
• Wokwi project
• Mux address: 228
• Extra docs
• Clock: 0 Hz

How it works

How to test

External hardware

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 In5 OUT5
6 IN6 OUT6
7 IN7 OUT7

54

https://github.com/lana433/Tiny-Tapeout-
https://wokwi.com/projects/434918068909406209

example-verilog [230]

• Author: Daniele Parravicini
• Description: Exapmle verilog design
• GitHub repository
• HDL project
• Mux address: 230
• Extra docs
• Clock: 1000 Hz

How it works

Just an example

How to test

you will have to figure it out

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 IN0 OUT1
1 IN1
2
3
4
5
6
7

55

https://github.com/DanieleParravicini/tt-09-verilog-example

brostarscard [232]

• Author: brostar1962
• Description: tinytapeoutchip
• GitHub repository
• Wokwi project
• Mux address: 232
• Extra docs
• Clock: 0 Hz

How it works

vcdfv

How to test

fvfvvfdt

External hardware

fdvdfv

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

56

https://github.com/brostar1962/tinytapeout
https://wokwi.com/projects/434917624377094145

Simon Says memory game [234]

• Author: Uri Shaked
• Description: Repeat the sequence of colors and sounds to win the game
• GitHub repository
• HDL project
• Mux address: 234
• Extra docs
• Clock: 50000 Hz

How it works

Simon says is a simple electronic memory game: the user has to repeat a growing
sequence of colors. The sequence is displayed by lighting up the LEDs. Each color also
has a corresponding tone.
In each turn, the game will play the sequence, and then wait for the user to repeat the
sequence by pressing the buttons according to the color sequence. If the user repeated

57

https://github.com/urish/ttihp-simon-game

the sequence correctly, the game will play a “leveling-up” sound, add a new color at
the end of the sequence, and move to the next turn.
The game continues until the user has made a mistake. Then a game over sound is
played, and the game restarts.
Check out the online simulation at https://wokwi.com/projects/408757730664700929
(including wiring diagram).

Clock settings

The clk_sel input selects the clock source:

• 0: external 50 KHz clock, provided through the clk input.
• 1: internal clock, generated by the ring_osc module, with a frequency of ~55

KHz.

The internal clock is generated by a 13-stage ring oscillator, divided by 16384 to get
the desired frequency. The divider value was determined by running the ring oscillator
simulation in <xschem/simulation/ring_osc.spice>.
When using the internal clock, its signal is also output on the uo_out[7] pin for
debugging purposes.

How to test

Use a Simon Says Pmod to test the game.
Provide a 50 KHz clock input, reset the game, and enjoy!
If you don’t have the Pmod, you can still connect the hardware manually as follows:

1. Connect the four push buttons to pins btn1, btn2, btn3, and btn4. Also
connect each button to a pull down resistor.

2. Connect the LEDs to pins led1, led2, led3, and led4, matching the colors
of the buttons (so led1 and btn1 have the same color, etc.). Don’t forget
current-limiting resistors!

3. Connect the speaker to the speaker pin (optional).
4. Connect the seven segment display as follows: seg_a through sev_g to individ-

ual segments, dig1 to the common pin of the tens digit, dig2 to the common
pin of the ones digit. Set seginv according to the type of 7 segment display
you have: high for common anode, low for common cathode.

5. Reset the game, and then press any button to start it. Enjoy!

58

https://wokwi.com/projects/408757730664700929
https://github.com/urish/tt-simon-pmod

External Hardware

Simon Says Pmod or four push buttons (with pull-down resistors), four LEDs, and
optionally a speaker/buzzer and two digit 7-segment display.

Pinout

Input Output Bidirectional
0 btn1 led1 seg_a
1 btn2 led2 seg_b
2 btn3 led3 seg_c
3 btn4 led4 seg_d
4 seginv speaker seg_e
5 dig1 seg_f
6 dig2 seg_g
7 clk_sel clk_internal

59

https://github.com/urish/tt-simon-pmod

Timo 1 [256]

• Author: Timo
• Description: IDK
• GitHub repository
• Wokwi project
• Mux address: 256
• Extra docs
• Clock: 0 Hz

How it works

Normal just added an and and a nand

How to test

make it run

External hardware

Seven segment display

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

60

https://github.com/tln09-star/timo1
https://wokwi.com/projects/434917632188986369

Delta Sigma Comparator Based ADC [257]

• Author: Pawel Kozlowski
• Description: Evaluating the feasibility of implementing a delta-sigma analog-

to-digital conversion using two switched-capacitor lines. One line serves as a
reference, while the other is intended for current measurement, such as from a
photodiode. The project also explores how process, voltage, and temperature
(PVT) variations affect flip-flop behavior, whether these effects can be mitigated
through the reference channel, and what additional insights or phenomena may
emerge from this investigation.

• GitHub repository
• HDL project
• Mux address: 257
• Extra docs
• Clock: 10000000 Hz

How it works

This project explores the implementation of a delta-sigma ADC entirely in a digital
environment. A flip-flop is used as the quantizer. Due to the strong DVT (device
voltage threshold) dependency of flip-flops, a reference line is introduced. Assuming
identical behavior across flip-flops, this helps mitigate vDVT variance.
Of course, in practice, flip-flops and capacitors are never perfectly matched. The goal is
to evaluate how these mismatches affect ADC linearity, beyond the non-linearity intro-
duced by the RC constant, and to observe the threshold behavior of the flip-flops. This
is a quick, exploratory project, so some assumptions may be oversimplified or incorrect.
However, in digital simulations, the concept appears to function as intended.
Implementing this on-chip (rather than on an FPGA) offers better control over para-
sitics at the silicon level, which could improve overall conversion accuracy.
The data output is 13 bits wide, but only 12 bits are effectively used. This is to
account for potential overflow, especially in cases where simulation might not catch
it. Additionally, since the system operates in bipolar mode, one more bit is reserved to
represent the sign. As a result, the effective resolution of the ADC is 11 bits.

How to test

Start by defining the current range to be measured. For example, if the range is 0–100
µA, the baseline of the delta-sigma oscillation should be around 0.6 V (half of a 1.2 V
supply). This gives:

61

https://github.com/kozlowp1/Delta-Sigma-Comparator-Based-ADC

R1 = Vc2 / I = 0.6 / (100e-6) = 6000 Ω
The current sink could a reverse-biased photodiode (as shown on the diagram below),
but an SMU (source measure unit) can also be used to characterise the system. The
circuit is designed to operate in bipolar mode, meaning it can measure both positive
and negative currents.
To begin operating the system, first connect the discrete components — resistors,
capacitors, and a current source or sink. Once all components are connected, perform
a system reset. After resetting, verify that both capacitor lines produce similar values
(filtered_a and filtered_b) even without applying an external current source or sink.
This confirms the system is functioning correctly. If the outputs are as expected, you
can proceed to apply a current with your chosen polarity to begin active operation.
To start data acquisition, send a pulse in the clk clock domain to uio__in[7]. This will
trigger the transmission of three filtered data signals in the next clock cycle: filtered_a,
filtered_b, and filtered_ab_subtr. For synchronisation, a valid_out signal is sent during
the transmission of the first bit of data. This simple approach was chosen to simplify
the implementation.
If the internal logic for data transmission fails, components like the CIC filter can be
implemented on an FPGA. This can be done by routing the inverter output not only
to the capacitor but also to the FPGA. Be mindful of additional parasitics introduced
in this setup.

External hardware

• Two identical capacitors: Test values ranging from picofarads to nanofarads.
A similar analog-based design supported values from 30 pF (resulting in higher
peaks between clock cycles) up to 1300 pF or more.

• Two identical resistors, e.g., 6000 Ω.
• A current source/sink

62

CIC Filter
(cic_a)

Vc1
 D Q

>
PD

CIC Filter
(cic_b)

Vc2 D Q

>

R1

R1

filtered_a

filtered_b_substr

filtered_b

ff_a

ff_b

Pinout

Input Output Bidirectional
0 Capacitor a input port pdm_a - pulse density modulated signal connected to capacitor a
1 Capacitor b input port pdm_b - pulse density modulated signal connected to capacitor a
2 filtered_a - 13 bit value of a line after summing (13 to avoid overflow)
3 filtered_b - 13 bit value of b line after summing
4 filtered_ab_subtr represents the difference between the ‘a’ and ‘b’ lines after summation (i.e., a - b). The direction of current flow (or polarity), which determines how each capacitor is connected to the respective UI input, must align with this formula to prevent overflow or incorrect charge accumulation.
5 filtered_a valid signal saying that from this bit on the user can expect the integrated value from the first capacitor line
6 filtered_b valid signal saying that from this bit on the user can expect the integrated value from the second capacitor line
7 Data triggger for adc data streaming. Asserting it causes filtered_a, filtered_b and filtered_ab_subtr to be serialised and sent. filtered_ab_subtr valid signal saying that from this bit on one can expect the difference between the vaules (effectively the ADC code)

63

Tiny Tapeout Template Copy [258]

• Author: Katja Chu
• Description: This is a test
• GitHub repository
• Wokwi project
• Mux address: 258
• Extra docs
• Clock: 0 Hz

How it works

ToDo

How to test

ToDo

External hardware

ToDo

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

64

https://github.com/chipSi25/TTPWSHP
https://wokwi.com/projects/434917318393129985

AdExp DPI Neuron [259]

• Author: Saptarshi Ghosh
• Description: Adaptive Exponential Integrate-and-Fire Neuron
• GitHub repository
• HDL project
• Mux address: 259
• Extra docs
• Clock: 0 Hz

� AdEx Spiking Neuron Core

This project is a digital hardware implementation of the Adaptive Exponential (AdEx)
Integrate-and-Fire neuron model. It’s designed to run on an ASIC, simulating the behav-
ior of a biological neuron, including its membrane potential and adaptation mechanisms.
The core is highly configurable, allowing it to model various neural firing patterns like
regular spiking, bursting, and fast spiking.

How it works �

The system operates based on two primary components: the Neuron Core and the
Parameter Loader.

1. The Neuron Core The core solves two coupled differential equations in real-
time using Q4.8 fixed-point arithmetic. These equations govern the neuron’s two main
state variables:

• V: The membrane potential, which simulates the voltage across the neuron’s
cell membrane.

• w: The adaptation current, which models cellular fatigue and is responsible for
spike-frequency adaptation.

The behavior is defined by the following equations, which are a direct representation
of the hardware’s operation:

\frac{dV}{dt} = \frac{-g_L(V - E_L) + g_L\Delta_T\exp\left(\frac{V - V_T}{\Delta_T}\right) - w + I}{C}

\frac{dw}{dt} = \frac{a(V - E_L) - w}{\tau_w}

When the membrane potential V crosses a threshold VT, the core outputs a digital
spike �. After a spike, V is reset to Vreset and the adaptation current w is increased
by a value b.

65

https://github.com/amisapta15/ttihp0p3-adexp-neuron-custom

2. The Parameter Loader � The neuron’s specific behavior is defined by 8 distinct
user-configurable parameters. To configure the core, these parameters must be loaded
serially via a simple 4-bit interface.
The parameters are loaded in the following order:

Index Parameter Symbol in Equation Description
0 DeltaT ΔT Sharpness of the spike initiation
1 TauW �w Adaptation time constant
2 a a Subthreshold adaptation level
3 b b Spike-triggered adaptation increment
4 Vreset Vreset Voltage to reset to after a spike
5 VT VT Firing threshold voltage
6 Ibias I Constant input current
7 C C Membrane capacitance

The loading process is controlled by the ui_in pins:

• ui_in[4] (load_mode): Must be high to enable loading.
• ui_in[3] (load_enable): A rising edge on this pin latches the 4-bit value

present on uio_in[3:0].

Each 8-bit parameter is sent as two 4-bit nibbles (high nibble first). After all 16
nibbles have been sent, a special footer nibble (0xF) must be sent to commit the
new parameters to the core.

Inputs and Outputs
• Inputs:

– clk: Main clock signal.
– rst_n: Active-low reset.
– ui_in[4] (load_mode): Set to 1 to enable the parameter loader.
– ui_in[3] (load_enable): Pulse high to load a 4-bit nibble from

uio_in.
– ui_in[2] (enable_core): Set to 1 to run the neuron simulation.
– ui_in[1] (debug_mode): Selects the debug output on uo_out[6:1].
– uio_in[3:0]: 4-bit data bus for loading parameter nibbles.

• Outputs:

– uo_out[0] (spike): The primary output. Pulses high for one clock cycle
when the neuron fires.

66

– uo_out[6:1]: A 6-bit debug bus showing the most significant bits of
either V (if debug_mode=0) or w (if debug_mode=1).

Firing Modes and How to Trigger Them ��

The AdEx model’s strength is its ability to reproduce different neural behaviors. The
firing pattern is primarily determined by the interplay between the adaptation parame-
ters (a, b, �w), input current (I), and membrane capacitance (C). By loading different
parameter sets, you can make the neuron behave in specific ways.
Note: The 8-bit encoded value is what you need to send to the hardware. For signed
values (Vreset, VT, Ibias), the encoding is Real Value + 128. For unsigned
values, the encoding is just the Real Value. For the firing mode examples below, the
C parameter should be loaded with its default value of 200 (Hex 0xC8).

� Regular Spiking (Adapting) This is the “default” behavior for many excitatory
neurons. The firing rate is initially high and then slows down as the adaptation current
w builds up.

• Mechanism: A non-zero spike-triggered adaptation (b) increases w with every
spike, making it harder for the neuron to reach its firing threshold again.

• Parameter Values: | Parameter | Real-World Value | 8-bit Encoded Value |
Hex Value | | :— | :— | :— | :— | | a | 2 nS | 2 | 0x02 | | b | 40 pA | 40 |
0x28 | | Vreset | -65 mV | 63 | 0x3F | | Ibias | 50 pA | 178 | 0xB2 |

� Bursting This behavior is characterized by clusters of high-frequency spikes sepa-
rated by periods of silence (hyperpolarization).

• Mechanism: Strong subthreshold adaptation (a) and a less-negative reset po-
tential (Vreset) are key. The adaptation current w builds up slowly, eventually
stopping the burst. As w decays, the membrane potential depolarizes again,
initiating the next burst.

• Parameter Values: | Parameter | Real-World Value | 8-bit Encoded Value |
Hex Value | | :— | :— | :— | :— | | a | 4 nS | 4 | 0x04 | | b | 0 pA | 0 | 0x00
| | Vreset | -50 mV | 78 | 0x4E | | Ibias | 25 pA | 153 | 0x99 |

67

� Fast Spiking Typical of inhibitory interneurons, this mode involves sustained high-
frequency firing with little to no adaptation or slowdown.

• Mechanism: This is achieved by simply turning off all adaptation mechanisms
(a and b are zero). The neuron behaves like a simple leaky integrate-and-fire
model, with its firing rate determined solely by the input current.

• Parameter Values: | Parameter | Real-World Value | 8-bit Encoded Value |
Hex Value | | :— | :— | :— | :— | | a | 0 nS | 0 | 0x00 | | b | 0 pA | 0 | 0x00
| | Vreset | -65 mV | 63 | 0x3F | | Ibias | 80 pA | 208 | 0xD0 |

How to test �

The recommended test procedure verifies the core’s functionality by loading parameters
to induce spiking and then observing the output.
The test procedure is as follows:

1. Reset: The chip is held in reset for 10 clock cycles to initialize all internal states.
2. Load Parameters: To provoke a spike, the test injects a strong, constant

positive input current (Ibias) and sets the membrane capacitance (C).

• The test enters load_mode.
• It sends 12 dummy nibbles for the first 6 parameters.
• It sends the two nibbles for Ibias (a value of 200, which is a strong

supra-threshold current).
• It sends the two nibbles for C (a value of 200, the default).
• It sends the 0xF footer nibble to commit all 8 parameters.
• The test exits load_mode.

3. Run and Verify:

• The test asserts enable_core to start the neuron simulation.
• It then monitors the uo_out[0] (spike) pin on every clock cycle.
• A successful test requires a spike to be detected within a set time limit

(e.g., 1000 cycles).

68

External hardware

N/A. This project is a self-contained digital core and requires no external compo-
nents.

Pinout

Input Output Bidirectional
0 spike param_nibble_in[0]
1 debug_mode debug_val[0] param_nibble_in[1]
2 enable_core debug_val[1] param_nibble_in[2]
3 load_enable debug_val[2] param_nibble_in[3]
4 load_mode debug_val[3]
5 debug_val[4]
6 debug_val[5]
7

69

dummy [260]

• Author: Joachim
• Description: cool stuff
• GitHub repository
• Wokwi project
• Mux address: 260
• Extra docs
• Clock: 0 Hz

How it works

This is the coolest chip ever, I just wish I knew what it did!

How to test

Hook it up to power to get started.

External hardware

You probablz want to hook it up to blinky lights, so you’ll need some of those for
sure.

Pinout

Input Output Bidirectional
0 I0 O0 IO0
1 I1 O1 IO1
2 I2 O2 IO2
3 I3 O3 IO3
4 I4 O4 IO4
5 I5 O5 IO5
6 I6 O6 IO6
7 I7 O7 IO7

70

https://github.com/stadel/wokwi-1
https://wokwi.com/projects/434917374201501697

Tapeout try [262]

• Author: Vinnie
• Description: default
• GitHub repository
• Wokwi project
• Mux address: 262
• Extra docs
• Clock: 0 Hz

How it works

i don’t know either

How to test

ask chatgpt

External hardware

Tinytapeout

Pinout

Input Output Bidirectional
0 in0 out0
1 in1 out1
2 in2 out2
3 in3 out3
4 in4 out4
5 in5 out5
6 in6 out6
7 in7 out7

71

https://github.com/Vinniedotcom/Tinytapeout-workshop
https://wokwi.com/projects/434921804663145473

Chip design from Wokwi [264]

• Author: Gauransh
• Description: The project is about modelling chip designs
• GitHub repository
• Wokwi project
• Mux address: 264
• Extra docs
• Clock: 0 Hz

How it works

The project will work by modelling a chip design

How to test

The project will be used to see a model of the chip design in 3D

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3
4 IN4
5 IN5
6 IN6
7 IN7

72

https://github.com/Gauransh2009/Chip
https://wokwi.com/projects/434917143298726913

Encoder [266]

• Author: Skandha
• Description: 8*3 encoder
• GitHub repository
• Wokwi project
• Mux address: 266
• Extra docs
• Clock: 0 Hz

How it works

Just need to change that

How to test

Just need to change that for some reason

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3
4 IN4
5 IN5
6 IN6
7 IN7

73

https://github.com/arvidreinert/chip-design-template-test
https://wokwi.com/projects/434917167895180289

Nils Tinytapeout Proj [289]

• Author: Nils
• Description: I dont know
• GitHub repository
• Wokwi project
• Mux address: 289
• Extra docs
• Clock: 0 Hz

How it works

This is how it works.

How to test

This is how to use.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

74

https://github.com/FlatBanana/wokwiTemplate
https://wokwi.com/projects/434917381796339713

Projekt [291]

• Author: Timot
• Description: Programm
• GitHub repository
• Wokwi project
• Mux address: 291
• Extra docs
• Clock: 0 Hz

How it works

Dings

How to test

This is how to test

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

75

https://github.com/Timot-1/ttwkshp_03fs25
https://wokwi.com/projects/434917990496885761

4 bit incrementer [293]

• Author: Ren
• Description: 4bit incrementer
• GitHub repository
• Wokwi project
• Mux address: 293
• Extra docs
• Clock: 0 Hz

How it works

4bit incrementer

How to test

just test duh

External hardware

VCC

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 OUT4
5
6
7

76

https://github.com/renjeff/TinyTapeout
https://wokwi.com/projects/434917040492120065

Tiny Tapeout Workshop Project by Nick Figner [295]

• Author: Nick Figner
• Description: Sth I made in the Tiny Tapeout Workshop @ ETH
• GitHub repository
• Wokwi project
• Mux address: 295
• Extra docs
• Clock: 0 Hz

How it works

Idk if it even works…..

How to test

Add cables and stuff probably

External hardware

• a seven digit display-thingy
• cables????

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

77

https://github.com/NickDerEchte/tinytapeoutrepo
https://wokwi.com/projects/434917260383792129

Tiny Tapeout Chip [297]

• Author: Jasen Kouchev
• Description: IDK
• GitHub repository
• Wokwi project
• Mux address: 297
• Extra docs
• Clock: 0 Hz

How it works

Every secins input switch needs to be turned off, to work (Inverted)

How to test

Move the Input switches.

External hardware

Seven Digit Display

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

78

https://github.com/jansenkouchev/TinyTapeoutJasen
https://wokwi.com/projects/434917427319226369

Atari 2600 [298]

• Author: Renaldas Zioma
• Description: Replica of Atari 2600
• GitHub repository
• HDL project
• Mux address: 298
• Extra docs
• Clock: 25175000 Hz

How it works

Replica of a classic Atari 2600 (SoC) System On a Chip

How to test

Plug and play!

External hardware

Tiny (mole99) VGA PMOD, Tiny Audio PMOD, VGA display.

Pinout

Input Output Bidirectional
0 UP / Difficulty Switch P1 R1 QSPI CS
1 DOWN / Difficulty Switch P2 G1 QSPI SD0
2 LEFT / Monochrome Switch B1 QSPI SD1
3 RIGHT VSync QSPI SCK
4 FIRE / Gamepad LATCH R0 QSPI SD2
5 SELECT / Gamepad CLK G0 QSPI SD3
6 Switches / Gamepad DATA B0
7 START HSync Audio (PWM)

79

https://github.com/rejunity/tiny-atari-2600

And Gate [299]

• Author: Tilman Kuttler
• Description: Not much honestly
• GitHub repository
• Wokwi project
• Mux address: 299
• Extra docs
• Clock: 0 Hz

How it works

My project uses an AND gate in order to display red lines on a seven segment display.

How to test

The project is used by switching on or off certain inputs.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN3 OUT2
3 IN4 OUT3
4 IN5 OUT4
5 IN6 OUT5
6 IN7 OUT6
7 IN8 OUT7

80

https://github.com/tilman7/reimagined-guide
https://wokwi.com/projects/434917842159020033

LGN hand-written digit classifier (MNIST, 16x16 pixels)
[326]

• Author: Renaldas Zioma, Jogundas Armaitis
• Description: Experiment with Deep Differential Logic Networks
• GitHub repository
• HDL project
• Mux address: 326
• Extra docs
• Clock: 1000000 Hz

How it works

Experiment with Deep Differential Logic Networks. Classifier network.

How to test

TO DO: Provide inputs. Read out the classifier results.

External hardware

MCU to provide input data and read out the response

Pinout

Input Output Bidirectional
0 Shift-in 8-bit input packet (LSB) Digit (LSB) (out) Confidence score (LSB)
1 Shift-in 8-bit input packet Digit (out) Confidence score
2 Shift-in 8-bit input packet Digit (out) Confidence score
3 Shift-in 8-bit input packet Digit (MSB) (out) Confidence score
4 Shift-in 8-bit input packet (out) Confidence score
5 Shift-in 8-bit input packet (out) Confidence score
6 Shift-in 8-bit input packet (out) Confidence score (MSB)
7 Shift-in 8-bit input packet (MSB) (in) /WE - Pause input

81

https://github.com/rejunity/tt10-lgn-mnist

DUMBRV [330]

• Author: Yuanda Liu
• Description: A simple RISC-V processor operating on two SPI memory.
• GitHub repository
• HDL project
• Mux address: 330
• Extra docs
• Clock: 40 Hz

How it works

This is a small RISC-V processor supporting the base RV32E instruction set and the
Zicond and Zbs instructions. This processor uses two SPI memories in two independent
SPI ports, one is read-only and another is read-write. Both SPI memory needs to
use exactly 2-byte addresses.
The address space is as below:

Start End Description
0x00000000 0x0000FFFF Read only SPI port using uio[3:0]
0x01000000 0x0100FFFF Read-write SPI port using uio[3:0]
0x02000000 0x02000000 One byte. ui[7:0] on read, uo[7:0] on write.

The processor begins execution immediately from address 0x0.
The SPI clock is half of that of the main clock. If you can only do 20MHz on the SPI
bus, for example, put the design in 40MHz.

How to test

Hook a SPI flash or EEPROM on the inst_spi bus, and hook a SPI RAM on the
data_spi bus. Program this ROM with instructions.
I have a test program in the /program directory of the repo. This program continuously
records the input GPIO pins and outputs the recorded sequence on the output GPIO
pins after some delay. If this program functions correctly, then it implies that the
processor can use both SPI memories correctly.

82

https://github.com/yliu-hashed/ttihp25b-dumbrv

External hardware

This processor requires one 512Kbit ROM and one 512Kbit RAM.

Pinout

Input Output Bidirectional
0 gpio_out[0] gpio_in[0] inst_spi_cs
1 gpio_out[1] gpio_in[1] inst_spi_mosi
2 gpio_out[2] gpio_in[2] inst_spi_miso
3 gpio_out[3] gpio_in[3] inst_spi_sck
4 gpio_out[4] gpio_in[4] data_spi_cs
5 gpio_out[5] gpio_in[5] data_spi_mosi
6 gpio_out[6] gpio_in[6] data_spi_miso
7 gpio_out[7] gpio_in[7] data_spi_sck

83

Simple LIF Neuron [417]

• Author: Klemens Bauer
• Description: LIF Neuron implementation with editable configuration
• GitHub repository
• HDL project
• Mux address: 417
• Extra docs
• Clock: 0 Hz

How it works

This project implements a hardware-optimized LIF (Leaky Integrate-and-Fire)
neuron in Verilog, designed for area efficiency while maintaining biological realism.
The system consists of four main components:

Core LIF Neuron Engine The heart of the system implements authentic LIF dy-
namics:

• Integration: V_mem = V_mem + weighted_input - leak_rate
• Spike Generation: When V_mem � threshold, generate spike and reset

V_mem = 0
• Refractory Period: 4-cycle no-spike period after each action potential
• Variable Leak Rates: 4 different membrane leak speeds (1-4 units/cycle)

The implementation uses 8-bit arithmetic for hardware efficiency while maintaining
biological accuracy across a 0-255 membrane potential range.

Enhanced Input Processing
• 3-bit Channel Precision: Each synaptic input (Channel A, Channel B) accepts

0-7 stimulus levels
• Weighted Integration: weighted_input = (chan_a × weight_a) +

(chan_b × weight_b)
• Synaptic Depression: Temporary weight reduction after spike generation for

realistic synaptic fatigue
• 64 Input Combinations: Full 8×8 stimulus space for fine-grained neural

control

84

https://github.com/KPowerB/lif_neuron_A_Klemens

Serial Parameter Loader A dedicated state machine loads five key parameters via
single-bit serial interface:

• Weight A/B (3 bits each): Synaptic strength for channels A and B
• Leak Config (2 bits): Membrane leak rate selection (1-4 units/cycle)
• Threshold Min/Max (8 bits each): Adaptive threshold bounds
• 40-bit Total: Complete parameter set loaded serially for different neuron per-

sonalities

Advanced Biological Features
• Adaptive Thresholds: Increase by 4 units after spikes, decrease by 1 unit

during silence
• Synaptic Depression: Weights temporarily reduced by 3 units after spiking
• Multiple Neuron Types: Configurable personalities (high/low sensitivity, bal-

anced, custom)
• Realistic Dynamics: Proper integration, leak, refractory periods matching

biological neurons

I/O Interface
• 6-bit stimulus input: 3-bit Channel A + 3-bit Channel B with 2 pins reserved

for expansion
• 8-bit neural output: 7-bit membrane potential + 1-bit spike detection
• Serial configuration: Single-bit parameter loading with status monitoring
• Debug outputs: Parameter ready, spike monitor, activity indicators

How to test

Basic Operation Test
1. System Reset: Assert rst_n low, then release while keeping ena high
2. Apply Stimulus: Set ui_in[2:0] (Channel A) and ui_in[5:3] (Channel

B) to desired values (0-7 each)
3. Monitor Output: Watch uo_out for spikes, uo_out[6:0] for real-time mem-

brane potential
4. Expected Behavior: With default parameters, combined stimulus � 4 should

eventually generate spikes

85

Parameter Loading Test
1. Enter Load Mode: Set uio_in (load_mode) = 1
2. Send Parameters: Use uio_in (serial_data) to clock in 40 bits (5×8 bit

parameters):

• Weight A: 8 bits (try 0x04 for moderate synaptic strength)
• Weight B: 8 bits (try 0x03 for balanced dual-channel response)
• Leak Config: 8 bits (try 0x01 for slow leak, 0x03 for fast leak)
• Threshold Min: 8 bits (try 0x20=32 for low sensitivity, 0x40=64 for

high)
• Threshold Max: 8 bits (try 0x60=96 for moderate, 0x80=128 for wide

range)

3. Monitor Status: Watch uio_out (params_ready) transition from 1→0→1
4. Exit Load Mode: Set uio_in = 0
5. Test New Behavior: Apply stimuli and verify different firing patterns

Neuron Configuration Testing Load these parameter sets to test different neuron
behaviors:

Configuration Weight A Weight B Leak Thr Min Thr Max Expected Behavior
High Sensitivity 0x06 0x05 0x01 0x19 0x50 Spikes with low inputs
Low Sensitivity 0x01 0x01 0x03 0x3C 0x78 Requires high inputs
Balanced 0x04 0x04 0x02 0x1E 0x5A Moderate responses
Fast Dynamics 0x03 0x03 0x03 0x28 0x5A Rapid leak, brief integration

Stimulus Response Testing
• Chan A=0, Chan B=0: Should remain at rest (membrane potential ~0-10)
• Chan A=1, Chan B=1: Subthreshold integration, gradual membrane rise
• Chan A=2, Chan B=2: Threshold region, occasional spikes depending on

configuration
• Chan A=3, Chan B=3: Suprathreshold, regular spike generation
• Chan A=7, Chan B=7: Maximum input, high-frequency firing or rapid adap-

tation

Advanced Feature Testing
• Adaptive Thresholds: Apply repeated stimuli, observe increasing inter-spike

intervals

86

• Synaptic Depression: High-frequency stimulation should show reduced re-
sponse over time

• Leak Rate Effects: Compare integration speed with different leak configura-
tions

• Dual Channel: Test various A/B combinations to verify independent channel
processing

Debug Monitoring
• uio_out: Parameter loading status (1=ready, 0=loading)
• uio_out: Duplicate spike output for external monitoring
• uio_out: Membrane activity indicator (1=active, 0=quiet)
• uio_out[5:7]: Echo signals for load mode, serial data, and enable verification

External hardware

No external hardware required for basic operation:

• Stimulus Input: Connect DIP switches or digital signals to ui_in[5:0] for
manual channel control

• Spike Output: Connect LED to uo_out for visual spike indication
• Membrane Monitor: Connect 7-segment display or LED bar to uo_out[6:0]

for membrane voltage visualization

Pinout

Input Output Bidirectional
0 CHAN_A_BIT0 V_MEM_BIT0 LOAD_MODE
1 CHAN_A_BIT1 V_MEM_BIT1 SERIAL_DATA
2 CHAN_A_BIT2 V_MEM_BIT2 PARAMS_READY
3 CHAN_B_BIT0 V_MEM_BIT3 SPIKE_MONITOR
4 CHAN_B_BIT1 V_MEM_BIT4 MEM_ACTIVITY
5 CHAN_B_BIT2 V_MEM_BIT5 LOAD_MODE_ECHO
6 RESERVED_0 V_MEM_BIT6 SERIAL_DATA_ECHO
7 RESERVED_1 SPIKE_OUT ENABLE_STATUS

87

test_design [419]

• Author: marc
• Description: test
• GitHub repository
• HDL project
• Mux address: 419
• Extra docs
• Clock: 0 Hz

How it works

it just works

How to test

TBD

External hardware

TBD

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

88

https://github.com/Marc-Rautmann/tinytapeout_marc_Design_C

RISC-V Mini IHP [421]

• Author: Thomas Uehlinger
• Description: RISC-V Mini 8 Bit on IHP
• GitHub repository
• HDL project
• Mux address: 421
• Extra docs
• Clock: 100000 Hz

How it works

This project implements RISC-V Mini by RickGao (https://github.com/RickGao/R
ISC-V-Mini), a compact 8-bit RISC-V processor core optimized for Tiny Tapeout, a
fabrication platform for small-scale educational IC projects. The processor employs a
customized, compressed RISC-V instruction set (RVC) to reduce instruction width to
16 bits, leading to a more compact design suited to Tiny Tapeout’s area and resource
constraints. Developed in Verilog, this processor will handle computational, load/store
and control-flow operations efficiently and undergo verification through simulation and
testing.
Processor Components
The processor comprises the following core components, optimized to meet Tiny Tape-
out’s area requirements:

1. Control Unit Generates control signals for instruction execution based on op-
code and other instruction fields.

2. Register File Contains 8 general-purpose, 8-bit-wide registers. Register x0 will
always return zero when read, adhering to RISC-V convention.

3. Arithmetic Logic Unit (ALU) Performs basic arithmetic (addition, subtrac-
tion) and logical (AND, OR, XOR, SLT) operations as specified by the decode
stage. Supports custom compressed RISC-V instructions.

4. Datapath Single-cycle execution, optimized for minimal hardware complexity,
reducing the processor’s area and power consumption.

How to test

Simply set the input to the instruction and clock once to receive the output.

• R-Type, I-Type, and L-Type instructions will output 0.

89

https://github.com/thuehlinger/tt-ihp25b-riscv-mini
https://github.com/RickGao/RISC-V-Mini
https://github.com/RickGao/RISC-V-Mini

• The S-Type instruction will output the value of the register.
• The B-Type instruction will output 1 if the branch is taken and 0 if it is not

taken.

Instructions List

R-Type

Name funct3 [15:13] funct2 [12:11] rs2 [10:8] rs1 [7:5] rd [4:2] Opcode(00)
AND 000 00 XXX XXX XXX Opcode(00)
OR 001 00 XXX XXX XXX Opcode(00)
ADD 010 00 XXX XXX XXX Opcode(00)
SUB 011 00 XXX XXX XXX Opcode(00)
XOR 001 01 XXX XXX XXX Opcode(00)
SLT 111 00 XXX XXX XXX Opcode(00)

I-Type

Name funct3 [15:13] Imm [12:8] (5-bit unsigned) rs1 [7:5] rd [4:2] Opcode(01)
SLL 100 XXXXX XXX XXX Opcode(01)
SRL 101 XXXXX XXX XXX Opcode(01)
SRA 110 XXXXX XXX XXX Opcode(01)
ADDI 010 XXXXX XXX XXX Opcode(01)
SUBI 011 XXXXX XXX XXX Opcode(01)

L-Type

Load Imm [15:8] (8-bit signed) 000 rd [4:2] Opcode(10)

S-Type

Store 00000 000 rs1 [7:5] 000 Opcode(11)

B-Type

90

Name funct3 [15:13] funct2 [12:11] rs2 [10:8] rs1 [7:5] 000 Opcode(11)
BEQ 011 00 XXX XXX 000 Opcode(11)
BNE 011 10 XXX XXX 000 Opcode(11)
BLT 111 00 XXX XXX 000 Opcode(11)

External hardware

No external hardware.

Pinout

Input Output Bidirectional
0 instruction[0] result[0] instruction[8]
1 instruction[1] result[1] instruction[9]
2 instruction[2] result[2] instruction[10]
3 instruction[3] result[3] instruction[11]
4 instruction[4] result[4] instruction[12]
5 instruction[5] result[5] instruction[13]
6 instruction[6] result[6] instruction[14]
7 instruction[7] result[7] instruction[15]

91

LIF Neuron [423]

• Author: Alexandre Baigol
• Description: LIF Neuron implementation with editable configuration
• GitHub repository
• HDL project
• Mux address: 423
• Extra docs
• Clock: 0 Hz

How it works

This project implements a hardware-optimized LIF (Leaky Integrate-and-Fire)
neuron in Verilog, designed for area efficiency while maintaining biological realism.
The system consists of four main components:

Core LIF Neuron Engine The heart of the system implements authentic LIF dy-
namics:

• Integration: V_mem = V_mem + weighted_input - leak_rate
• Spike Generation: When V_mem � threshold, generate spike and reset

V_mem = 0
• Refractory Period: 4-cycle no-spike period after each action potential
• Variable Leak Rates: 4 different membrane leak speeds (1-4 units/cycle)

The implementation uses 8-bit arithmetic for hardware efficiency while maintaining
biological accuracy across a 0-255 membrane potential range.

Enhanced Input Processing
• 3-bit Channel Precision: Each synaptic input (Channel A, Channel B) accepts

0-7 stimulus levels
• Weighted Integration: weighted_input = (chan_a × weight_a) +

(chan_b × weight_b)
• Synaptic Depression: Temporary weight reduction after spike generation for

realistic synaptic fatigue
• 64 Input Combinations: Full 8×8 stimulus space for fine-grained neural

control

92

https://github.com/abaigol/lif_neuron_Alex

Serial Parameter Loader A dedicated state machine loads five key parameters via
single-bit serial interface:

• Weight A/B (3 bits each): Synaptic strength for channels A and B
• Leak Config (2 bits): Membrane leak rate selection (1-4 units/cycle)
• Threshold Min/Max (8 bits each): Adaptive threshold bounds
• 40-bit Total: Complete parameter set loaded serially for different neuron per-

sonalities

Advanced Biological Features
• Adaptive Thresholds: Increase by 4 units after spikes, decrease by 1 unit

during silence
• Synaptic Depression: Weights temporarily reduced by 3 units after spiking
• Multiple Neuron Types: Configurable personalities (high/low sensitivity, bal-

anced, custom)
• Realistic Dynamics: Proper integration, leak, refractory periods matching

biological neurons

I/O Interface
• 6-bit stimulus input: 3-bit Channel A + 3-bit Channel B with 2 pins reserved

for expansion
• 8-bit neural output: 7-bit membrane potential + 1-bit spike detection
• Serial configuration: Single-bit parameter loading with status monitoring
• Debug outputs: Parameter ready, spike monitor, activity indicators

How to test

Basic Operation Test
1. System Reset: Assert rst_n low, then release while keeping ena high
2. Apply Stimulus: Set ui_in[2:0] (Channel A) and ui_in[5:3] (Channel

B) to desired values (0-7 each)
3. Monitor Output: Watch uo_out for spikes, uo_out[6:0] for real-time mem-

brane potential
4. Expected Behavior: With default parameters, combined stimulus � 4 should

eventually generate spikes

93

Parameter Loading Test
1. Enter Load Mode: Set uio_in (load_mode) = 1
2. Send Parameters: Use uio_in (serial_data) to clock in 40 bits (5×8 bit

parameters):

• Weight A: 8 bits (try 0x04 for moderate synaptic strength)
• Weight B: 8 bits (try 0x03 for balanced dual-channel response)
• Leak Config: 8 bits (try 0x01 for slow leak, 0x03 for fast leak)
• Threshold Min: 8 bits (try 0x20=32 for low sensitivity, 0x40=64 for

high)
• Threshold Max: 8 bits (try 0x60=96 for moderate, 0x80=128 for wide

range)

3. Monitor Status: Watch uio_out (params_ready) transition from 1→0→1
4. Exit Load Mode: Set uio_in = 0
5. Test New Behavior: Apply stimuli and verify different firing patterns

Neuron Configuration Testing Load these parameter sets to test different neuron
behaviors:

Configuration Weight A Weight B Leak Thr Min Thr Max Expected Behavior
High Sensitivity 0x06 0x05 0x01 0x19 0x50 Spikes with low inputs
Low Sensitivity 0x01 0x01 0x03 0x3C 0x78 Requires high inputs
Balanced 0x04 0x04 0x02 0x1E 0x5A Moderate responses
Fast Dynamics 0x03 0x03 0x03 0x28 0x5A Rapid leak, brief integration

Stimulus Response Testing
• Chan A=0, Chan B=0: Should remain at rest (membrane potential ~0-10)
• Chan A=1, Chan B=1: Subthreshold integration, gradual membrane rise
• Chan A=2, Chan B=2: Threshold region, occasional spikes depending on

configuration
• Chan A=3, Chan B=3: Suprathreshold, regular spike generation
• Chan A=7, Chan B=7: Maximum input, high-frequency firing or rapid adap-

tation

Advanced Feature Testing
• Adaptive Thresholds: Apply repeated stimuli, observe increasing inter-spike

intervals

94

• Synaptic Depression: High-frequency stimulation should show reduced re-
sponse over time

• Leak Rate Effects: Compare integration speed with different leak configura-
tions

• Dual Channel: Test various A/B combinations to verify independent channel
processing

Debug Monitoring
• uio_out: Parameter loading status (1=ready, 0=loading)
• uio_out: Duplicate spike output for external monitoring
• uio_out: Membrane activity indicator (1=active, 0=quiet)
• uio_out[5:7]: Echo signals for load mode, serial data, and enable verification

External hardware

No external hardware required for basic operation:

• Stimulus Input: Connect DIP switches or digital signals to ui_in[5:0] for
manual channel control

• Spike Output: Connect LED to uo_out for visual spike indication
• Membrane Monitor: Connect 7-segment display or LED bar to uo_out[6:0]

for membrane voltage visualization

Pinout

Input Output Bidirectional
0 CHAN_A_BIT0 V_MEM_BIT0 LOAD_MODE
1 CHAN_A_BIT1 V_MEM_BIT1 SERIAL_DATA
2 CHAN_A_BIT2 V_MEM_BIT2 PARAMS_READY
3 CHAN_B_BIT0 V_MEM_BIT3 SPIKE_MONITOR
4 CHAN_B_BIT1 V_MEM_BIT4 MEM_ACTIVITY
5 CHAN_B_BIT2 V_MEM_BIT5 LOAD_MODE_ECHO
6 RESERVED_0 V_MEM_BIT6 SERIAL_DATA_ECHO
7 RESERVED_1 SPIKE_OUT ENABLE_STATUS

95

Morse Code Trainer [425]

• Author: Angelo Nujic
• Description: Interactive Morse Code learning game with 7-segment display
• GitHub repository
• HDL project
• Mux address: 425
• Extra docs
• Clock: 100 Hz

Morse Code Trainer

An interactive educational game that teaches Morse code through hands-on practice
with a 7-segment display and tactile input.

How it works

This Morse Code trainer presents letters on a 7-segment display and challenges users to
input the correct Morse code pattern using a switch. The system provides immediate
feedback and progresses through the english alphabet.

Game Flow
1. Character Display: When Start switch (sw0) is moved a letter is shown on

the 7-segment display
2. Input Phase: User inputs Morse code using the switch 1

• Short hold (~200ms) = Dot (.)
• Long hold (~400ms) = Dash (-)

3. Validation: System checks input against expected pattern
4. Feedback: Shows . for correct, no dot for wrong
5. Progress: Move Start switch back, and into start position to start again.

How to test The design can be tested in simulation or on hardware:

96

https://github.com/anujic/tt_project

Simulation Testing
1. Run the provided cocotb testbench
2. Observe state transitions and timing behavior
3. Verify correct morse pattern recognition
4. Test button debouncing and edge cases

Hardware Testing
1. Connect 7-segment display to uo[6:0]
2. Connect status LED to uo[7] (else dot is used on 7-seg display)
3. Connect telegraph key to ui[0]
4. Connect navigation buttons to ui[1]
5. Power on and follow the learning sequence

External hardware

Required Components
• 7-Segment Display: Common cathode, connected to uo[6:0]
• Status LED: Connected to uo[7] with current limiting resistor
• Start: Momentary switch connected to ui[0]
• Telegraph Key: Momentary switch connected to ui[1]

Optional Enhancements
• Buzzer: For audio feedback (requires additional output pin)
• Pull-up Resistors: For reliable button operation (10kΩ recommended)
• LED Indicators: Additional status LEDs for game state visualization

Pin Configuration

ui[0] - Start switch
ui[1] - Morse Key Input (active high)
uo[6:0] - 7-Segment Display (A-G segments)
uo[7] - Status LED (correct/incorrect feedback)

This Morse Code Trainer combines historical significance with modern digital design,
creating an engaging educational tool perfect for ham radio enthusiasts, educators, and
anyone interested in classic communication methods!

97

Pinout

Input Output Bidirectional
0 start seg_o[0]
1 morse seg_o[1]
2 seg_o[2]
3 seg_o[3]
4 seg_o[4]
5 seg_o[5]
6 seg_o[6]
7 correct_res

98

Gamepad Pmod Demo [427]

• Author: Uri Shaked
• Description: Gamepad Pmod + Tiny VGA demo from VGA Playground
• GitHub repository
• HDL project
• Mux address: 427
• Extra docs
• Clock: 25175000 Hz

How it works

This project demonstrates how to use the Gamepad Pmod to get input from a gamepad
and display it on a VGA monitor.

How to test

Connect the TinyVGA and Gamepad Pmods to the Tiny Tapeout board, activate the
project, reset it, and start pressing buttons on the gamepad.
When you press a button on the gamepad, its corresponding symbol will appear in
green on the VGA display.

External hardware

• TinyVGA Pmod
• Gamepad Pmod

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VSync
4 gamepad_latch R0
5 gamepad_clk G0
6 gamepad_data B0

99

https://github.com/urish/ttihp-gamepad-pmod-demo
https://github.com/mole99/tiny-vga
https://github.com/psychogenic/gamepad-pmod

7 HSync

100

tinytapeoutchip [449]

• Author: elena
• Description: chip stuff
• GitHub repository
• Wokwi project
• Mux address: 449
• Extra docs
• Clock: 0 Hz

How it works

If you turn on the correct switches, it will turn on a light and it show the letter E.

How to test

Switch on the correct switches.

External hardware

Most likely none, I think.

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

101

https://github.com/Benenka/TinyTapeoutYay
https://wokwi.com/projects/434917317189363713

tiny tapeout chip [451]

• Author: Mayra
• Description: lol
• GitHub repository
• Wokwi project
• Mux address: 451
• Extra docs
• Clock: 0 Hz

How it works

Chip

How to test

Chip

External hardware

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

102

https://github.com/Mayr9/Chip
https://wokwi.com/projects/434917679388544001

ToDo [453]

• Author: Alexander Flasby
• Description: Nothing yet
• GitHub repository
• HDL project
• Mux address: 453
• Extra docs
• Clock: 0 Hz

How it works

It does not. Do not use this under any conditions.

How to test

Please don’t test anything. You will be disappointed.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3
4 IN4
5 IN5
6 IN6
7 IN7

103

https://github.com/StPhobic/TinyTapeOutSwissChips

in progress [455]

• Author: mue
• Description: tiny chip design…
• GitHub repository
• Wokwi project
• Mux address: 455
• Extra docs
• Clock: 0 Hz

How it works

Does something….

How to test

This is how you would test it: …

External hardware

external HW will be described later…

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

104

https://github.com/mueakbas/ttihp-wokwi-mue-tt
https://wokwi.com/projects/434917139713644545

numbers [457]

• Author: Majla Uehla
• Description: nothing so far
• GitHub repository
• Wokwi project
• Mux address: 457
• Extra docs
• Clock: 0 Hz

How it works

i do not know yet

How to test

i do not know yet

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 no.1 top 1
1 no.2 topr 2
2 no.3 botr 3
3 no.4 bot 4
4 no.5 botl 5
5 no.6 topl 6
6 no.7 mid 7
7 no.8 dot 8

105

https://github.com/maje-egg/tinytapeout
https://wokwi.com/projects/434917382645687297

number display [459]

• Author: Lena Stadel
• Description: displays the number that is on (in the input)
• GitHub repository
• Wokwi project
• Mux address: 459
• Extra docs
• Clock: 0 Hz

How it works

not finished yet

How to test

enter a number (a input) and it should show that nuber on the display

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 no1 top 1
1 no2 topr 2
2 no3 botr 3
3 no4 bot 4
4 no5 botl 5
5 no6 topl 6
6 no7 middle 7
7 no8 dot 8

106

https://github.com/lenastadel/tinytapeout
https://wokwi.com/projects/434917816595781633

VGA Screensaver with Zero to ASIC Logo [480]

• Author: Matt Venn
• Description: Zero to ASIC Logo bouncing around the screen (640x480, TinyVGA

Pmod)
• GitHub repository
• HDL project
• Mux address: 480
• Extra docs
• Clock: 25175000 Hz

How it works

Displays a bouncing Zero to ASIC logo on the screen, with animated color gradient.

How to test

Connect to a VGA monitor. Set the following inputs to configure the design:

• tile (ui_in[0]) to repeat the logo and tile it across the screen,
• solid_color (ui_in[1]) to use a solid color instead of an animated gradient.

If you have a Gamepad Pmod connected, you can also use the following controls:

• Start button: start/pause bouncing

107

https://github.com/mattvenn/ttihp0p3-z2a-logo-screensaver

• Left/right/up/down: change the bouncing direction (if bouncing) or move the
logo around the screen (if paused)

External hardware

• Tiny VGA Pmod
• Optional: Gamepad Pmod

Pinout

Input Output Bidirectional
0 tile R1
1 solid_color G1
2 B1
3 VSync
4 gamepad_latch R0
5 gamepad_clk G0
6 gamepad_data B0
7 HSync

108

https://github.com/mole99/tiny-vga
https://github.com/psychogenic/gamepad-pmod

weaving in silicon #1 [481]

• Author: bleeptrack
• Description: Imagine the norns would weave in silicon
• GitHub repository
• HDL project
• Mux address: 481
• Extra docs
• Clock: 0 Hz

How it works

This tile is an experimental silicon art tile. It plays with the idea of crossing traditional
crafts like weaving with the weaving-like work of entangled transistor lines.

How to test

No test - just looks

External hardware

The artwork will be unveiled when decapping the chip

Pinout

Input Output Bidirectional
0 dummy
1
2
3
4
5
6
7

109

https://github.com/bleeptrack/weaving01

weaving in silicon #2 [483]

• Author: bleeptrack
• Description: the randomness in life
• GitHub repository
• HDL project
• Mux address: 483
• Extra docs
• Clock: 0 Hz

How it works

This tile is an experimental silicon art tile. It plays with the idea of crossing traditional
crafts like weaving with the weaving-like work of entangled transistor lines.

How to test

No test - just looks

External hardware

The artwork will be unveiled when decapping the chip

Pinout

Input Output Bidirectional
0 dummy
1
2
3
4
5
6
7

110

https://github.com/bleeptrack/weaving02

weaving in silicon #3 [485]

• Author: bleeptrack
• Description: Life comes in cycles
• GitHub repository
• HDL project
• Mux address: 485
• Extra docs
• Clock: 0 Hz

How it works

This tile is an experimental silicon art tile. It plays with the idea of crossing traditional
crafts like weaving with the weaving-like work of entangled transistor lines.

How to test

No test - just looks

External hardware

The artwork will be unveiled when decapping the chip

Pinout

Input Output Bidirectional
0 dummy
1
2
3
4
5
6
7

111

https://github.com/bleeptrack/weaving03

weaving in silicon #4 [487]

• Author: bleeptrack
• Description: Alpha to Omega
• GitHub repository
• HDL project
• Mux address: 487
• Extra docs
• Clock: 0 Hz

How it works

This tile is an experimental silicon art tile. It plays with the idea of crossing traditional
crafts like weaving with the weaving-like work of entangled transistor lines.

How to test

No test - just looks

External hardware

The artwork will be unveiled when decapping the chip

Pinout

Input Output Bidirectional
0 dummy
1
2
3
4
5
6
7

112

https://github.com/bleeptrack/weaving04

Verilog OR-Gate [489]

• Author: Pius Sieber
• Description: Simple OR-Gate
• GitHub repository
• HDL project
• Mux address: 489
• Extra docs
• Clock: 0 Hz

How it works

Simple Test of Verilog Chip creation, only includes one or gate currently

How to test

Test with the first two inputs and the first output.

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 OR-Gate Input A OR-Gate Output
1 OR-Gate Input B
2
3
4
5
6
7

113

https://github.com/piussieber/TinyTapeout_Test_Chip

TinyQV - Crowdsourced Risc-V SoC [490]

• Author: Michael Bell, et al
• Description: A Risc-V SoC with peripherals from the Tiny Tapeout Risc-V chal-

lenge
• GitHub repository
• HDL project
• Mux address: 490
• Extra docs
• Clock: 64000000 Hz

How it works

This is an early version of the Tiny Tapeout collaborative competition Risc-V SoC.
The CPU is a small Risc-V CPU called TinyQV, designed with the constraints of Tiny
Tapeout in mind. It implements the RV32EC instruction set plus the Zcb and Zicond
extensions, with a couple of caveats:

• Addresses are 28-bits
• Program addresses are 24-bits
• gp is hardcoded to 0x1000400, tp is hardcoded to 0x8000000.

Instructions are read using QSPI from Flash, and a QSPI PSRAM is used for memory.
The QSPI clock and data lines are shared between the flash and the RAM, so only one
can be accessed simultaneously.
Code can only be executed from flash. Data can be read from flash and RAM, and
written to RAM.
The peripherals making up the SoC are contributed by the Tiny Tapeout community,
with prizes going to the best designs!

Address map

Address range Device
0x0000000 - 0x0FFFFFF Flash
0x1000000 - 0x17FFFFF RAM A
0x1800000 - 0x1FFFFFF RAM B
0x8000000 - 0x8000033 DEBUG
0x8000040 - 0x800007F GPIO
0x8000080 - 0x80000BF UART

114

https://github.com/MichaelBell/ttihp25b-tinyQV

Address range Device
0x8000100 - 0x80003FF User peripherals 4-15
0x8000400 - 0x80004FF Simple user peripherals 0-15
0xFFFFF00 - 0xFFFFF07 TIME

DEBUG

Register Address Description
SEL 0x800000C (R/W) Bits 6-7 enable peripheral output on the corresponding bit on out6-7, otherwise out6-7 is used for debug.
DEBUG_UART_DATA 0x8000018 (W) Transmits the byte on the debug UART
STATUS 0x800001C (R) Bit 0 indicates whether the debug UART TX is busy, bytes should not be written to the data register while this bit is set.

See also debug docs

TIME

Register Address Description
MTIME 0xFFFFF00 (RW) Get/set the 1MHz time count
MTIMECMP 0xFFFFF04 (RW) Get/set the time to trigger the timer interrupt

This is a simple timer which follows the spirit of the Risc-V timer but using a 32-bit
counter instead of 64 to save area. In this version the MTIME register is updated at
1/64th of the clock frequency (nominally 1MHz), and MTIMECMP is used to trigger
an interrupt. If MTIME is after MTIMECMP (by less than 2^30 microseconds to deal
with wrap), the timer interrupt is asserted.

GPIO

Register Address Description
OUT 0x8000040 (RW) Control for out0-7 if the GPIO peripheral is selected
IN 0x8000044 (R) Reads the current state of in0-7
FUNC_SEL 0x8000060 - 0x800007F (RW) Function select for out0-7

Function Select Peripheral
0 Disabled

115

debug.md

Function Select Peripheral
1 GPIO
2 UART
3 Disabled
4 - 15 User peripheral 4-15
16 - 31 User byte peripheral 0-15

UART

Register Address Description
TX_DATA 0x8000080 (W) Transmits the byte on the UART
RX_DATA 0x8000080 (R) Reads any received byte
TX_BUSY 0x8000084 (R) Bit 0 indicates whether the UART TX is busy, bytes should not be written to the data register while this bit is set. Bit 1 indicates whether a received byte is available to be read.
DIVIDER 0x8000088 (R/W) 13 bit clock divider to set the UART baud rate
RX_SELECT 0x800008C (R/W) 1 bit select UART RX pin: ui_in[7] when low (default), ui_in[3] when high

How to test

Load an image into flash and then select the design.
Reset the design as follows:

• Set rst_n high and then low to ensure the design sees a falling edge of rst_n.
The bidirectional IOs are all set to inputs while rst_n is low.

• Program the flash and leave flash in continuous read mode, and the PSRAMs
in QPI mode

• Drive all the QSPI CS high and set SD1:SD0 to the read latency of the QSPI
flash and PSRAM in cycles.

• Clock at least 8 times and stop with clock high
• Release all the QSPI lines
• Set rst_n high
• Set clock low
• Start clocking normally

Based on the observed latencies from tt06 testing, at the target 64MHz clock a read
latency of 2 is required. The maximum supported latency is currently 3.
The above should all be handled by some MicroPython scripts for the RP2040 on the
TT demo PCB.

116

Build programs using the customised toolchain and the tinyQV-sdk, some examples
are here.

External hardware

The design is intended to be used with this QSPI PMOD on the bidirectional PMOD.
This has a 16MB flash and 2 8MB RAMs.
The UART is on the correct pins to be used with the hardware UART on the RP2040
on the demo board.
It may be useful to have buttons to use on the GPIO inputs.

Pinout

Input Output Bidirectional
0 Interrupt 0 UART TX Flash CS
1 Interrupt 1 UART RTS SD0
2 SD1
3 SCK
4 SD2
5 SD3
6 Debug UART TX RAM A CS
7 UART RX Debug signal / PWM RAM B CS / PWM

117

https://github.com/MichaelBell/riscv-gnu-toolchain
https://github.com/MichaelBell/tinyQV-sdk
https://github.com/MichaelBell/tinyQV-projects
https://github.com/mole99/qspi-pmod

SAR ADC Controller [491]

• Author: Cédric Cyril Hirschi
• Description: Simple SAR ADC Controller with SPI interface
• GitHub repository
• HDL project
• Mux address: 491
• Extra docs
• Clock: 0 Hz

How it works

This project implements a simple SAR ADC controller designed to work with external
analog circuitry.

How to test

Attach the external hardware as described below.
To start a conversion, toggle the start_i signal to high. As long as this signal is high,
the ADC performs conversions.
There is no end of conversion output signal!

External hardware

This project needs external analog circuitry to test the ADC functionality.
You need to connect a R-2R ladder network to the DAC outputs (uo0 to uo7) of the
design.
The output of this DAC has to be input into the negative comparator input, where the
positive comparator input would be the input voltage.
The output of this comparator would then connect to the comp_i input (ui1) of the
design.
The circuit could look something like this:

118

https://github.com/CedricHirschi/ttihp-verilog-cedrichirschi

Pinout

Input Output Bidirectional
0 start_i dac0_o result0_o
1 comp_i dac1_o result1_o
2 dac2_o result2_o
3 dac3_o result3_o
4 dac4_o result4_o
5 dac5_o result5_o
6 dac6_o result6_o
7 dac7_o result7_o

119

MC first Wokwi [513]

• Author: Marko
• Description: learning how to use Wokwi
• GitHub repository
• Wokwi project
• Mux address: 513
• Extra docs
• Clock: 0 Hz

How it works

Inputs to LED number display experiment

How to test

dont use it. not good

External hardware

yes

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

120

https://github.com/Maroni-11/11
https://wokwi.com/projects/434917171311441921

2048 sliding tile puzzle game (VGA) [514]

• Author: Uri Shaked
• Description: Slide numbered tiles on a grid to combine them to create a tile

with the number 2048.
• GitHub repository
• HDL project
• Mux address: 514
• Extra docs
• Clock: 25175000 Hz

How it works

2048 is a single-player sliding tile puzzle video game. Your goal is to slide numbered
tiles on a grid to combine them and create a tile with the number 2048. The game is
won when a tile with the number 2048 appears on the board, hence the name of the
game. The game is lost when the board is full and no more moves can be made.
The game is played on a 4x4 grid, with numbered tiles that slide when a player moves
them using ui_in pins or using a SNES compatible controller along with the Gamepad
Pmod.
The game starts with two tiles with the number 2 on the board. The player can move
the tiles in four directions: up, down, left, and right. When the player moves the tiles
in a direction, the tiles slide as far as they can in that direction until they hit the edge
of the board or another tile. If two tiles with the same number collide, they merge into
a single tile with the sum of the two numbers. The resulting tile cannot merge with
another tile again in the same move.

How to test

Use the ui_in pins to move the tiles on the board:

ui_in pin Direction
0 Up
1 Down
2 Left
3 Right

Or use a SNES compatible controller along with the Gamepad Pmod. The game will
automatically detect the presence of the Pmod and switch to controller input mode.

121

https://github.com/urish/tt-2048-game

After resetting the game, you will see a jumping “2048” animation on the screen. Press
any of the ui_in[3:0] pins (or the gamepad buttons) to start the game. The game
will start with two tiles with the number 2 on the board. Use the ui_in pins (or the
gamepad buttons) to move the tiles in the desired direction. The game will end when
the board is full and no more moves can be made.
The game offers two color themes: modern and retro. You can switch between the
two themes using the select button on the gamepad or by setting both ui_in[4]
and ui_in[5] to 1.
Setting ui_in[7] to 1 will enter unit test mode. In this mode, the game displays a
colorful rectangle on the top of the screen, and accepts debug commands on the uio
pins. Check out the test bench for more information.

External hardware

• TinyVGA Pmod
• Optional: Gamepad Pmod

Pinout

Input Output Bidirectional
0 btn_up R1 debug_cmd
1 btn_down G1 debug_cmd
2 btn_left B1 debug_cmd
3 btn_right VSync debug_cmd
4 gamepad_latch R0 debug_data
5 gamepad_clk G0 debug_data
6 gamepad_data B0 debug_data
7 debug_mode HSync debug_data

122

https://github.com/mole99/tiny-vga
https://github.com/psychogenic/gamepad-pmod

TinyTapeout 2025 [515]

• Author: SG Nanovolt
• Description: 8 bit Pseudo-Random Number Generator
• GitHub repository
• Wokwi project
• Mux address: 515
• Extra docs
• Clock: 10000 Hz

How it works

This is a 8 bit pseudo-random number generator. First, the chip clock is divided down
by 14 cascaded divide-by-two stages. This chain results in a total division factor of
16’384. For a chip clock of 10 kHz, a frequency of 0.61 Hz results. This local slow
clock drives four Fibonacci maximum-length linear shift registers (LFSRs) with 9, 10,
11, and 13 bits. To minimize correlations, these LFSRs are selected such that the
sequence lengths are relative prime. For the final output, these four LFSR sequences
are combined with XOR operations to generate 8 bits.

How to test

The pseudo-random output bits can be observed with a 7-segment LED display, an
oscilloscope, or a logic analyzer.

External hardware

A 7-segment LED display is recommended

Pinout

Input Output Bidirectional
0 Random bit output 0
1 Random bit output 1
2 Random bit output 2
3 Random bit output 3
4 Random bit output 4
5 Random bit output 5

123

https://github.com/sgnanovolt/tinytapeout2025
https://wokwi.com/projects/434917320361309185

Input Output Bidirectional
6 Random bit output 6
7 Random bit output 7

124

LIF neuron [517]

• Author: Lara Pregej
• Description: Low power LIF neuron
• GitHub repository
• HDL project
• Mux address: 517
• Extra docs
• Clock: 0 Hz

How it works

It just works

How to test

Just do it.

External hardware

None.

Pinout

Input Output Bidirectional
0 1 0
1 2 1
2 3 2
3 4 3
4 5 4
5 6 5
6 7 6
7 0 7

125

https://github.com/Larj975/Tiny-Tapeout-Workshop_Design_B

3-bit up-down counter [519]

• Author: Nefeli Metallidou
• Description: A 3-bit up-down counter
• GitHub repository
• HDL project
• Mux address: 519
• Extra docs
• Clock: 50000000 Hz

How it works

A 3-bit up/down counter with a reset signal, enable signal, load signal, and up/down
signal.
When the rst is low, the output is set to 0. When the load_cnt signal is low, the
input data is assigned to the output. When count_enb is high, counting occurs at
every positive edge of the clock. updn_cnt controls whether the counter counts up or
down.

How to test

Set signals and confirm counting.

External hardware

7-segment disply and driver, resistors.

Pinout

Input Output Bidirectional
0 data_in[0] data_out[0]
1 data_in[1] data_out[1]
2 data_in[2] data_out[2]
3 rst_
4 ld_cnt
5 updn_cnt
6 count_enb

126

https://github.com/nefelimet/tt-updown-counter

7

127

Prism [521]

• Author: bleeptrack
• Description: a hypnotic prism floating in a starry night
• GitHub repository
• HDL project
• Mux address: 521
• Extra docs
• Clock: 25175000 Hz

How it works

It’s a visual. not much to do currently :)

How to test

Hook it up into the VGA dongle and turn it on!

External hardware

Mole99

Pinout

Input Output Bidirectional
0 R1
1 G1
2 B1
3 VSync
4 R0
5 G0
6 B0
7 HSync

128

https://github.com/bleeptrack/tt-prism
https://github.com/mole99/tiny-vga

KianV uLinux SoC [522]

• Author: Hirosh Dabui
• Description: A RISC-V ASIC that can boot �Linux.
• GitHub repository
• HDL project
• Mux address: 522
• Extra docs
• Clock: 0 Hz

How it works

32-bit RISC-V IMA processor, capable of booting Linux. Features 16 MiB of external
SPI flash memory, 16 MiB of external PSRAM (8 MiB per bank), a UART peripheral,
and a SPI peripheral.

System Memory Map

The system memory map is as follows:

Address Size Purpose
0x10000000 0x14 UART Peripheral
0x10500000 0x14 SPI Peripheral
0x10600000 0x0c GPIO Peripheral
0x11100000 0x04 Reset / HALT control
0x20000000 16 MiB SPI Flash
0x80000000 16 MiB PSRAM

The system boots from the SPI flash memory. After reset, the CPU starts execut-
ing code from 0x20100000 (corresponding to the offset 0x100000 into the SPI flash
memory), where the bootloader is expected to be.

UART Peripheral registers

Address Name Description
0x10000000 UART_DATA Write to transmit, read to receive
0x10000005 UART_LSR UART line status register
0x10000010 UART_DIV Clock divider for UART baud rate

129

https://github.com/TinyTapeout/KianV-RV32IMA-RISC-V-uLinux-SoC

SPI Peripheral registers

Address Name Description
0x10500000 SPI_CTRL0 SPI Peripheral Control
0x10500004 SPI_DATA0 SPI Data
0x10500010 SPI_DIV Clock divider for SPI peripheral

GPIO Peripheral registers

Address Name Description
0x10600000 GPIO_UO_EN Enable bits for uo_out pins
0x10600004 GPIO_UO_OUT Write to uo_out pins
0x10600008 GPIO_UI_IN Read from ui_in pins(read-only)

CPU control register

Address Name Description
0x11100000 CPU_RESET Write 0x7777 to reset the CPU, 0x5555 to halt the CPU.

How to test

Build the system image as described in the kianRiscV repo and load it into the SPI
flash memory:

Flash offset File name Description
0x100000 bootloader.bin Bootloader
0x180000 kianv.dtb Device Tree Blob
0x200000 Image Linux kernel + rootfs

The system runs at 30 MHz, with a maximum tested speed of 34.5 MHz.

External hardware

QSPI Pmod - can be purchased from the Tiny Tapeout store.

130

https://github.com/splinedrive/kianRiscV/tree/master/asic/os/ulinux_asic_kianv_soc
https://github.com/mole99/qspi-pmod
https://store.tinytapeout.com/products/QSPI-Pmod-p716541602

Pinout

Input Output Bidirectional
0 gpio[0] spi_cen0 ce0 flash
1 gpio[1] spi_sclk0 sio0
2 spi_sio1_so_miso0 spi_sio0_si_mosi0 sio1
3 uart_rx gpio[3] sck
4 gpio[4] uart_tx sd2
5 gpio[5] gpio[5] sd3
6 gpio[6] gpio[6] cs1 psram
7 gpio[7] gpio[7] cs2 psram

131

E-ink display driver [523]

• Author: Tim Edwards
• Description: Test driver for Adafruit 2.13 inch e-ink display
• GitHub repository
• HDL project
• Mux address: 523
• Extra docs
• Clock: 50 Hz

How it works

This is an example hardware driver for an e-ink display. Adafruit makes a nice series
of small e-ink displays, but they are designed for an Arduino and driven by software.
This project shows how to build a display driver in verilog. To keep memory overhead
to a minimum, it operates like a VGA screen saver, displaying simple patterns that can
be computed in real time as the pixel positions are counted and transmitted to the
driver.
The driver instantiates an SPI master which communicates with the SSD1680 chipset
on the e-ink display. Whenever a bit from the input PMOD is set to “1”, and ini-
tialization sequence is send to the display, followed by a transmission of the display
image, followed by a deep sleep power-down. Once in deep sleep mode, the displayed
image will remain indefinitely, even if the display is disconnected from the development
board.

How to test

The input/output PMOD is used to connect to the e-ink display pins. Since the e-ink
display is not PMOD-compatible, it is necessary to install a header onto the e-ink
display and create a bundle of jumper wires to connect to the PMOD as follows:

pin signal direction PMOD pin

ECS: uio[0] output 1

MOSI: uio[1] output 2 MISO: uio[2] input 3 SCK: uio[3] output 4 SRCS: uio[4] output
7 RST: uio[5] output 8 BUSY: uio[6] input 9 D/C: uio[7] output 10 GND: 11 or 5 VIN:
12 or 6

132

https://github.com/RTimothyEdwards/ttihp-eink-driver

To test the eight example patterns, raise one of the input pins to value “1”. This can
be done with a set of external buttons on the input PMOD, or the input PMOD value
can be set from software.
ui[5] is a special case in which the contents of the display board’s SRAM are copied
directly to the e-ink display. This uses an unusual method in which the SRAM is set
to a sequential read mode and then is left enabled while the e-ink display is initialized.
Commands being sent to the display are ignored by the SRAM, which outputs one bit on
every clock cycle. The SRAM contents are then copied into the display starting at offset
address 30 (which is the number of SPI bytes clocked while initializing the display). The
SRAM is volatile and so unprogrammed at power-up. It can be programmed using the
“pass-through” mode, in which the SRAM’s SPI can be bit-banged from the ui[] port
using software. Enable “pass-through” mode by setting ui[7:4] to 0xf, then bit-bang
using ui[0] for clock and ui[1] for data (if the SRAM is given a READ command, then
output from the SRAM can be read from uo[0]). First put the SRAM into sequential
mode with command 0x01 0x40. End pass-through mode with ui = 0x00, then re-enter
pass-through mode with ui = 0xf0. Continue with the command 0x02 0x00 0x1e and
then write 3904 bytes of image data (32 bytes x 122 lines). End pass-through mode
again with ui = 0x00, then display the image data with ui = 0x20.

External hardware

Every e-ink display has a very specific driver, and making a general-purpose driver is
prohibitive for Tiny Tapeout. The project is designed to drive the Adafruit 2.13“ e-ink
display, Product ID: 4197, URL https://www.adafruit.com/product/4197 (as of this
writing, cost is $22.50).

Pinout

Input Output Bidirectional
0 All white Bitbang SCK SRAM MISO (out)
1 All black Bitbang MOSI
2 Vertical stripes MISO (in, unused)
3 Horizontal stripes SCK (out)
4 Small checkerboard SRCS (out, =1)
5 User SRAM contents RSTB (out)
6 Large checkerboard BUSY (in)
7 Low-res smiley face D/C (out)

133

https://www.adafruit.com/product/4197

Yet Another Diffraction Grating Experiment [576]

• Author: htfab
• Description: A remix of Uri’s Colorful Stripes
• GitHub repository
• HDL project
• Mux address: 576
• Extra docs
• Clock: 0 Hz

How it works

Should hopefully generate a colorful pattern when viewed under the microscope.

How to test

View under the microscope or smartphone camera.

External hardware

Microscope.

Pinout

Input Output Bidirectional
0 None
1
2
3
4
5
6
7

134

https://github.com/htfab/ttihp25b-yadge

’’ [577]

• Author: Lae
• Description: Calculation
• GitHub repository
• Wokwi project
• Mux address: 577
• Extra docs
• Clock: 0 Hz

How it works

Not desided yet

How to test

Not desided yet

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3
4 IN4
5 IN5
6 IN6
7 IN7

135

https://github.com/Lae689/LaJu
https://wokwi.com/projects/434917344830882817

WowkiProject [579]

• Author: Kevin
• Description: TestDescription
• GitHub repository
• Wokwi project
• Mux address: 579
• Extra docs
• Clock: 1000000 Hz

How it works

XOR outputs on first four pins, selectable with multiplexer from IN4

How to test

Change toggles from IN0 to IN4

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4
5
6
7

136

https://github.com/KRuss7/TinyTapeout
https://wokwi.com/projects/434918300941464577

Mini Calculator v1 [581]

• Author: Luis
• Description: adds up 1 and 2
• GitHub repository
• Wokwi project
• Mux address: 581
• Extra docs
• Clock: 0 Hz

How it works

TBD

How to test

TBD

External hardware

TBD

Pinout

Input Output Bidirectional
0 input 1 display segment
1 input 2 display segment
2 display segment
3 display segment
4
5
6 display segment
7

137

https://github.com/work-ing-png/Tiny_tapeout_calculator_v1
https://wokwi.com/projects/434917453767462913

and [583]

• Author: eric
• Description: and
• GitHub repository
• Wokwi project
• Mux address: 583
• Extra docs
• Clock: 0 Hz

How it works

it works

How to test

TBD

External hardware

TBD

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1
2 IN2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

138

https://github.com/eric-stegmann/TinyTapeoutEric
https://wokwi.com/projects/434917219039482881

DigOTA [585]

• Author: Ali Meimandi
• Description: It works as a digital based OTA
• GitHub repository
• Wokwi project
• Mux address: 585
• Extra docs
• Clock: 50000 Hz

How it works

It is a digital OTA that needs 50kHz clock and two inputs and it has three outputs

How to test

you connect two input signals of OTA and the output current is proportional to number
of pulses in the output stages

External hardware

List external hardware used in your project (e.g. PMOD, LED display, etc), if any

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3
4 IN4
5 IN5
6 IN6
7 IN7

139

https://github.com/Ali1996M/TinyTapeoutWorkshop
https://wokwi.com/projects/434917025263649793

TinyTapeoutWorkshop [587]

• Author: Robin LEPLAE
• Description: Logic gates
• GitHub repository
• Wokwi project
• Mux address: 587
• Extra docs
• Clock: 0 Hz

How it works

Bunch of logic gates

How to test

Test truth tables

External hardware

None

Pinout

Input Output Bidirectional
0 IN0 OUT0
1 IN1 OUT1
2 IN2 OUT2
3 IN3 OUT3
4 IN4 OUT4
5 IN5 OUT5
6 IN6 OUT6
7 IN7 OUT7

140

https://github.com/robinleplae/tinytapeoutworshop
https://wokwi.com/projects/434917044822739969

Pinout

The chip is packaged in a 64-pin QFN package. The pinout is shown below.

Pin 1

1 16

uio[1]
uio[2]

uio[3]
uio[4]
uio[5]
uio[6]
uio[7]

8 17

3233

ctrl_ena

11

ctrl_sel_inc
ctrl_sel_rst_n

48

clk

37

rst_n

41

ui_in[0]
ui_in[1]

u
i_

in
[2

]
u
i_

in
[3

]
u
i_

in
[4

]
u
i_

in
[5

]
u
i_

in
[6

]

49

a
n
a
lo

g
[0

]

53

uo_out[0]

u
o
_o

u
t[

1
]

64

u
o
_o

u
t[

2
]

57

u
o
_o

u
t[

3
]

u
o
_o

u
t[

4
]

u
o
_o

u
t[

5
]

u
o
_o

u
t[

6
]

u
o
_o

u
t[

7
]

uio[0]

62

Bottom View

u
i_

in
[7

]

a
n
a
lo

g
[1

]
a
n
a
lo

g
[2

]
a
n
a
lo

g
[3

]
a
n
a
lo

g
[4

]
a
n
a
lo

g
[5

]

a
n
a
lo

g
[6

]

a
n
a
lo

g
[8

]
a
n
a
lo

g
[7

]

a
n
a
lo

g
[9

]
a
n
a
lo

g
[1

0
]

a
n
a
lo

g
[1

1
]

22

Note: you will receive the chip mounted on a breakout board. The pinout is provided
for advanced users, as most users will not need to solder the chip directly.

141

https://github.com/TinyTapeout/caravel-breakout-pcb/tree/main/breakout-qfn

The Tiny Tapeout Multiplexer

Overview

The Tiny Tapeout Multiplexer distributes a single set of user IOs to multiple user
designs. It is the backbone of the Tiny Tapeout chip.
It has the following features:

• 10 dedicated inputs
• 8 dedicated outputs
• 8 bidirectional IOs
• Supports up to 512 user designs (32 mux units, each with up to 16 designs)
• Designs can have different sizes. The basic unit is a called a tile, and each design

can occupy up to 16 tiles.

Operation

The multiplexer consists of three main units:

1. The controller - used to set the address of the active design
2. The spine - a bus that connects the controller with all the mux units
3. Mux units - connect the spine to individual user designs

142

143

The Controller

The mux controller has 3 inputs lines:

Input Description
ena Sent as-is (buffered) to the downstream mux units
sel_rst_n Resets the internal address counter to 0 (active low)
sel_inc Increments the internal address counter by 1

It outputs the address of the currently selected design on the si_sel port of the spine
(see below).
For instance, to select the design at address 12, you need to pulse sel_rst_n low,
and then pulse sel_inc 12 times:

Internally, the controller is just a chain of 10 D flip-flops. The sel_inc signal is
connected to the clock of the first flip-flop, and the output of each flip-flop is connected
to the clock of the next flip-flop. The sel_rst_n signal is connected to the reset of
all flip-flops.
The following Wokwi projects demonstrates this setup: https://wokwi.com/projects/3
64347807664031745. It contains an Arduino Nano that decodes the currently selected
mux address and displays it on a 7-segment display. Click on the button labeled RST_N
to reset the counter, and click on the button labeled INC to increment the counter.

144

https://wokwi.com/projects/364347807664031745
https://wokwi.com/projects/364347807664031745

The Spine

The controller and all the muxes are connected together through the spine. The spine
has the following signals going on it:
From controller to mux:

• si_ena - the ena input
• si_sel - selected design address (10 bits)
• ui_in - user clock, user rst_n, user inputs (10 bits)
• uio_in - bidirectional I/O inputs (8 bits)

From mux to controller:

• uo_out - User outputs (8 bits)
• uio_oe - Bidirectional I/O output enable (8 bits)
• uio_out - Bidirectional I/O outputs (8 bits)

The only signal which is actually generated by the controller is si_sel (using
sel_rst_n and sel_inc, as explained above). The other signals are just going
through from/to the chip IO pads.

The Multiplexer (The Mux)

Each mux branch is connected to up to 16 designs. It also has 5 bits of hard-coded
address (each unit gets assigned a different address, based on its position on the die).
The mux implements the following logic:
If si_ena is 1, and si_sel matches the mux address, we know the mux is active.
Then, it activates the specific user design port that matches the remaining bits of
si_sel.
For the active design:

• clk, rst_n, ui_in, uio_in are connected to the respective pins coming from
the spine (through a buffer)

• uo_out, uio_oe, uio_out are connected to the respective pins going out to
the spine (through a tristate buffer)

For all others, inactive designs (including all designs in inactive muxes):

• clk, rst_n, ui_in, uio_in are all tied to zero
• uo_out, uio_oe, uio_out are disconnected from the spine (the tristate buffer

output enable is disabled)

145

Pinout

SKY130 Open Frame chips

mprj_io pin Function Signal QFN64 pin
0 Input ui_in[0] 31
1 Input ui_in[1] 32
2 Input ui_in[2] 33
3 Input ui_in[3] 34
4 Input ui_in[4] 35
5 Input ui_in[5] 36
6 Input ui_in[6] 37
7 Analog analog[0] 41
8 Analog analog[1] 42
9 Analog analog[2] 43
10 Analog analog[3] 44
11 Analog analog[4] 45
12 Analog analog[5] 46
13 Input ui_in[7] 48
14 Input clk † 50
15 Input rst_n † 51
16 Bidirectional uio[0] 53
17 Bidirectional uio[1] 54
18 Bidirectional uio[2] 55
19 Bidirectional uio[3] 57
20 Bidirectional uio[4] 58
21 Bidirectional uio[5] 59
22 Bidirectional uio[6] 60
23 Bidirectional uio[7] 61
24 Output uo_out[0] 62
25 Output uo_out[1] 2
26 Output uo_out[2] 3
27 Output uo_out[3] 4
28 Output uo_out[4] 5
29 Output uo_out[5] 6
30 Output uo_out[6] 7
31 Output uo_out[7] 8
32 Analog analog[6] 11
33 Analog analog[7] 12
34 Analog analog[8] 13
35 Analog analog[9] 14

146

mprj_io pin Function Signal QFN64 pin
36 Analog analog[10] 15
37 Analog analog[11] 16
38 Mux Control ctrl_ena 22
39 Mux Control ctrl_sel_inc 24
40 Mux Control ctrl_sel_rst_n 25
41 Reserved (none) 26
42 Reserved (none) 27
43 Reserved (none) 28

IHP SG13G2 custom pad frame

QFN64 pin Function Signal
1 Mux Control ctrl_ena
2 Mux Control ctrl_sel_inc
3 Mux Control ctrl_sel_rst_n
4 Reserved (none)
5 Reserved (none)
6 Reserved (none)
7 Reserved (none)
8 Reserved (none)
9 Output uo_out[0]
10 Output uo_out[1]
11 Output uo_out[2]
12 Output uo_out[3]
13 Output uo_out[4]
14 Output uo_out[5]
15 Output uo_out[6]
16 Output uo_out[7]
17 Power VDD IO
18 Ground GND IO
19 Analog analog[0]
20 Analog analog[1]
21 Analog analog[2]
22 Analog analog[3]
23 Power VAA Analog
24 Ground GND Analog
25 Analog analog[4]
26 Analog analog[5]

147

QFN64 pin Function Signal
27 Analog analog[6]
28 Analog analog[7]
29 Ground GND Core
30 Power VDD Core
31 Ground GND IO
32 Power VDD IO
33 Bidirectional uio[0]
34 Bidirectional uio[1]
35 Bidirectional uio[2]
36 Bidirectional uio[3]
37 Bidirectional uio[4]
38 Bidirectional uio[5]
39 Bidirectional uio[6]
40 Bidirectional uio[7]
41 Input ui_in[0]
42 Input ui_in[1]
43 Input ui_in[2]
44 Input ui_in[3]
45 Input ui_in[4]
46 Input ui_in[5]
47 Input ui_in[6]
48 Input ui_in[7]
49 Input rst_n †
50 Input clk †
51 Ground GND IO
52 Power VDD IO
53 Analog analog[8]
54 Analog analog[9]
55 Analog analog[10]
56 Analog analog[11]
57 Ground GND Analog
58 Power VDD Analog
59 Analog analog[12]
60 Analog analog[13]
61 Analog analog[14]
62 Analog analog[15]
63 Ground GND Core
64 Power VDD Core

148

Notes

† Internally, there’s no difference between clk, rst_n, and ui_in pins. They are all
just bits in the pad_ui_in bus. However, we use different names to make it easier to
understand the purpose of each signal.

149

Funding

IHP PDK support for Tiny Tapeout was funded by The SwissChips Initiative.
The manufacturing of Tiny Tapeout IHP 0p2 silicon was funded by the German BMBF
project FMD-QNC (16ME0831).

Team

Tiny Tapeout would not be possible without a lot of people helping. We would espe-
cially like to thank:

• Uri Shaked for wokwi development and lots more
• Patrick Deegan for PCBs, software, documentation and lots more
• Sylvain Munaut for help with scan chain improvements
• Mike Thompson and Mitch Bailey for verification expertise
• Tim Edwards and Harald Pretl for ASIC expertise
• Jix for formal verification support
• Proppy for help with GitHub actions
• Maximo Balestrini for all the amazing renders and the interactive GDS viewer
• James Rosenthal for coming up with digital design examples
• All the people who took part in Tiny Tapeout 01 and volunteered time to improve

docs and test the flow
• The team at YosysHQ and all the other open source EDA tool makers
• Jeff and the Efabless Team for running the shuttles and providing OpenLane and

sponsorship
• Tim Ansell and Google for supporting the open source silicon movement
• Zero to ASIC course community for all your support
• Jeremy Birch for help with STA

150

https://wokwi.com/
https://psychogenic.com/
https://twitter.com/tnt
https://www.linkedin.com/in/michael-thompson-0a581a/
https://www.linkedin.com/in/mitch-bailey-8ba0b45/
https://www.linkedin.com/in/tim-edwards-4376a18/
https://www.linkedin.com/in/harald-pretl-4911ba10/
https://twitter.com/jix_
https://twitter.com/proppy
https://twitter.com/maxiborga
https://www.yosyshq.com/
https://efabless.com/
https://www.youtube.com/watch?v=EczW2IWdnOM
https://zerotoasiccourse.com/

	Chip map
	Projects
	Chip ROM [0]
	Tiny Tapeout Factory Test [1]
	and gate [32]
	Oscillating Bones [34]
	ENSEIRB-MATMECA RISC-V processor [42]
	IZH Neuron [73]
	PWM_SPI [75]
	SIC-1 8-bit SUBLEQ Single Instruction Computer [102]
	VGA Screensaver with Tiny Tapeout Logo [104]
	LIF Neuron [106]
	RNG [128]
	PQN Model with Verilog [130]
	VGA Screensaver with the IHP Logo [132]
	4-Bit Adder [134]
	OCDCpro TT key lock test design IHP [136]
	8-bit DDS sine wave generator [138]
	Tapeout Test1 [160]
	Barans erster Template Design [162]
	demo-tiny [164]
	Random [166]
	noclue [168]
	GG [170]
	Tiny Tapeout Template Copy_Orion [224]
	CRP - Custom Risc Processor [225]
	Simple classification perceptron [226]
	Tiny Tapeout [228]
	example-verilog [230]
	brostarscard [232]
	Simon Says memory game [234]
	Timo 1 [256]
	Delta Sigma Comparator Based ADC [257]
	Tiny Tapeout Template Copy [258]
	AdExp DPI Neuron [259]
	dummy [260]
	Tapeout try [262]
	Chip design from Wokwi [264]
	Encoder [266]
	Nils Tinytapeout Proj [289]
	Projekt [291]
	4 bit incrementer [293]
	Tiny Tapeout Workshop Project by Nick Figner [295]
	Tiny Tapeout Chip [297]
	Atari 2600 [298]
	And Gate [299]
	LGN hand-written digit classifier (MNIST, 16x16 pixels) [326]
	DUMBRV [330]
	Simple LIF Neuron [417]
	test_design [419]
	RISC-V Mini IHP [421]
	LIF Neuron [423]
	Morse Code Trainer [425]
	Gamepad Pmod Demo [427]
	tinytapeoutchip [449]
	tiny tapeout chip [451]
	ToDo [453]
	in progress [455]
	numbers [457]
	number display [459]
	VGA Screensaver with Zero to ASIC Logo [480]
	weaving in silicon #1 [481]
	weaving in silicon #2 [483]
	weaving in silicon #3 [485]
	weaving in silicon #4 [487]
	Verilog OR-Gate [489]
	TinyQV - Crowdsourced Risc-V SoC [490]
	SAR ADC Controller [491]
	MC first Wokwi [513]
	2048 sliding tile puzzle game (VGA) [514]
	TinyTapeout 2025 [515]
	LIF neuron [517]
	3-bit up-down counter [519]
	Prism [521]
	KianV uLinux SoC [522]
	E-ink display driver [523]
	Yet Another Diffraction Grating Experiment [576]
	’’ [577]
	WowkiProject [579]
	Mini Calculator v1 [581]
	and [583]
	DigOTA [585]
	TinyTapeoutWorkshop [587]

	Pinout
	The Tiny Tapeout Multiplexer
	Overview
	Operation
	Pinout

	Funding
	Team

